
Ada Basic Types - Advanced

Ada Basic Types - Advanced

1 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Subtypes - Full Picture

2 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Implicit Subtype

The declaration

type Typ is range L .. R;

Is short-hand for

type <Anon> is new Predefined_Integer_Type;
subtype Typ is <Anon> range L .. R;

<Anon> is the Base type of Typ

Accessed with Typ'Base

3 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Implicit Subtype Explanation

type <Anon> is new Predefined_Integer_Type;
subtype Typ is <Anon> range L .. R;

Compiler choses a standard integer type that includes L .. R

Integer, Short_Integer, Long_Integer, etc.
Implementation-defined choice, non portable

New anonymous type <Anon> is derived from the predefined type

<Anon> inherits the type’s operations (+, - ...)

Typ, subtype of <Anon> is created with range L .. R

Typ'Base will return the type <Anon>

4 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Stand-Alone (Sub)Type Names

Denote all the values of the type or subtype
Unless explicitly constrained

subtype Constrained_Sub is Integer range 0 .. 10;
subtype Just_A_Rename is Integer;
X : Just_A_Rename;
...
for I in Constrained_Sub loop

X := I;
end loop;

5 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Subtypes Localize Dependencies

Single points of change
Relationships captured in code
No subtypes

type List is array (1 .. 12) of Some_Type;

K : Integer range 0 .. 12 := 0; -- anonymous subtype
Values : List;
...
if K in 1 .. 12 then ...
for J in Integer range 1 .. 12 loop ...

Subtypes

type Counter is range 0 .. 12;
subtype Index is Counter range 1 .. Counter'Last;
type List is array (Index) of Some_Type;

K : Counter := 0;
Values : List;
...
if K in Index then ...
for J in Index loop ...

6 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Subtypes May Enhance Performance

Provides compiler with more information
Redundant checks can more easily be identified

subtype Index is Integer range 1 .. Max;
type List is array (Index) of Float;
K : Index;
Values : List;
...
K := Some_Value; -- range checked here
Values (K) := 0.0; -- so no range check needed here

7 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Subtypes Don’t Cause Overloading

Illegal code: re-declaration of F

type A is new Integer;
subtype B is A;
function F return A is (0);
function F return B is (1);

8 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Subtypes and Default Initialization
Ada 2012

Not allowed: Defaults on new type only
subtype is still the same type

Note: Default value may violate subtype constraints
Compiler error for static definition
Constraint_Error otherwise

type Tertiary_Switch is (Off, On, Neither)
with Default_Value => Neither;

subtype Toggle_Switch is Tertiary_Switch
range Off .. On;

Safe : Toggle_Switch := Off;
Implicit : Toggle_Switch; -- compile error: out of range

9 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Attributes Reflect the Underlying Type

type Color is
(White, Red, Yellow, Green, Blue, Brown, Black);

subtype Rainbow is Color range Red .. Blue;

T'First and T'Last respect constraints
Rainbow'First → Red but Color'First → White
Rainbow'Last → Blue but Color'Last → Black

Other attributes reflect base type
Color'Succ (Blue) = Brown = Rainbow'Succ (Blue)
Color'Pos (Blue) = 4 = Rainbow'Pos (Blue)
Color'Val (0) = White = Rainbow'Val (0)

Assignment must still satisfy target constraints

Shade : Color range Red .. Blue := Brown; -- runtime error
Hue : Rainbow := Rainbow'Succ (Blue); -- runtime error

10 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

1 type T1 is range 0 .. 10;
2 function "-" (V : T1) return T1;
3 subtype T2 is T1 range 1 .. 9;
4 function "-" (V : T2) return T2;
5

6 Obj : T2 := -T2 (1);

Which function is executed at line 6?

A. The one at line 2
B. The one at line 4
C. A predefined "-" operator for integer types
D. None: The code is illegal

The type is used for the overload profile, and here both T1 and T2 are
of type T1, which means line 4 is actually a redeclaration, which is
forbidden.

11 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

1 type T1 is range 0 .. 10;
2 function "-" (V : T1) return T1;
3 subtype T2 is T1 range 1 .. 9;
4 function "-" (V : T2) return T2;
5

6 Obj : T2 := -T2 (1);

Which function is executed at line 6?

A. The one at line 2
B. The one at line 4
C. A predefined "-" operator for integer types
D. None: The code is illegal

The type is used for the overload profile, and here both T1 and T2 are
of type T1, which means line 4 is actually a redeclaration, which is
forbidden.

11 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

type T is range 0 .. 10;
subtype S is T range 1 .. 9;

What is the value of S'Succ (S (9))?

A. 9
B. 10
C. None, this fails at runtime
D. None, this does not compile

T'Succ and T'Pred are defined on the type, not the subtype.

12 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

type T is range 0 .. 10;
subtype S is T range 1 .. 9;

What is the value of S'Succ (S (9))?

A. 9
B. 10
C. None, this fails at runtime
D. None, this does not compile

T'Succ and T'Pred are defined on the type, not the subtype.

12 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

type T is new Integer range 0 .. Integer'Last;
subtype S is T range 0 .. 10;

Obj : S;

What is the result of Obj := S'Last + 1?

A. 0
B. 11
C. None, this fails at runtime
D. None, this does not compile

13 / 578

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

type T is new Integer range 0 .. Integer'Last;
subtype S is T range 0 .. 10;

Obj : S;

What is the result of Obj := S'Last + 1?

A. 0
B. 11
C. None, this fails at runtime
D. None, this does not compile

13 / 578

Ada Basic Types - Advanced
Base Type

Base Type

14 / 578

Ada Basic Types - Advanced
Base Type

Base Ranges

Actual hardware-supported numeric type used
GNAT makes consistent and predictable choices on all major
platforms.

Predefined operators
Work on full-range

No range checks on inputs or result
Best performance

Implementation may use wider registers

Intermediate values

Can be accessed with 'Base attribute

type Foo is range -30_000 .. 30_000;
function "+" (Left, Right : Foo'Base) return Foo'Base;

Base range
Signed
8 bits → -128 .. 127
16 bits → -32_768 .. 32767

15 / 578

Ada Basic Types - Advanced
Base Type

Compile-Time Constraint Violation

May produce warnings
And compile successfuly

May produce errors
And fail at compilation

Requirements for rejection
Static value
Value not in range of base type
Compilation is impossible

procedure Test is
type Some_Integer is range -200 .. 200;
Object : Some_Integer;

begin
Object := 50_000; -- probable error

end;
16 / 578

Ada Basic Types - Advanced
Base Type

Range Check Failure

Compile-time rejection
Depends on base type
Selected by the compiler
Depends on underlying hardware
Early error → "Best" case

Else run-time exception
Most cases
Be happy when compilation failed instead

17 / 578

Ada Basic Types - Advanced
Base Type

Real Base Decimal Precision

Real types precision may be better than requested

Example:
Available: 6, 12, or 24 digits of precision

Type with 8 digits of precision

type My_Type is digits 8;

My_Type will have 12 or 24 digits of precision

18 / 578

Ada Basic Types - Advanced
Base Type

Floating Point Division By Zero

Language-defined do as the machine does
If T'Machine_Overflows attribute is True raises
Constraint_Error

Else +∞ / −∞

Better performance

User-defined types always raise Constraint_Error

subtype MyFloat is Float range Float'First .. Float'Last;
type MyFloat is new Float range Float'First .. Float'Last;

19 / 578

Ada Basic Types - Advanced
Base Type

Using Equality for Floating Point Types

Questionable: representation issue
Equality → identical bits
Approximations → hard to analyze, and not portable
Related to floating-point, not Ada

Perhaps define your own function
Comparison within tolerance (+ε / −ε)

20 / 578

Ada Basic Types - Advanced
Modular Types

Modular Types

21 / 578

Ada Basic Types - Advanced
Modular Types

Bit Pattern Values and Range Constraints

Binary based assignments possible
No Constraint_Error when in range
Even if they would be <= 0 as a signed integer type

procedure Demo is
type Byte is mod 256; -- 0 .. 255
B : Byte;

begin
B := 2#1000_0000#; -- not a negative value

end Demo;

22 / 578

Ada Basic Types - Advanced
Modular Types

Modular Range Must Be Respected

procedure P_Unsigned is
type Byte is mod 2**8; -- 0 .. 255
B : Byte;
type Signed_Byte is range -128 .. 127;
SB : Signed_Byte;

begin
...
B := -256; -- compile error
SB := -1;
B := Byte (SB); -- runtime error
...

end P_Unsigned;

23 / 578

Ada Basic Types - Advanced
Modular Types

Safely Converting Signed To Unsigned

Conversion may raise Constraint_Error

Use T'Mod to return argument mod T'Modulus

Universal_Integer argument
So any integer type allowed

procedure Test is
type Byte is mod 2**8; -- 0 .. 255
B : Byte;
type Signed_Byte is range -128 .. 127;
SB : Signed_Byte;

begin
SB := -1;
B := Byte'Mod (SB); -- OK (255)

24 / 578

Ada Basic Types - Advanced
Modular Types

Package Interfaces

Standard package

Integer types with defined bit length

type My_Base_Integer is new Integer;
pragma Assert (My_Base_Integer'First = -2**31);
pragma Assert (My_Base_Integer'Last = 2**31-1);

- Dealing with hardware registers

Note: Shorter may not be faster for integer maths.
Modern 64-bit machines are not efficient at 8-bit maths

type Integer_8 is range -2**7 .. 2**7-1;
for Integer_8'Size use 8;
-- and so on for 16, 32, 64 bit types...

25 / 578

Ada Basic Types - Advanced
Modular Types

Shift/Rotate Functions

In Interfaces package
Shift_Left
Shift_Right
Shift_Right_Arithmetic
Rotate_Left
etc.

See RM B.2 - The Package Interfaces

26 / 578

Ada Basic Types - Advanced
Modular Types

Bit-Oriented Operations Example

Assuming Unsigned_16 is used
16-bits modular

with Interfaces;
use Interfaces;
...
procedure Swap(X : in out Unsigned_16) is
begin

X := (Shift_Left(X,8) and 16#FF00#) or
(Shift_Right(X,8) and 16#00FF#);

end Swap;

27 / 578

Ada Basic Types - Advanced
Modular Types

Why No Implicit Shift and Rotate?

Arithmetic, logical operators available implicitly

Why not Shift, Rotate, etc. ?

By excluding other solutions
As functions in standard → May hide user-defined declarations
As new operators → New operators for a single type
As reserved words → Not upward compatible

28 / 578

Ada Basic Types - Advanced
Modular Types

Shift/Rotate for User-Defined Types

Must be modular types

Approach 1: use Interfaces’s types
Unsigned_8, Unsigned_16 ...

Approach 2: derive from Interfaces’s types
Operations are inherited
More on that later

type Byte is new Interfaces.Unsigned_8;
type Half_Word is new Interfaces.Unsigned_16;
type Word is new Interfaces.Unsigned_32;

29 / 578

Ada Basic Types - Advanced
Modular Types

Quiz

type T is mod 256;
V : T := 255;

Which statement(s) is(are) legal?

A. V := V + 1
B. V := 16#ff#
C. V := 256
D. V := 255 + 1

30 / 578

Ada Basic Types - Advanced
Modular Types

Quiz

type T is mod 256;
V : T := 255;

Which statement(s) is(are) legal?

A. V := V + 1
B. V := 16#ff#
C. V := 256
D. V := 255 + 1

30 / 578

Ada Basic Types - Advanced
Modular Types

Quiz

with Interfaces; use Interfaces;

type T1 is new Unsigned_8;
V1 : T1 := 255;

type T2 is mod 256;
V2 : T2 := 255;

Which statement(s) is(are) legal?

A. V1 := Rotate_Left (V1, 1)
B. V1 := Positive'First
C. V2 := 1 and V2
D. V2 := Rotate_Left (V2, 1)
E. V2 := T2'Mod (2.0)

31 / 578

Ada Basic Types - Advanced
Modular Types

Quiz

with Interfaces; use Interfaces;

type T1 is new Unsigned_8;
V1 : T1 := 255;

type T2 is mod 256;
V2 : T2 := 255;

Which statement(s) is(are) legal?

A. V1 := Rotate_Left (V1, 1)
B. V1 := Positive'First
C. V2 := 1 and V2
D. V2 := Rotate_Left (V2, 1)
E. V2 := T2'Mod (2.0)

31 / 578

Ada Basic Types - Advanced
Representation Values

Representation Values

32 / 578

Ada Basic Types - Advanced
Representation Values

Enumeration Representation Values

Numeric representation of enumerals
Position, unless redefined

Redefinition syntax

type Enum_T is (Able, Baker, Charlie, Dog, Easy, Fox);
for Enum_T use (1, 2, 4, 8, Easy => 16, Fox => 32);

No manipulation in language standard
Standard is logical ordering
Ignores representation value

Still accessible
Unchecked conversion

Implementation-defined facility

GNAT attribute T'Enum_Rep
33 / 578

Ada Basic Types - Advanced
Representation Values

Order Attributes For All Discrete Types

All discrete types, mostly useful for enumerated types

T'Pos (Input)

"Logical position number" of Input

T'Val (Input)

Converts "logical position number" to T

type Days is (Sun, Mon, Tue, Wed, Thu, Fri, Sat); -- 0 .. 6
Today : Days := Some_Value;
Position : Integer;
...
Position := Days'Pos(Today);
...
Get(Position);
Today := Days'Val(Position);

34 / 578

Ada Basic Types - Advanced
Representation Values

Quiz

type T is (Left, Top, Right, Bottom);
V : T := Left;

Which of the following proposition(s) are true?

A. T'Value (V) = 1
B. T’Pos (V) = 1
C. T'Image (T'Pos (V)) = Left
D. T'Val (T'Pos (V) - 1) = Bottom

35 / 578

Ada Basic Types - Advanced
Representation Values

Quiz

type T is (Left, Top, Right, Bottom);
V : T := Left;

Which of the following proposition(s) are true?

A. T'Value (V) = 1
B. T’Pos (V) = 1
C. T'Image (T'Pos (V)) = Left
D. T'Val (T'Pos (V) - 1) = Bottom

35 / 578

Ada Basic Types - Advanced
Character Types

Character Types

36 / 578

Ada Basic Types - Advanced
Character Types

Language-Defined Character Types

Character

8-bit Latin-1
Base element of String
Uses attributes 'Image / 'Value

Wide_Character

16-bit Unicode
Base element of Wide_Strings
Uses attributes 'Wide_Image / 'Wide_Value

Wide_Wide_Character

32-bit Unicode
Base element of Wide_Wide_Strings
Uses attributes 'Wide_Wide_Image / 'Wide_Wide_Value

37 / 578

Ada Basic Types - Advanced
Character Types

Character Oriented Packages

Language-defined

Ada.Characters.Handling

Classification
Conversion

Ada.Characters.Latin_1

Characters as constants

See RM Annex A for details

38 / 578

Ada Basic Types - Advanced
Character Types

Ada.Characters.Latin_1 Sample Content

package Ada.Characters.Latin_1 is
NUL : constant Character := Character'Val (0);
...
LF : constant Character := Character'Val (10);
VT : constant Character := Character'Val (11);
FF : constant Character := Character'Val (12);
CR : constant Character := Character'Val (13);
...
Commercial_At : constant Character := '@'; -- Character'Val(64)
...
LC_A : constant Character := 'a'; -- Character'Val (97)
LC_B : constant Character := 'b'; -- Character'Val (98)
...
Inverted_Exclamation : constant Character := Character'Val (161);
Cent_Sign : constant Character := Character'Val (162);

...
LC_Y_Diaeresis : constant Character := Character'Val (255);

end Ada.Characters.Latin_1;
39 / 578

Ada Basic Types - Advanced
Character Types

Ada.Characters.Handling Sample Content

package Ada.Characters.Handling is
function Is_Control (Item : Character) return Boolean;
function Is_Graphic (Item : Character) return Boolean;
function Is_Letter (Item : Character) return Boolean;
function Is_Lower (Item : Character) return Boolean;
function Is_Upper (Item : Character) return Boolean;
function Is_Basic (Item : Character) return Boolean;
function Is_Digit (Item : Character) return Boolean;
function Is_Decimal_Digit (Item : Character) return Boolean renames Is_Digit;
function Is_Hexadecimal_Digit (Item : Character) return Boolean;
function Is_Alphanumeric (Item : Character) return Boolean;
function Is_Special (Item : Character) return Boolean;
function To_Lower (Item : Character) return Character;
function To_Upper (Item : Character) return Character;
function To_Basic (Item : Character) return Character;
function To_Lower (Item : String) return String;
function To_Upper (Item : String) return String;
function To_Basic (Item : String) return String;

...
end Ada.Characters.Handling;

40 / 578

Ada Basic Types - Advanced
Character Types

Quiz

type T1 is (NUL = 0, A, B, 'C');
type T2 is array (Positive range <>) of T1;
Obj : T2 := "CC" & A & NUL;

Which of the following proposition(s) are true?

A. The code fails at runtime
B. Obj'Length = 3
C. Obj (1) = ’C’
D. Obj (3) = A

41 / 578

Ada Basic Types - Advanced
Character Types

Quiz

type T1 is (NUL = 0, A, B, 'C');
type T2 is array (Positive range <>) of T1;
Obj : T2 := "CC" & A & NUL;

Which of the following proposition(s) are true?

A. The code fails at runtime
B. Obj'Length = 3
C. Obj (1) = ’C’
D. Obj (3) = A

41 / 578

Ada Basic Types - Advanced
Character Types

Quiz

with Ada.Characters.Latin_1;
use Ada.Characters.Latin_1;
with Ada.Characters.Handling;
use Ada.Characters.Handling;

Which of the following proposition(s) are true?

A. NUL = 0
B. NUL = '\0'
C. Character’Pos (NUL) = 0
D. Is_Control (NUL)

42 / 578

Ada Basic Types - Advanced
Character Types

Quiz

with Ada.Characters.Latin_1;
use Ada.Characters.Latin_1;
with Ada.Characters.Handling;
use Ada.Characters.Handling;

Which of the following proposition(s) are true?

A. NUL = 0
B. NUL = '\0'
C. Character’Pos (NUL) = 0
D. Is_Control (NUL)

42 / 578

Record Types

Record Types

43 / 578

Record Types
Introduction

Introduction

44 / 578

Record Types
Introduction

Syntax and Examples

Syntax (simplified)

type T is record
Component_Name : Type [:= Default_Value];
...

end record;

type T_Empty is null record;

Example

type Record1_T is record
Field1 : integer;
Field2 : boolean;

end record;

Records can be discriminated as well

type T (Size : Natural := 0) is record
Text : String (1 .. Size);

end record;
45 / 578

Record Types
Components Rules

Components Rules

46 / 578

Record Types
Components Rules

Examples

with Ada.Text_IO; use Ada.Text_IO;
procedure Components_Rules is

type File_T is record
Name : String (1 .. 12);
Mode : File_Mode;
Size : Integer range 0 .. 1_024;
Is_Open : Boolean;
-- Anonymous_Component : array (1 .. 3) of Integer;
-- Constant_Component : constant Integer := 123;
-- Self_Reference : File_T;

end record;
File : File_T;

begin
File.Name := "Filename.txt";
File.Mode := In_File;
File.Size := 0;
File.Is_Open := False;
Put_Line (File.Name);

end Components_Rules;

https://learn.adacore.com/training_examples/fundamentals_of_ada/060_record_types.html#components-rules

47 / 578

Record Types
Components Rules

Characteristics of Components

Heterogeneous types allowed
Referenced by name
May be no components, for empty records
No anonymous types (e.g., arrays) allowed
No constant components
No recursive definitions

48 / 578

Record Types
Components Rules

Components Declarations

Multiple declarations are allowed (like objects)

type Several is record
A, B, C : Integer;

end record;

Recursive definitions are not allowed

type Not_Legal is record
A, B : Some_Type;
C : Not_Legal;

end record;

49 / 578

Record Types
Components Rules

"Dot" Notation for Components Reference

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
Arrival : Date;
...
Arrival.Day := 27; -- components referenced by name
Arrival.Month := November;
Arrival.Year := 1990;

Can reference nested components

Employee
.Birth_Date

.Month := March;
50 / 578

Record Types
Components Rules

Quiz

Which component definition is legal?

type Record_T is record

A. Component1 : array (1 .. 3) of boolean;
B. Component2, Component3 : integer;
C. Component4 : Record_T;
D. Component5 : constant integer := 123;

end record;

Explanations

A. Anonymous types not allowed
B. Correct
C. No recursive definitions
D. No constant components

51 / 578

Record Types
Components Rules

Quiz

Which component definition is legal?

type Record_T is record

A. Component1 : array (1 .. 3) of boolean;
B. Component2, Component3 : integer;
C. Component4 : Record_T;
D. Component5 : constant integer := 123;

end record;

Explanations

A. Anonymous types not allowed
B. Correct
C. No recursive definitions
D. No constant components

51 / 578

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Next : Cell;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot be recursive, here type Cell references
itself

52 / 578

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Next : Cell;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot be recursive, here type Cell references
itself

52 / 578

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don’t specify its size.

53 / 578

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don’t specify its size.

53 / 578

Record Types
Operations

Operations

54 / 578

Record Types
Operations

Examples
with Ada.Text_IO; use Ada.Text_IO;
procedure Operations is

type Date_T is record
Day : Integer range 1 .. 31;
Month : Positive range 1 .. 12;
Year : Natural range 0 .. 2_099;

end record;
type Personal_Information_T is record

Name : String (1 .. 10);
Birthdate : Date_T;

end record;
type Employee_Information_T is record

Number : Positive;
Personal_Information : Personal_Information_T;

end record;
Employee : Employee_Information_T;

begin
Employee.Number := 1_234;
Employee.Personal_Information.Name := "Fred Smith";
Employee.Personal_Information.Birthdate.Year := 2_020;
Put_Line (Employee.Number'Image);

end Operations;

https://learn.adacore.com/training_examples/fundamentals_of_ada/060_record_types.html#operations

55 / 578

Record Types
Operations

Available Operations

Predefined
Equality (and thus inequality)

if A = B then

Assignment

A := B;

Component-level operations

Based on components’ types

if A.component < B.component then

User-defined
Subprograms

56 / 578

Record Types
Operations

Assignment Examples

declare
type Complex is record

Real : Float;
Imaginary : Float;

end record;
...
Phase1 : Complex;
Phase2 : Complex;

begin
...

