
CodePeer

CodePeer

1 / 138

CodePeer
About This Course

About This Course

2 / 138

CodePeer
About This Course

Styles

This is a definition
this/is/a.path
code is highlighted
commands are emphasised --like-this

console outputs
are shown like that

3 / 138

CodePeer
Advanced Static Analysis

Advanced Static Analysis

4 / 138

CodePeer
Advanced Static Analysis

What is Static Analysis?

Symbolic interpretation of source code
Find what could go wrong
No execution

Formally verifying high level or abstract properties
Strong guarantees

May be exhaustive
All possible errors are reported
No false negatives; there may be false positives
If the analyzer does not report a problem, there is no problem

5 / 138

CodePeer
Advanced Static Analysis

Why Static Analysis Saves Money

Costs shift
From later, expensive phases
To earlier, cheaper phases

6 / 138

CodePeer
Advanced Static Analysis

Why Use CodePeer?

Efficient, potentially exhaustive code reviewer
Identifies run-time errors with a level of certainty

E.g. buffer overflows, division by zero
Flags legal but suspect code

Typically logic errors
Detailed subprograms analysis
Can analyze existing code bases

Detect and remove latent bugs
Legacy code
Code from external sources

7 / 138

CodePeer
Advanced Static Analysis

Detailed Subprogram Analysis

Explicit specification
Written in the code
Types
Contracts
Assertions
etc...

Implicit specification
Assumptions by CodePeer
Deduced preconditions

8 / 138

CodePeer
CodePeer Overview

CodePeer Overview

9 / 138

CodePeer
CodePeer Overview

CodePeer In A Nutshell (1/2)

CodePeer is a static analysis tool
Provides feedback before execution and test
Provides as-built documentation for code reviews

Helps identify and eliminate vulnerabilities and bugs early
Modular

Analyze entire project or a single file
Configure strictiness level

Review features
Filtering messages by category, severity, package...
Comparative analysis between runs
Shareable reviews database

10 / 138

CodePeer
CodePeer Overview

CodePeer In A Nutshell (2/2)

Large Ada support
Usable with Ada 83, 95, 2005, 2012
No vendor lock-in, supports GNAT, Apex, GHS, ObjectAda, VADS

Bundled with a Coding Standards Checker and a Metrics Tool
GNATcheck and GNATmetric

Detects runtime and logic errors exhaustively
Initialization errors, run-time errors and assertion failures (16 rules)
Race condition errors: unprotected access to globals (3 rules)

Warns on dead or suspicious code (21 rules)

11 / 138

CodePeer
CodePeer Overview

CodePeer Integration

Output: textual, XML, CSV, HTML
Command-line tool (uses GNAT project files)
Interactive use in GNAT Studio and GNATbench IDEs
Integration with Jenkins (continuous builder)
Integration with SonarQube (continuous inspection of code
quality)

12 / 138

CodePeer
CodePeer Overview

infer Integration

infer for Ada on top of main analysis
Based on Facebook’s infer engine
Adds lightweight checks
Disable with --no-infer switch

13 / 138

CodePeer
CodePeer Overview

Typical Users And Use Cases

Developers, during code-writing
Fix (local) problems before integration

Reviewers
Annotate code with analysis of potential problems
Analyse specific CWE issues

Project managers and quality engineers
Track reported vulnerabilities regularly
Identify new issues quickly

Software auditors
Identify overall vulnerabilities or hot spots
Verify compliance to quality standards

14 / 138

CodePeer
Getting Started

Getting Started

15 / 138

CodePeer
Getting Started

Command Line Interface (1/2)

codepeer -P <project> [-level <level>] ...

-P <gpr project-file> Note: All files from the project (including
subprojects) will be analyzed.

Tip: if missing a project file, use the --simple-project
switch

-level 0|1|2|3|4|min|max Specify the level of analysis performed:

0/min (default): fast and light checkers
1: fast and per subprogram analysis
2: more accurate/slower, automatic partitioning per
set of units
3: more accurate and much slower
4/max: global (exhaustive) analysis, no partitioning

Warning: Level 4 may exceed memory capacity or take a
very long time

16 / 138

CodePeer
Getting Started

Command Line Interface (2/2)

codepeer ... [-output-msg[-only]] [-html[-only]]

-output-msg[-only] [-output-msg switches] If specified,
CodePeer will output its results, in various formats.

If -output-msg is given, CodePeer will perform a new
analysis, and output its results.

If -output-msg-only is specified, no new analysis is
performed, and the results from the previous run (of the
same level) will be emitted.

You can control this output by adding switches.

e.g. -output-msg -csv -out report.csv to generate
a CSV file

-html, -html-only Generate HTML output. If -html-only, do not
run any analysis but use the previous run.

17 / 138

CodePeer
Getting Started

Running CodePeer in GNAT Studio

18 / 138

CodePeer
Getting Started

Project File Set Up

Let’s explore sections 1.4, 1.5 and 1.6 of the User’s Guide

Link: Basic Project File Setup
Link: Project File Setup
Link: Advanced Project File Setup

19 / 138

http://docs.adacore.com/codepeer-docs/users_guide/_build/html/introduction.html#basic-project-file-setup
http://docs.adacore.com/codepeer-docs/users_guide/_build/html/introduction.html#project-file-setup
http://docs.adacore.com/codepeer-docs/users_guide/_build/html/introduction.html#advanced-project-file-setup

CodePeer
Getting Started

CodePeer Levels Depth and Constraints

The higher the level the deeper and costlier the analysis

Level Description Code size False positives

0 Infer only (default) No limits Lowest
1 Subprograms No limits Few
2 Groups of units No limits Some
3 Semi-global < 1 million SLOC High

Automatic partitioning CC < 40
4 Global and exhaustive < 200 KSLOC Highest

Flag all issues CC < 20

SLOC : Source lines of code
CC : Cyclomatic Complexity

20 / 138

CodePeer
Getting Started

CodePeer Levels Use Case

The levels adapt to various workflows and users
The lower the level the more frequently it should be run

Level Condition Workflow Step Goal

0 None Initial static analysis Quick feedback
1 Project set-up After each commit Sanity check
2 Level 1 results clean Integration, CI Regular check
3 Medium code base Integration, Nightly Manual review

Server run Baseline
4 Small code base Before production Exhaustive review

Server run

21 / 138

CodePeer
Getting Started

"No False Positive" Mode

-level 0 or -messages min
Suppresses messages most likely to be false positives
Allows programmers to focus initial work on likely problems
Can be combined with any level of analysis
-messages min is default for levels 0, 1, and 2

22 / 138

CodePeer
Getting Started

Running CodePeer regularly

Historical database (SQLite) stores all results per level
Can be stored in Configuration Management

Baseline run
Previous run each new run is compared to
Differences of messages in CodePeer report
Default: first run
-baseline to change it

Typical use
Nightly -baseline run on servers
Daily development compares to baseline

-cutoff overrides it for a single run
Compare between two arbitrary runs with -cutoff and
-current

23 / 138

CodePeer
CodePeer Tutorial

CodePeer Tutorial

24 / 138

CodePeer
CodePeer Tutorial

Instructions

Walk through the steps of the CodePeer tutorial

25 / 138

CodePeer
CodePeer Checks

CodePeer Checks

26 / 138

CodePeer
CodePeer Checks

Messages Categories

Run-Time Checks
Errors that will raise built-in exceptions at runtime
Or fail silently with -gnatp

User Checks
Errors that will raise user exceptions at runtime
Or fail silently with -gnatp

Validity Checks
Mishandled object scope and value

Warnings
Questionable code that seems to have logic flaws
Hints at logical errors

Race Conditions
Code unsafe due to multi-tasking

27 / 138

CodePeer
Run-Time Checks

Run-Time Checks

28 / 138

CodePeer
Run-Time Checks

Run-Time Check Messages

Message Definition

divide by zero The second operand could be zero
On a division, mod or rem operation

range check A discrete could reach a value out of its range
overflow check An operation could overflow its numeric type

Note: Depends on the ’Base representation
array index check Array index could be out of bounds
access check A null access could be dereferenced
aliasing check A subprogram call could cause an aliasing error

eg. passing a single reference as two parameters
tag check A dynamic 'Class or 'Tag check could fail
validity An uninitialized or invalid object could be read
discriminant check The wrong variant could be used

eg. copy with the wrong discriminant
precondition A subprogram call could violate its deduced precondition

29 / 138

CodePeer
Run-Time Checks

Divide By Zero

The second operand of a divide, mod or rem operation could be
zero
Runtime Constraint_Error

1 procedure Div is
2 type Int is range 0 .. 2**32 - 1;
3 A : Int := Int'Last;
4 X : Integer;
5 begin
6 for I in Int range 0 .. 2 loop
7 X := Integer (A / I); -- division by zero when I=0
8 end loop;
9 end Div;

high: divide by zero fails here: requires I /= 0
30 / 138

CodePeer
Run-Time Checks

Range Check

Calculation may generate a value outside the range of an Ada
type or subtype
Will generate a Constraint_Error

1 subtype Constrained_Integer is Integer range 1 .. 2;
2 A : Integer;
3

4 procedure Proc_1 (I : in Constrained_Integer) is
5 begin
6 A := I + 1;
7 end Proc_1;
8 ...
9 A := 0;

10 Proc_1 (I => A); -- A is out-of-range of parameter I

high: range check fails here: requires A in 1..2
31 / 138

CodePeer
Run-Time Checks

Overflow Check

Calculation may overflow the bounds of a numeric type.
Depends on the size of the underlying (base) type
Will generate a Constraint_Error

1 is
2 Attempt_Count : Integer := Integer'Last;
3 begin
4 -- Forgot to reset Attempt_Count to 0
5 loop
6 Put ("Enter password to delete system disk");
7 if Get_Correct_Pw then
8 Allow_Access;
9 else

10 Attempt_Count := Attempt_Count + 1;

high: overflow check fails here: requires Attempt_Count
/= Integer_32'Last
high: overflow check fails here: requires Attempt_Count
in Integer_32'First-1..Integer_32'Last-1

32 / 138

CodePeer
Run-Time Checks

Array Index Check

Index value could be outside the array bounds
Also known as buffer overflow.
Will generate a Constraint_Error

1 procedure Buffer_Overflow is
2 type Int_Array is array (0 .. 2) of Integer;
3 X, Y : Int_Array;
4 begin
5 for I in X'Range loop
6 X (I) := I + 1;
7 end loop;
8

9 for I in X'Range loop
10 Y (X (I)) := I; -- Bad when I = 2, since X (I) = 3
11 end loop;
12 end Buffer_Overflow;

high: array index check fails here: requires (X (I)) in
0..2

33 / 138

CodePeer
Run-Time Checks

Access Check

Attempting to dereference a reference that could be null
Will generate an Access_Error

1 procedure Null_Deref is
2 type Int_Access is access Integer;
3 X : Int_Access;
4 begin
5 if X = null then
6 X.all := 1; -- null dereference
7 end if;
8 end Null_Deref;

high: access check fails here

34 / 138

CodePeer
Run-Time Checks

Aliasing Check

Some parameters could be passed as reference
Deduced preconditions:

Do not reference another parameter
Do not match the address of a global object

1 procedure In_Out (A : Int_Array; B : out Int_Array) is
2 begin
3 B (1) := A (1) + 1;
4 ...
5 B (1) := A (1) + 2;
6 end In_Out;
7 ...
8 In_Out (A, A); -- Aliasing!

high: precondition (aliasing check) failure on call to
alias.in_out: requires B /= A

35 / 138

CodePeer
Run-Time Checks

Tag Check

A tag check operation on a tagged object might raise a
Constraint_Error

1 is
2 type T1 is tagged null record;
3 type T2 is new T1 with null record;
4

5 procedure Call (X1 : T1'Class) is
6 begin
7 An_Operation (T2'Class (X1));
8 end Call;
9

10 X1 : T1;
11 X2 : T2;
12 begin
13 Call (X1); -- not OK, Call requires T2'Class

high: precondition (tag check) failure on call to
tag.call: requires X1'Tag in {tag.pkg.t2}

36 / 138

CodePeer
Run-Time Checks

Validity

procedure Uninit is
A : Integer;
B : Integer;

begin
A := B; -- we are reading B which is uninitialized!

end Uninit;

high: validity check: B is uninitialized here

37 / 138

CodePeer
Run-Time Checks

Discriminant Check

A field for the wrong variant/discriminant is accessed

1 type T (B : Boolean := True) is record
2 case B is
3 when True =>
4 J : Integer;
5 when False =>
6 F : Float;
7 end case;
8 end record;
9

10 X : T (B => True);
11

12 function Create (F : Float) return T is
13 (False, F);
14 ...
15 X := Create (6.0); -- discriminant check failure

high: discriminant check fails here: requires (Create
(6.0).b = True)

38 / 138

CodePeer
Run-Time Checks

Precondition

Subprogram call could violate preconditions, either
Where the error may occur
Where a caller passes in a value causing the error

Need to check generated preconditions
GNAT Studio or -show-backtraces to analyze checks

1 function Call (X : Integer) return Integer is
2 begin
3 if X < 0 then
4 return -1;
5 end if;
6 end Call;
7 ...
8 for I in -5 .. 5 loop
9 X := X + Call (I);

10 end loop;

high: precondition (conditional check) failure on call
to precondition.call: requires X < 0

39 / 138

CodePeer
Run-Time Checks

Quiz

Which check will be raised with the following?

function Before_First return Integer is
begin

return Integer'First - 1;
end Dec;

A. Precondition check
B. Range check
C. Overflow check
D. Underflow check

The value is out of representation range so the operation will fail, that
is an overflow, not a range check.