-- object reference
Phase1 := Phase2; -- entire object reference
-- component references
Phase1.Real := 2.5;
Phase1.Real := Phase2.Real;

end;
57 / 578

Record Types
Aggregates

Aggregates

58 / 578

Record Types
Aggregates

Examples
with Ada.Text_IO; use Ada.Text_IO;
procedure Aggregates is

type Date_T is record
Day : Integer range 1 .. 31;
Month : Positive range 1 .. 12;
Year : Natural range 0 .. 2_099;

end record;
type Personal_Information_T is record

Name : String (1 .. 10);
Birthdate : Date_T;

end record;
type Employee_Information_T is record

Number : Positive;
Personal_Information : Personal_Information_T;

end record;
Birthdate : Date_T;
Personal_Information : Personal_Information_T;
Employee : Employee_Information_T;

begin
Birthdate := (25, 12, 2_001);
Put_Line

(Birthdate.Year'Image & Birthdate.Month'Image & Birthdate.Day'Image);
Personal_Information := (Name => "Jane Smith", Birthdate => (14, 2, 2_002));
Put_Line

(Personal_Information.Birthdate.Year'Image &
Personal_Information.Birthdate.Month'Image &
Personal_Information.Birthdate.Day'Image);

Employee := (1_234, Personal_Information => Personal_Information);
Put_Line

(Employee.Personal_Information.Birthdate.Year'Image &
Employee.Personal_Information.Birthdate.Month'Image &
Employee.Personal_Information.Birthdate.Day'Image);

Birthdate := (Month => 1, others => 2);
Put_Line

(Birthdate.Year'Image & Birthdate.Month'Image & Birthdate.Day'Image);
end Aggregates;

https://learn.adacore.com/training_examples/fundamentals_of_ada/060_record_types.html#aggregates

59 / 578

Record Types
Aggregates

Aggregates

Literal values for composite types
As for arrays
Default value / selector: <>, others

Can use both named and positional
Unambiguous

Syntax (simplified):

component_init ::= expression | <>

record_aggregate ::=
{[component_choice_list =>] component_init ,}
[others => component_init]

60 / 578

Record Types
Aggregates

Record Aggregate Examples

type Color_T is (Red);
type Car_T is record

Color : Color_T;
Plate_No : String (1 .. 6);
Year : Natural;

end record;
type Complex_T is record

Real : Float;
Imaginary : Float;

end record;

declare
Car : Car_T := (Red, "ABC123", Year => 2_022);
Phase : Complex_T := (1.2, 3.4);

begin
Phase := (Real => 5.6, Imaginary => 7.8);

end;
61 / 578

Record Types
Aggregates

Aggregate Completeness

All component values must
be accounted for

Including defaults via box
Allows compiler to check for
missed components
Type definition
type Struct is record

A : Integer;
B : Integer;
C : Integer;
D : Integer;

end record;
S : Struct;

Compiler will not catch the
missing component
S.A := 10;
S.B := 20;
S.C := 12;
Send (S);
Aggregate must be complete
- compiler error
S := (10, 20, 12);
Send (S);

62 / 578

Record Types
Aggregates

Named Associations

Any order of associations

Provides more information to the reader
Can mix with positional

Restriction
Must stick with named associations once started

type Complex is record
Real : Float;
Imaginary : Float;

end record;
Phase : Complex := (0.0, 0.0);
...
Phase := (10.0, Imaginary => 2.5);
Phase := (Imaginary => 12.5, Real => 0.212);
Phase := (Imaginary => 12.5, 0.212); -- illegal

63 / 578

Record Types
Aggregates

Nested Aggregates

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
type Person is record

Born : Date;
Hair : Color;

end record;
John : Person := ((21, November, 1990), Brown);
Julius : Person := ((2, August, 1995), Blond);
Heather : Person := ((2, March, 1989), Hair => Blond);
Megan : Person := (Hair => Blond,

Born => (16, December, 2001));
64 / 578

Record Types
Aggregates

Aggregates with Only One Component

Must use named form
Same reason as array aggregates

type Singular is record
A : Integer;

end record;

S : Singular := (3); -- illegal
S : Singular := (3 + 1); -- illegal
S : Singular := (A => 3 + 1); -- required

65 / 578

Record Types
Aggregates

Aggregates with others

Indicates all components not yet specified (like arrays)
All others get the same value

They must be the exact same type

type Poly is record
A : Real;
B, C, D : Integer;

end record;

P : Poly := (2.5, 3, others => 0);

type Homogeneous is record
A, B, C : Integer;

end record;

Q : Homogeneous := (others => 10);
66 / 578

Record Types
Aggregates

Quiz

What is the result of running this code?

procedure Main is
type Record_T is record

A, B, C : Integer := 0;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

The aggregate should be written as (A => 1, others => <>)

67 / 578

Record Types
Aggregates

Quiz

What is the result of running this code?

procedure Main is
type Record_T is record

A, B, C : Integer := 0;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

The aggregate should be written as (A => 1, others => <>)
67 / 578

Record Types
Aggregates

Quiz

What is the result of running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer := 0;
D : My_Integer := 0;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

All components associated to a value using others must be of the
same type.

68 / 578

Record Types
Aggregates

Quiz

What is the result of running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer := 0;
D : My_Integer := 0;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

All components associated to a value using others must be of the
same type.

68 / 578

Record Types
Aggregates

Quiz

What is the result of running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer := 0;
D : My_Integer := 0;

end record;

V : R := (others => <>);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

<> is an exception to the rule for others, it can apply to several
components of a different type.

69 / 578

Record Types
Aggregates

Quiz

What is the result of running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer := 0;
D : My_Integer := 0;

end record;

V : R := (others => <>);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

<> is an exception to the rule for others, it can apply to several
components of a different type.

69 / 578

Record Types
Aggregates

Quiz

What is the result of running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A : Integer := 0;
end record;

V : R := (1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

Single-valued aggregate must use named association.

70 / 578

Record Types
Aggregates

Quiz

What is the result of running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A : Integer := 0;
end record;

V : R := (1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

Single-valued aggregate must use named association.
70 / 578

Record Types
Aggregates

Quiz

type Nested_T is record
Field : Integer := 1_234;

end record;
type Record_T is record

One : Integer := 1;
Two : Character;
Three : Integer := -1;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment is illegal?

A. X := (1, ’2’, Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

71 / 578

Record Types
Aggregates

Quiz

type Nested_T is record
Field : Integer := 1_234;

end record;
type Record_T is record

One : Integer := 1;
Two : Character;
Three : Integer := -1;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment is illegal?

A. X := (1, ’2’, Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

71 / 578

Record Types
Default Values

Default Values

72 / 578

Record Types
Default Values

Examples

with Ada.Text_IO; use Ada.Text_IO;
procedure Default_Values is

type Complex is record
Real : Float := -1.0;
Imaginary : Float := -1.0;

end record;

Phasor : Complex;
I : constant Complex := (0.0, 1.0);

begin
Put_Line

(Float'Image (Phasor.Real) & " " & Float'Image (Phasor.Imaginary) & "i");
Put_Line (Float'Image (I.Real) & " " & Float'Image (I.Imaginary) & "i");
Phasor := (12.34, others => <>);
Put_Line

(Float'Image (Phasor.Real) & " " & Float'Image (Phasor.Imaginary) & "i");
end Default_Values;

https://learn.adacore.com/training_examples/fundamentals_of_ada/060_record_types.html#default-values

73 / 578

Record Types
Default Values

Component Default Values

type Complex is
record

Real : Real := 0.0;
Imaginary : Real := 0.0;

end record;
-- all components use defaults
Phasor : Complex;
-- all components must be specified
I : constant Complex := (0.0, 1.0);

74 / 578

Record Types
Default Values

Default Component Value Evaluation

Occurs when object is elaborated
Not when the type is elaborated

Not evaluated if explicitly overridden

type Structure is
record

A : Integer;
R : Time := Clock;

end record;
-- Clock is called for S1
S1 : Structure;
-- Clock is not called for S2
S2 : Structure := (A => 0, R => Yesterday);

75 / 578

Record Types
Default Values

Defaults Within Record Aggregates
Ada 2005

Specified via the box notation

Value for the component is thus taken as for a stand-alone object
declaration

So there may or may not be a defined default!

Can only be used with "named association" form
But can mix forms, unlike array aggregates

type Complex is
record

Real : Float := 0.0;
Imaginary : Float := 0.0;

end record;
Phase := (42.0, Imaginary => <>);

76 / 578

Record Types
Default Values

Default Initialization Via Aspect Clause
Ada 2012

Not definable for entire record type
Components of scalar types take type’s default if no explicit
default value specified by record type

type Toggle_Switch is (Off, On)
with Default_Value => Off;

type Controller is record
-- Off unless specified during object initialization
Override : Toggle_Switch;
-- default for this component
Enable : Toggle_Switch := On;

end record;
C : Controller; -- Override => off, Enable => On
D : Controller := (On, Off); -- All defaults replaced

77 / 578

Record Types
Default Values

Quiz
Ada 2012

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

78 / 578

Record Types
Default Values

Quiz
Ada 2012

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

78 / 578

Record Types
Discriminated Records

Discriminated Records

79 / 578

Record Types
Discriminated Records

Discriminated Record Types

Discriminated record type
Different objects may have different components
All object still share the same type

Kind of storage overlay
Similar to union in C
But preserves type checking
And object size depends on discriminant

Aggregate assignment is allowed

80 / 578

Record Types
Discriminated Records

Discriminants

type Person_Group is (Student, Faculty);
type Person (Group : Person_Group) is record

Name : String (1 .. 10);
case Group is

when Student => -- 1st variant
Gpa : Float range 0.0 .. 4.0;

when Faculty => -- 2nd variant
Pubs : Integer;

end case;
end record;

Group is the discriminant

Run-time check for component consistency
eg A_Person.Pubs := 1 checks A_Person.Group = Faculty
Constraint_Error if check fails

Discriminant is constant
Unless object is mutable

81 / 578

Record Types
Discriminated Records

Semantics

Person objects are constrained by their discriminant
Unless mutable
Assignment from same variant only
Representation requirements

Pat : Person(Student); -- No Pat.Pubs
Prof : Person(Faculty); -- No Prof.GPA
Soph : Person := (Group => Student,

Name => "John Jones",
GPA => 3.2);

X : Person; -- Illegal: must specify discriminant

Pat := Soph; -- OK
Soph := Prof; -- Constraint_Error at run time

82 / 578

Record Types
Discriminated Records

Mutable Discriminated Record

When discriminant has a default value
Objects instantiated using the default are mutable
Objects specifying an explicit value are not mutable

Mutable records have variable discriminants

Use same storage for several variant

-- Potentially mutable
type Person (Group : Person_Group := Student) is record

-- Use default value: mutable
S : Person;
-- Explicit value: *not* mutable
-- even if Student is also the default
S2 : Person (Group => Student);
...
S := (Group => Student, Gpa => 0.0);
S := (Group => Faculty, Pubs => 10);

83 / 578

Record Types
Lab

Lab

84 / 578

Record Types
Lab

Record Types Lab

Requirements
Create a simple First-In/First-Out (FIFO) queue record type and
object

Allow the user to:

Add ("push") items to the queue
Remove ("pop") the next item to be serviced from the queue
(Print this item to ensure the order is correct)

When the user is done manipulating the queue, print out the
remaining items in the queue

Hints
Queue record should at least contain:

Array of items
Index into array where next item will be added

85 / 578

Record Types
Lab

Record Types Lab Solution - Declarations

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

type Name_T is array (1 .. 6) of Character;
type Index_T is range 0 .. 1_000;
type Queue_T is array (Index_T range 1 .. 1_000) of Name_T;

type Fifo_Queue_T is record
Next_Available : Index_T := 1;
Last_Served : Index_T := 0;
Queue : Queue_T := (others => (others => ' '));

end record;

Queue : Fifo_Queue_T;
Choice : Integer;

86 / 578

Record Types
Lab

Record Types Lab Solution - Implementation
begin

loop
Put ("1 = add to queue | 2 = remove from queue | others => done: ");
Choice := Integer'Value (Get_Line);
if Choice = 1 then

Put ("Enter name: ");
Queue.Queue (Queue.Next_Available) := Name_T (Get_Line);
Queue.Next_Available := Queue.Next_Available + 1;

elsif Choice = 2 then
if Queue.Next_Available = 1 then

Put_Line ("Nobody in line");
else

Queue.Last_Served := Queue.Last_Served + 1;
Put_Line ("Now serving: " & String (Queue.Queue (Queue.Last_Served)));

end if;
else

exit;
end if;
New_Line;

end loop;

Put_Line ("Remaining in line: ");
for Index in Queue.Last_Served + 1 .. Queue.Next_Available - 1 loop

Put_Line (" " & String (Queue.Queue (Index)));
end loop;

end Main;

87 / 578

Record Types
Summary

Summary

88 / 578

Record Types
Summary

Summary

Heterogeneous types allowed for components

Default initial values allowed for components
Evaluated when each object elaborated, not the type
Not evaluated if explicit initial value specified

Aggregates express literals for composite types
Can mix named and positional forms

89 / 578

Discriminated Record Types

Discriminated Record Types

90 / 578

Discriminated Record Types
Introduction

Introduction

91 / 578

Discriminated Record Types
Introduction

Variant Record Types

Variant record type is a record type where
Different objects may have different sets of components (i.e.
different variants)

Given object itself may be unconstrained

Different variants at different times

Supported in other languages
Variant records in Pascal
Unions in C

Variant record offers a kind of storage overlaying
Same storage might be used for one variant at one time, and then
for another variant later

Language issue: Ensure this does not provide loophole from type
checking

Neither Pascal nor C avoids this loophole
92 / 578

Discriminated Record Types
Introduction

Example Variant Record Description

Record / structure type for a person
Person is either a student or a faculty member (discriminant)
Person has a name (string)
Each student has a GPA (floating point) and a graduation year
(non-negative integer)
Each faculty has a count of publications (non-negative integer)

93 / 578

Discriminated Record Types
Introduction

Example Defined in C

enum person_tag {Student, Faculty};

struct Person {
enum person_tag tag;
char name [10];
union {

struct { float gpa; int year; } s;
int pubs;

};
};

Issue: maintaining consistency between tag and union fields is
responsibility of the programmer

Source of potential vulnerabilities

94 / 578

Discriminated Record Types
Introduction

Example Defined in Ada

type Person_Tag is (Student, Faculty);
type Person (Tag : Person_Tag) is -- Tag is the discriminant

record
Name : String(1..10); -- Always present
case Tag is

when Student => -- 1st variant
GPA : Float range 0.0 .. 4.0;
Year : Integer range 1..4;

when Faculty => -- 2nd variant
Pubs : Integer;

end case;
end record;

Tag value enforces field availability
Can only access GPA and Year when Tag is Student
Can only access Pubs when Tag is Faculty

95 / 578

Discriminated Record Types
Introduction

Variant Part of Record

Variant part of record specifies alternate list of componenents

type Variant_Record_T (Discriminant : Integer) is record
Common_Component : String (1 .. 10);
case Discriminant is

when Integer'First .. -1 =>
Negative_Component : Float;

when 1 .. Integer'Last =>
Positive_Component : Integer;

when others =>
Zero_Component : Boolean;

end case;
end record;

Choice is determined by discriminant value

Record can only contain one variant part

Variant must be last part of record definition
96 / 578

Discriminated Record Types
Variant Record Semantics

Variant Record Semantics

97 / 578

Discriminated Record Types
Variant Record Semantics

Discriminant in Ada Variant Records

Variant record type contains a special field (discriminant) whose
value indicates which variant is present

When a field in a variant is selected, run-time check ensures that
discriminant value is consistent with the selection

If you could store into Pubs but read GPA, type safety would not
be guaranteed

Ada prevents this type of access
Discriminant (Tag) established when object of type Person created

Run-time check verifies that field selected from variant is consistent
with discriminant value

Constraint_Error raised if the check fails

Can only read discriminant (as any other field), not write
Aggregate assignment is allowed

98 / 578

Discriminated Record Types
Variant Record Semantics

Semantics

Variable of type Person is constrained by value of discriminant
supplied at object declaration

Determines minimal storage requirements
Limits object to corresponding variant

Pat : Person(Student); -- May select Pat.GPA, not Pat.Pubs
Prof : Person(Faculty); -- May select Prof.Pubs, not Prof.GPA
Soph : Person := (Tag => Student,

Name => "John Jones",
GPA => 3.2,
Year => 2);

X : Person; -- Illegal; discriminant must be initialized

Assignment between Person objects requires same discriminant
values for LHS and RHS

Pat := Soph; -- OK
Soph := Prof; -- Constraint_Error at run time

99 / 578

Discriminated Record Types
Variant Record Semantics

Implementation

Typically type and operations would be treated as an ADT
Implemented in its own package

package Person_Pkg is
type Person_Tag is (Student, Faculty);
type Person (Tag : Person_Tag) is

record
Name : String(1..10);
case Tag is

when Student =>
GPA : Float range 0.0 .. 4.0;
Year : Integer range 1..4;

when Faculty =>
Pubs : Integer;

end case;
end record;

-- parameters can be unconstrained (constraint comes from caller)
procedure Put (Item : in Person);
procedure Get (Item : in out Person);

end Person_Pkg;
100 / 578

Discriminated Record Types
Variant Record Semantics

Primitives
Output

procedure Put (Item : in Person) is
begin

Put_Line("Tag:" & Person_Tag'Image(Item.Tag));
Put_Line("Name: " & Item.Name);
-- Tag specified by caller
case Item.Tag is

when Student =>
Put_Line("GPA:" & Float'Image(Item.GPA));
Put_Line("Year:" & Integer'Image(Item.Year));

when Faculty =>
Put_Line("Pubs:" & Integer'Image(Item.Pubs));

end case;
end Put;

Input

procedure Get (Item : in out Person) is
begin

-- Tag specified by caller
case Item.Tag is

when Student =>
Item.GPA := Get_GPA;
Item.Year := Get_Year;

when Faculty =>
Item.Pubs := Get_Pubs;

end case;
end Get;

101 / 578

Discriminated Record Types
Variant Record Semantics

Usage
with Person_Pkg; use Person_Pkg;
with Ada.Text_IO; use Ada.Text_IO;
procedure Person_Test is

Tag : Person_Tag;
Line : String(1..80);
Index : Natural;

begin
loop

Put("Tag (Student or Faculty, empty line to quit): ");
Get_Line(Line, Index);
exit when Index=0;
Tag := Person_Tag'Value(Line(1..Index));
declare

Someone : Person(Tag);
begin

Get(Someone);
case Someone.Tag is

when Student => Student_Do_Something (Someone);
when Faculty => Faculty_Do_Something (Someone);

end case;
Put(Someone);

end;
end loop;

end Person_Test;
102 / 578

Discriminated Record Types
Unconstrained Variant Records

Unconstrained Variant Records

103 / 578

Discriminated Record Types
Unconstrained Variant Records

Adding Flexibility to Variant Records

Previously, declaration of Person implies that object, once
created, is always constrained by initial value of Tag

Assigning Person(Faculty) to Person(Student) or vice versa,
raises Constraint_Error

Additional flexibility is sometimes desired
Allow declaration of unconstrained Person, to which either
Person(Faculty) or Person(Student) can be assigned
To do this, declare discriminant with default initialization

Type safety is not compromised
Modification of discriminant is only permitted when entire record is
assigned

Either through copying an object or aggregate assignment

104 / 578

Discriminated Record Types
Unconstrained Variant Records

Unconstrained Variant Record Example
declare

type Mutant(Tag : Person_Tag := Faculty) is
record

Name : String(1..10);
case Tag is

when Student =>
GPA : Float range 0.0 .. 4.0;
Year : Integer range 1..4;

when Faculty =>
Pubs : Integer;

end case;
end record;

Pat : Mutant(Student); -- Constrained
Doc : Mutant(Faculty); -- Constrained
Zork : Mutant; -- Unconstrained (Zork.Tag = Faculty)

begin
Zork := Pat; -- OK, Zork.Tag was Faculty, is now Student
Zork.Tag := Faculty; -- Illegal to assign to discriminant
Zork := Doc; -- OK, Zork.Tag is now Faculty
Pat := Zork; -- Run-time error (Constraint_Error)

end;
105 / 578

Discriminated Record Types
Unconstrained Variant Records

Quiz
procedure Main is

type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

when Circle =>
Radius : Float;

end case;
end record;

begin
V := V2;

Which declaration(s) is(are) legal for this piece of code?

A. V : Shape := (Circle, others => 0.0)
V2 : Shape (Line);

B. V : Shape := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

C. V : Shape (Line) := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

D. V : Shape;
V2 : Shape (Circle);

A. Cannot assign with different discriminant
B. OK
C. V initial value has a different discriminant
D. Shape cannot be mutable: V must have a discriminant

106 / 578

Discriminated Record Types
Unconstrained Variant Records

Quiz
procedure Main is

type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

when Circle =>
Radius : Float;

end case;
end record;

begin
V := V2;

Which declaration(s) is(are) legal for this piece of code?

A. V : Shape := (Circle, others => 0.0)
V2 : Shape (Line);

B. V : Shape := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

C. V : Shape (Line) := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

D. V : Shape;
V2 : Shape (Circle);

A. Cannot assign with different discriminant
B. OK
C. V initial value has a different discriminant
D. Shape cannot be mutable: V must have a discriminant

106 / 578

Discriminated Record Types
Unconstrained Variant Records

Quiz
type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

Which declaration(s) is(are) legal?

A. when Circle =>
Cord : Shape (Line);

B. when Circle =>
Center : array (1 .. 2) of Float;
Radius : Float;

C. when Circle =>
Center_X, Center_Y : Float;
Radius : Float;

D. when Circle =>
X, Y, Radius : Float;

A. Referencing itself
B. anonymous array in record declaration
C. OK
D. X, Y are duplicated with the Line variant

107 / 578

Discriminated Record Types
Unconstrained Variant Records

Quiz
type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

Which declaration(s) is(are) legal?

A. when Circle =>
Cord : Shape (Line);

B. when Circle =>
Center : array (1 .. 2) of Float;
Radius : Float;

C. when Circle =>
Center_X, Center_Y : Float;
Radius : Float;

D. when Circle =>
X, Y, Radius : Float;

A. Referencing itself
B. anonymous array in record declaration
C. OK
D. X, Y are duplicated with the Line variant

107 / 578

Discriminated Record Types
Varying Length Arrays

Varying Length Arrays

108 / 578

Discriminated Record Types
Varying Length Arrays

Varying Lengths of Array Objects

In Ada, array objects have to be fixed length

S : String(1..80);
A : array (M .. K*L) of Integer;

We would like an object with a maximum length, but current
length is variable

Need two pieces of data

Array contents
Location of last valid element

For common usage, we want this to be a type (probably a record)
Maximum size array for contents
Index for last valid element

109 / 578

Discriminated Record Types
Varying Length Arrays

Simple Varying Length Array
type Simple_VString is

record
Length : Natural range 0..Max_Length := 0;
Data : String(1..Max_Length) := (others => ' ');

end record;

function "&"(Left, Right : Simple_VString) return Simple_VString is
Result : Simple_VString;

begin
if Left.Length + Right.Length > Max_Length then

raise Constraint_Error;
else

Result.Length := Left.Length + Right.Length;
Result.Data(1..Result.Length) :=

Left.Data(1..Left.Length) & Right.Data(1..Right.Length);
return Result;

end if;
end "&";

Issues
Every object has same maximum length
Length needs to be maintained by program logic
Need to define "="

110 / 578

Discriminated Record Types
Varying Length Arrays

Varying Length Array via Variant Records

Discriminant can serve as bound of array field

type VString (Max_Length : Natural := 0) is
record

Data : String(1..Max_Length) := (others => ' ');
end record;

Discriminant default value?
With default discriminant value, objects can be copied even if
lengths are different
With no default discriminant value, objects of different lengths
cannot be copied

111 / 578

Discriminated Record Types
Varying Length Arrays

Quiz

type My_Array is array (Integer range <>) of Boolean;

How to declare an array of two elements?

A. O : My_Array (2)
B. O : My_Array (1 .. 2)
C. O : My_Array (1 .. 3)
D. O : My_Array (1, 3)

112 / 578

Discriminated Record Types
Varying Length Arrays

Quiz

type My_Array is array (Integer range <>) of Boolean;

How to declare an array of two elements?

A. O : My_Array (2)
B. O : My_Array (1 .. 2)
C. O : My_Array (1 .. 3)
D. O : My_Array (1, 3)

112 / 578

Discriminated Record Types
Varying Length Arrays

Quiz

type R (Size : Integer := 0) is record
S : String (1 .. Size);

end record;

Which proposition(s) will compile and run without error?

A. V : R := (6, "Hello")
B. V : R := (5, "Hello")
C. V : R (5) := (5, S => "Hello")
D. V : R (6) := (6, S => "Hello")

When V is declared without specifying its size, it becomes mutable, at
this point the S'Length = Positive'Last, causing a Runtime_Error.
Furthermore the length of "Hello" is 5, it cannot be stored in a String
of Length 6.

113 / 578

Discriminated Record Types
Varying Length Arrays

Quiz

type R (Size : Integer := 0) is record
S : String (1 .. Size);

end record;

Which proposition(s) will compile and run without error?

A. V : R := (6, "Hello")
B. V : R := (5, "Hello")
C. V : R (5) := (5, S => "Hello")
D. V : R (6) := (6, S => "Hello")

When V is declared without specifying its size, it becomes mutable, at
this point the S'Length = Positive'Last, causing a Runtime_Error.
Furthermore the length of "Hello" is 5, it cannot be stored in a String
of Length 6.

113 / 578

Discriminated Record Types
Variant Record Details

Variant Record Details

114 / 578

Discriminated Record Types
Variant Record Details

Semantics of Discriminated Records

A discriminant is a parameter to a record type
The value of a discriminant affects the presence, constraints, or
initialization of other components

A type may have more than one discriminant
Either all have default initializations, or none do

Ada restricts the kinds of types that may be used to declare a
discriminant

Discrete types (i.e., enumeration or integer type)
Access types (not covered here)

115 / 578

Discriminated Record Types
Variant Record Details

Use of Discriminants in Record Definition

Within the record type definition, a discriminant may only be
referenced in the following contexts

In "case" of variant part
As a bound of a record component that is an unconstrained array
As an initialization expression for a component
As the value of a discriminant for a component that itself a variant
record

A discriminant is not allowed as the bound of a range constraint

116 / 578

Discriminated Record Types
Lab

Lab

117 / 578

Discriminated Record Types
Lab

Discriminated Record Types Lab

Requirements for a simplistic employee database
Create a package to handle varying length strings using variant
records

The string type must be private!
The variant can appear on the partial definition or the full

Create a package to create employee data in a variant record

Store first name, last name, and hourly pay rate for all employees
Supervisors must also include the project they are supervising
Managers must also include the number of employees they are
managing and the department name

Main program should read employee information from the console

Any number of any type of employees can be entered in any order
When data entry is done, print out all appropriate information for
each employee

Hints
Create concatenation functions for your varying length string type
Is it easier to create an input function for each employee category,
or a common one?