Difference between the two: Overflow is checked for intermediate
operations, range is then checked at affectation (parameter passing,
conversion...).

40 / 138

CodePeer
Run-Time Checks

Quiz

Which check will be raised with the following?

function Before_First return Integer is
begin

return Integer'First - 1;
end Dec;

A. Precondition check
B. Range check
C. Overflow check
D. Underflow check

The value is out of representation range so the operation will fail, that
is an overflow, not a range check.

Difference between the two: Overflow is checked for intermediate
operations, range is then checked at affectation (parameter passing,
conversion...).

40 / 138

CodePeer
Run-Time Checks

Quiz
Which check will be raised with the following?

type Ptr_T is access Natural;
type Idx_T is range 0 .. 10;
type Arr_T is array (Idx_T) of Ptr_T;

procedure Update
(A : in out Arr_T) is

begin
for J in Idx_T loop

declare
K : constant Idx_T := J - 1;

begin
A (K).all := (if A (K) /= null then A (K).all - 1 else 0);

end;
end loop;

end Update;

A. Array index check
B. Range check
C. Overflow check
D. Access check

When J = 0, the declaration of K will raise a Constraint_Error

If any A (K).all = 0, a second range check is raised.

41 / 138

CodePeer
Run-Time Checks

Quiz
Which check will be raised with the following?

type Ptr_T is access Natural;
type Idx_T is range 0 .. 10;
type Arr_T is array (Idx_T) of Ptr_T;

procedure Update
(A : in out Arr_T) is

begin
for J in Idx_T loop

declare
K : constant Idx_T := J - 1;

begin
A (K).all := (if A (K) /= null then A (K).all - 1 else 0);

end;
end loop;

end Update;

A. Array index check
B. Range check
C. Overflow check
D. Access check

When J = 0, the declaration of K will raise a Constraint_Error

If any A (K).all = 0, a second range check is raised.
41 / 138

CodePeer
User Checks

User Checks

42 / 138

CodePeer
User Checks

User Check Messages

Message Description

assertion A user assertion could fail
eg. pragma Assert

conditional check An exception could be raised conditionally
raise exception An exception is raised on a reachable path

Same as conditional check, but unconditionally
user precondition Potential violation of a specified precondition

As a Pre aspect or as a pragma Precondition
postcondition Potential violation of a specified postcondition

As a Post aspect or as a pragma Postcondition

43 / 138

CodePeer
User Checks

Assertion

A user assertion (using e.g. pragma Assert) could fail

1 procedure Assert is
2

3 function And_Or (A, B : Boolean) return Boolean is
4 begin
5 return False;
6 end And_Or;
7

8 begin
9 pragma Assert (And_Or (True, True));

10 end Assert;

high: assertion fails here: requires (and_or'Result) /=
false

44 / 138

CodePeer
User Checks

Conditional Check

An exception could be raised conditionally in user code

1 if Wrong_Password then
2 Attempt_Count := Attempt_Count + 1;
3

4 if Attempt_Count > 3 then
5 Put_Line ("max password count reached");
6 raise Program_Error;
7 end if;
8 end if;

high: conditional check raises exception here: requires
Attempt_Count <= 3

45 / 138

CodePeer
User Checks

Raise Exception

An exception is raised unconditionally on a reachable path.

1 procedure Raise_Exc is
2 X : Integer := raise Program_Error;
3 begin
4 null;
5 end Raise_Exc;

low: raise exception unconditional raise

46 / 138

CodePeer
User Checks

User Precondition

A call might violate a subprogram’s specified precondition.

1 procedure Pre is
2 function "**" (Left, Right : Float) return Float with
3 Import,
4 Pre => Left /= 0.0;
5

6 A : Float := 1.0;
7 begin
8 A := (A - 1.0)**2.0;
9 end Pre;

high: precondition (user precondition) failure on call
to pre."**": requires Left /= 0.0

47 / 138

CodePeer
User Checks

Postcondition

The subprogram’s body may violate its specified postcondition.

1 type Stress_Level is (None, Under_Stress, Destructive);
2

3 function Reduce (Stress : Stress_Level)
4 return Stress_Level with
5 Pre => (Stress /= None),
6 Post => (Stress /= Destructive)
7 is (Stress_Level'Val (Stress_Level'Pos (Stress) + 1));
8 -- ˆ
9 -- Typo!

10 ...
11 Reduce (My_Component_Stress);

high: postcondition failure on call to post.reduce:
requires Stress /= Destructive

48 / 138

CodePeer
User Checks

Quiz

Which user check will be raised with the following?

procedure Raise_Exc (X : Integer) is
begin

if X > 0 or X < 0 then
raise Program_Error;

else
pragma Assert (X >= 0);

end if;
end Raise_Exc;

A. Conditional check
B. Assertion
C. Raise Exception
D. User precondition

The exception is raised on X /= 0, it is conditionally reachable.

In other cases, X = 0 so the assertion always holds.

49 / 138

CodePeer
User Checks

Quiz

Which user check will be raised with the following?

procedure Raise_Exc (X : Integer) is
begin

if X > 0 or X < 0 then
raise Program_Error;

else
pragma Assert (X >= 0);

end if;
end Raise_Exc;

A. Conditional check
B. Assertion
C. Raise Exception
D. User precondition

The exception is raised on X /= 0, it is conditionally reachable.

In other cases, X = 0 so the assertion always holds.
49 / 138

CodePeer
Uninitialized and Invalid Variables

Uninitialized and Invalid Variables

50 / 138

CodePeer
Uninitialized and Invalid Variables

Uninitialized and Invalid Variables Messages

Message Description

validity check An uninitialized or invalid value could be read

51 / 138

CodePeer
Uninitialized and Invalid Variables

Validity Check

The code may be reading an uninitialized or invalid value

1 procedure Uninit is
2 A : Integer;
3 B : Integer;
4 begin
5 A := B; -- we are reading B which is uninitialized!
6 end Uninit;

high: validity check: B is uninitialized here

52 / 138

CodePeer
Warnings

Warnings

53 / 138

CodePeer
Warnings

Warning Messages (1/3)

Message Description

dead code Also called unreachable code.
Assumed all code should be reachable

test always false Code always evaluating to False
test always true Code always evaluating to True
test predetermined Choice evaluating to a constant value

For eg. case statements
condition predetermined Constant RHS or LHS in a conditional
loop does not complete normally Loop exit condition is always False
unused assignment Redundant assignment
unused assignment to global Redundant global object assignment
unused out parameter Actual parameter of a call is ignored

Either never used or overwritten

RHS : Right-Hand-Side of a binary operation
LHS : Left-Hand-Side of a binary operation

54 / 138

CodePeer
Warnings

Warning Messages (2/3)

Message Description

useless reassignment Assignment does not modify the object
suspicious precondition Precondition seems to have a logic flaw

eg. possible set of values is not contiguous
suspicious input out parameter read before assignment

should be in out
unread parameter in out parameter is never read

should be out
unassigned parameter in out parameter is never assigned

should be in
suspicious constant operation Constant result from variable operands

May hint at a typo, or missing operation
subp never returns Subprogram will never terminate
subp always fails Subprogram will always terminate in error

55 / 138

CodePeer
Warnings

Warning Messages - infer (3/3)

Message Description

same operands Binary operator has the same argument twice
same logic Same argument appears twice in a boolean expression
duplicate branches Duplicate code in ’if’ or ’case’ branches
test duplication An expression is tested multiple times

in an if ... elsif ... else

56 / 138

CodePeer
Warnings

Dead Code

Also called unreachable code.
All code is expected to be reachable

1 procedure Dead_Code (X : out Integer) is
2 I : Integer := 10;
3 begin
4 if I < 4 then
5 X := 0;
6 elsif I >= 8 then
7 X := 0;
8 end if;
9 end Dead_Code;

medium warning: dead code because I = 10

57 / 138

CodePeer
Warnings

Test Always False

Redundant conditionals, always False

1 procedure Dead_Code (X : out Integer) is
2 I : Integer := 10;
3 begin
4 if I < 4 then
5 X := 0;
6 end if;
7 end Dead_Code;

low warning: test always false because I = 10

58 / 138

CodePeer
Warnings

Test Always True

Redundant conditionals, always True

1 procedure Dead_Code (X : out Integer) is
2 I : Integer := 10;
3 begin
4 if I >= 8 then
5 X := 0;
6 end if;
7 end Dead_Code;

medium warning: test always true because I = 10

59 / 138

CodePeer
Warnings

Test Predetermined

Similar to test always true and test always false
When choice is not binary
eg. case statement

1 procedure Predetermined is
2 I : Integer := 0;
3 begin
4 case I is
5 when 0 =>
6 null;
7 when 1 =>
8 null;
9 when others =>

10 null;
11 end case;
12 end Predetermined;

low warning: test predetermined because I = 0
60 / 138

CodePeer
Warnings

Condition Predetermined

Redundant condition in a boolean operation
RHS operand is constant in this context

1 if V /= A or else V /= B then
2 -- ˆˆˆˆˆˆˆ
3 -- V = A, so V /= B
4 raise Program_Error;
5 end if;

medium warning: condition predetermined because (V /= B)
is always true

61 / 138

CodePeer
Warnings

Loop Does Not Complete Normally

The loop will never complete its exit condition
Causes can be

Exit condition is always False
An exception is raised
The exit condition code is dead

1 procedure Loops is
2 Buf : String := "The" & ASCII.NUL;
3 Bp : Natural;
4 begin
5 Buf (4) := 'a'; -- Eliminates null terminator
6 Bp := Buf'First;
7

8 loop
9 Bp := Bp + 1;

10 exit when Buf (Bp - 1) = ASCII.NUL; -- Condition never reached
11 end loop;
12 end Loops;

medium warning: loop does not complete normally
62 / 138

CodePeer
Warnings

Unused Assignment

Object is assigned a value that is never read
Unintentional loss of result or unexpected control flow
Object with the following names won’t be checked:

ignore, unused, discard, dummy, tmp, temp
Tuned via the MessagePatterns.xml file if needed.

pragma Unreferenced also ignored

1 I := Integer'Value (Get_Line);
2 I := Integer'Value (Get_Line);

medium warning: unused assignment into I

63 / 138

CodePeer
Warnings

Unused Assignment To Global

Global variable assigned more than once between reads
Note: the redundant assignment may occur deep in the call tree

1 procedure Proc1 is
2 begin
3 G := 123;
4 end Proc1;
5

6 procedure Proc is
7 begin
8 Proc1;
9 G := 456; -- override effect of calling Proc1

10 end Proc;

low warning: unused assignment to global G in
unused_global.p.proc1

64 / 138

CodePeer
Warnings

Unused Out Parameter

Actual out parameter of a call is ignored
either never used
or overwritten

1 procedure Search (Success : out Boolean);
2 ...
3 procedure Search is
4 Ret_Val : Boolean;
5 begin
6 Search (Ret_Val);
7 end Search;

medium warning: unused out parameter Ret_Val

65 / 138

CodePeer
Warnings

Useless Reassignment

Assignments do not modify the value stored in the assigned object

1 procedure Self_Assign (A : in out Integer) is
2 B : Integer;
3 begin
4 B := A;
5 A := B;
6 end Self_Assign;

medium warning: useless reassignment of A

66 / 138

CodePeer
Warnings

Suspicious Precondition

Set of allowed inputs is not contiguous
some values in-between allowed inputs can cause runtime errors

Certain cases may be missing from the user’s precondition
May be a false-positive depending on the algorithm

1 if S.Last = S.Arr'Last then
2 raise Overflow;
3 end if;
4 -- Typo: Should be S.Last + 1
5 S.Last := S.Last - 1;
6 -- Error when S.Last = S.Arr'First - 1
7 S.Arr (S.Last) := V;

medium warning: suspicious precondition for S.Last: not
a contiguous range of values

67 / 138

CodePeer
Warnings

Suspicious Input

out parameter read before assignment
Should have been an in out
Ada standard allows it

but it is a bug most of the time

1 procedure Take_In_Out (R : in out T);
2 ...
3 procedure Take_Out (R : out T; B : Boolean) is
4 begin
5 Take_In_Out (R); -- R is 'out' but used as 'in out'
6 end Take_Out;

medium warning: suspicious input R.I: depends on input
value of out-parameter

68 / 138

CodePeer
Warnings

Unread Parameter

in out parameter is not read
but is assigned on all paths
Could be declared out

1 procedure Unread (X : in out Integer) is
2 begin
3 X := 0; -- X is assigned but never read
4 end Unread;

medium warning: unread parameter X: could have mode out

69 / 138

CodePeer
Warnings

Unassigned Parameter

in out parameter is never assigned
Could be declared in

1 procedure Unassigned
2 (X : in out Integer; Y : out Integer) is
3 begin
4 Y := X; -- X is read but never assigned
5 end Unassigned;

medium warning: unassigned parameter X: could have mode
in

70 / 138

CodePeer
Warnings

Suspicious Constant Operation

Constant value calculated from non-constant operands
Hint that there is a coding mistake

either a typo, using the wrong variable
or an operation that is missing

eg Float conversion before division

1 type T is new Natural range 0 .. 14;
2

3 function Incorrect (X : T) return T is
4 begin
5 return X / (T'Last + 1);
6 end Incorrect;

medium warning: suspicious constant operation X/15
always evaluates to 0

71 / 138

CodePeer
Warnings

Subp Never Returns

Subprogram will never return
presumably infinite loop

Typically, another message in the body can explain why
eg. test always false

1 procedure Infinite_Loop is
2 X : Integer := 33;
3 begin
4 loop
5 X := X + 1;
6 end loop;
7 end Infinite_Loop;

medium warning: subp never returns: infinite_loop

72 / 138

CodePeer
Warnings

Subp Always Fails

A run-time problem could occur on every execution
Typically, another message in the body can explain why