118 / 578

Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Vstring
package Vstring is

Max_String_Length : constant := 1_000;
type Vstring_T is private;
function To_Vstring (Str : String) return Vstring_T;
function To_String (Vstr : Vstring_T) return String;
function "&" (L, R : Vstring_T) return Vstring_T;
function "&" (L : String; R : Vstring_T) return Vstring_T;
function "&" (L : Vstring_T; R : String) return Vstring_T;

private
subtype Index_T is Integer range 0 .. Max_String_Length;
type Vstring_T (Length : Index_T := 0) is record

Text : String (1 .. Length);
end record;

end Vstring;

package body Vstring is
function To_Vstring (Str : String) return Vstring_T is

((Length => Str'Length, Text => Str));
function To_String (Vstr : Vstring_T) return String is

(Vstr.Text);
function "&" (L, R : Vstring_T) return Vstring_T is

Ret_Val : constant String := L.Text & R.Text;
begin

return (Length => Ret_Val'Length, Text => Ret_Val);
end "&";

function "&" (L : String; R : Vstring_T) return Vstring_T is
Ret_Val : constant String := L & R.Text;

begin
return (Length => Ret_Val'Length, Text => Ret_Val);

end "&";

function "&" (L : Vstring_T; R : String) return Vstring_T is
Ret_Val : constant String := L.Text & R;

begin
return (Length => Ret_Val'Length, Text => Ret_Val);

end "&";
end Vstring;

119 / 578

Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Employee
(Spec)

with Vstring; use Vstring;
package Employee is

type Category_T is (Staff, Supervisor, Manager);
type Pay_T is delta 0.01 range 0.0 .. 1_000.00;

type Employee_T (Category : Category_T := Staff) is record
Last_Name : Vstring.Vstring_T;
First_Name : Vstring.Vstring_T;
Hourly_Rate : Pay_T;
case Category is

when Staff =>
null;

when Supervisor =>
Project : Vstring.Vstring_T;

when Manager =>
Department : Vstring.Vstring_T;
Staff_Count : Natural;

end case;
end record;

function Get_Staff return Employee_T;
function Get_Supervisor return Employee_T;
function Get_Manager return Employee_T;

end Employee;

120 / 578

Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Employee
(Body)

with Ada.Text_IO; use Ada.Text_IO;
package body Employee is

function Read (Prompt : String) return String is
begin

Put (Prompt & " > ");
return Get_Line;

end Read;

function Get_Staff return Employee_T is
Ret_Val : Employee_T (Staff);

begin
Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
Ret_Val.First_Name := To_Vstring (Read ("First name"));
Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
return Ret_Val;

end Get_Staff;

function Get_Supervisor return Employee_T is
Ret_Val : Employee_T (Supervisor);

begin
Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
Ret_Val.First_Name := To_Vstring (Read ("First name"));
Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
Ret_Val.Project := To_Vstring (Read ("Project"));
return Ret_Val;

end Get_Supervisor;

function Get_Manager return Employee_T is
Ret_Val : Employee_T (Manager);

begin
Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
Ret_Val.First_Name := To_Vstring (Read ("First name"));
Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
Ret_Val.Department := To_Vstring (Read ("Department"));
Ret_Val.Staff_Count := Integer'Value (Read ("Staff count"));
return Ret_Val;

end Get_Manager;
end Employee;

121 / 578

Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Employee;
with Vstring; use Vstring;
procedure Main is

procedure Print (Member : Employee.Employee_T) is
First_Line : constant Vstring.Vstring_T :=

Member.First_Name & " " & Member.Last_Name & " " &
Member.Hourly_Rate'Image;

begin
Put_Line (Vstring.To_String (First_Line));
case Member.Category is

when Employee.Supervisor =>
Put_Line (" Project: " & Vstring.To_String (Member.Project));

when Employee.Manager =>
Put_Line (" Overseeing " & Member.Staff_Count'Image & " in " &

Vstring.To_String (Member.Department));
when others => null;

end case;
end Print;

List : array (1 .. 1_000) of Employee.Employee_T;
Count : Natural := 0;

begin
loop

Put_Line ("E => Employee");
Put_Line ("S => Supervisor");
Put_Line ("M => Manager");
Put ("E/S/M (any other to stop): ");
declare

Choice : constant String := Get_Line;
begin

case Choice (1) is
when 'E' | 'e' =>

Count := Count + 1;
List (Count) := Employee.Get_Staff;

when 'S' | 's' =>
Count := Count + 1;
List (Count) := Employee.Get_Supervisor;

when 'M' | 'm' =>
Count := Count + 1;
List (Count) := Employee.Get_Manager;

when others =>
exit;

end case;
end;

end loop;

for Item of List (1 .. Count) loop
Print (Item);

end loop;
end Main;

122 / 578

Discriminated Record Types
Summary

Summary

123 / 578

Discriminated Record Types
Summary

Properties of Variant Record Types

Rules
Case choices for variants must partition possible values for
discriminant
Field names must be unique across all variants

Style
Typical processing is via a case statement that "dispatches" based
on discriminant
This centralized functional processing is in contrast to decentralized
object-oriented approach

Flexibility
Variant parts may be nested, if some fields common to a set of
variants

124 / 578

Advanced Primitives

Advanced Primitives

125 / 578

Advanced Primitives
Type Derivation

Type Derivation

126 / 578

Advanced Primitives
Type Derivation

Freeze Point

Ada doesn’t explicitly identify the end of members declaration

This end is the implicit freeze point occurring whenever:
A variable of the type is declared
The type is derived
The end of the scope is reached

Subprograms past this point are not primitive

type Root is Integer;
procedure Prim (V : Root);
type Child is new Root; -- freeze root
procedure Prim2 (V : Root); -- Not a primitive

V : Child; -- freeze child
procedure Prim3 (V : Child); -- Not a primitive

127 / 578

Advanced Primitives
Type Derivation

Primitive of Multiple Types

A subprogram can be a primitive of several types

package P is
type T1 is range 1 .. 10;
type T2 is (A, B, C);

procedure Proc (V1 : T1; V2 : T2);
function "+" (V1 : T1; V2 : T2) return T1;

end P;

128 / 578

Advanced Primitives
Type Derivation

Implicit Primitive Operations

Type declaration implicitly creates primitives
Numerical and logical operations
Code can overload or remove them

package P is
type T1 is range 1 .. 10;
-- implicit
-- function "+" (Left, Right : T1) return T1;

end P;
...
procedure Main is

V1, V2 : T1;
begin

V1 := V1 + V2;
end Main;

129 / 578

Advanced Primitives
Type Derivation

Recap. on type derivation

For all types
Freeze point rules don’t change

Primitives are inherited by child types

Conversion from child to parent possible

Pre-defined set of primitives

"+", "-" ... for numeric types
Comparison operators
Equality except if limited

Derived type that are not tagged

Are not OOP

Can remove a primitive

Can declare a primitive of multiple types

Can be converted from parent to child

Their representation does not change
Could raise Constraint_Error (range...)

130 / 578

Advanced Primitives
Type Derivation

Quiz

type T is new Integer;

Which operator(s) definition(s) is legal?

A. function "+" (V : T) return Boolean is (T /= 0)
B. function "+" (A, B : T) return T is (A + B)
C. function "=" (A, B : T) return T is (A - B)
D. function ":=" (A : T) return T is (A)

B. Infinite recursion
C. Unlike some languages, there is no assignment operator

131 / 578

Advanced Primitives
Type Derivation

Quiz

type T is new Integer;

Which operator(s) definition(s) is legal?

A. function "+" (V : T) return Boolean is (T /= 0)
B. function "+" (A, B : T) return T is (A + B)
C. function "=" (A, B : T) return T is (A - B)
D. function ":=" (A : T) return T is (A)

B. Infinite recursion
C. Unlike some languages, there is no assignment operator

131 / 578

Advanced Primitives
Type Derivation

Quiz

type T1 is new Integer;
function "+" (A : T1) return T1 is (0);
type T2 is new T1;
type T3 is new T1;
overriding function "+" (A : T3) return T3 is (1);

O1 : T1;
O2 : T2;
O3 : T3;

Which proposition(s) is(are) legal and running without error?

A. pragma Assert (+O1 = 0)
B. pragma Assert (+O2 = 0)
C. pragma Assert ((+O2) + (+O3) = 1)
D. pragma Assert (+(T3 (O1) + O3) = 1)

C. +O2 returns a T2, +O3 a T3

132 / 578

Advanced Primitives
Type Derivation

Quiz

type T1 is new Integer;
function "+" (A : T1) return T1 is (0);
type T2 is new T1;
type T3 is new T1;
overriding function "+" (A : T3) return T3 is (1);

O1 : T1;
O2 : T2;
O3 : T3;

Which proposition(s) is(are) legal and running without error?

A. pragma Assert (+O1 = 0)
B. pragma Assert (+O2 = 0)
C. pragma Assert ((+O2) + (+O3) = 1)
D. pragma Assert (+(T3 (O1) + O3) = 1)

C. +O2 returns a T2, +O3 a T3
132 / 578

Advanced Primitives
Tagged Inheritance

Tagged Inheritance

133 / 578

Advanced Primitives
Tagged Inheritance

Liskov’s Substitution Principle

LSP is an object-oriented rule
Not imposed

But fits nicely with Ada’s OOP design

Avoids numerous issues

Can be verified by tools eg. CodePeer

Objects of a parent type shall be replaceable by objects of its child
types

Cannot be applied to simple derivation (eg. restricting range)

Tagged record derivation implies extending not modifying the
behaviour

Easier said than done
Is a mute cat still a cat if it can’t meow?

134 / 578

Advanced Primitives
Tagged Inheritance

Dispatching

Primitives dispatch, but not only them

type T is tagged null record;

procedure Prim (A : T) is null;
procedure Not_Prim (A : T'Class) is null;

Prim is a primitive

Not_Prim is not a primitive
Won’t be inherited
But dispatches dynamically!

declare
type T2 is new T with null record;
A : T'Class := T2'(null record);

begin
Prim (A);
Not_Prim (A);

end;
135 / 578

Advanced Primitives
Tagged Inheritance

Tagged Primitive Declaration

tagged types primitives must be declared in a package
specification
Not a declare block or the declarative part of a subprogram

procedure P is
type T is tagged null record;
procedure Not_Prim (A : T) is null;
type T2 is tagged null record;

A : T;
B : T2;

begin
-- Not a primitive
Not_Prim (A);
-- Would not compile
-- Not_Prim (B);

end P;
136 / 578

Advanced Primitives
Tagged Inheritance

Primitive of Multiple Types

For a primitive of a tagged record Tag_T

Tag_T is called the controlling parameter
All controlling parameters must be of the same type

Warning: A non-tagged type is never controlling
Can have primitive of multiple type
Cannot have primitive of multiple tagged record

type Root1 is tagged null record;
type Root2 is tagged null record;

procedure P1_Correct (V1 : Root1; V2 : Root1);
procedure P2_Incorrect (V1 : Root1; V2 : Root2); -- FAIL

137 / 578

Advanced Primitives
Tagged Inheritance

Recap. on tagged inheritance

tagged types are Ada’s OOP

They can
Be converted from a parent: Child_Type (Parent)

They cannot
Remove a primitive

Have a primitive with multiple controlling types

Be converted to a parent: Parent_Type (Child)

Because their representation may change

138 / 578

Advanced Primitives
Tagged Inheritance

Quiz

type T1 is range 0 .. 10;
type T2 is range 0 .. 10;
type Tag_T1 is tagged null record;
type Tag_T2 is tagged null record;

Which of the following piece(s) of code is(are) legal?

A. procedure P (A : T1; B : T2) is null
B. procedure P (A : T1; B : Tag_T1) is null
C. procedure P (A : T1; B : Tag_T1; C : Tag_T1) is null
D. procedure P (A : T1; B : Tag_T1; C : Tag_T2) is null

D. Has two controlling type

139 / 578

Advanced Primitives
Tagged Inheritance

Quiz

type T1 is range 0 .. 10;
type T2 is range 0 .. 10;
type Tag_T1 is tagged null record;
type Tag_T2 is tagged null record;

Which of the following piece(s) of code is(are) legal?

A. procedure P (A : T1; B : T2) is null
B. procedure P (A : T1; B : Tag_T1) is null
C. procedure P (A : T1; B : Tag_T1; C : Tag_T1) is null
D. procedure P (A : T1; B : Tag_T1; C : Tag_T2) is null

D. Has two controlling type

139 / 578

Advanced Primitives
Tagged Inheritance

Quiz

type T1 is tagged null record;
type T2 is new T1 with null record;
V : T2;

Which of the following piece(s) of code allow for calling Proc (V)?

A. procedure Proc (V : T1) is null

B. procedure Proc (V : T1’Class) is null

C. procedure Proc (V : T1'Class) is null;
procedure Proc (V : T2'Class) is null;

D. procedure Proc (V : T1) is null;
procedure Proc (V : T2) is null;

A. Proc is not a primitive
B. T1'Class contains T2'Class

140 / 578

Advanced Primitives
Tagged Inheritance

Quiz

type T1 is tagged null record;
type T2 is new T1 with null record;
V : T2;

Which of the following piece(s) of code allow for calling Proc (V)?

A. procedure Proc (V : T1) is null

B. procedure Proc (V : T1’Class) is null

C. procedure Proc (V : T1'Class) is null;
procedure Proc (V : T2'Class) is null;

D. procedure Proc (V : T1) is null;
procedure Proc (V : T2) is null;

A. Proc is not a primitive
B. T1'Class contains T2'Class

140 / 578

Quantified Expressions

Quantified Expressions

141 / 578

Quantified Expressions
Quantified Expressions

Quantified Expressions

142 / 578

Quantified Expressions
Quantified Expressions

Introduction
Ada 2012

Expressions that have a Boolean value

The value indicates something about a set of objects
In particular, whether something is True about that set

That "something" is expressed as an arbitrary boolean expression
A so-called "predicate"

"Universal" quantified expressions
Indicate whether predicate holds for all components

"Existential" quantified expressions
Indicate whether predicate holds for at least one component

143 / 578

Quantified Expressions
Quantified Expressions

Examples
with GNAT.Random_Numbers; use GNAT.Random_Numbers;
with Ada.Text_IO; use Ada.Text_IO;
procedure Quantified_Expressions is

Gen : Generator;
Values : constant array (1 .. 10) of Integer := (others => Random (Gen));

Any_Even : constant Boolean := (for some N of Values => N mod 2 = 0);
All_Odd : constant Boolean := (for all N of reverse Values => N mod 2 = 1);

function Is_Sorted return Boolean is
(for all K in Values'Range =>

K = Values'First or else Values (K - 1) <= Values (K));

function Duplicate return Boolean is
(for some I in Values'Range =>

(for some J in I + 1 .. Values'Last => Values (I) = Values (J)));

begin
Put_Line ("Any Even: " & Boolean'Image (Any_Even));
Put_Line ("All Odd: " & Boolean'Image (All_Odd));
Put_Line ("Is_Sorted " & Boolean'Image (Is_Sorted));
Put_Line ("Duplicate " & Boolean'Image (Duplicate));

end Quantified_Expressions;
144 / 578

Quantified Expressions
Quantified Expressions

Semantics Are As If You Wrote This Code
Ada 2012

function Universal (Set : Components) return Boolean is
begin

for C of Set loop
if not Predicate (C) then

return False; -- Predicate must be true for all
end if;

end loop;
return True;

end Universal;

function Existential (Set : Components) return Boolean is
begin

for C of Set loop
if Predicate (C) then

return True; -- Predicate need only be true for one
end if;

end loop;
return False;

end Existential;
145 / 578

Quantified Expressions
Quantified Expressions

Quantified Expressions Syntax
Ada 2012

quantified_expression ::=
(for quantifier loop_parameter_specification

=> predicate) |
(for quantifier iterator_specification =>

predicate)
predicate ::= boolean_expression
quantifier ::= all | some

146 / 578

Quantified Expressions
Quantified Expressions

Simple Examples
Ada 2012

Values : constant array (1 .. 10) of Integer := (...);
Is_Any_Even : constant Boolean :=

(for some V of Values => V mod 2 = 0);
Are_All_Even : constant Boolean :=

(for all V of Values => V mod 2 = 0);

147 / 578

Quantified Expressions
Quantified Expressions

Universal Quantifier
Ada 2012

In logic, denoted by ∀ (inverted ’A’, for "all")

"There is no member of the set for which the predicate does not
hold"

If predicate is False for any member, the whole is False

Functional equivalent

function Universal (Set : Components) return Boolean is
begin

for C of Set loop
if not Predicate (C) then

return False; -- Predicate must be true for all
end if;

end loop;
return True;

end Universal;
148 / 578

Quantified Expressions
Quantified Expressions

Universal Quantifier Illustration
Ada 2012

"There is no member of the set for which the predicate does not
hold"
Given a set of integer answers to a quiz, there are no answers that
are not 42 (i.e., all are 42)

Ultimate_Answer : constant := 42; -- to everything...
Answers : constant array (1 .. 10)

of Integer := (...);
All_Correct_1 : constant Boolean :=

(for all Component of Answers =>
Component = Ultimate_Answer);

All_Correct_2 : constant Boolean :=
(for all K in Answers'range =>

Answers(K) = Ultimate_Answer);
149 / 578

Quantified Expressions
Quantified Expressions

Universal Quantifier Real-World Example
Ada 2012

type DMA_Status_Flag is (...);
function Status_Indicated (

Flag : DMA_Status_Flag)
return Boolean;

None_Set : constant Boolean := (
for all Flag in DMA_Status_Flag =>

not Status_Indicated (Flag));

150 / 578

Quantified Expressions
Quantified Expressions

Existential Quantifier
Ada 2012

In logic, denoted by ∃ (rotated ’E’, for "exists")

"There is at least one member of the set for which the predicate
holds"

If predicate is True for any member, the whole is True

Functional equivalent

function Existential (Set : Components) return Boolean is
begin

for C of Set loop
if Predicate (C) then

return True; -- Need only be true for at least one
end if;

end loop;
return False;

end Existential;
151 / 578

Quantified Expressions
Quantified Expressions

Existential Quantifier Illustration
Ada 2012

"There is at least one member of the set for which the predicate
holds"
Given set of integer answers to a quiz, there is at least one answer
that is 42

Ultimate_Answer : constant := 42; -- to everything...
Answers : constant array (1 .. 10)

of Integer := (...);
Any_Correct_1 : constant Boolean :=

(for some Component of Answers =>
Component = Ultimate_Answer);

Any_Correct_2 : constant Boolean :=
(for some K in Answers'range =>

Answers(K) = Ultimate_Answer);
152 / 578

Quantified Expressions
Quantified Expressions

Index-Based vs Component-Based Indexing
Ada 2012

Given an array of integers

Values : constant array (1 .. 10) of Integer := (...);

Component-based indexing is useful for checking individual values

Contains_Negative_Number : constant Boolean :=
(for some N of Values => N < 0);

Index-based indexing is useful for comparing across values

Is_Sorted : constant Boolean :=
(for all I in Values'Range =>

I = Values'first or else Values(I) >= Values(I-1));

153 / 578

Quantified Expressions
Quantified Expressions

"Pop Quiz" for Quantified Expressions
Ada 2012

What will be the value of Ascending_Order?

Table : constant array (1 .. 10) of Integer :=
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

Ascending_Order : constant Boolean := (
for all K in Table'Range =>

K > Table'First and then Table (K - 1) <= Table (K));

Answer: False. Predicate fails when K = Table’First

First subcondition is False!

Condition should be

Ascending_Order : constant Boolean := (
for all K in Table'Range => K = Table'first or else

Table (K - 1) <= Table (K));
154 / 578

Quantified Expressions
Quantified Expressions

When The Set Is Empty...
Ada 2012

Universally quantified expressions are True
Definition: there is no member of the set for which the predicate
does not hold
If the set is empty, there is no such member, so True
"All people 12-feet tall will be given free chocolate."

Existentially quantified expressions are False
Definition: there is at least one member of the set for which the
predicate holds

If the set is empty, there is no such member, so False

Common convention in set theory, arbitrary but settled

155 / 578

Quantified Expressions
Quantified Expressions

Not Just Arrays: Any "Iterable" Objects
Ada 2012

Those that can be iterated over
Language-defined, such as the containers
User-defined too

package Characters is new
Ada.Containers.Vectors (Positive, Character);

use Characters;
Alphabet : constant Vector := To_Vector('A',1) & 'B' & 'C';
Any_Zed : constant Boolean :=

(for some C of Alphabet => C = 'Z');
All_Lower : constant Boolean :=

(for all C of Alphabet => Is_Lower (C));

156 / 578

Quantified Expressions
Quantified Expressions

Conditional / Quantified Expression Usage
Ada 2012

Use them when a function would be too heavy

Don’t over-use them!

if (for some Component of Answers =>
Component = Ultimate_Answer)

then

Function names enhance readability
So put the quantified expression in a function

if At_Least_One_Answered (Answers) then

Even in pre/postconditions, use functions containing quantified
expressions for abstraction

157 / 578

Quantified Expressions
Quantified Expressions

Quiz

Which declaration(s) is(are) legal?

A. function F (S : String) return Boolean is (for all C
of S => C /= ’ ’)

B. function F (S : String) return Boolean is (not for
some C of S => C = ' ')

C. function F (S : String) return String is (for all C
of S => C)

D. function F (S : String) return String is
(if (for all C of S => C /= ’ ’) then "OK" else

"NOK");

B. Parentheses required around the quantified expression
C. Must return a Boolean

158 / 578

Quantified Expressions
Quantified Expressions

Quiz

Which declaration(s) is(are) legal?

A. function F (S : String) return Boolean is (for all C
of S => C /= ’ ’)

B. function F (S : String) return Boolean is (not for
some C of S => C = ' ')

C. function F (S : String) return String is (for all C
of S => C)

D. function F (S : String) return String is
(if (for all C of S => C /= ’ ’) then "OK" else

"NOK");

B. Parentheses required around the quantified expression
C. Must return a Boolean

158 / 578

Quantified Expressions
Quantified Expressions

Quiz

type T1 is array (1 .. 3) of Integer;
type T2 is array (1 .. 3) of Integer;

Which piece(s) of code is(are) correctly performs equality check on A
and B?

A. function "=" (A : T1; B : T2) return Boolean is (A =
T1 (B))

B. function "=" (A : T1; B : T2) return Boolean is
(for all E1 of A => (for all E2 of B => E1 = E2));

C. function "=" (A : T1; B : T2) return Boolean is
(for some E1 of A => (for some E2 of B => A = B));

D. function "=" (A : T1; B : T2) return Boolean is
(for all J in A’Range => A (J) = B (J));

B. Counterexample: A` andB=(0, 1, 0)‘ returns :ada:‘False
C. Counterexample: A = (0, 0, 1) and B = (0, 1, 1) returns True

159 / 578

Quantified Expressions
Quantified Expressions

Quiz

type T1 is array (1 .. 3) of Integer;
type T2 is array (1 .. 3) of Integer;

Which piece(s) of code is(are) correctly performs equality check on A
and B?

A. function "=" (A : T1; B : T2) return Boolean is (A =
T1 (B))

B. function "=" (A : T1; B : T2) return Boolean is
(for all E1 of A => (for all E2 of B => E1 = E2));

C. function "=" (A : T1; B : T2) return Boolean is
(for some E1 of A => (for some E2 of B => A = B));

D. function "=" (A : T1; B : T2) return Boolean is
(for all J in A’Range => A (J) = B (J));

B. Counterexample: A` andB=(0, 1, 0)‘ returns :ada:‘False
C. Counterexample: A = (0, 0, 1) and B = (0, 1, 1) returns True

159 / 578

Quantified Expressions
Quantified Expressions

Quiz
type Array1_T is array (1 .. 3) of Integer;
type Array2_T is array (1 .. 3) of Array1_T;
A : Array2_T;

The above describes an array A whose elements are arrays of three
elements. Which expression would one use to determine if at least one
of A’s elements are sorted?