1 procedure P is
2 X : Integer := raise Program_Error;
3 begin
4 null;
5 end P;

high warning: subp always fails: p fails for all
possible inputs

73 / 138

CodePeer
Warnings

Same Operands

The two operands of a binary operation are syntactically equivalent
The resulting expression will always yield the same value

1 function Same_Op (X : Natural) return Integer is
2 begin
3 -- Copy/paste error? Always return 1
4 return (X + 1) / (X + 1);
5 end Same_Op;

medium warning: same operands (Infer): operands of '/'
are identical

74 / 138

CodePeer
Warnings

Same Logic

The same sub-expression occurs twice in a boolean expression
The entire expression can be simplified, or always return the same
value

1 function Same_Logic (A, B : Boolean) return Boolean is
2 begin
3 return A or else B or else A;
4 end Same_Logic;

medium warning: same operands (Infer): 'A' duplicated at
line 3

75 / 138

CodePeer
Warnings

Test duplication

The same expression is tested twice in successive
if ... elsif ... elsif ...
Usually indicates a copy-paste error

1 procedure Same_Test (Str : String) is
2 A : constant String := "toto";
3 B : constant String := "titi";
4 begin
5 if Str = A then
6 Ada.Text_IO.Put_Line("Hello, tata!");
7 elsif Str = B then
8 Ada.Text_IO.Put_Line("Hello, titi!");
9 elsif Str = A then

10 Ada.Text_IO.Put_Line("Hello, toto!");
11 else
12 Ada.Text_IO.Put_Line("Hello, world!");
13 end if;
14 end Same_Test;

medium warning: same test (Infer): test 'Str = A'
duplicated at line 9

76 / 138

CodePeer
Warnings

Duplicate branches
Branches are duplicated in if or case
Should be refactored, or results from incorrect copy-paste

1 function Dup (X : Integer) return Integer is
2 begin
3 if X > 0 then
4 declare
5 A : Integer := X;
6 B : Integer := A + 1;
7 begin
8 return B;
9 end;

10 else
11 declare
12 A : Integer := X;
13 B : Integer := A + 1;
14 begin
15 return B;
16 end;
17 end if;
18 end Dup;

infer.adb:4:10: medium warning: duplicate branches
(Infer): code duplicated at line 11

77 / 138

CodePeer
Warnings

Quiz

Which warnings will be raised with the following?

function F (A : Integer; B : Integer) return Integer is
begin

if A > B then
return 0;

elif A < B + 1 then
return 1;

elif A /= B then
return 2;

end if;
end F;

A. Dead Code
B. Condition Predetermined
C. Test Always False
D. Test Always True

The last elsif can never be reached.

78 / 138

CodePeer
Warnings

Quiz

Which warnings will be raised with the following?

function F (A : Integer; B : Integer) return Integer is
begin

if A > B then
return 0;

elif A < B + 1 then
return 1;

elif A /= B then
return 2;

end if;
end F;

A. Dead Code
B. Condition Predetermined
C. Test Always False
D. Test Always True

The last elsif can never be reached.
78 / 138

CodePeer
Race Conditions

Race Conditions

79 / 138

CodePeer
Race Conditions

Race Condition Messages

Message Description

unprotected access Shared object access without lock
unprotected shared access Object is referenced is multiple tasks

And accessed without a lock
mismatch protected access Mismatch in locks used

Checked for all shared objects access
eg. task1 uses lock1, task2 uses lock2

80 / 138

CodePeer
Race Conditions

Race Condition Examples

1 procedure Increment is
2 begin
3 Mutex_Acquire;
4 if Counter = Natural'Last then
5 Counter := Natural'First;
6 else
7 Counter := Counter + 1;
8 end if;
9 Mutex_Release;

10 end Increment;
11

12 procedure Reset is
13 begin
14 Counter := 0; -- lock missing
15 end Reset;

medium warning: mismatched protected access of shared
object Counter via race.increment
medium warning: unprotected access of Counter via
race.reset

81 / 138

CodePeer
Automatically Generated Annotations

Automatically Generated Annotations

82 / 138

CodePeer
Automatically Generated Annotations

Generated Annotations

CodePeer generates annotations on the code

Not errors

Express properties and assumptions on the code

Can be reviewed
But not necessarily
Can help spot inconsistencies

Can help understand and debug messages

83 / 138

CodePeer
Automatically Generated Annotations

Annotations Categories

Annotation Description

precondition Requirements imposed on the subprogram’s inputs
postcondition Presumption on the outputs of a subprogram
presumption Presumption on the result of an external subprogram
unanalyzed call External calls to unanalyzed subprograms
global inputs Global variables referenced by each subprogram
global outputs Global variables modified by each subprogram
new objects Unreclaimed heap-allocated object

84 / 138

CodePeer
Automatically Generated Annotations

Precondition

Requirements imposed on the subprogram inputs
eg. a certain parameter to be non-null

Checked at every call site

A message is given for any precondition that a caller might violate.
Includes the checks involved in the requirements

procedure Assign (X : out Integer; Y : in Integer) is
begin

X := Y + 1;
end Assign;
-- assign.adb:1: (pre)- assign:(overflow check [CWE 190])
-- Y /= 2_147_483_647

85 / 138

CodePeer
Automatically Generated Annotations

Postcondition

Inferences about the outputs of a subprogram

2 -- assign.adb:1: (post)- assign:X /= -2_147_483_648
3 -- assign.adb:1: (post)- assign:X = Y + 1

86 / 138

CodePeer
Automatically Generated Annotations

Presumption

Presumption about the results of an external subprogram
Code is unavailable
Code is in a separate partition

Separate presumptions for each call site

<subprogram-name>@<line-number-of-the-call>

Generally not used to determine preconditions of the calling routine
but they might influence postconditions of the calling routine.

procedure Above_Call_Unknown (X : out Integer) is
begin

Call_Unknown (X);
pragma Assert (X /= 10);

end Above_Call_Unknown;
-- (presumption)- above_call_unknown:unknown.X@4 /= 10

87 / 138

CodePeer
Automatically Generated Annotations

Unanalyzed Call

External calls to unanalyzed subprograms
Participate in the determination of presumptions

These annotations include all unanalyzed calls
Direct calls

Calls in the call graph subtree

If they have an influence on the current subprograms

-- above_call_unknown.adb:2: (unanalyzed)-
-- above_call_unknown:call on unknown

88 / 138

CodePeer
Automatically Generated Annotations

Global Inputs/Outputs

Global variables referenced by each subprogram

Only includes enclosing objects
Not e.g. specific components

For accesses, only the access object is listed
Dereference to accesses may be implied by the access object listed

procedure Double_Pointer_Assign (X, Y : in Ptr) is
begin

X.all := 1;
Y.all := 2;

end Double_Pointer_Assign;
-- call_double_pointer_assign.adb:4: (global outputs)-
-- call_double_pointer_assign.call:X, Y

89 / 138

CodePeer
Automatically Generated Annotations

New Objects

Unreclaimed heap-allocated objects
Created by a subprogram
Not reclaimed during the execution of the subprogram itself

New objects that are accessible after return from the subprogram

procedure Create (X : out Ptr) is
begin

X := new Integer;
end;
-- alloc.adb:2: (post)- alloc.create:X =
-- new integer(in alloc.create)#1'Address
-- alloc.adb:2: (post)- alloc.create:
-- new integer(in alloc.create)#1.<num objects> = 1

90 / 138

CodePeer
External Tools Integration

External Tools Integration

91 / 138

CodePeer
External Tools Integration

GNAT Warnings

GNAT warnings can be generated by CodePeer

--gnat-warnings=xxx (uses -gnatwxxx)

Messages are stored in the database
Displayed and filtered as any other message

Manual justification
Can be stored in the database
Done via pragma Warnings instead of pragma Annotate

92 / 138

CodePeer
External Tools Integration

GNATcheck messages

GNATcheck messages can be generated by CodePeer

--gnatcheck

Uses the GNATcheck rules file
defined in your project file in package Check

Messages are stored in the database
Displayed and filtered as any other message

Manual justification
Can be stored in the database
Done via pragma Annotate (GNATcheck, ...)

93 / 138

CodePeer
Finding the Right Settings

Finding the Right Settings

94 / 138

CodePeer
Finding the Right Settings

System Requirements

Fast 64bits machine with multiple cores and memory
Server → 24 to 48 cores with at least 2GB per core (48 to 96GB)
Local desktop → 4 to 8 cores, with at least 8 to 16GB
Avoid slow filesystems → networks drives (NFS, SMB),
configuration management filesystems (e.g. ClearCase dynamic
views).

If not possible, at least generate output file in a local disk via the
Output_Directory and Database_Directory project attributes.

Global analysis (-level max) → At least 12GB + 1GB per 10K
SLOC, e.g. At least 32GB for 200K SLOC.

95 / 138

CodePeer
Finding the Right Settings

Analyze Messages (1/4)

Start with default (level 0)

Check number of false positives

Check number of interesting message

Check duration of analysis

If these conditions are OK
Increase level (eg. level 1) and iterate

project My_Project is
...
package CodePeer is

for Switches use ("-level", "1");
end CodePeer;

end My_Project;

codepeer -Pmy_project -level 1 ...
96 / 138

CodePeer
Finding the Right Settings

Analyze Messages (2/4)

Runs contain many messages

Sample them

Identify groups of false positives

Exclude them by categories
Using --infer-messages for infer (level 0)
Using --be-messages for CodePeer (level 1+)

For example, to disable messages related to access check:

--be-messages=-access_check

97 / 138

CodePeer
Finding the Right Settings

Analyze Messages (3/4)

Filtering of messages
-output-msg -hide-low on the command line
Check boxes to filter on message category / rank in GNAT
Studio and HTML
--infer-messages --be-messages --gnat-warnings switches
-messages min/normal/max
Pattern-based automatic filtering (MessagePatterns.xml)

You can exclude a package or a subprogram from analysis
pragma Annotate (CodePeer, Skip_Analysis)

98 / 138

CodePeer
Finding the Right Settings

Analyze Messages (4/4)

Choose relevant messages based on ranking
Rank = severity × certainty
High → certain problem
Medium → possible problem, or certain with low severity
Low → less likely problem (yet useful for exhaustivity)

When analysing messages
Start with High rank
Then Medium rank
Finally Low rank if needed

Considering only High and Medium is recommended
Default in GNAT Studio and HTML interfaces

99 / 138

CodePeer
Finding the Right Settings

Run CodePeer faster

Hardware
64-bit machine
Large amounts of memory
Large number of cores

Command-line switches
Lower analysis level -level <num>
Paralellize -j0 (default)

Identify files taking too long to analyze
Disable analysis of their packages, subprograms or files

analyzed main.scil in 0.05 seconds
analyzed main__body.scil in 620.31 seconds
analyzed pack1__body.scil in 20.02 seconds
analyzed pack2__body.scil in 5.13 seconds

100 / 138

CodePeer
Finding the Right Settings

Code-Based Partial Analysis

Excluding subprograms or packages from analysis
pragma Annotate (CodePeer, Skip_Analysis)

procedure Complex_Subprogram (...) is
pragma Annotate (CodePeer, Skip_Analysis);

begin
...

end Complex_Subprogram;

package Complex_Package is
pragma Annotate (CodePeer, Skip_Analysis);
...

end Complex_Package;

101 / 138

CodePeer
Finding the Right Settings

Project-Based Partial Analysis

Excluding Files From Analysis

package CodePeer is
for Excluded_Source_Files use ("xxx.adb");
-- Analysis generates lots of timeouts, skip for now

end CodePeer;

Excluding Directories From Analysis

package CodePeer is
for Excluded_Source_Dirs use ("directory1",

"directory2");
end CodePeer;

Excluding Projects From Analysis

for Externally_Built use "True";
102 / 138

CodePeer
Justifying CodePeer Messages

Justifying CodePeer Messages

103 / 138

CodePeer
Justifying CodePeer Messages

Database Justification

Add review status in database
GNAT Studio: select review icon on message(s)
HTML web server: click on Add Review button above messages
Displayed with -output-msg-only -show-reviews (-only)

Can run CodePeer as a server
Share the database on network
codepeer --ide-server --port=8080

Access the IDE server from GNAT Studio
Set the project file to the following

package CodePeer is
for Server_URL use "http://server:8080";

end CodePeer;
104 / 138

CodePeer
Justifying CodePeer Messages

In-Code Justification

Add message review pragma in code
pragma Annotate added next to code with message

False_Positive: Condition in question cannot occur
Intentional: Condition is justified by a design choice
Also added in the database

...
return (X + Y) / (X - Y);
pragma Annotate (CodePeer,

False_Positive,
"Divide By Zero",
"reviewed by John Smith");

105 / 138

CodePeer
Justifying CodePeer Messages

Outside Tooling Justification

Use spreadsheet tool
Export messages in CSV format
codepeer -Pprj -output-msg-only -csv
Review them via the spreadsheet tool (e.g. Excel)

Beware: Fill all the columns
Import back CSV reviews into the CodePeer database
codepeer_bridge --import-reviews

Use external justification connected to output
Textual output: compiler-like messages or CSV format

106 / 138

CodePeer
CodePeer Review Lab

CodePeer Review Lab

107 / 138

CodePeer
CodePeer Review Lab

Instructions

Follow the radar/ lab instructions.