A. (for some El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

B. (for all El of A => for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

C. (for some El of A => (for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

D. (for all El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

A. Will be True if any element has two consecutive increasing values
B. Will be True if every element is sorted
C. Correct
D. Will be True if every element has two consecutive increasing

values

160 / 578

Quantified Expressions
Quantified Expressions

Quiz
type Array1_T is array (1 .. 3) of Integer;
type Array2_T is array (1 .. 3) of Array1_T;
A : Array2_T;

The above describes an array A whose elements are arrays of three
elements. Which expression would one use to determine if at least one
of A’s elements are sorted?

A. (for some El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

B. (for all El of A => for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

C. (for some El of A => (for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

D. (for all El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

A. Will be True if any element has two consecutive increasing values
B. Will be True if every element is sorted
C. Correct
D. Will be True if every element has two consecutive increasing

values
160 / 578

Quantified Expressions
Lab

Lab

161 / 578

Quantified Expressions
Lab

Advanced Expressions Lab

Requirements
Allow the user to fill a list with dates

After the list is created, use quantified expressions to print
True/False

If any date is not legal (taking into account leap years!)
If all dates are in the same calendar year

Use expression functions for all validation routines

Hints
Use subtype membership for range validation

You will need conditional expressions in your functions

You can use component-based iterations for some checks

But you must use indexed-based iterations for others
162 / 578

Quantified Expressions
Lab

Advanced Expressions Lab Solution - Checks
subtype Year_T is Positive range 1_900 .. 2_099;
subtype Month_T is Positive range 1 .. 12;
subtype Day_T is Positive range 1 .. 31;

type Date_T is record
Year : Positive;
Month : Positive;
Day : Positive;

end record;

List : array (1 .. 5) of Date_T;
Item : Date_T;

function Is_Leap_Year (Year : Positive)
return Boolean is

(Year mod 400 = 0 or else (Year mod 4 = 0 and Year mod 100 /= 0));

function Days_In_Month (Month : Positive;
Year : Positive)
return Day_T is

(case Month is when 4 | 6 | 9 | 11 => 30,
when 2 => (if Is_Leap_Year (Year) then 29 else 28), when others => 31);

function Is_Valid (Date : Date_T)
return Boolean is

(Date.Year in Year_T and then Date.Month in Month_T
and then Date.Day <= Days_In_Month (Date.Month, Date.Year));

function Any_Invalid return Boolean is
(for some Date of List => not Is_Valid (Date));

function Same_Year return Boolean is
(for all I in List'range => List (I).Year = List (List'first).Year);

163 / 578

Quantified Expressions
Lab

Advanced Expressions Lab Solution - Main

function Number (Prompt : String)
return Positive is

begin
Put (Prompt & "> ");
return Positive'Value (Get_Line);

end Number;

begin

for I in List'Range loop
Item.Year := Number ("Year");
Item.Month := Number ("Month");
Item.Day := Number ("Day");
List (I) := Item;

end loop;

Put_Line ("Any invalid: " & Boolean'image (Any_Invalid));
Put_Line ("Same Year: " & Boolean'image (Same_Year));

end Main;
164 / 578

Quantified Expressions
Summary

Summary

165 / 578

Quantified Expressions
Summary

Summary

Quantified expressions are general purpose but especially useful
with pre/postconditions

Consider hiding them behind expressive function names

166 / 578

Limited Types

Limited Types

167 / 578

Limited Types
Introduction

Introduction

168 / 578

Limited Types
Introduction

Views

Specify how values and objects may be manipulated

Are implicit in much of the language semantics
Constants are just variables without any assignment view
Task types, protected types implicitly disallow assignment
Mode in formal parameters disallow assignment

Variable : Integer := 0;
...
-- P's view of X prevents modification
procedure P(X : in Integer) is
begin

...
end P;
...
P(Variable);

169 / 578

Limited Types
Introduction

Limited Type Views’ Semantics

Prevents copying via predefined assignment
Disallows assignment between objects
Must make your own copy procedure if needed

type File is limited ...
...
F1, F2 : File;
...
F1 := F2; -- compile error

Prevents incorrect comparison semantics
Disallows predefined equality operator
Make your own equality function = if needed

170 / 578

Limited Types
Introduction

Inappropriate Copying Example

type File is ...
F1, F2 : File;
...
Open (F1);
Write (F1, "Hello");
-- What is this assignment really trying to do?
F2 := F1;

171 / 578

Limited Types
Introduction

Intended Effects of Copying

type File is ...
F1, F2 : File;
...
Open (F1);
Write (F1, "Hello");
Copy (Source => F1, Target => F2);

172 / 578

Limited Types
Declarations

Declarations

173 / 578

Limited Types
Declarations

Examples

with Interfaces;
package Multiprocessor_Mutex is

subtype Id_T is String (1 .. 4);
-- prevent copying of a lock
type Limited_T is limited record

Flag : Interfaces.Unsigned_8;
end record;
type Also_Limited_T is record

Lock : Limited_T;
Id : Id_T;

end record;
procedure Lock (This : in out Also_Limited_T) is null;
procedure Unlock (This : in out Also_Limited_T) is null;

end Multiprocessor_Mutex;

https://learn.adacore.com/training_examples/fundamentals_of_ada/120_limited_types.html#declarations
174 / 578

Limited Types
Declarations

Limited Type Declarations

Syntax
Additional keyword limited added to record type declaration

type defining_identifier is limited record
component_list

end record;

Are always record types unless also private
More in a moment...

175 / 578

Limited Types
Declarations

Approximate Analog In C++

class Stack {
public:

Stack();
void Push (int X);
void Pop (int& X);
...

private:
...
// assignment operator hidden
Stack& operator= (const Stack& other);

}; // Stack

176 / 578

Limited Types
Declarations

Spin Lock Example

with Interfaces;
package Multiprocessor_Mutex is

-- prevent copying of a lock
type Spin_Lock is limited record

Flag : Interfaces.Unsigned_8;
end record;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);
pragma Inline (Lock, Unlock);

end Multiprocessor_Mutex;

177 / 578

Limited Types
Declarations

Parameter Passing Mechanism

Always "by-reference" if explicitly limited
Necessary for various reasons (task and protected types, etc)
Advantageous when required for proper behavior

By definition, these subprograms would be called concurrently
Cannot operate on copies of parameters!

procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

178 / 578

Limited Types
Declarations

Composites with Limited Types

Composite containing a limited type becomes limited as well
Example: Array of limited elements

Array becomes a limited type

Prevents assignment and equality loop-holes

declare
-- if we can't copy component S, we can't copy User_Type
type User_Type is record -- limited because S is limited

S : File;
...

end record;
A, B : User_Type;

begin
A := B; -- not legal since limited
...

end;
179 / 578

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

L1, L2 : T;
B : Boolean;

Which statement(s) is(are) legal?

A. L1.I := 1
B. L1 := L2
C. B := (L1 = L2)
D. B := (L1.I = L2.I)

180 / 578

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

L1, L2 : T;
B : Boolean;

Which statement(s) is(are) legal?

A. L1.I := 1
B. L1 := L2
C. B := (L1 = L2)
D. B := (L1.I = L2.I)

180 / 578

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

Which of the following declaration(s) is(are) legal?

A. function "+" (A : T) return T is (A)
B. function "-" (A : T) return T is (I => -A.I)
C. function "=" (A, B : T) return Boolean is (True)
D. function "=" (A, B : T) return Boolean is (A.I =

T’(I => B.I).I)

181 / 578

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

Which of the following declaration(s) is(are) legal?

A. function "+" (A : T) return T is (A)
B. function "-" (A : T) return T is (I => -A.I)
C. function "=" (A, B : T) return Boolean is (True)
D. function "=" (A, B : T) return Boolean is (A.I =

T’(I => B.I).I)

181 / 578

Limited Types
Declarations

Quiz
package P is

type T is limited null record;
type R is record

F1 : Integer;
F2 : T;

end record;
end P;

with P;
procedure Main is

T1, T2 : P.T;
R1, R2 : P.R;

begin

Which assignment is legal?

A. T1 := T2;
B. R1 := R2;
C. R1.F1 := R2.F1;
D. R2.F2 := R2.F2;

Explanations

A. T1 and T2 are limited types
B. R1 and R2 contain limited types so they are also limited
C. Theses components are not limited types
D. These components are of a limited type

182 / 578

Limited Types
Declarations

Quiz
package P is

type T is limited null record;
type R is record

F1 : Integer;
F2 : T;

end record;
end P;

with P;
procedure Main is

T1, T2 : P.T;
R1, R2 : P.R;

begin

Which assignment is legal?

A. T1 := T2;
B. R1 := R2;
C. R1.F1 := R2.F1;
D. R2.F2 := R2.F2;

Explanations

A. T1 and T2 are limited types
B. R1 and R2 contain limited types so they are also limited
C. Theses components are not limited types
D. These components are of a limited type

182 / 578

Limited Types
Creating Values

Creating Values

183 / 578

Limited Types
Creating Values

Examples
with Interfaces;
package Multiprocessor_Mutex is

subtype Id_T is String (1 .. 4);
-- prevent copying of a lock
type Limited_T is limited record

Flag : Interfaces.Unsigned_8;
end record;
type Also_Limited_T is record

Lock : Limited_T;
Id : Id_T;

end record;
procedure Lock (This : in out Also_Limited_T);
procedure Unlock (This : in out Also_Limited_T);
function Create (Flag : Interfaces.Unsigned_8;

Id : Id_T)
return Also_Limited_T;

end Multiprocessor_Mutex;

package body Multiprocessor_Mutex is
procedure Lock (This : in out Also_Limited_T) is null;
procedure Unlock (This : in out Also_Limited_T) is null;
Global_Lock : Also_Limited_T := (Lock => (Flag => 0), Id => "GLOB");
function Create (Flag : Interfaces.Unsigned_8;

Id : Id_T)
return Also_Limited_T is

Local_Lock : Also_Limited_T := (Lock => (Flag => 1), Id => "LOCA");
begin

Global_Lock.Lock.Flag := Flag;
Local_Lock.Id := Id;
-- Compile error
-- return Local_Lock;
-- Compile error
-- return Global_Lock;
return (Lock => (Flag => Flag), Id => Id);

end Create;
end Multiprocessor_Mutex;

with Ada.Text_IO; use Ada.Text_IO;
with Multiprocessor_Mutex; use Multiprocessor_Mutex;
procedure Perform_Lock is

Lock1 : Also_Limited_T := (Lock => (Flag => 2), Id => "LOCK");
Lock2 : Also_Limited_T;

begin
-- Lock2 := Create (3, "CREA"); -- illegal
Put_Line (Lock1.Id & Lock1.Lock.Flag'Image);

end Perform_Lock;

https://learn.adacore.com/training_examples/fundamentals_of_ada/120_limited_types.html#creating-values

184 / 578

Limited Types
Creating Values

Creating Values

Initialization is not assignment (but looks like it)!

Via limited constructor functions
Functions returning values of limited types

Via limited aggregates
Aggregates for limited types

type Spin_Lock is limited record
Flag : Interfaces.Unsigned_8;

end record;
...
Mutex : Spin_Lock := (Flag => 0); -- limited aggregate

185 / 578

Limited Types
Creating Values

Other Uses for Limited Aggregates

Values for constant declarations
Components of enclosing array and record types
Default expressions for record components
Expression in an initialized allocator
Actual parameters for formals of mode in
Results of function return statements
Defaults for mode in formal parameters
But not right-hand side of assignment statements!

186 / 578

Limited Types
Creating Values

Only Mode in for Limited Aggregates

Aggregates are not variables, so no place to put the returning
values for out or in out formals

-- allowed, but not helpful
procedure Wrong_Mode_For_Agg (This : in out Spin_Lock) is
begin

Lock (This);
...
Unlock (This);

end Wrong_Mode_For_Agg;
...
-- not allowed
Wrong_Mode_For_Agg (This => (Flag => 0));
-- allowed
procedure Foo (Param : access Spin_Lock);

187 / 578

Limited Types
Creating Values

Limited Constructor Functions

Allowed wherever limited
aggregates are allowed
More capable (can perform
arbitrary computations)
Necessary when limited type
is also private

Users won’t have visibility
required to express
aggregate contents

function F return Spin_Lock
is
begin

...
return (Flag => 0);

end F;

188 / 578

Limited Types
Creating Values

Writing Limited Constructor Functions

Remember - copying is not allowed

function F return Spin_Lock is
Local_X : Spin_Lock;

begin
...
return Local_X; -- this is a copy - not legal
-- (also illegal because of pass-by-reference)

end F;

Global_X : Spin_Lock;
function F return Spin_Lock is
begin

...
-- This is not legal staring with Ada2005
return Global_X; -- this is a copy

end F;
189 / 578

Limited Types
Creating Values

"Built In-Place"

Limited aggregates and functions, specifically

No copying done by implementation
Values are constructed in situ

Mutex : Spin_Lock := (Flag => 0);

function F return Spin_Lock is
begin

return (Flag => 0);
end F;

190 / 578

Limited Types
Creating Values

Quiz
type T is limited record

I : Integer;
end record;

Which piece(s) of code is a legal constructor for T?

A. function F return T is
begin

return T (I => 0);
end F;

B. function F return T is
Val : Integer := 0;

begin
return (I => Val);

end F;

C. function F return T is
Ret : T := (I => 0);

begin
return Ret;

end F;

D. function F return T is
begin

return (0);
end F;

191 / 578

Limited Types
Creating Values

Quiz
type T is limited record

I : Integer;
end record;

Which piece(s) of code is a legal constructor for T?

A. function F return T is
begin

return T (I => 0);
end F;

B. function F return T is
Val : Integer := 0;

begin
return (I => Val);

end F;

C. function F return T is
Ret : T := (I => 0);

begin
return Ret;

end F;

D. function F return T is
begin

return (0);
end F;

191 / 578

Limited Types
Creating Values

Quiz

package P is
type T is limited record

F1 : Integer;
F2 : Character;

end record;
Zero : T := (0, ' ');
One : constant T := (1, 'a');
Two : T;
function F return T;

end P;

Which is a correct completion of F?

A. return (3, ’c’);

B. Two := (2, 'b');
return Two;

C. return One;

D. return Zero;

A contains an "in-place" return. The rest all rely on other objects,
which would require an (illegal) copy.

192 / 578

Limited Types
Creating Values

Quiz

package P is
type T is limited record

F1 : Integer;
F2 : Character;

end record;
Zero : T := (0, ' ');
One : constant T := (1, 'a');
Two : T;
function F return T;

end P;

Which is a correct completion of F?

A. return (3, ’c’);

B. Two := (2, 'b');
return Two;

C. return One;

D. return Zero;

A contains an "in-place" return. The rest all rely on other objects,
which would require an (illegal) copy.

192 / 578

Limited Types
Extended Return Statements

Extended Return Statements

193 / 578

Limited Types
Extended Return Statements

Examples
with Interfaces; use Interfaces;
package Multiprocessor_Mutex is

subtype Id_T is String (1 .. 4);
-- prevent copying of a lock
type Limited_T is limited record

Flag : Interfaces.Unsigned_8;
end record;
type Also_Limited_T is record

Lock : Limited_T;
Id : Id_T;

end record;
procedure Lock (This : in out Also_Limited_T);
procedure Unlock (This : in out Also_Limited_T);
function Create (Id : Id_T) return Also_Limited_T;

end Multiprocessor_Mutex;

package body Multiprocessor_Mutex is
procedure Lock (This : in out Also_Limited_T) is null;
procedure Unlock (This : in out Also_Limited_T) is null;

Global_Lock_Counter : Interfaces.Unsigned_8 := 0;
function Create (Id : Id_T) return Also_Limited_T is
begin

return Ret_Val : Also_Limited_T do
if Global_Lock_Counter = Interfaces.Unsigned_8'Last then

return;
end if;
Global_Lock_Counter := Global_Lock_Counter + 1;
Ret_Val.Id := Id;
Ret_Val.Lock.Flag := Global_Lock_Counter;

end return;
end Create;

end Multiprocessor_Mutex;

with Ada.Text_IO; use Ada.Text_IO;
with Multiprocessor_Mutex; use Multiprocessor_Mutex;
procedure Perform_Lock is

Lock1 : constant Also_Limited_T := Create ("One ");
Lock2 : constant Also_Limited_T := Create ("Two ");

begin
Put_Line (Lock1.Id & Lock1.Lock.Flag'Image);
Put_Line (Lock2.Id & Lock2.Lock.Flag'Image);

end Perform_Lock;

https://learn.adacore.com/training_examples/fundamentals_of_ada/120_limited_types.html#extended-return-statements

194 / 578

Limited Types
Extended Return Statements

Function Extended Return Statements
Ada 2005

Extended return

Result is expressed as an object

More expressive than aggregates

Handling of unconstrained types

Syntax (simplified):

return identifier : subtype [:= expression];

return identifier : subtype
[do

sequence_of_statements ...
end return];

195 / 578

Limited Types
Extended Return Statements

Extended Return Statements Example

-- Implicitely limited array
type Spin_Lock_Array (Positive range <>) of Spin_Lock;

function F return Spin_Lock_Array is
begin

return Result : Spin_Lock_Array (1 .. 10) do
...

end return;
end F;

196 / 578

Limited Types
Extended Return Statements

Expression / Statements Are Optional
Ada 2005

Without sequence (returns default if any)

function F return Spin_Lock is
begin

return Result : Spin_Lock;
end F;

With sequence

function F return Spin_Lock is
X : Interfaces.Unsigned_8;

begin
-- compute X ...
return Result : Spin_Lock := (Flag => X);

end F;
197 / 578

Limited Types
Extended Return Statements

Statements Restrictions
Ada 2005

No nested extended return

Simple return statement allowed
Without expression
Returns the value of the declared object immediately

function F return Spin_Lock is
begin

return Result : Spin_Lock do
if Set_Flag then

Result.Flag := 1;
return; -- returns 'Result'

end if;
Result.Flag := 0;

end return; -- Implicit return
end F;

198 / 578

Limited Types
Extended Return Statements

Quiz

type T is limited record
I : Integer;

end record;
O : T := F;

Which declaration(s) of F is(are) valid?

A. function F return T is (I := 1)

B. function F return T is (I => 1)

C. function F return T is (1)

D. function F return T is
begin

return R : T do
R.I := 1;

end return;
end F;

199 / 578

Limited Types
Extended Return Statements

Quiz

type T is limited record
I : Integer;

end record;
O : T := F;

Which declaration(s) of F is(are) valid?

A. function F return T is (I := 1)

B. function F return T is (I => 1)

C. function F return T is (1)

D. function F return T is
begin

return R : T do
R.I := 1;

end return;
end F;

199 / 578

Limited Types
Combining Limited and Private Views

Combining Limited and Private Views

200 / 578

Limited Types
Combining Limited and Private Views

Examples
with Interfaces; use Interfaces;
package Multiprocessor_Mutex is

type Limited_T is limited private;
procedure Lock (This : in out Limited_T);
procedure Unlock (This : in out Limited_T);
function Create return Limited_T;

private
type Limited_T is limited -- no internal copying allowed
record

Flag : Interfaces.Unsigned_8; -- users cannot see this
end record;

end Multiprocessor_Mutex;

package body Multiprocessor_Mutex is
procedure Lock (This : in out Limited_T) is null;
procedure Unlock (This : in out Limited_T) is null;

Global_Lock_Counter : Interfaces.Unsigned_8 := 0;
function Create return Limited_T is
begin

return Ret_Val : Limited_T do
Global_Lock_Counter := Global_Lock_Counter + 1;
Ret_Val.Flag := Global_Lock_Counter;

end return;
end Create;

end Multiprocessor_Mutex;

with Multiprocessor_Mutex; use Multiprocessor_Mutex;
package Use_Limited_Type is

type Legal is limited private;
type Also_Legal is limited private;
-- type Not_Legal is private;
-- type Also_Not_Legal is private;

private
type Legal is record

S : Limited_T;
end record;
type Also_Legal is limited record

S : Limited_T;
end record;
-- type Not_Legal is limited record
-- S : Limited_T;
-- end record;
-- type Also_Not_Legal is record
-- S : Limited_T;
-- end record;

end Use_Limited_Type;

https://learn.adacore.com/training_examples/fundamentals_of_ada/120_limited_types.html#combining-limited-and-private-views

201 / 578

Limited Types
Combining Limited and Private Views

Limited Private Types

A combination of limited and private views
No client compile-time visibility to representation
No client assignment or predefined equality

The typical design idiom for limited types

Syntax
Additional reserved word limited added to private type
declaration

type defining_identifier is limited private;

202 / 578

Limited Types
Combining Limited and Private Views

Limited Private Type Rationale (1)

package Multiprocessor_Mutex is
-- copying is prevented
type Spin_Lock is limited record

-- but users can see this!
Flag : Interfaces.Unsigned_8;

end record;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);
pragma Inline (Lock, Unlock);

end Multiprocessor_Mutex;

203 / 578

Limited Types
Combining Limited and Private Views

Limited Private Type Rationale (2)

package MultiProcessor_Mutex is
-- copying is prevented AND users cannot see contents
type Spin_Lock is limited private;
procedure Lock (The_Lock : in out Spin_Lock);
procedure Unlock (The_Lock : in out Spin_Lock);
pragma Inline (Lock, Unlock);

private
type Spin_Lock is ...

end MultiProcessor_Mutex;

204 / 578

Limited Types
Combining Limited and Private Views

Limited Private Type Completions

Clients have the partial view as limited and private
The full view completion can be any kind of type
Not required to be a record type just because the partial view is
limited

package P is
type Unique_ID_T is limited private;
...

private
type Unique_ID_T is range 1 .. 10;

end P;

205 / 578

Limited Types
Combining Limited and Private Views

Write-Only Register Example

package Write_Only is
type Byte is limited private;
type Word is limited private;
type Longword is limited private;
procedure Assign (Input : in Unsigned_8;

To : in out Byte);
procedure Assign (Input : in Unsigned_16;

To : in out Word);
procedure Assign (Input : in Unsigned_32;

To : in out Longword);
private

type Byte is new Unsigned_8;
type Word is new Unsigned_16;
type Longword is new Unsigned_32;

end Write_Only;
206 / 578

Limited Types
Combining Limited and Private Views

Explicitly Limited Completions

Completion in Full view includes word limited
Optional
Requires a record type as the completion

package MultiProcessor_Mutex is
type Spin_Lock is limited private;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

private
type Spin_Lock is limited -- full view is limited as well

record
Flag : Interfaces.Unsigned_8;

end record;
end MultiProcessor_Mutex;

207 / 578

Limited Types
Combining Limited and Private Views

Effects of Explicitly Limited Completions

Allows no internal copying too
Forces parameters to be passed by-reference

package MultiProcessor_Mutex is
type Spin_Lock is limited private;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

private
type Spin_Lock is limited record

Flag : Interfaces.Unsigned_8;
end record;

end MultiProcessor_Mutex;

208 / 578

Limited Types
Combining Limited and Private Views

Automatically Limited Full View

When other limited types are used in the representation
Recall composite types containing limited types are limited too

package Foo is
type Legal is limited private;
type Also_Legal is limited private;
type Not_Legal is private;
type Also_Not_Legal is private;

private
type Legal is record

S : A_Limited_Type;
end record;
type Also_Legal is limited record

S : A_Limited_Type;
end record;
type Not_Legal is limited record

S : A_Limited_Type;
end record;
type Also_Not_Legal is record

S : A_Limited_Type;
end record;

end Foo;
209 / 578

Limited Types
Combining Limited and Private Views

Quiz
package P is

type Priv is private;
private

type Lim is limited null record;
end P;

Which of the following piece(s) of code is(are) legal?

A. type Priv is record
E : Lim;

end record;

B. type Priv is record
E : Float;

end record;

C. type A is array (1 .. 10) of Lim;
type Priv is record

F : A;
end record;

D. type Acc is access Lim;
type Priv is record

F : Acc;
end record;

A. E has limited type, partial view of Priv must be private limited

210 / 578

Limited Types
Combining Limited and Private Views

Quiz
package P is

type Priv is private;
private

type Lim is limited null record;
end P;

Which of the following piece(s) of code is(are) legal?

A. type Priv is record
E : Lim;

end record;

B. type Priv is record
E : Float;

end record;

C. type A is array (1 .. 10) of Lim;
type Priv is record

F : A;
end record;

D. type Acc is access Lim;
type Priv is record

F : Acc;
end record;

A. E has limited type, partial view of Priv must be private limited

210 / 578

Limited Types
Combining Limited and Private Views

Quiz

package P is
type L1_T is limited private;
type L2_T is limited private;
type P1_T is private;
type P2_T is private;

private
type L1_T is limited record

Field : Integer;
end record;
type L2_T is record

Field : Integer;
end record;
type P1_T is limited record

Field : L1_T;
end record;
type P2_T is record

Field : L2_T;
end record;

end P;

What will happen when the above code
is compiled?
A. Type P1_T will generate a

compile error
B. Type P2_T will generate a

compile error
C. Both type P1_T and type P2_T

will generate compile errors
D. The code will compile successfully

The full definition of type P1_T adds
additional restrictions, which is not
allowed. Although P2_T contains a
component whose visible view is
limited, the internal view is not
limited so P2_T is not limited.

211 / 578

Limited Types
Combining Limited and Private Views

Quiz

package P is
type L1_T is limited private;
type L2_T is limited private;
type P1_T is private;
type P2_T is private;

private
type L1_T is limited record

Field : Integer;
end record;
type L2_T is record

Field : Integer;
end record;
type P1_T is limited record

Field : L1_T;
end record;
type P2_T is record

Field : L2_T;
end record;

end P;

What will happen when the above code
is compiled?
A. Type P1_T will generate a

compile error
B. Type P2_T will generate a

compile error
C. Both type P1_T and type P2_T

will generate compile errors
D. The code will compile successfully

The full definition of type P1_T adds
additional restrictions, which is not
allowed. Although P2_T contains a
component whose visible view is
limited, the internal view is not
limited so P2_T is not limited.

211 / 578

Limited Types
Lab

Lab

212 / 578

Limited Types
Lab

Limited Types Lab

Requirements
Create an employee record data type consisting of a name, ID,
hourly pay rate

ID should be unique for every record

Create a timecard record data type consisting of an employee
record, hours worked, and total pay

Create a main program that generates timecards and prints their
contents

Hints
If the ID is unique, that means we cannot copy employee records

213 / 578

Limited Types
Lab

Limited Types Lab Solution - Employee Data (Spec)

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Employee_Data is

type Employee_T is limited private;
type Hourly_Rate_T is delta 0.01 digits 6 range 0.0 .. 999.99;
type Id_T is range 999 .. 9_999;

function Create (Name : String;
Rate : Hourly_Rate_T := 0.0)
return Employee_T;

function Id (Employee : Employee_T) return Id_T;
function Name (Employee : Employee_T) return String;
function Rate (Employee : Employee_T) return Hourly_Rate_T;

private
type Employee_T is limited record

Name : Unbounded_String := Null_Unbounded_String;
Rate : Hourly_Rate_T := 0.0;
Id : Id_T := Id_T'First;

end record;
end Employee_Data;

214 / 578

Limited Types
Lab

Limited Types Lab Solution - Timecards (Spec)
with Employee_Data;
package Timecards is

type Hours_Worked_T is digits 3 range 0.0 .. 24.0;
type Pay_T is digits 6;
type Timecard_T is limited private;

function Create (Name : String;
Rate : Employee_Data.Hourly_Rate_T;
Hours : Hours_Worked_T)
return Timecard_T;

function Id (Timecard : Timecard_T) return Employee_Data.Id_T;
function Name (Timecard : Timecard_T) return String;
function Rate (Timecard : Timecard_T) return Employee_Data.Hourly_Rate_T;
function Pay (Timecard : Timecard_T) return Pay_T;
function Image (Timecard : Timecard_T) return String;

private
type Timecard_T is limited record

Employee : Employee_Data.Employee_T;
Hours_Worked : Hours_Worked_T := 0.0;
Pay : Pay_T := 0.0;

end record;
end Timecards;

215 / 578

Limited Types
Lab

Limited Types Lab Solution - Employee Data (Body)

package body Employee_Data is

Last_Used_Id : Id_T := Id_T'First;

function Create (Name : String;
Rate : Hourly_Rate_T := 0.0)
return Employee_T is

begin
return Ret_Val : Employee_T do

Last_Used_Id := Id_T'Succ (Last_Used_Id);
Ret_Val.Name := To_Unbounded_String (Name);
Ret_Val.Rate := Rate;
Ret_Val.Id := Last_Used_Id;

end return;
end Create;

function Id (Employee : Employee_T) return Id_T is (Employee.Id);
function Name (Employee : Employee_T) return String is (To_String (Employee.Name));
function Rate (Employee : Employee_T) return Hourly_Rate_T is (Employee.Rate);

end Employee_Data;
216 / 578

Limited Types
Lab

Limited Types Lab Solution - Timecards (Body)
package body Timecards is

function Create (Name : String;
Rate : Employee_Data.Hourly_Rate_T;
Hours : Hours_Worked_T)
return Timecard_T is

begin
return (Employee => Employee_Data.Create (Name, Rate),

Hours_Worked => Hours,
Pay => Pay_T (Hours) * Pay_T (Rate));

end Create;

function Id (Timecard : Timecard_T) return Employee_Data.Id_T is
(Employee_Data.Id (Timecard.Employee));

function Name (Timecard : Timecard_T) return String is
(Employee_Data.Name (Timecard.Employee));

function Rate (Timecard : Timecard_T) return Employee_Data.Hourly_Rate_T is
(Employee_Data.Rate (Timecard.Employee));

function Pay (Timecard : Timecard_T) return Pay_T is
(Timecard.Pay);

function Image (Timecard : Timecard_T) return String is
Name_S : constant String := Name (Timecard);
Id_S : constant String := Employee_Data.Id_T'Image (Employee_Data.Id (Timecard.Employee));
Rate_S : constant String := Employee_Data.Hourly_Rate_T'Image

(Employee_Data.Rate (Timecard.Employee));
Hours_S : constant String := Hours_Worked_T'Image (Timecard.Hours_Worked);
Pay_S : constant String := Pay_T'Image (Timecard.Pay);

begin
return Name_S & " (" & Id_S & ") => " & Hours_S & " hours * " & Rate_S & "/hour = " & Pay_S;

end Image;
end Timecards;

217 / 578

Limited Types
Lab

Limited Types Lab Solution - Main

with Ada.Text_IO; use Ada.Text_IO;
with Timecards;
procedure Main is

One : constant Timecards.Timecard_T :=
Timecards.Create (Name => "Fred Flintstone",

Rate => 1.1,
Hours => 2.2);

Two : constant Timecards.Timecard_T :=
Timecards.Create (Name => "Barney Rubble",

Rate => 3.3,
Hours => 4.4);

begin
Put_Line (Timecards.Image (One));
Put_Line (timecards.Image (Two));

end Main;
218 / 578

Limited Types
Summary

Summary

219 / 578

Limited Types
Summary

Summary

Limited view protects against improper operations
Incorrect equality semantics
Copying via assignment

Enclosing composite types are limited too
Even if they don’t use keyword limited themselves

Limited types are always passed by-reference

Extended return statements work for any type
Ada 2005 and later

Don’t make types limited unless necessary
Users generally expect assignment to be available

220 / 578

Advanced Privacy

Advanced Privacy

221 / 578

Advanced Privacy
Type Views

Type Views

222 / 578

Advanced Privacy
Type Views

Capabilities / Constraints Of A Type

Constraints in a type declaration
Reduce the set of operations available on a type
limited
Discriminants
abstract

Capabilities in a type declaration

Extends or modifies the set of operations available on a type
tagged
Tagged extensions

223 / 578

Advanced Privacy
Type Views

Partial Vs Full View Of A Type

If the partial view declares capabilities, the full view must
provide them

Full view may provide supplementary capabilities undeclared in the
partial view

If the full has constraints, the partial view must declare them
Partial view may declare supplementary constraint that the full view
doesn’t have

package P is
type T is limited private;
-- Does not need to declare any capability
-- Declares a constraint: limited

private
type T is tagged null record;
-- Declares a capability: tagged
-- Does not need to declare any constraint

end P;
224 / 578

Advanced Privacy
Type Views

Discriminants

Discriminants with no default must be declared both on the partial
and full view

package P is
type T (V : Integer) is private;

private
type T (V : Integer) is null record;

end P;

Discriminants with default (in the full view) may be omitted by
the partial view

package P is
type T1 (V : Integer := 0) is private;
type T2 is private;

private
type T1 (V : Integer := 0) is null record;
type T2 (V : Integer := 0) is null record;

end P;
225 / 578

Advanced Privacy
Type Views

Unknown Constraint

It is possible to establish that the type is unconstrained without
any more information
Constrained and unconstrained types can complete the private
declaration

package P is
type T1 (<>) is private;
type T2 (<>) is private;
type T3 (<>) is private;

private
type T1 (V : Integer) is null record;
type T2 is array (Integer range <>) of Integer;
type T3 is range 1 .. 10;

end P;

226 / 578

Advanced Privacy
Type Views

Limited

Limited property can apply only to the partial view
If the full view is implicitly limited, the partial view has to be
explicitly limited

package P is
type T1 is limited private;
type T2 is limited private;
type T3 is limited private;

private
type T1 is limited null record;
type T2 is record

V : T1;
end record;
type T3 is range 1 .. 10;

end P;
227 / 578

Advanced Privacy
Type Views

Tagged

If the partial view is tagged, the full view has to be tagged

The partial view can hide the fact that the type is tagged in the
full view

package P is
type T1 is private;
type T2 is tagged private;
type T3 is tagged private;

private
type T1 is tagged null record;
type T2 is tagged null record;
type T3 is new T2 with null record;

end P;

Primitives can be either public or private
Except when they have to be derived (constructor functions or
abstract subprograms)

228 / 578

Advanced Privacy
Type Views

Tagged Extension

The partial view may declare an extension
The actual extension can be done on the same type, or on any of
its children

package P is
type Root is tagged private;
type Child is new Root with private;
type Grand_Child is new Root with private;

private
type Root is tagged null record;
type Child is new Root with null record;
type Grand_Child is new Child with null record;

end P;

229 / 578

Advanced Privacy
Type Views

Tagged Abstract

Partial view may be abstract even if Full view is not

If Full view is abstract, Private view has to be so

package P is
type T1 is abstract tagged private;
type T2 is abstract tagged private;

private
type T1 is abstract tagged null record;
type T2 is tagged null record;

end P;

Abstract primitives have to be public (otherwise, clients couldn’t
derive)

230 / 578

Advanced Privacy
Type Views

Protection Idiom

It is possible to declare an object that can’t be copied, and has to
be initialized through a constructor function

package P is
type T (<>) is limited private;
function F return T;

private
type T is null record;

end P;

Helps keeping track of the object usage

231 / 578

Advanced Privacy
Type Views

Quiz

type T is private;

Which completion(s) is(are) correct for the type T?

A. type T is tagged null record
B. type T is limited null record
C. type T is array (1 .. 10) of Integer
D. type T is abstract tagged null record

232 / 578

Advanced Privacy
Type Views

Quiz

type T is private;

Which completion(s) is(are) correct for the type T?

A. type T is tagged null record
B. type T is limited null record
C. type T is array (1 .. 10) of Integer
D. type T is abstract tagged null record

232 / 578

Advanced Privacy
Incomplete Types

Incomplete Types

233 / 578

Advanced Privacy
Incomplete Types

Incomplete Types

An incomplete type is a premature view on a type

Does specify the type name
Can specify the type discriminants
Can specify if the type is tagged

It can be used in contexts where minimum representation
information is required

In declaration of access types
In subprograms specifications (only if the body has full visibility on
the representation)
As formal parameter of generics accepting an incomplete type

234 / 578

Advanced Privacy
Incomplete Types

How To Get An Incomplete Type View?

From an explicit declaration

type T;
type T_Access is access all T;
type T is record

V : T_Access;
end record;

From a limited with (see section on packages)

From an incomplete generic formal parameter (see section on
generics)

generic
type T;
procedure Proc (V:T);

package P is
...

end P;
235 / 578

Advanced Privacy
Incomplete Types

Type Completion Deferred To The Body

In the private part of a package, it is possible to defer the
completion of an incomplete type to the body
This allows to completely hide the implementation of a type

package P is
...

private
type T;
procedure P (V : T);
X : access T;

end P;
package body P is

type T is record
A, B : Integer;

end record;
...

end P;
236 / 578

Advanced Privacy
Incomplete Types

Quiz

type T;

Which of the following types is(are) legal?

A. type Acc is access T

B. type Arr is array (1 .. 10) of T

C. type T2 is new T

D. type T2 is record
Acc : access T;

end record;

D. Be careful about the use of an anonymous type here!

237 / 578

Advanced Privacy
Incomplete Types

Quiz

type T;

Which of the following types is(are) legal?

A. type Acc is access T

B. type Arr is array (1 .. 10) of T

C. type T2 is new T

D. type T2 is record
Acc : access T;

end record;

D. Be careful about the use of an anonymous type here!

237 / 578

Advanced Privacy
Incomplete Types

Quiz

package Pkg is
type T is private;

private

Which of the following completion(s) of T is(are) valid?

A. type T
B. type T is tagged null record
C. type T is limited null record
D. type T is new Integer

238 / 578

Advanced Privacy
Incomplete Types

Quiz

package Pkg is
type T is private;

private

Which of the following completion(s) of T is(are) valid?

A. type T
B. type T is tagged null record
C. type T is limited null record
D. type T is new Integer

238 / 578

Advanced Privacy
Private Library Units

Private Library Units

239 / 578

Advanced Privacy
Private Library Units

Child Units And Privacy

Normally, a child public part cannot access a parent private part

package Root is
private

type T is range 1..10;
end Root;

package Root.Child is
X1 : T; -- illegal

private
X2 : T;

end Root.Child;

Private child can
Used for "implementation details"

240 / 578

Advanced Privacy
Private Library Units

Importing a Private Child

A private child can access its parent private part

Access to a private child is limited
Private descendents of their parent
Parent - visible from body
Public siblings - visible from private section, and body
Private siblings - visible from public and private sections, and body

package Root is
private

type T is range 1..10;
end Root;

private package Root.Child is
X1 : T;

private
X2 : T;

end Root.Child;

with Root.Child; -- illegal
procedure Main is
begin

Root.Child.X1 := 10; -- illegal
end Main;

241 / 578

Advanced Privacy
Private Library Units

Private Children And Dependency
private package Root.Child1 is

type T is range 1 .. 10;
end Root.Child1;

Private package cannot be withed by a public package

with Root.Child1; -- illegal
package Root.Child2 is

X1 : Root.Child1.T; -- illegal
Private

X2 : Root.Child1.T; -- illegal
end Root.Child2;

They can by a private child or a child body

with Root.Child1;
Private package Root.Child2 is

X1 : Root.Child1.T;
Private

X2 : Root.Child1.T;
end Root.Child2;

They can be private-withed

Private with Root.Child1;
package Root.Child2 is

X1 : Root.Child1.T; -- illegal
Private

X2 : Root.Child1.T;
end Root.Child2;

Once something is private, it can never exit the private area

242 / 578

Advanced Privacy
Private Library Units

Children "Inherit" From Private Properties Of Parent
Private property always refers to the direct parent
Public children of private packages stay private to the outside
world
Private children of private packages restrain even more the
accessibility

package Root is
end Root;

private package Root.Child is
-- with allowed on Root body
-- with allowed on Root children
-- with forbidden outside of Root

end Root.Child;

package Root.Child.Grand1 is
-- with allowed on Root body
-- with allowed on Root children
-- with forbidden outside of Root

end Root.Child.Grand1;

private package Root.Child.Grand2 is
-- with allowed on Root.Child body
-- with allowed on Root.Child children
-- with forbidden outside of Root.Child
-- with forbidden on Root
-- with forbidden on Root children

end Root.Child1.Grand2;

243 / 578

Advanced Privacy
Lab

Lab

244 / 578

Advanced Privacy
Lab

Advanced Privacy Lab

Requirements
Create a package defining a message type whose implementation is
solely in the body

You will need accessor functions to set / get the content
Create a function to return a string representation of the message
contents

Create another package that defines the types needed for a linked
list of messages

Each message in the list should have an identifier not visible to any
clients

Create a package containing simple operations on the list

Typical operations like list creation and list traversal
Create a subprogram to print the list contents

Have your main program add items to the list and then print the list

Hints
You will need to employ some (but not necessarily all) of the
techniques discussed in this module

245 / 578

Advanced Privacy
Lab

Advanced Privacy Lab Solution - Message Type
package Messages is

type Message_T is private;

procedure Set_Content (Message : in out Message_T;
Value : Integer);

function Content (Message : Message_T) return Integer;
function Image (Message : Message_T) return String;

private
type Message_Content_T;
type Message_T is access Message_Content_T;

end Messages;

package body Messages is
type Message_Content_T is new Integer;

procedure Set_Content (Message : in out Message_T;
Value : Integer) is

New_Value : constant Message_Content_T := Message_Content_T (Value);
begin

if Message = null then
Message := new Message_Content_T'(New_Value);

else
Message.all := New_Value;

end if;
end Set_Content;

function Content (Message : Message_T) return Integer is
(Integer (Message.all));

function Image (Message : Message_T) return String is
("**" & Message_Content_T'Image (Message.all));

end Messages;

246 / 578

Advanced Privacy
Lab

Advanced Privacy Lab Solution - Message List Type

package Messages.List_Types is
type List_T is private;

private
type List_Content_T;
type List_T is access List_Content_T;
type Id_Type is range 1_000 .. 9_999;
type List_Content_T is record

Id : Id_Type;
Content : Message_T;
Next : List_T;

end record;
end Messages.List_Types;

247 / 578

Advanced Privacy
Lab

Advanced Privacy Lab Solution - Message List Operations
package Messages.List_Types.Operations is

procedure Append (List : in out List_T;
Item : Message_T);

function Next (List : List_T) return List_T;
function Is_Null (List : List_T) return Boolean;
function Image (Message : List_T) return String;

end Messages.List_Types.Operations;

package body Messages.List_Types.Operations is
Id : Id_Type := Id_Type'First;

procedure Append (List : in out List_T;
Item : Message_T) is

begin
if List = null then

List := new List_Content_T'(Id => Id, Content => Item, Next => null);
else

List.Next := new List_Content_T'(Id => Id, Content => Item, Next => null);
end if;
Id := Id_Type'Succ (Id);

end Append;

function Next (List : List_T) return List_T is (List.Next);
function Is_Null (List : List_T) return Boolean is (List = null);

function Image (Message : List_T) return String is
begin

if Is_Null (Message) then
return "" & ASCII.LF;

else
return "id: " & Id_Type'Image (Message.Id) & " => " &

Image (Message.Content) & ASCII.LF & Image (Message.Next);
end if;

end Image;
end Messages.List_Types.Operations;

248 / 578

Advanced Privacy
Lab

Advanced Privacy Lab Solution - Main
with Ada.Text_IO;
with Messages;
with Messages.List_Types;
with Messages.List_Types.Operations;
procedure Main is

package Types renames Messages.List_Types;
package Operations renames Messages.List_Types.Operations;

List : Types.List_T;
Head : Types.List_T;

function Convert (Value : Integer) return Messages.Message_T is
Ret_Value : Messages.Message_T;

begin
Messages.Set_Content (Ret_Value, Value);
return Ret_Value;

end Convert;

procedure Add_One (Value : Integer) is
begin

Operations.Append (List, Convert (Value));
List := Operations.Next (List);

end Add_One;

begin
Operations.Append (List, Convert (1));
Head := List;
Add_One (23);
Add_One (456);
Add_One (78);
Add_One (9);
Ada.Text_IO.Put_Line (Operations.Image (Head));

end Main;

249 / 578

Advanced Privacy
Summary

Summary

250 / 578

Advanced Privacy
Summary

Summary

Ada has many mechanisms for data hiding / control

Start by fully understanding supplier / client relationship

Need to balance simplicity of interfaces with complexity of
structure

Small number of relationship per package with many packages

Fewer packages with more relationships in each package

No set standard

Varies from project to project
Can even vary within a code base

251 / 578

Advanced Access Types

Advanced Access Types

252 / 578

Advanced Access Types
Introduction

Introduction

253 / 578

Advanced Access Types
Introduction

Access Types Design

Memory addresses objects are called access types
Objects are associated to pools of memory

With different allocation / deallocation policies

type Integer_Pool_Access is access Integer;
P_A : Integer_Pool_Access := new Integer;

type Integer_General_Access is access all Integer;
G : aliased Integer;
G_A1 : Integer_General_Access := G'Access;
G_A2 : Integer_General_Access := new Integer;

This module will only deal with general access types

254 / 578

Advanced Access Types
Introduction

Access Types Can Be Dangerous

Multiple memory issues
Leaks / corruptions

Introduces potential random failures complicated to analyze

Increase the complexity of the data structures

May decrease the performances of the application
Dereferences are slightly more expensive than direct access
Allocations are a lot more expensive than stacking objects

Ada avoids using accesses as much as possible
Arrays are not pointers
Many parameters are implicitly passed by reference

Only use them when needed
255 / 578

Advanced Access Types
Access Types

Access Types

256 / 578

Advanced Access Types
Access Types

Declaration Location

Can be at library level

package P is
type String_Access is access all String;

end P;

Can be nested in a procedure

package body P is
procedure Proc is

type String_Access is access all String;
begin

...
end Proc;

end P;

Nesting adds non-trivial issues
Creates a nested pool with a nested accessibility
Don’t do that unless you know what you are doing! (see later)

257 / 578

Advanced Access Types
Access Types

Access Types and Primitives

Subprograms using an access type are primitive of the access type
Not the type of the accessed object

type A_T is access all T;
procedure Proc (V : A_T); -- Primitive of A_T, not T

Primitive of the type can be created with the access mode
Anonymous access type

procedure Proc (V : access T); -- Primitive of T

258 / 578

Advanced Access Types
Access Types

Anonymous Access Types

Can be declared in several places
Must be pool-specific

Make sense as parameters of a primitive

Else, raises a fundamental issue
Two different access T are not compatible

procedure Main is
A : access Integer;

begin
declare

type R is record
A : access Integer;

end record;

D : R := (A => new Integer);
begin

-- Invalid, and no conversion possible
A := D.A;

end;
end Main;

259 / 578

Advanced Access Types
Pool-Specific Access Types

Pool-Specific Access Types

260 / 578

Advanced Access Types
Pool-Specific Access Types

Examples
package Pool_Specific is

type Pointed_To_T is new Integer;
type Access_T is access Pointed_To_T;
Object : Access_T := new Pointed_To_T;

type Other_Access_T is access Pointed_To_T;
-- Other_Object : Other_Access_T := Other_Access_T (Object); -- illegal

type String_Access_T is access String;
end Pool_Specific;

with Ada.Unchecked_Deallocation;
with Ada.Text_IO; use Ada.Text_IO;
with Pool_Specific; use Pool_Specific;
procedure Use_Pool_Specific is

X : Access_T := new Pointed_To_T'(123);
Y : String_Access_T := new String (1 .. 10);

procedure Free is new Ada.Unchecked_Deallocation (Pointed_To_T, Access_T);

begin
Put_Line (Y.all);
Y := new String'("String will be long enough to hold this");
Put_Line (Y.all);
Put_Line (Pointed_To_T'Image (X.all));
Free (X);
Put_Line (Pointed_To_T'Image (X.all)); -- run-time error

end Use_Pool_Specific;

https://learn.adacore.com/training_examples/fundamentals_of_ada/140_access_types.html#pool-specific-access-types

261 / 578

Advanced Access Types
Pool-Specific Access Types

Pool-Specific Access Type

An access type is a type

type T is [...]
type T_Access is access T;
V : T_Access := new T;

Conversion is not possible between pool-specific access types

262 / 578

Advanced Access Types
Pool-Specific Access Types

Allocations

Objects are created with the new reserved word

The created object must be constrained
The constraint is given during the allocation

V : String_Access := new String (1 .. 10);

The object can be created by copying an existing object - using a
qualifier

V : String_Access := new String'("This is a String");

263 / 578

Advanced Access Types
Pool-Specific Access Types

Deallocations

Deallocations are unsafe
Multiple deallocations problems
Memory corruptions
Access to deallocated objects

As soon as you use them, you lose the safety of your pointers

But sometimes, you have to do what you have to do ...
There’s no simple way of doing it
Ada provides Ada.Unchecked_Deallocation
Has to be instantiated (it’s a generic)
Must work on an object, reset to null afterwards

264 / 578

Advanced Access Types
Pool-Specific Access Types

Deallocation Example

-- generic used to deallocate memory
with Ada.Unchecked_Deallocation;
procedure P is

type An_Access is access A_Type;
-- create instances of deallocation function
-- (object type, access type)
procedure Free is new Ada.Unchecked_Deallocation

(A_Type, An_Access);
V : An_Access := new A_Type;

begin
Free (V);
-- V is now null

end P;

265 / 578

Advanced Access Types
General Access Types

General Access Types

266 / 578

Advanced Access Types
General Access Types

General Access Types

Can point to any pool (including stack)

type T is [...]
type T_Access is access all T;
V : T_Access := new T;

Still distinct type

Conversions are possible

type T_Access_2 is access all T;
V2 : T_Access_2 := T_Access_2 (V); -- legal

267 / 578

Advanced Access Types
General Access Types

Referencing The Stack

By default, stack-allocated objects cannot be referenced - and can
even be optimized into a register by the compiler

aliased declares an object to be referenceable through an access
value

V : aliased Integer;

'Access attribute gives a reference to the object

A : Int_Access := V'Access;

'Unchecked_Access does it without checks

268 / 578

Advanced Access Types
Accessibility Checks

Accessibility Checks

269 / 578

Advanced Access Types
Accessibility Checks

Introduction to Accessibility Checks (1/2)

The depth of an object depends on its nesting within declarative
scopes

package body P is
-- Library level, depth 0
procedure Proc is

-- Library level subprogram, depth 1
procedure Nested is

-- Nested subprogram, enclosing + 1, here 2
begin

null;
end Nested;

begin
null;

end Proc;
end P;

Access types can access objects of the same or lower depth

The compiler checks it statically
Removing checks is a workaround!