108 / 138

CodePeer
CodePeer Workflows

CodePeer Workflows

109 / 138

CodePeer
CodePeer Workflows

CodePeer Use Cases

Analyzing code locally prior to commit (desktop)
Nightly runs on a server
Continuous runs on a server after each push
Any combination desktop/continuous/nightly run
Per-project software customization
Compare local changes with master
Multiple teams reviewing multiple subsystems
Use CodePeer to generate a security report

110 / 138

CodePeer
CodePeer Workflows

Analyzing Code Locally Prior To Commit (1/2)

Each developer as a single user, on a desktop machine
After compilation, before testing.
Solution #1: File by File analysis

Use GNAT Studio menu
CodePeer → Analyze File
On the files that were modified
Fastest, incremental

Solution #2
Run codepeer -level 1/2 -baseline
Local baseline database used for comparison
Look at added messages only
More exhaustive
Uses past reviews (less false positives)

111 / 138

CodePeer
CodePeer Workflows

Analyzing Code Locally Prior To Commit (2/2)

If duration or number of messages is not good → refine the
settings

For each new message:
If a real issue is found → Fix the code
If it is a false positive → Justify it with pragma Annotate

112 / 138

CodePeer
CodePeer Workflows

Nightly Runs

CodePeer run daily on a dedicated server
With large resources
Exhaustive level (2 → 4)

Typically run nightly
Takes into account commits of the day
Provides results to users the next morning

Allows users to analyze and justify messages manually
Via the web interface
From GNAT Studio by accessing the database remotely

At release, results can be committed under CM for traceability
purposes

113 / 138

CodePeer
CodePeer Workflows

Continuous Runs

CodePeer is run on a dedicated server
With large resources
Fast level (0 or 1)

No need to be exhaustive
Focus on differences from previous run

Continuous runs triggerred on repository events

Summary is sent to developers
Email
Web interface
codepeer -Pprj -output-msg -only -show-added | grep "[added]"

Developers then fix the code, or justify the relevant messages
via pragma Annotate in source code or via web interface.
or wait for the next nightly run to post a manual analysis via the
HTML Output.

114 / 138

CodePeer
CodePeer Workflows

Combined Desktop/Nightly Run

Fast analysis of code changes done at each developer’s desk

A longer and more exhaustive analysis is performed nightly

The developer can re-use the nightly database as a baseline for
analysis

Database reviews should be stored in this database
No conflict with nightly runs
Updated every morning in the users’ databases

115 / 138

CodePeer
CodePeer Workflows

Combined Continuous/Nightly Run

Fast analysis of code changes done at each developer’s desk

A longer and more exhaustive analysis is performed nightly

Alternatively: a baseline run is performed nightly
Same level as continuous runs and -baseline

Database reviews should be stored in this database
No conflict with nightly runs
Updated every morning in the continuous database

116 / 138

CodePeer
CodePeer Workflows

Combined Desktop/Continuous/Nightly Run

Fast analysis of code changes done at each developer’s desk

A more exhaustive analysis of code changes done continuously
on a server

A longer and even more exhaustive analysis is performed nightly

Database reviews should be stored in this database
No conflict with nightly runs
Updated every morning in the users’ and continuous databases

117 / 138

CodePeer
CodePeer Workflows

Software Customization Per Project/Mission

A core version of the software gets branched out or instantiated
Modified on a per-project/mission basis

Objectives
Separate CodePeer runs on all active branches
Database is used to compare runs on a single given branch

Continuous solution
Justify message via pragma Annotate only
Merge of justifications handled via standard CM
Advantage: Code is self-justified

One shot solution
Version the database alongside the code
At branch point database is forked
Database is maintained separately from there
Advantage: Can use database reviews

118 / 138

CodePeer
CodePeer Workflows

Multiple Teams Analyzing Multiple Subsystems

Large software system with multiple subsystems
Maintained by different teams

Perform a separate analysis for each subsystem
Using a separate workspace and database

Create one project file (.gpr) per subsystem

To resolve dependencies between subsystems, use limited with

limited with "subsystem1";
limited with "subsystem2";
project Subsystem3 is

...
end Subsystem3;

Run CodePeer with:

codepeer -Psubsystem1 --no-subprojects
119 / 138

CodePeer
Comparing to Baseline

Comparing to Baseline

120 / 138

CodePeer
Comparing to Baseline

Baseline Runs

Analysis running with latest source version
On a server

Baseline run
Reference database

Is a gold reference
All changes are compared to it
All reviews should be pushed to it

Create a baseline run
codepeer -baseline

121 / 138

CodePeer
Comparing to Baseline

Baseline With Continuous Integration

Developers pre-validate changes locally prior to commit
Then create a separate branch and commits to it

The continuous builder is triggered
Database is copied from the Baseline run
Setting are copied from the Reference run settings

Results are reviewed via a spreadsheet tool (e.g. Excel)

Reviews are imported into the CodePeer database
Can use -show-added to show only the new messages

codepeer -Pprj -output-msg -show-added | grep "[added]"

122 / 138

CodePeer
CodePeer Customization

CodePeer Customization

123 / 138

CodePeer
CodePeer Customization

CodePeer Specific Project Attributes

project Prj1 is
...

package CodePeer is
for Excluded_Source_Files use ("file1.ads", "file2.adb");
-- similar to project-level attribute for compilation

for Output_Directory use "project1.output";

for Database_Directory use "/work/project1.db";
-- can be local or on shared drive

for Switches use ("-level", "1");
-- typically -level -jobs

for Additional_Patterns use "ExtraMessagePatterns.xml";
-- also Message_Patterns to replace default one

for CWE use "true";
end CodePeer;

end Prj1;
124 / 138

CodePeer
CodePeer Customization

Project Specialization For CodePeer
type Build_Type is ("Debug", "Production", "CodePeer");
Build : Build_Type := External ("Build", "Debug");

package Builder is
case Build is

when "CodePeer" =>
for Global_Compilation_Switches ("Ada") use
("-gnatI",
-- ignore representation clauses confusing analysis
"-gnateT=" & My_Project'Project_Dir & "/target.atp",
-- specify target platform for integer sizes, alignment, ...
"--RTS=kernel");
-- specify runtime library

when others =>
for Global_Compilation_Switches ("Ada") use ("-O", "-g");
-- switches only relevant when building

end case;
end Builder;

Compile with
gprbuild -P my_project.gpr -XBuild=Production
Analyze with
codepeer -P my_project.gpr -XBuild=CodePeer