270 / 578

Advanced Access Types
Accessibility Checks

Introduction to Accessibility Checks (2/2)
Issues with nesting

package body P is
type T0 is access all Integer;
A0 : T0;
V0 : aliased Integer;

procedure Proc is
type T1 is access all Integer;
A1 : T1;
V1 : aliased Integer;

begin
A0 := V0'Access;
-- A0 := V1'Access; -- illegal
A0 := V1'Unchecked_Access;
A1 := V0'Access;
A1 := V1'Access;
A1 := T1 (A0);
A1 := new Integer;
-- A0 := T0 (A1); -- illegal

end Proc;
end P;

Simple workaround is to avoid nested access types
271 / 578

Advanced Access Types
Accessibility Checks

Dynamic Accessibility Checks

Following the same rules
Performed dynamically by the runtime

Lots of possible cases
New compiler versions may detect more cases
Using access always requires proper debugging and reviewing

procedure Main is
type Acc is access all Integer;
O : Acc;

procedure Set_Value (V : access Integer) is
begin

O := Acc (V);
end Set_Value;

begin
declare

O2 : aliased Integer := 2;
begin

Set_Value (O2'Access);
end;

end Main;
272 / 578

Advanced Access Types
Accessibility Checks

Getting Around Accessibility Checks

Sometimes it is OK to use unsafe accesses to data

'Unchecked_Access allows access to a variable of an
incompatible accessibility level

Beware of potential problems!

type Acc is access all Integer;
G : Acc;
procedure P is

V : aliased Integer;
begin

G := V'Unchecked_Access;
...
Do_Something (G.all); -- This is "reasonable"

end P;
273 / 578

Advanced Access Types
Accessibility Checks

Using Pointers For Recursive Structures

It is not possible to declare recursive structure
But there can be an access to the enclosing type

type Cell; -- partial declaration
type Cell_Access is access all Cell;
type Cell is record -- full declaration

Next : Cell_Access;
Some_Value : Integer;

end record;

274 / 578

Advanced Access Types
Memory Corruption

Memory Corruption

275 / 578

Advanced Access Types
Memory Corruption

Common Memory Problems (1/3)
Uninitialized pointers

declare
type An_Access is access all Integer;
V : An_Access;

begin
V.all := 5; -- constraint error

Double deallocation

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
Free (V2);

May raise Storage_Error if memory is still protected
(unallocated)

May deallocate a different object if memory has been reallocated

Putting that object in an inconsistent state

276 / 578

Advanced Access Types
Memory Corruption

Common Memory Problems (2/3)

Accessing deallocated memory

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
V2.all := 5;

May raise Storage_Error if memory is still protected
(unallocated)
May modify a different object if memory has been reallocated
(putting that object in an inconsistent state)

277 / 578

Advanced Access Types
Memory Corruption

Common Memory Problems (3/3)

Memory leaks

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V : An_Access := new Integer;

begin
V := null;

Silent problem

Might raise Storage_Error if too many leaks
Might slow down the program if too many page faults

278 / 578

Advanced Access Types
Memory Corruption

How To Fix Memory Problems?

There is no language-defined solution

Use the debugger!

Use additional tools
gnatmem monitor memory leaks
valgrind monitor all the dynamic memory
GNAT.Debug_Pools gives a pool for an access type, raising
explicit exception in case of invalid access
Others...

279 / 578

Advanced Access Types
Memory Management

Memory Management

280 / 578

Advanced Access Types
Memory Management

Simple Linked List

A linked list object typically consists of:
Content
"Indication" of next item in list

Fancier linked lists may reference previous item in list
"Indication" is just a pointer to another linked list object

Therefore, self-referencing
Ada does not allow a record to self-reference

281 / 578

Advanced Access Types
Memory Management

Incomplete Types

In Ada, an incomplete type is just the word type followed by the
type name

Optionally, the name may be followed by (<>) to indicate the full
type may be unconstrained

Ada allows access types to point to an incomplete type
Just about the only thing you can do with an incomplete type!

type Some_Record_T;
type Some_Record_Access_T is access all Some_Record_T;

type Unconstrained_Record_T (<>);
type Unconstrained_Record_Access_T is access all Unconstrained_Record_T;

type Some_Record_T is record
Field : String (1 .. 10);

end record;

type Unconstrained_Record_T (Size : Index_T) is record
Field : String (1 .. Size);

end record;
282 / 578

Advanced Access Types
Memory Management

Linked List in Ada

Now that we have a pointer to the record type (by name), we can
use it in the full definition of the record type

type Some_Record_T is record
Field : String (1 .. 10);
Next : Some_Record_Access_T;

end record;

type Unconstrained_Record_T (Size : Index_T) is record
Field : String (1 .. Size);
Next : Unconstrained_Record_Access_T;
Previous : Unconstrained_Record_Access_T;

end record;

283 / 578

Advanced Access Types
Memory Management

Simplistic Linked List
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Unchecked_Deallocation;
procedure Simple is

type Some_Record_T;
type Some_Record_Access_T is access all Some_Record_T;
type Some_Record_T is record

Field : String (1 .. 10);
Next : Some_Record_Access_T;

end record;

Head : Some_Record_Access_T := null;
Item : Some_Record_Access_T := null;

Line : String (1 .. 10);
Last : Natural;

procedure Free is new Ada.Unchecked_Deallocation
(Some_Record_T, Some_Record_Access_T);

begin

loop
Put ("Enter String: ");
Get_Line (Line, Last);
exit when Last = 0;
Line (Last + 1 .. Line'last) := (others => ' ');
Item := new Some_Record_T;
Item.all := (Line, Head);
Head := Item;

end loop;

Put_Line ("List");
while Head /= null loop

Put_Line (" " & Head.Field);
Head := Head.Next;

end loop;

Put_Line ("Delete");
Free (Item);
GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool);

end Simple;

284 / 578

Advanced Access Types
Memory Debugging

Memory Debugging

285 / 578

Advanced Access Types
Memory Debugging

GNAT.Debug_Pools

Ada allows the coder to specify where the allocated memory comes
from

Called Storage Pool
Basically, connecting new and Unchecked_Deallocation with
some other code
More details in the next section

type Linked_List_Ptr_T is access all Linked_List_T;
for Linked_List_Ptr_T'storage_pool use Memory_Mgmt.Storage_Pool;

GNAT uses this mechanism in the run-time package
GNAT.Debug_Pools to track allocation/deallocation
with GNAT.Debug_Pools;
package Memory_Mgmt is

Storage_Pool : GNAT.Debug_Pools.Debug_Pool;
end Memory_Mgmt;

286 / 578

Advanced Access Types
Memory Debugging

GNAT.Debug_Pools Spec (Partial)
package GNAT.Debug_Pools is

type Debug_Pool is new System.Checked_Pools.Checked_Pool with private;

generic
with procedure Put_Line (S : String) is <>;
with procedure Put (S : String) is <>;

procedure Print_Info
(Pool : Debug_Pool;
Cumulate : Boolean := False;
Display_Slots : Boolean := False;
Display_Leaks : Boolean := False);

procedure Print_Info_Stdout
(Pool : Debug_Pool;
Cumulate : Boolean := False;
Display_Slots : Boolean := False;
Display_Leaks : Boolean := False);

-- Standard instantiation of Print_Info to print on standard_output.

procedure Dump_Gnatmem (Pool : Debug_Pool; File_Name : String);
-- Create an external file on the disk, which can be processed by gnatmem
-- to display the location of memory leaks.

procedure Print_Pool (A : System.Address);
-- Given an address in memory, it will print on standard output the known
-- information about this address

function High_Water_Mark
(Pool : Debug_Pool) return Byte_Count;

-- Return the highest size of the memory allocated by the pool.

function Current_Water_Mark
(Pool : Debug_Pool) return Byte_Count;

-- Return the size of the memory currently allocated by the pool.

private
-- ...

end GNAT.Debug_Pools;

287 / 578

Advanced Access Types
Memory Debugging

Displaying Debug Information

Simple modifications to our linked list example
Create and use storage pool

with GNAT.Debug_Pools; -- Added
procedure Simple is

Storage_Pool : GNAT.Debug_Pools.Debug_Pool; -- Added
type Some_Record_T;
type Some_Record_Access_T is access all Some_Record_T;
for Some_Record_Access_T'storage_pool

use Storage_Pool; -- Added

Dump info after each new

Item := new Some_Record_T;
GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool); -- Added
Item.all := (Line, Head);

Dump info after free

Free (Item);
GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool); -- Added

288 / 578

Advanced Access Types
Memory Debugging

Execution Results
Enter String: X
Total allocated bytes : 24
Total logically deallocated bytes : 0
Total physically deallocated bytes : 0
Current Water Mark: 24
High Water Mark: 24

Enter String: Y
Total allocated bytes : 48
Total logically deallocated bytes : 0
Total physically deallocated bytes : 0
Current Water Mark: 48
High Water Mark: 48

Enter String:
List

Y
X

Delete
Total allocated bytes : 48
Total logically deallocated bytes : 24
Total physically deallocated bytes : 0
Current Water Mark: 24
High Water Mark: 48

289 / 578

Advanced Access Types
Memory Control

Memory Control

290 / 578

Advanced Access Types
Memory Control

System.Storage_Pools

Mechanism to allow coder control over allocation/deallocation
process

Uses Ada.Finalization.Limited_Controlled to implement
customized memory allocation and deallocation.
Must be specified for each access type being controlled
type Boring_Access_T is access Some_T;
-- Storage Pools mechanism not used here
type Important_Access_T is access Some_T;
for Important_Access_T'storage_pool use My_Storage_Pool;
-- Storage Pools mechanism used for Important_Access_T

291 / 578

Advanced Access Types
Memory Control

System.Storage_Pools Spec (Partial)
with Ada.Finalization;
with System.Storage_Elements;
package System.Storage_Pools with Pure is

type Root_Storage_Pool is abstract
new Ada.Finalization.Limited_Controlled with private;

pragma Preelaborable_Initialization (Root_Storage_Pool);

procedure Allocate
(Pool : in out Root_Storage_Pool;
Storage_Address : out System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count)

is abstract;

procedure Deallocate
(Pool : in out Root_Storage_Pool;
Storage_Address : System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count)

is abstract;

function Storage_Size
(Pool : Root_Storage_Pool)
return System.Storage_Elements.Storage_Count

is abstract;

private
-- ...

end System.Storage_Pools;

292 / 578

Advanced Access Types
Memory Control

System.Storage_Pools Explanations

Note Root_Storage_Pool, Allocate, Deallocate, and
Storage_Size are abstract

You must create your own type derived from Root_Storage_Pool
You must create versions of Allocate, Deallocate, and
Storage_Size to allocate/deallocate memory

Parameters
Pool

Memory pool being manipulated
Storage_Address

For Allocate - location in memory where access type will point to
For Deallocate - location in memory where memory should be
released

Size_In_Storage_Elements
Number of bytes needed to contain contents

Alignment
Byte alignment for memory location

293 / 578

Advanced Access Types
Memory Control

System.Storage_Pools Example (Partial)
subtype Index_T is Storage_Count range 1 .. 1_000;
Memory_Block : aliased array (Index_T) of Interfaces.Unsigned_8;
Memory_Used : array (Index_T) of Boolean := (others => False);

procedure Set_In_Use (Start : Index_T;
Length : Storage_Count;
Used : Boolean);

function Find_Free_Block (Length : Storage_Count) return Index_T;

procedure Allocate
(Pool : in out Storage_Pool_T;
Storage_Address : out System.Address;
Size_In_Storage_Elements : Storage_Count;
Alignment : Storage_Count) is
Index : Storage_Count := Find_Free_Block (Size_In_Storage_Elements);

begin
Storage_Address := Memory_Block (Index)'address;
Set_In_Use (Index, Size_In_Storage_Elements, True);

end Allocate;

procedure Deallocate
(Pool : in out Storage_Pool_T;
Storage_Address : System.Address;
Size_In_Storage_Elements : Storage_Count;
Alignment : Storage_Count) is

begin
for I in Memory_Block'range loop

if Memory_Block (I)'address = Storage_Address then
Set_In_Use (I, Size_In_Storage_Elements, False);

end if;
end loop;

end Deallocate;

294 / 578

Advanced Access Types
Lab

Lab

295 / 578

Advanced Access Types
Lab

Advanced Access Types Lab

Build an application that adds / removes items from a linked list
At any time, user should be able to

Add a new item into the "appropriate" location in the list
Remove an item without changing the position of any other item in
the list
Print the list

This is a multi-step lab! First priority should be understanding
linked lists, then, if you have time, storage pools

Required goals
1 Implement Add functionality

For this step, "appropriate" means either end of the list (but
consistent - always front or always back)

2 Implement Print functionality
3 Implement Delete functionality

296 / 578

Advanced Access Types
Lab

Extra Credit

Complete as many of these as you have time for
1 Use GNAT.Debug_Pools to print out the status of your memory

allocation/deallocation after every new and deallocate
2 Modify Add so that "appropriate" means in a sorted order
3 Implement storage pools where you write your own memory

allocation/deallocation routines

Should still be able to print memory status

297 / 578

Advanced Access Types
Lab

Lab Solution - Database
with Ada.Strings.Unbounded;
package Database is

type Database_T is private;
function "=" (L, R : Database_T) return Boolean;
function To_Database (Value : String) return Database_T;
function From_Database (Value : Database_T) return String;
function "<" (L, R : Database_T) return Boolean;

private
type Database_T is record

Value : String (1 .. 100);
Length : Natural;

end record;
end Database;

package body Database is
use Ada.Strings.Unbounded;
function "=" (L, R : Database_T) return Boolean is
begin

return L.Value (1 .. L.Length) = R.Value (1 .. R.Length);
end "=";
function To_Database (Value : String) return Database_T is

Retval : Database_T;
begin

Retval.Length := Value'length;
Retval.Value (1 .. Retval.Length) := Value;
return Retval;

end To_Database;
function From_Database (Value : Database_T) return String is
begin

return Value.Value (1 .. Value.Length);
end From_Database;

function "<" (L, R : Database_T) return Boolean is
begin

return L.Value (1 .. L.Length) < R.Value (1 .. R.Length);
end "<";

end Database;

298 / 578

Advanced Access Types
Lab

Lab Solution - Database_List (Spec)
with Database; use Database;
-- Uncomment next line when using debug/storage pools
-- with Memory_Mgmt;
package Database_List is

type List_T is limited private;
procedure First (List : in out List_T);
procedure Next (List : in out List_T);
function End_Of_List (List : List_T) return Boolean;
function Current (List : List_T) return Database_T;
procedure Insert (List : in out List_T;

Element : Database_T);
procedure Delete (List : in out List_T;

Element : Database_T);
function Is_Empty (List : List_T) return Boolean;

private
type Linked_List_T;
type Linked_List_Ptr_T is access all Linked_List_T;
-- Uncomment next line when using debug/storage pools
-- for Linked_List_Ptr_T'storage_pool use Memory_Mgmt.Storage_Pool;
type Linked_List_T is record

Next : Linked_List_Ptr_T;
Content : Database_T;

end record;
type List_T is record

Head : Linked_List_Ptr_T;
Current : Linked_List_Ptr_T;

end record;
end Database_List;

299 / 578

Advanced Access Types
Lab

Lab Solution - Database_List (Helper Objects)
with Interfaces;
with Unchecked_Deallocation;
package body Database_List is

use type Database.Database_T;

function Is_Empty (List : List_T) return Boolean is
begin

return List.Head = null;
end Is_Empty;

procedure First (List : in out List_T) is
begin

List.Current := List.Head;
end First;

procedure Next (List : in out List_T) is
begin

if not Is_Empty (List) then
if List.Current /= null then

List.Current := List.Current.Next;
end if;

end if;
end Next;

function End_Of_List (List : List_T) return Boolean is
begin

return List.Current = null;
end End_Of_List;

function Current (List : List_T) return Database_T is
begin

return List.Current.Content;
end Current;

300 / 578

Advanced Access Types
Lab

Lab Solution - Database_List (Insert/Delete)
procedure Insert (List : in out List_T;

Element : Database_T) is
New_Element : Linked_List_Ptr_T :=

new Linked_List_T'(Next => null, Content => Element);
begin

if Is_Empty (List) then
List.Current := New_Element;
List.Head := New_Element;

elsif Element < List.Head.Content then
New_Element.Next := List.Head;
List.Current := New_Element;
List.Head := New_Element;

else
declare

Current : Linked_List_Ptr_T := List.Head;
begin

while Current.Next /= null and then Current.Next.Content < Element
loop

Current := Current.Next;
end loop;
New_Element.Next := Current.Next;
Current.Next := New_Element;

end;
end if;
-- Uncomment next line when using debug/storage pools
-- Memory_Mgmt.Print_Info;

end Insert;

procedure Free is new Unchecked_Deallocation
(Linked_List_T, Linked_List_Ptr_T);

procedure Delete
(List : in out List_T;
Element : Database_T) is
To_Delete : Linked_List_Ptr_T := null;

begin
if not Is_Empty (List) then

if List.Head.Content = Element then
To_Delete := List.Head;
List.Head := List.Head.Next;
List.Current := List.Head;

else
declare

Previous : Linked_List_Ptr_T := List.Head;
Current : Linked_List_Ptr_T := List.Head.Next;

begin
while Current /= null loop

if Current.Content = Element then
To_Delete := Current;
Previous.Next := Current.Next;

end if;
Current := Current.Next;

end loop;
end;
List.Current := List.Head;

end if;
if To_Delete /= null then

Free (To_Delete);
end if;

end if;
-- Uncomment next line when using debug/storage pools
-- Memory_Mgmt.Print_Info;

end Delete;
end Database_List;

301 / 578

Advanced Access Types
Lab

Lab Solution - Main
with Simple_Io; use Simple_Io;
with Database;
with Database_List;
procedure Main is

List : Database_List.List_T;
Element : Database.Database_T;

procedure Add is
Value : constant String := Get_String ("Add");

begin
if Value'length > 0 then

Element := Database.To_Database (Value);
Database_List.Insert (List, Element);

end if;
end Add;

procedure Delete is
Value : constant String := Get_String ("Delete");

begin
if Value'length > 0 then

Element := Database.To_Database (Value);
Database_List.Delete (List, Element);

end if;
end Delete;

procedure Print is
begin

Database_List.First (List);
Simple_Io.Print_String ("List");
while not Database_List.End_Of_List (List) loop

Element := Database_List.Current (List);
Print_String (" " & Database.From_Database (Element));
Database_List.Next (List);

end loop;
end Print;

begin
loop

case Get_Character ("A=Add D=Delete P=Print Q=Quit") is
when 'a' | 'A' => Add;
when 'd' | 'D' => Delete;
when 'p' | 'P' => Print;
when 'q' | 'Q' => exit;
when others => null;

end case;
end loop;

end Main;

302 / 578

Advanced Access Types
Lab

Lab Solution - Simple_IO (Spec)

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Simple_Io is

function Get_String (Prompt : String)
return String;

function Get_Number (Prompt : String)
return Integer;

function Get_Character (Prompt : String)
return Character;

procedure Print_String (Str : String);
procedure Print_Number (Num : Integer);
procedure Print_Character (Char : Character);
function Get_String (Prompt : String)

return Unbounded_String;
procedure Print_String (Str : Unbounded_String);

end Simple_Io;
303 / 578

Advanced Access Types
Lab

Lab Solution - Simple_IO (Body)
with Ada.Text_IO;
package body Simple_Io is

function Get_String (Prompt : String) return String is
Str : String (1 .. 1_000);
Last : Integer;

begin
Ada.Text_IO.Put (Prompt & "> ");
Ada.Text_IO.Get_Line (Str, Last);
return Str (1 .. Last);

end Get_String;

function Get_Number (Prompt : String) return Integer is
Str : constant String := Get_String (Prompt);

begin
return Integer'value (Str);

end Get_Number;

function Get_Character (Prompt : String) return Character is
Str : constant String := Get_String (Prompt);

begin
return Str (Str'first);

end Get_Character;

procedure Print_String (Str : String) is
begin

Ada.Text_IO.Put_Line (Str);
end Print_String;
procedure Print_Number (Num : Integer) is
begin

Ada.Text_IO.Put_Line (Integer'image (Num));
end Print_Number;
procedure Print_Character (Char : Character) is
begin

Ada.Text_IO.Put_Line (Character'image (Char));
end Print_Character;

function Get_String (Prompt : String) return Unbounded_String is
begin

return To_Unbounded_String (Get_String (Prompt));
end Get_String;
procedure Print_String (Str : Unbounded_String) is
begin

Print_String (To_String (Str));
end Print_String;

end Simple_Io;

304 / 578

Advanced Access Types
Lab

Lab Solution - Memory_Mgmt (Debug Pools)

with GNAT.Debug_Pools;
package Memory_Mgmt is

Storage_Pool : GNAT.Debug_Pools.Debug_Pool;
procedure Print_Info;

end Memory_Mgmt;

package body Memory_Mgmt is
procedure Print_Info is
begin

GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool);
end Print_Info;

end Memory_Mgmt;

305 / 578

Advanced Access Types
Lab

Lab Solution - Memory_Mgmt (Storage Pools Spec)
with System.Storage_Elements;
with System.Storage_Pools;
package Memory_Mgmt is

type Storage_Pool_T is new System.Storage_Pools.Root_Storage_Pool with
null record;

procedure Print_Info;

procedure Allocate
(Pool : in out Storage_Pool_T;
Storage_Address : out System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count);

procedure Deallocate
(Pool : in out Storage_Pool_T;
Storage_Address : System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count);

function Storage_Size
(Pool : Storage_Pool_T)
return System.Storage_Elements.Storage_Count;

Storage_Pool : Storage_Pool_T;

end Memory_Mgmt;

306 / 578

Advanced Access Types
Lab

Lab Solution - Memory_Mgmt (Storage Pools 1/2)
with Ada.Text_IO;
with Interfaces;
package body Memory_Mgmt is

use System.Storage_Elements;
use type System.Address;

subtype Index_T is Storage_Count range 1 .. 1_000;
Memory_Block : aliased array (Index_T) of Interfaces.Unsigned_8;
Memory_Used : array (Index_T) of Boolean := (others => False);

Current_Water_Mark : Storage_Count := 0;
High_Water_Mark : Storage_Count := 0;

procedure Set_In_Use
(Start : Index_T;
Length : Storage_Count;
Used : Boolean) is

begin
for I in 0 .. Length - 1 loop

Memory_Used (Start + I) := Used;
end loop;
if Used then

Current_Water_Mark := Current_Water_Mark + Length;
High_Water_Mark :=

Storage_Count'max (High_Water_Mark, Current_Water_Mark);
else

Current_Water_Mark := Current_Water_Mark - Length;
end if;

end Set_In_Use;

function Find_Free_Block
(Length : Storage_Count)
return Index_T is
Consecutive : Storage_Count := 0;

begin
for I in Memory_Used'range loop

if Memory_Used (I) then
Consecutive := 0;

else
Consecutive := Consecutive + 1;
if Consecutive >= Length then

return I;
end if;

end if;
end loop;
raise Storage_Error;

end Find_Free_Block;

307 / 578

Advanced Access Types
Lab

Lab Solution - Memory_Mgmt (Storage Pools 2/2)
procedure Allocate

(Pool : in out Storage_Pool_T;
Storage_Address : out System.Address;
Size_In_Storage_Elements : Storage_Count;
Alignment : Storage_Count) is
Index : Storage_Count := Find_Free_Block (Size_In_Storage_Elements);

begin
Storage_Address := Memory_Block (Index)'address;
Set_In_Use (Index, Size_In_Storage_Elements, True);

end Allocate;

procedure Deallocate
(Pool : in out Storage_Pool_T;
Storage_Address : System.Address;
Size_In_Storage_Elements : Storage_Count;
Alignment : Storage_Count) is

begin
for I in Memory_Block'range loop

if Memory_Block (I)'address = Storage_Address then
Set_In_Use (I, Size_In_Storage_Elements, False);

end if;
end loop;

end Deallocate;

function Storage_Size
(Pool : Storage_Pool_T)
return System.Storage_Elements.Storage_Count is

begin
return 0;

end Storage_Size;

procedure Print_Info is
begin

Ada.Text_IO.Put_Line
("Current Water Mark: " & Storage_Count'image (Current_Water_Mark));

Ada.Text_IO.Put_Line
("High Water Mark: " & Storage_Count'image (High_Water_Mark));

end Print_Info;

end Memory_Mgmt;

308 / 578

Advanced Access Types
Summary

Summary

309 / 578

Advanced Access Types
Summary

Summary

Access types when used with "dynamic" memory allocation can
cause problems

Whether actually dynamic or using managed storage pools, memory
leaks/lack can occur
Storage pools can help diagnose memory issues, but it’s still a
usage issue

GNAT.Debug_Pools is useful for debugging memory issues
Mostly in low-level testing
Could integrate it with an error logging mechanism

System.Storage_Pools can be used to control memory usage
Adds overhead

310 / 578

Genericity

Genericity

311 / 578

Genericity
Introduction

Introduction

312 / 578

Genericity
Introduction

The Notion of a Pattern
Sometimes algorithms can be abstracted from types and
subprograms

procedure Swap_Int (Left, Right : in out Integer) is
V : Integer;

begin
V := Left;
Left := Right;
Right := V;

end Swap_Int;

procedure Swap_Bool (Left, Right : in out Boolean) is
V : Boolean;

begin
V := Left;
Left := Right;
Right := V;

end Swap_Bool;

It would be nice to extract these properties in some common
pattern, and then just replace the parts that need to be replaced

procedure Swap (Left, Right : in out (Integer | Boolean)) is
V : (Integer | Boolean);

begin
V := Left;
Left := Right;
Right := V;

end Swap;

313 / 578

Genericity
Introduction

Solution: Generics

A generic unit is a unit that does not exist
It is a pattern based on properties
The instantiation applies the pattern to certain parameters

314 / 578

Genericity
Introduction

Ada Generic Compared to C++ Template
Ada Generic

-- specification
generic
type T is private;
procedure Swap

(L, R : in out T);
-- implementation
procedure Swap

(L, R : in out T) is
Tmp : T := L

begin
L := R;
R := Tmp;

end Swap;
-- instance
procedure Swap_F is new Swap (Float);

C++ Template
template <class T>
void Swap (T & L, T & R);
template <class T>
void Swap (T & L, T & R) {

T Tmp = L;
L = R;
R = Tmp;

}

.
315 / 578

Genericity
Creating Generics

Creating Generics

316 / 578

Genericity
Creating Generics

What Can Be Made Generic?