125 / 138

CodePeer
CodePeer Customization

Custom API For Race Conditions

pragma Annotate can identify entry points and locks other than
Ada tasks and protected objects

package Pkg is
procedure Single;
pragma Annotate (CodePeer,

Single_Thread_Entry_Point,
"Pkg.Single");

procedure Multiple;
pragma Annotate (CodePeer,

Multiple_Thread_Entry_Point,
"Pkg.Multiple");

end Pkg;

package Locking is
procedure Lock;
procedure Unlock;
pragma Annotate (CodePeer, Mutex,

"Locking.Lock",
"Locking.Unlock");

end Locking;
126 / 138

CodePeer
CodePeer Customization

Report File

You can combine some or all
of the following switches to
generate a report file
Mandatory switches:

-output-msg
-out <report file>

Optional switches
-show-header
-show-info
-show-removed
-show-reviews
-show-added

package CodePeer is
for Switches use ("-level", "max", "-output-msg",

"-out", "report_file.out",
"-show-header", "-show-info");

end CodePeer;

date : YYYY-MM-DD HH:MM:SS
codepeer version : 18.2 (yyyymmdd)
host : Windows 64 bits
command line : codepeer -P my_project.gpr
codepeer switches : -level max -output-msg -out
report_file.out -show-header -show-info
current run number: 4
base run number : 1
excluded file : /path/to/unit3.adb
unit1.ads:1:1: info: module analyzed: unit1
unit1.adb:3:1: info: module analyzed:
unit1__body
unit2.adb:12:25: medium: divide by zero might
fail: requires X /= 0
[...]

127 / 138

CodePeer
CodePeer Advanced Customization Lab

CodePeer Advanced Customization Lab

128 / 138

CodePeer
CodePeer Advanced Customization Lab

Instructions

Follow the cruise/ lab instructions.

129 / 138

CodePeer
CodePeer for Certification

CodePeer for Certification

130 / 138

CodePeer
CodePeer for Certification

CodePeer and CWE

MITRE’s Common Weakness Enumeration (CWE)
Common vulnerabilities in software applications
Referenced in many government contracts and cyber-security
requirements

CodePeer is officially CWE-compatible

https://cwe.mitre.org/compatible/questionnaires/43.html

CodePeer findings are mapped to CWE identifiers

project Prj1 is
...
package CodePeer is

for CWE use "true";
end CodePeer;

end Prj1;

-- assign.adb:1: (pre)- assign:(overflow check [CWE 190])
-- Y /= 2_147_483_647

131 / 138

https://cwe.mitre.org/compatible/questionnaires/43.html

CodePeer
CodePeer for Certification

CodePeer and DO178B/C

CodePeer supports DO-178B/C Avionics Standard

DO-178C Objective A-5.6 (activity 6.3.4.f):

Code Accuracy and Consistency (emphasis added)

The objective is to determine the correctness and consistency of
the Source Code, including stack usage, memory usage, fixed
point arithmetic overflow and resolution, floating-point
arithmetic, resource contention and limitations, worst-case
execution timing, exception handling, use of uninitialized
variables, cache management, unused variables, and data
corruption due to task or interrupt conflicts.

The compiler (including its options), the linker (including its
options), and some hardware features may have an impact on the
worst-case execution timing and this impact should be assessed.

CodePeer reduces the scope of manual review

See Booklet: Link: AdaCore Technologies for DO-178C/ED-12C
Authored by Frederic Pothon & Quentin Ochem

132 / 138

https://www.adacore.com/books/do-178c-tech

CodePeer
CodePeer for Certification

CodePeer and CENELEC - EN50128

CodePeer qualified as a T2 tool for this CENELEC Rail
Standard
CodePeer supports:

D.4 Boundary Value Analysis
D.8 Control Flow Analysis
D.10 Data Flow Analysis
D.14 Defensive Programming
D.18 Equivalence Classes and Input Partition Testing
D.24 Failure Assertion Programming
D.32 Impact Analysis

CodePeer is uniquely supportive of Walkthroughs and Design
Reviews via its as-built documentation
See Booklet: Link: AdaCore Technologies for CENELEC EN
50128:2011

Authored by Jean-Louis Boulanger & Quentin Ochem
133 / 138

https://www.adacore.com/books/cenelec-en-50128-2011
https://www.adacore.com/books/cenelec-en-50128-2011

CodePeer
How Does CodePeer Work?

How Does CodePeer Work?

134 / 138

CodePeer
How Does CodePeer Work?

How Does CodePeer Work?

CodePeer computes the possible value
Of every variable
and every expression
at each program point

Starting with a leaf subprograms

Information is propagated up in the call-graph
Iterations to handle recursion

For each subprogram Sub

It generates a precondition guarding against Sub check failures
It issues check/warning messages for Sub
It generates a postcondition ensured by Sub
It uses the generated contracts to analyze calls to Sub

135 / 138

CodePeer
How Does CodePeer Work?

How Does CodePeer Work?

See CodePeer By Example for more details

From GNAT Studio

Help → Codepeer → Examples → Codepeer By Example

136 / 138

CodePeer
How Does CodePeer Work?

CodePeer Limitations and Heuristics

Let’s explore section 7.13 of the User’s Guide
http://docs.adacore.com/codepeer-docs/users_guide/_build/h
tml/appendix.html#codepeer-limitations-and-heuristics

137 / 138

http://docs.adacore.com/codepeer-docs/users_guide/_build/html/appendix.html#codepeer-limitations-and-heuristics
http://docs.adacore.com/codepeer-docs/users_guide/_build/html/appendix.html#codepeer-limitations-and-heuristics

CodePeer
How Does CodePeer Work?

CodePeer References

CodePeer User’s Guide and Tutorial
Online: https://www.adacore.com/documentation#codepeer
In local install at share/doc/codepeer/users_guide (or tutorial)
From GNAT Studio go to Help → Codepeer →
Codepeer User’s Guide (or Codepeer Tutorial)

CodePeer website
http://www.adacore.com/codepeer
Videos, product pages, articles, challenges

Book chapter on CodePeer
In Static Analysis of Software: The Abstract Interpretation,
published by Wiley (2012)

138 / 138

https://www.adacore.com/documentation#codepeer
http://www.adacore.com/codepeer

	About This Course
	Advanced Static Analysis
	CodePeer Overview
	Getting Started
	CodePeer Tutorial
	CodePeer Checks
	Run-Time Checks
	User Checks
	Uninitialized and Invalid Variables
	Warnings
	Race Conditions
	Automatically Generated Annotations
	External Tools Integration
	Finding the Right Settings
	Justifying CodePeer Messages
	CodePeer Review Lab
	CodePeer Workflows
	Comparing to Baseline
	CodePeer Customization
	CodePeer Advanced Customization Lab
	CodePeer for Certification
	How Does CodePeer Work?