Subprograms and packages can be made generic

generic
type T is private;

procedure Swap (L, R : in out T)
generic

type T is private;
package Stack is

procedure Push (Item : T);
...

Children of generic units have to be generic themselves

generic
package Stack.Utilities is

procedure Print is
317 / 578

Genericity
Creating Generics

How Do You Use A Generic?

Generic instantiation is creating new set of data where a generic
package contains library-level variables:

package Integer_stack is new Stack (Integer);
package Integer_Stack_Utils is

new Integer_Stack.Utilities;
...
Integer_Stack.Push (1);
Integer_Stack_Utils.Print;

318 / 578

Genericity
Generic Data

Generic Data

319 / 578

Genericity
Generic Data

Examples
package Generic_Data is

generic
type Discrete_T is (<>);
type Integer_T is range <>;
type Float_T is digits <>;
type Indefinite_T;
type Tagged_T is tagged;
type Array_T is array (Boolean) of Integer;
type Access_T is access all Integer;
type Private_T is private;
type Unconstrained_T (<>) is private;

package Parameter_Properties is
procedure Do_Something (Discrete_Param : Discrete_T;

Integer_Param : Integer_T;
Float_Param : Float_T;
Indefinite_Param : access Indefinite_T;
Tagged_Param : Tagged_T;
Array_Param : Array_T;
Access_Param : Access_T;
Private_Param : Private_T;
Unconstrained_Param : Unconstrained_T);

end Parameter_Properties;

generic
type Item_T is private;
type Access_Item_T is access all Item_T;
type Index_T is (<>);
type Array_T is array (Index_T range <>) of Access_Item_T;

package Combination is
procedure Add (List : in out Array_T;

Index : in Index_T;
Item : in Item_T);

end Combination;
end Generic_Data;

with Types; use Types;
with Generic_Data;
package Generic_Instances is

package Parameter_Properties_Instance is new Generic_Data
.Parameter_Properties
(Boolean, Integer, Float, Indefinite_T => Hidden_T,
Tagged_T => Tagged_Record_T, Array_T => Boolean_Array_Of_Integers_T,
Access_T => Access_Integer_T, Private_T => Some_Private_T,
Unconstrained_T => String);

type Item_T is (Red, White, Blue);
type Access_T is access all Item_T;
type Index_T is range 1 .. 100;
type Array_T is array (Index_T range <>) of Access_T;
package Combination_Instance is new Generic_Data.Combination

(Item_T, Access_T, Index_T, Array_T);
end Generic_Instances;

package body Generic_Data is
package body Parameter_Properties is

procedure Do_Something (Discrete_Param : Discrete_T;
Integer_Param : Integer_T;
Float_Param : Float_T;
Indefinite_Param : access Indefinite_T;
Tagged_Param : Tagged_T;
Array_Param : Array_T;
Access_Param : Access_T;
Private_Param : Private_T;
Unconstrained_Param : Unconstrained_T) is null;

end Parameter_Properties;

package body Combination is
procedure Add (List : in out Array_T;

Index : in Index_T;
Item : in Item_T) is

begin
List (Index) := new Item_T'(Item);

end Add;
end Combination;

end Generic_Data;

package Types is
type Hidden_T;
type Tagged_Record_T is tagged record

Field : access Hidden_T;
end record;
type Hidden_T is private;
type Boolean_Array_Of_Integers_T is array (Boolean) of Integer;
type Access_Integer_T is access all Integer;
type Some_Private_T is private;

private
type Hidden_T is new Integer;
type Some_Private_T is new Integer;

end Types;

https://learn.adacore.com/training_examples/fundamentals_of_ada/160_genericity.html#generic-data

320 / 578

Genericity
Generic Data

Generic Types Parameters (1/2)

A generic parameter is a template

It specifies the properties the generic body can rely on

generic
type T1 is private; -- should have properties

-- of private type (assignment,
-- comparison, able to declare
-- variables on the stack...)

type T2 (<>) is private; -- can be unconstrained
type T3 is limited private; -- can be limited

package Parent is [...]

The actual parameter must provide at least as many properties as
the generic contract

321 / 578

Genericity
Generic Data

Generic Types Parameters (2/2)

The usage in the generic has to follow the contract

generic
type T (<>) is private;

procedure P (V : T);
procedure P (V : T) is

X1 : T := V; -- OK, can constrain by initialization
X2 : T; -- Compilation error, no constraint to this

begin
...
type L_T is limited null record;
...
-- unconstrained types are accepted
procedure P1 is new P (String);
-- type is already constrained
procedure P2 is new P (Integer);
-- Illegal: the type can't be limited because the generic
-- is allowed to make copies
procedure P3 is new P (L_T);

322 / 578

Genericity
Generic Data

Possible Properties for Generic Types

type T1 is (<>); -- discrete
type T2 is range <>; -- integer
type T3 is digits <>; -- float
type T4 (<>); -- indefinite
type T5 is tagged;
type T6 is array (Boolean) of Integer;
type T7 is access integer;
type T8 (<>) is [limited] private;

323 / 578

Genericity
Generic Data

Generic Parameters Can Be Combined

Consistency is checked at compile-time

generic
type T (<>) is limited private;
type Acc is access all T;
type Index is (<>);
type Arr is array (Index range <>) of Acc;

procedure P;

type String_Ptr is access all String;
type String_Array is array (Integer range <>)

of String_Ptr;

procedure P_String is new P
(T => String,
Acc => String_Ptr,
Index => Integer,
Arr => String_Array);

324 / 578

Genericity
Generic Data

Quiz

generic
type T is tagged;
type T2;

procedure G_P;

type Tag is tagged null record;
type Arr is array (Positive range <>) of Tag;

Which declaration(s) is(are) legal?

A. procedure P is new G_P (Tag, Arr)
B. procedure P is new G_P (Arr, Tag)
C. procedure P is new G_P (Tag, Tag)
D. procedure P is new G_P (Arr, Arr)

325 / 578

Genericity
Generic Data

Quiz

generic
type T is tagged;
type T2;

procedure G_P;

type Tag is tagged null record;
type Arr is array (Positive range <>) of Tag;

Which declaration(s) is(are) legal?

A. procedure P is new G_P (Tag, Arr)
B. procedure P is new G_P (Arr, Tag)
C. procedure P is new G_P (Tag, Tag)
D. procedure P is new G_P (Arr, Arr)

325 / 578

Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is an illegal instantiation?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

326 / 578

Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is an illegal instantiation?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

326 / 578

Genericity
Generic Formal Data

Generic Formal Data

327 / 578

Genericity
Generic Formal Data

Examples
package Generic_Formal_Data is

generic
type Variable_T is range <>;
Variable : in out Variable_T;
Increment : Variable_T;

package Constants_And_Variables is
procedure Add;
function Value return Variable_T is (Variable);

end Constants_And_Variables;

generic
type Type_T is (<>);
with procedure Print_One (Prompt : String; Value : Type_T);
with procedure Print_Two (Prompt : String; Value : Type_T) is null;
with procedure Print_Three (Prompt : String; Value : Type_T) is <>;

package Subprogram_Parameters is
procedure Print (Prompt : String; Param : Type_T);

end Subprogram_Parameters;
end Generic_Formal_Data;

with Ada.Text_IO; use Ada.Text_IO;
with Generic_Formal_Data; use Generic_Formal_Data;
procedure Test_Generic_Formal_Data is

procedure Print_One (Prompt : String; Param : Integer) is
begin

Put_Line (Prompt & " - Print_One" & Param'Image);
end Print_One;
procedure Print_Two (Prompt : String; Param : Integer) is
begin

Put_Line (Prompt & " - Print_Two" & Param'Image);
end Print_Two;
procedure Print_Three (Prompt : String; Param : Integer) is
begin

Put_Line (Prompt & " - Print_Three" & Param'Image);
end Print_Three;
procedure Print_Three_Prime (Prompt : String; Param : Integer) is
begin

Put_Line (Prompt & " - Print_Three_Prime" & Param'Image);
end Print_Three_Prime;

Global_Object : Integer := 0;
package Global_Data is new Constants_And_Variables

(Integer, Global_Object, 111);

package Print_1 is new Subprogram_Parameters (Integer, Print_One);
package Print_2 is new Subprogram_Parameters (Integer, Print_One, Print_Two);
package Print_3 is new Subprogram_Parameters (Integer, Print_One, Print_Two, Print_Three_Prime);

begin
Print_1.Print ("print_1", Global_Data.Value);
Global_Data.Add;
Print_2.Print ("print_2", Global_Data.Value);
Global_Data.Add;
Print_3.Print ("print_3", Global_Data.Value);

end Test_Generic_Formal_Data;

package body Generic_Formal_Data is
package body Constants_And_Variables is

procedure Add is
begin

Variable := Variable + Increment;
end Add;

end Constants_And_Variables;

package body Subprogram_Parameters is
procedure Print (Prompt : String; Param : Type_T) is
begin

Print_One (Prompt, Param);
Print_Two (Prompt, Param);
Print_Three (Prompt, Param);

end Print;
end Subprogram_Parameters;

end Generic_Formal_Data;

https://learn.adacore.com/training_examples/fundamentals_of_ada/160_genericity.html#generic-formal-data

328 / 578

Genericity
Generic Formal Data

Generic Constants and Variables Parameters

Variables can be specified on
the generic contract
The mode specifies the way
the variable can be used:

in → read only
in out → read write

Generic variables can be
defined after generic types

generic
type T is private;
X1 : Integer; -- constant
X2 : in out T; -- variable

procedure P;

V : Float;

procedure P_I is new P
(T => Float,
X1 => 42,
X2 => V);

329 / 578

Genericity
Generic Formal Data

Generic Subprogram Parameters

Subprograms can be defined in the generic contract

Must be introduced by with to differ from the generic unit

generic
with procedure Callback;

procedure P;
procedure P is
begin

Callback;
end P;
procedure Something;
procedure P_I is new P (Something);

330 / 578

Genericity
Generic Formal Data

Generic Subprogram Parameters Defaults
Ada 2005

is <> - matching subprogram is taken by default

is null - null subprogram is taken by default
Only available in Ada 2005 and later

generic
with procedure Callback1 is <>;
with procedure Callback2 is null;

procedure P;
procedure Callback1;
procedure P_I is new P;
-- takes Callback1 and null

331 / 578

Genericity
Generic Formal Data

Generic Package Parameters

A generic unit can depend on the instance of another generic unit
Parameters of the instantiation can be constrained partially or
completely

generic
type T1 is private;
type T2 is private;

package Base is [...]

generic
with package B is new Base (Integer, <>);
V : B.T2;

package Other [...]

package Base_I is new Base (Integer, Float);

package Other_I is new Other (Base_I, 56.7);
332 / 578

Genericity
Generic Formal Data

Quiz

generic
type T is (<>);
G_A : in out T;

procedure G_P;

type I is new Integer;
type E is (OK, NOK);
type F is new Float;
X : I;
Y : E;
Z : F;

A. procedure P is new G_P (I, X)
B. procedure P is new G_P (E, Y)
C. procedure P is new G_P (I, E'Pos (Y))
D. procedure P is new G_P (F, Z)

333 / 578

Genericity
Generic Formal Data

Quiz

generic
type T is (<>);
G_A : in out T;

procedure G_P;

type I is new Integer;
type E is (OK, NOK);
type F is new Float;
X : I;
Y : E;
Z : F;

A. procedure P is new G_P (I, X)
B. procedure P is new G_P (E, Y)
C. procedure P is new G_P (I, E'Pos (Y))
D. procedure P is new G_P (F, Z)

333 / 578

Genericity
Generic Formal Data

Quiz

generic
type L is limited private;
type P is private;

procedure G_P;

type Lim is limited null record;
type Int is new Integer;

type Rec is record
L : Lim;
I : Int;

end record;

Which declaration(s) is(are) legal?

A. procedure P is new G_P (Lim, Int)
B. procedure P is new G_P (Int, Rec)
C. procedure P is new G_P (Rec, Rec)
D. procedure P is new G_P (Int, Int)

334 / 578

Genericity
Generic Formal Data

Quiz

generic
type L is limited private;
type P is private;

procedure G_P;

type Lim is limited null record;
type Int is new Integer;

type Rec is record
L : Lim;
I : Int;

end record;

Which declaration(s) is(are) legal?

A. procedure P is new G_P (Lim, Int)
B. procedure P is new G_P (Int, Rec)
C. procedure P is new G_P (Rec, Rec)
D. procedure P is new G_P (Int, Int)

334 / 578

Genericity
Generic Formal Data

Quiz
Ada 2005

1 procedure P1 (X : in out Integer); -- add 100 to X
2 procedure P2 (X : in out Integer); -- add 20 to X
3 procedure P3 (X : in out Integer); -- add 3 to X
4 generic
5 with procedure P1 (X : in out Integer) is <>;
6 with procedure P2 (X : in out Integer) is null;
7 procedure G (P : integer);
8 procedure G (P : integer) is
9 X : integer := P;

10 begin
11 P1(X);
12 P2(X);
13 Ada.Text_IO.Put_Line (X'Image);
14 end G;
15 procedure Instance is new G (P1 => P3);

What is printed when Instance is called?
A. 100
B. 120
C. 3
D. 103

Explanations
A. Wrong - result for

procedure Instance is new G;
B. Wrong - result for

procedure Instance is new G(P1,P2);
C. P1 at line 12 is mapped to P3 at line

3, and P2 at line 14 wasn’t specified
so it defaults to null

D. Wrong - result for
procedure Instance is new G(P2=>P3);

335 / 578

Genericity
Generic Formal Data

Quiz
Ada 2005

1 procedure P1 (X : in out Integer); -- add 100 to X
2 procedure P2 (X : in out Integer); -- add 20 to X
3 procedure P3 (X : in out Integer); -- add 3 to X
4 generic
5 with procedure P1 (X : in out Integer) is <>;
6 with procedure P2 (X : in out Integer) is null;
7 procedure G (P : integer);
8 procedure G (P : integer) is
9 X : integer := P;

10 begin
11 P1(X);
12 P2(X);
13 Ada.Text_IO.Put_Line (X'Image);
14 end G;
15 procedure Instance is new G (P1 => P3);

What is printed when Instance is called?
A. 100
B. 120
C. 3
D. 103

Explanations
A. Wrong - result for

procedure Instance is new G;
B. Wrong - result for

procedure Instance is new G(P1,P2);
C. P1 at line 12 is mapped to P3 at line

3, and P2 at line 14 wasn’t specified
so it defaults to null

D. Wrong - result for
procedure Instance is new G(P2=>P3);

335 / 578

Genericity
Generic Completion

Generic Completion

336 / 578

Genericity
Generic Completion

Implications at Compile-Time

The body needs to be visible when compiling the user code
Therefore, when distributing a component with generics to be
instantiated, the code of the generic must come along

337 / 578

Genericity
Generic Completion

Generic and Freezing Points

A generic type freezes the type and needs the full view
May force separation between its declaration (in spec) and
instantiations (in private or body)

generic
type X is private;

package Base is
V : access X;

end Base;

package P is
type X is private;
-- illegal
package B is new Base (X);

private
type X is null record;

end P;
338 / 578

Genericity
Generic Completion

Generic Incomplete Parameters

A generic type can be incomplete
Allows generic instantiations before full type definition
Restricts the possible usages (only access)

generic
type X; -- incomplete

package Base is
V : access X;

end Base;

package P is
type X is private;
-- legal
package B is new Base (X);

private
type X is null record;

end P;
339 / 578

Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is(are) valid for P’s body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

340 / 578

Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is(are) valid for P’s body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

340 / 578

Genericity
Lab

Lab

341 / 578

Genericity
Lab

Genericity Lab

Requirements
Create a list ADT to hold any type of data

Operations should include adding to the list and sorting the list

Create a record structure containing multiple fields

The main program should:

Allow the addition of multiple records into the list
Sort the list
Print the list

Hints
Sort routine will need to know how to compare elements

342 / 578

Genericity
Lab

Genericity Lab Solution - Generic (Spec)

generic
type Element_T is private;
Max_Size : Natural;
with function "<" (L, R : Element_T) return Boolean is <>;

package Generic_List is

type List_T is tagged private;

procedure Add (This : in out List_T;
Item : in Element_T);

procedure Sort (This : in out List_T);

private
subtype Index_T is Natural range 0 .. Max_Size;
type List_Array_T is array (1 .. Index_T'Last) of Element_T;

type List_T is tagged record
Values : List_Array_T;
Length : Index_T := 0;

end record;
end Generic_List;

343 / 578

Genericity
Lab

Genericity Lab Solution - Generic (Body)
package body Generic_List is

procedure Add (This : in out List_T;
Item : in Element_T) is

begin
This.Length := This.Length + 1;
This.Values (This.Length) := Item;

end Add;

procedure Sort (This : in out List_T) is
Temp : Element_T;

begin
for I in 1 .. This.Length loop

for J in I + 1 .. This.Length loop
if This.Values (J) < This.Values (J - 1) then

Temp := This.Values (J);
This.Values (J) := This.Values (J - 1);
This.Values (J - 1) := Temp;

end if;
end loop;

end loop;
end Sort;

end Generic_List;
344 / 578

Genericity
Lab

Genericity Lab Solution - Generic Output

generic
with function Image (Element : Element_T) return String;

package Generic_List.Output is
procedure Print (List : List_T);

end Generic_List.Output;

with Ada.Text_IO; use Ada.Text_IO;
package body Generic_List.Output is

procedure Print (List : List_T) is
begin

for I in 1 .. List.Length loop
Put_Line (Integer'Image (I) & ") " &

Image (List.Values (I)));
end loop;

end Print;
end Generic_List.Output;

345 / 578

Genericity
Lab

Genericity Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Data_Type;
with Generic_List;
with Generic_List.Output;
use type Data_Type.Record_T;
procedure Main is

package List is new Generic_List (Data_Type.Record_T, 10);
package Output is new List.Output (Data_Type.Image);

My_List : List.List_T;
Element : Data_Type.Record_T;

begin
loop

Put ("Enter character: ");
declare

Str : constant String := Get_Line;
begin

exit when Str'Length = 0;
Element.Field2 := Str (1);

end;
Put ("Enter number: ");
declare

Str : constant String := Get_Line;
begin

exit when Str'Length = 0;
Element.Field1 := Integer'Value (Str);

end;
My_List.Add (Element);

end loop;

My_List.Sort;
Output.Print (My_List);

end Main;

346 / 578

Genericity
Summary

Summary

347 / 578

Genericity
Summary

Generic Routines vs Common Routines

package Helper is
type Float_T is digits 6;
generic

type Type_T is digits <>;
Min : Type_T;
Max : Type_T;

function In_Range_Generic (X : Type_T) return Boolean;
function In_Range_Common (X : Float_T;

Min : Float_T;
Max : Float_T)
return Boolean;

end Helper;

procedure User is
type Speed_T is new Float_T range 0.0 .. 100.0;
B : Boolean;
function Valid_Speed is new In_Range_Generic

(Speed_T, Speed_T'First, Speed_T'Last);
begin

B := Valid_Speed (12.3);
B := In_Range_Common (12.3, Speed_T'First, Speed_T'Last);

348 / 578

Genericity
Summary

Summary

Generics are useful for copying code that works the same just for
different types

Sorting, containers, etc

Properly written generics only need to be tested once
But testing / debugging can be more difficult

Generic instantiations are best done at compile time
At the package level
Can be run-time expensive when done in subprogram scope

349 / 578

Tagged Derivation

Tagged Derivation

350 / 578

Tagged Derivation
Introduction

Introduction

351 / 578

Tagged Derivation
Introduction

Object-Oriented Programming With Tagged Types

For record types

type T is tagged record
...

Child types can add new components (attributes)

Object of a child type can be substituted for base type

Primitive (method) can dispatch at runtime depending on the
type at call-site

Types can be extended by other packages
Casting and qualification to base type is allowed

Private data is encapsulated through privacy

352 / 578

Tagged Derivation
Introduction

Tagged Derivation Ada vs C++

type T1 is tagged record
Member1 : Integer;

end record;

procedure Attr_F (This : T1);

type T2 is new T1 with record
Member2 : Integer;

end record;

overriding procedure Attr_F (
This : T2);

procedure Attr_F2 (This : T2);

class T1 {
public:

int Member1;
virtual void Attr_F(void);

};

class T2 : public T1 {
public:

int Member2;
virtual void Attr_F(void);
virtual void Attr_F2(void);

};

353 / 578

Tagged Derivation
Tagged Derivation

Tagged Derivation

354 / 578

Tagged Derivation
Tagged Derivation

Examples
package Tagged_Derivation is

type Root_T is tagged record
Root_Field : Integer;

end record;
function Primitive_1 (This : Root_T) return Integer is (This.Root_Field);
function Primitive_2 (This : Root_T) return String is

(Integer'Image (This.Root_Field));

type Child_T is new Root_T with record
Child_Field : Integer;

end record;
overriding function Primitive_2 (This : Child_T) return String is

(Integer'Image (This.Root_Field) & " " &
Integer'Image (This.Child_Field));

function Primitive_3 (This : Child_T) return Integer is
(This.Root_Field + This.Child_Field);

-- type Simple_Deriviation_T is new Child_T; -- illegal

type Root2_T is tagged record
Root_Field : Integer;

end record;
-- procedure Primitive_4 (X : Root_T; Y : Root2_T); -- illegal

end Tagged_Derivation;

with Ada.Text_IO; use Ada.Text_IO;
with Tagged_Derivation; use Tagged_Derivation;
procedure Test_Tagged_Derivation is

Root : Root_T := (Root_Field => 1);
Child : Child_T := (Root_Field => 11, Child_Field => 22);

begin
Put_Line ("Root: " & Primitive_2 (Root));
Put_Line ("Child: " & Primitive_2 (Child));
Root := Root_T (Child);
Put_Line ("Root from Child: " & Primitive_2 (Root));
-- Child := Child_T (Root); -- illegal
-- Put_Line ("Child from Root: " & Primitive_2 (Child)); -- illegal
Child := (Root with Child_Field => 999);
Put_Line ("Child from Root via aggregate: " & Primitive_2 (Child));

end Test_Tagged_Derivation;

https://learn.adacore.com/training_examples/fundamentals_of_ada/170_tagged_derivation.html#tagged-derivation

355 / 578

Tagged Derivation
Tagged Derivation

Difference with Simple Derivation

Tagged derivation can change the structure of a type
Keywords tagged record and with record

type Root is tagged record
F1 : Integer;

end record;

type Child is new Root with record
F2 : Integer;

end record;

356 / 578

Tagged Derivation
Tagged Derivation

Type Extension

A tagged derivation has to be a type extension
Use with null record if there are no additional components

type Child is new Root with null record;
type Child is new Root; -- illegal

Conversions is only allowed from child to parent

V1 : Root;
V2 : Child;
...
V1 := Root (V2);
V2 := Child (V1); -- illegal

357 / 578

Tagged Derivation
Tagged Derivation

Primitives

Child cannot remove a primitive

Child can add new primitives

Controlling parameter
Parameters the subprogram is a primitive of
For tagged types, all should have the same type

type Root1 is tagged null record;
type Root2 is tagged null record;

procedure P1 (V1 : Root1;
V2 : Root1);

procedure P2 (V1 : Root1;
V2 : Root2); -- illegal

358 / 578

Tagged Derivation
Tagged Derivation

Freeze Point For Tagged Types

Freeze point definition does not change
A variable of the type is declared
The type is derived
The end of the scope is reached

Declaring tagged type primitives past freeze point is forbidden

type Root is tagged null record;

procedure Prim (V : Root);

type Child is new Root with null record; -- freeze root

procedure Prim2 (V : Root); -- illegal

V : Child; -- freeze child

procedure Prim3 (V : Child); -- illegal
359 / 578

Tagged Derivation
Tagged Derivation

Tagged Aggregate

At initialization, all fields (including inherited) must have a value

type Root is tagged record
F1 : Integer;

end record;

type Child is new Root with record
F2 : Integer;

end record;

V : Child := (F1 => 0, F2 => 0);

For private types use aggregate extension
Copy of a parent instance
Use with null record absent new fields

V2 : Child := (Parent_Instance with F2 => 0);
V3 : Empty_Child := (Parent_Instance with null record);

360 / 578

Tagged Derivation
Tagged Derivation

Overriding Indicators
Ada 2005

Optional overriding and not overriding indicators

type Root is tagged null record;

procedure Prim1 (V : Root);
procedure Prim2 (V : Root);

type Child is new Root with null record;

overriding procedure Prim1 (V : Child);
-- Prim2 (V : Child) is implicitely inherited
not overriding procedure Prim3 (V : Child);

361 / 578

Tagged Derivation
Tagged Derivation

Prefix Notation
Ada 2012

Tagged types primitives can be called as usual

The call can use prefixed notation
If the first argument is a controlling parameter
No need for use or use type for visibility

-- Prim1 visible even without *use Pkg*
X.Prim1;

declare
use Pkg;

begin
Prim1 (X);

end;
362 / 578

Tagged Derivation
Tagged Derivation

Quiz
Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
generic

type T is tagged private;
package G_Pkg is

type T2 is new T with null record;
end G_Pkg;
package Pkg is new G_Pkg (T1);
procedure P (O : T1) is null;

D. type T1 is tagged null record;
generic

type T;
procedure G_P (O : T);
procedure G_P (O : T) is null;
procedure P is new G_P (T1);

363 / 578

Tagged Derivation
Tagged Derivation

Quiz
Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
generic

type T is tagged private;
package G_Pkg is

type T2 is new T with null record;
end G_Pkg;
package Pkg is new G_Pkg (T1);
procedure P (O : T1) is null;

D. type T1 is tagged null record;
generic

type T;
procedure G_P (O : T);
procedure G_P (O : T) is null;
procedure P is new G_P (T1);

363 / 578

Tagged Derivation
Tagged Derivation

Quiz

with Pkg1; -- Defines tagged type Tag1, with primitive P
with Pkg2; use Pkg2; -- Defines tagged type Tag2, with primitive P
with Pkg3; -- Defines tagged type Tag3, with primitive P
use type Pkg3.Tag3;

procedure Main is
O1 : Pkg1.Tag1;
O2 : Pkg2.Tag2;
O3 : Pkg3.Tag3;

Which statement(s) is(are) valid?

A. O1.P
B. P (O1)
C. P (O2)
D. P (O3)

D. Only operators are use`d, should have been :ada:`use all

364 / 578

Tagged Derivation
Tagged Derivation

Quiz

with Pkg1; -- Defines tagged type Tag1, with primitive P
with Pkg2; use Pkg2; -- Defines tagged type Tag2, with primitive P
with Pkg3; -- Defines tagged type Tag3, with primitive P
use type Pkg3.Tag3;

procedure Main is
O1 : Pkg1.Tag1;
O2 : Pkg2.Tag2;
O3 : Pkg3.Tag3;

Which statement(s) is(are) valid?

A. O1.P
B. P (O1)
C. P (O2)
D. P (O3)

D. Only operators are use`d, should have been :ada:`use all
364 / 578

Tagged Derivation
Tagged Derivation

Quiz

Which code block is legal?
A. type A1 is record

Field1 : Integer;
end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Field2 : Integer;
end record;
type B2 is new B1 with
record

Field2b : Integer;
end record;

C. type C1 is tagged
record

Field3 : Integer;
end record;
type C2 is new C1 with
record

Field3 : Integer;
end record;

D. type D1 is tagged
record

Field1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

365 / 578

Tagged Derivation
Tagged Derivation

Quiz

Which code block is legal?
A. type A1 is record

Field1 : Integer;
end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Field2 : Integer;
end record;
type B2 is new B1 with
record

Field2b : Integer;
end record;

C. type C1 is tagged
record

Field3 : Integer;
end record;
type C2 is new C1 with
record

Field3 : Integer;
end record;

D. type D1 is tagged
record

Field1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

365 / 578

Tagged Derivation
Lab

Lab

366 / 578

Tagged Derivation
Lab

Tagged Derivation Lab

Requirements
Create a type structure that could be used in a business

A person has some defining characteristics
An employee is a person with some employment information
A staff member is an employee with specific job information

Create primitive operations to read and print the objects

Create a main program to test the objects and operations

Hints
Use overriding and not overriding as appropriate

367 / 578

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Spec)
with Ada.Calendar;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Employee is

type Person_T is tagged private;
procedure Set_Name (O : in out Person_T;

Value : String);
function Name (O : Person_T) return String;
procedure Set_Birth_Date (O : in out Person_T;

Value : String);
function Birth_Date (O : Person_T) return String;
procedure Print (O : Person_T);

type Employee_T is new Person_T with private;
not overriding procedure Set_Start_Date (O : in out Employee_T;

Value : String);
not overriding function Start_Date (O : Employee_T) return String;
overriding procedure Print (O : Employee_T);

type Position_T is new Employee_T with private;
not overriding procedure Set_Job (O : in out Position_T;

Value : String);
not overriding function Job (O : Position_T) return String;
overriding procedure Print (O : Position_T);

private
type Person_T is tagged record

Name : Unbounded_String;
Birth_Date : Ada.Calendar.Time;

end record;

type Employee_T is new Person_T with record
Employee_Id : Positive;
Start_Date : Ada.Calendar.Time;

end record;

type Position_T is new Employee_T with record
Job : Unbounded_String;

end record;
end Employee;

368 / 578

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Body -
Incomplete)

function To_String (T : Ada.Calendar.Time) return String is
begin

return Month_Name (Ada.Calendar.Month (T)) &
Integer'Image (Ada.Calendar.Day (T)) & "," &
Integer'Image (Ada.Calendar.Year (T));

end To_String;

function From_String (S : String) return Ada.Calendar.Time is
Date : constant String := S & " 12:00:00";

begin
return Ada.Calendar.Formatting.Value (Date);

end From_String;

procedure Set_Name (O : in out Person_T;
Value : String) is

begin
O.Name := To_Unbounded_String (Value);

end Set_Name;
function Name (O : Person_T) return String is (To_String (O.Name));

procedure Set_Birth_Date (O : in out Person_T;
Value : String) is

begin
O.Birth_Date := From_String (Value);

end Set_Birth_Date;
function Birth_Date (O : Person_T) return String is (To_String (O.Birth_Date));
procedure Print (O : Person_T) is
begin

Put_Line ("Name: " & Name (O));
Put_Line ("Birthdate: " & Birth_Date (O));

end Print;

not overriding procedure Set_Start_Date (O : in out Employee_T;
Value : String) is

begin
O.Start_Date := From_String (Value);

end Set_Start_Date;
not overriding function Start_Date (O : Employee_T) return String is (To_String (O.Start_Date));
overriding procedure Print (O : Employee_T) is
begin

Put_Line ("Name: " & Name (O));
Put_Line ("Birthdate: " & Birth_Date (O));
Put_Line ("Startdate: " & Start_Date (O));

end Print;

369 / 578

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Employee;
procedure Main is

function Read (Prompt : String) return String is
begin

Put (Prompt & "> ");
return Get_Line;

end Read;
function Read_Date (Prompt : String) return String is (Read (Prompt & " (YYYY-MM-DD)"));

Applicant : Employee.Person_T;
Employ : Employee.Employee_T;
Staff : Employee.Position_T;

begin
Applicant.Set_Name (Read ("Applicant name"));
Applicant.Set_Birth_Date (Read_Date (" Birth Date"));

Employ.Set_Name (Read ("Employee name"));
Employ.Set_Birth_Date (Read_Date (" Birth Date"));
Employ.Set_Start_Date (Read_Date (" Start Date"));

Staff.Set_Name (Read ("Staff name"));
Staff.Set_Birth_Date (Read_Date (" Birth Date"));
Staff.Set_Start_Date (Read_Date (" Start Date"));
Staff.Set_Job (Read (" Job"));

Applicant.Print;
Employ.Print;
Staff.Print;

end Main;

370 / 578

Tagged Derivation
Summary

Summary

371 / 578

Tagged Derivation
Summary

Summary

Tagged derivation
Building block for OOP types in Ada

Primitives rules for tagged types are trickier
Primitives forbidden below freeze point
Unique controlling parameter
Tip: Keep the number of tagged type per package low

372 / 578

Polymorphism

Polymorphism

373 / 578

Polymorphism
Introduction

Introduction

374 / 578

Polymorphism
Introduction

Introduction

’Class operator to categorize classes of types

Type classes allow dispatching calls
Abstract types
Abstract subprograms

Run-time call dispatch vs compile-time call dispatching

375 / 578

Polymorphism
Classes of Types

Classes of Types

376 / 578

Polymorphism
Classes of Types

Examples
package Class_Types is

type Root_T is tagged null record;
type Child1_T is new Root_T with null record;
type Child2_T is new Root_T with null record;
type Grandchild1_T is new Child1_T with null record;

-- Root'Class = {Root_T, Child1_T, Child2_T, Grandchild1_T}
-- Child1'Class = {Child1_T, Grandchild1_T} Child2'Class = {Child2_T}
-- Granchild1'Class ={Grandchild1_T}
procedure Test;

end Class_Types;

with Ada.Tags; use Ada.Tags;
with Ada.Text_IO; use Ada.Text_IO;
package body Class_Types is

Root_Object : Root_T;
Child_Object : Child1_T;

Class_Object1 : Child1_T'Class := Child_Object;
Class_Object2 : Root_T'Class := Class_Object1;
Class_Object3 : Root_T'Class := Child_Object;
-- Class_Object4 : Root_T'class; -- illegal

procedure Do_Something (Object : in out Root_T'Class) is
begin

Put_Line
("Do_Something: " & Boolean'Image (Object in Root_T'Class) & " / " &
Boolean'Image (Object in Child1_T'Class));

end Do_Something;

procedure Test is
begin

Put_Line (Boolean'Image (Class_Object1'Tag = Class_Object2'Tag));
Put_Line (Boolean'Image (Class_Object2'Tag = Class_Object3'Tag));
Do_Something (Root_Object);
Do_Something (Child_Object);
Do_Something (Class_Object1);
Do_Something (Class_Object2);
Do_Something (Class_Object3);

end Test;
end Class_Types;

package Abstract_Types is
type Root_T is abstract tagged record

Field : Integer;
end record;
function Primitive1 (V : Root_T) return String is abstract;
function Primitive2 (Prompt : String; V : Root_T) return String is

(Prompt & "> " & Integer'Image (V.Field));

type Child_T is abstract new Root_T with null record;
-- Child_T does not need to redefine any primitives

type Grandchild_T is new Child_T with null record;
-- Grandchild_T is required to create a concrete version of Primitive2
function Primitive1 (V : Grandchild_T) return String is

(Integer'Image (V.Field));

procedure Test;
end Abstract_Types;

with Ada.Text_IO; use Ada.Text_IO;
package body Abstract_Types is

Object1 : constant Grandchild_T := (Field => 123);
Object2 : constant Root_T'Class := Object1;

procedure Test is
begin

Put_Line (Object1.Primitive1);
Put_Line (Primitive2 ("Object1", Object2));
Put_Line (Object2.Primitive1);
Put_Line (Primitive2 ("Object2", Object2));

end Test;

end Abstract_Types;

with Abstract_Types;
with Class_Types;
procedure Test is
begin

Class_Types.Test;
Abstract_Types.Test;

end Test;

https://learn.adacore.com/training_examples/fundamentals_of_ada/180_polymorphism.html#classes-of-types

377 / 578

Polymorphism
Classes of Types

Classes

In Ada, a Class denotes an inheritance subtree

Class of T is the class of T and all its children

Type T'Class can designate any object typed after type of class
of T

type Root is tagged null record;
type Child1 is new Root with null record;
type Child2 is new Root with null record;
type Grand_Child1 is new Child1 with null record;
-- Root'Class = {Root, Child1, Child2, Grand_Child1}
-- Child1'Class = {Child1, Grand_Child1}
-- Child2'Class = {Child2}
-- Grand_Child1'Class = {Grand_Child1}

Objects of type T'Class have at least the properties of T
Fields of T
Primitives of T

378 / 578

Polymorphism
Classes of Types

Indefinite type

A class wide type is an indefinite type
Just like an unconstrained array or a record with a discriminant

Properties and constraints of indefinite types apply
Can be used for parameter declarations
Can be used for variable declaration with initialization

procedure Main is
type T is tagged null record;
type D is new T with null record;
procedure P (X : in out T'Class) is null;
Obj : D;
Dc : D'Class := Obj;
Tc1 : T'Class := Dc;
Tc2 : T'Class := Obj;
-- initialization required in class-wide declaration
Tc3 : T'Class; -- compile error
Dc2 : D'Class; -- compile error

begin
P (Dc);
P (Obj);

end Main;
379 / 578

Polymorphism
Classes of Types

Testing the type of an object

The tag of an object denotes its type
It can be accessed through the ’Tag attribute
Applies to both objects and types
Membership operator is available to check the type against a
hierarchy

type Parent is tagged null record;
type Child is new Parent with null record;
Parent_Obj : Parent; -- Parent_Obj'Tag = Parent'Tag
Child_Obj : Child; -- Child_Obj'Tag = Child'Tag
Parent_Class_1 : Parent'Class := Parent_Obj;

-- Parent_Class_1'Tag = Parent'Tag
Parent_Class_2 : Parent'Class := Child_Obj;

-- Parent_Class_2'Tag = Child'Tag
Child_Class : Child'Class := Child(Parent_Class_2);

-- Child_Class'Tag = Child'Tag

B1 : Boolean := Parent_Class_1 in Parent'Class; -- True
B2 : Boolean := Parent_Class_1'Tag = Child'Class'Tag; -- False
B3 : Boolean := Child_Class'Tag = Parent'Class'Tag; -- False
B4 : Boolean := Child_Class in Child'Class; -- True

380 / 578

Polymorphism
Classes of Types

Abstract Types

A tagged type can be declared abstract

Then, abstract tagged types:
cannot be instantiated
can have abstract subprograms (with no implementation)
Non-abstract derivation of an abstract type must override and
implement abstract subprograms

381 / 578

Polymorphism
Classes of Types

Abstract Types Ada vs C++
Ada

type Root is abstract tagged record
F : Integer;

end record;
procedure P1 (V : Root) is abstract;
procedure P2 (V : Root);
type Child is abstract new Root with null record;
type Grand_Child is new Child with null record;

overriding -- Ada 2005 and later
procedure P1 (V : Grand_Child);

C++

class Root {
public:

int F;
virtual void P1 (void) = 0;
virtual void P2 (void);

};
class Child : public Root {
};
class Grand_Child {

public:
virtual void P1 (void);

};

382 / 578

Polymorphism
Classes of Types

Relation to Primitives
Ada 2012

Warning: Subprograms with parameter of type T’Class are
primitives of T’Class, not T

type Root is null record;
procedure P (V : Root'Class);
type Child is new Root with null record;
-- This does not override P!
overriding procedure P (V : Child'Class);

Prefix notation rules apply when the first parameter is of a class
wide type

V1 : Root;
V2 : Root'Class := Root'(others => <>);
...
P (V1);
P (V2);
V1.P;
V2.P;

383 / 578

Polymorphism
Dispatching and Redispatching

Dispatching and Redispatching

384 / 578

Polymorphism
Dispatching and Redispatching

Examples
package Types is

type Root_T is tagged null record;
function Primitive (V : Root_T) return String is ("Root_T");

type Child_T is new Root_T with null record;
function Primitive (V : Child_T) return String is ("Child_T");

end Types;

with Ada.Text_IO; use Ada.Text_IO;
with Types; use Types;
procedure Test_Dispatching_And_Redispatching is

Root_Object : Root_T;
Child_Object : Child_T;

V1 : constant Root_T'Class := Root_Object;
V2 : constant Root_T'Class := Child_Object;
V3 : constant Child_T'Class := Child_Object;

begin

Put_Line (Primitive (V1));
Put_Line (Primitive (V2));
Put_Line (Primitive (V3));

end Test_Dispatching_And_Redispatching;

https://learn.adacore.com/training_examples/fundamentals_of_ada/180_polymorphism.html#dispatching-and-redispatching

385 / 578

Polymorphism
Dispatching and Redispatching

Calls on class-wide types (1/3)

Any subprogram expecting a T object can be called with a
T'Class object

type Root is null record;
procedure P (V : Root);

type Child is new Root with null record;
procedure P (V : Child);

V1 : Root'Class := [...]
V2 : Child'Class := [...]

begin
P (V1);
P (V2);

386 / 578

Polymorphism
Dispatching and Redispatching

Calls on class-wide types (2/3)

The actual type of the object is not known at compile time
The right type will be selected at runtime

Ada
declare

V1 : Root'Class :=
Root'(others => <>);

V2 : Root'Class :=
Child'(others => <>);

begin
V1.P; -- calls P of Root
V2.P; -- calls P of Child

C++
Root * V1 = new Root ();
Root * V2 = new Child ();
V1->P ();
V2->P ();

387 / 578

Polymorphism
Dispatching and Redispatching

Calls on class-wide types (3/3)

It is still possible to force a call to be static using a conversion of
view

Ada
declare

V1 : Root'Class :=
Root'(others => <>);

V2 : Root'Class :=
Child'(others => <>);

begin
Root (V1).P; -- calls P of Root
Root (V2).P; -- calls P of Root

C++
Root * V1 = new Root ();
Root * V2 = new Child ();
((Root) *V1).P ();
((Root) *V2).P ();

388 / 578

Polymorphism
Dispatching and Redispatching

Definite and class wide views

In C++, dispatching occurs only on pointers
In Ada, dispatching occurs only on class wide views

type Root is tagged null record;
procedure P1 (V : Root);
procedure P2 (V : Root);
type Child is new Root with null record;
overriding procedure P2 (V : Child);
procedure P1 (V : Root) is
begin

P2 (V); -- always calls P2 from Root
end P1;
procedure Main is

V1 : Root'Class :=
Child'(others => <>);

begin
-- Calls P1 from the implicitly overridden subprogram
-- Calls P2 from Root!
V1.P1;

389 / 578

Polymorphism
Dispatching and Redispatching

Redispatching

tagged types are always passed by reference
The original object is not copied

Therefore, it is possible to convert them to different views

type Root is tagged null record;
procedure P1 (V : Root);
procedure P2 (V : Root);
type Child is new Root with null record;
overriding procedure P2 (V : Child);

390 / 578

Polymorphism
Dispatching and Redispatching

Redispatching Example

procedure P1 (V : Root) is
V_Class : Root'Class renames

Root'Class (V); -- naming of a view
begin

P2 (V); -- static: uses the definite view
P2 (Root'Class (V)); -- dynamic: (redispatching)
P2 (V_Class); -- dynamic: (redispatching)

-- Ada 2005 "distinguished receiver" syntax
V.P2; -- static: uses the definite view
Root'Class (V).P2; -- dynamic: (redispatching)
V_Class.P2; -- dynamic: (redispatching)

end P1;

391 / 578

Polymorphism
Dispatching and Redispatching

Quiz
package P is

type Root is tagged null record;
function F1 (V : Root) return Integer is (101);
type Child is new Root with null record;
function F1 (V : Child) return Integer is (201);
type Grandchild is new Child with null record;
function F1 (V : Grandchild) return Integer is (301);

end P;

with P1; use P1;
procedure Main is

Z : Root'Class := Grandchild'(others => <>);

What is the value returned by F1 (Child'Class (Z));?

A. 301
B. 201
C. 101
D. Compilation error

Explanations

A. Correct
B. Would be correct if the cast was Child - Child'Class leaves the

object as Grandchild
C. Object is initialized to something in Root'class, but it doesn’t

have to be Root
D. Would be correct if function parameter types were 'Class

392 / 578

Polymorphism
Dispatching and Redispatching

Quiz
package P is

type Root is tagged null record;
function F1 (V : Root) return Integer is (101);
type Child is new Root with null record;
function F1 (V : Child) return Integer is (201);
type Grandchild is new Child with null record;
function F1 (V : Grandchild) return Integer is (301);

end P;

with P1; use P1;
procedure Main is

Z : Root'Class := Grandchild'(others => <>);

What is the value returned by F1 (Child'Class (Z));?

A. 301
B. 201
C. 101
D. Compilation error

Explanations

A. Correct
B. Would be correct if the cast was Child - Child'Class leaves the

object as Grandchild
C. Object is initialized to something in Root'class, but it doesn’t

have to be Root
D. Would be correct if function parameter types were 'Class

392 / 578

Polymorphism
Exotic Dispatching Operations

Exotic Dispatching Operations

393 / 578

Polymorphism
Exotic Dispatching Operations

Examples
package Types is

type Root_T is tagged record
Field : Integer;

end record;
function Primitive (Left : Root_T; Right : Root_T) return Integer is

(Left.Field + Right.Field);
function "=" (Left : Root_T; Right : Root_T) return Boolean is

(Left.Field in Right.Field - 1 .. Right.Field + 1);
function Constructor (I : Integer := 0) return Root_T is ((Field => I));

type Child_T is new Root_T with null record;
overriding function Primitive (Left : Child_T; Right : Child_T) return Integer is

(Left.Field * Right.Field);
overriding function "=" (Left : Child_T; Right : Child_T) return Boolean is

(Right.Field in Left.Field - 1 .. Left.Field + 1);
-- function Constructor (I : Integer := 0) return child_T; -- inherited from Root_t

type Child2_T is new Root_T with record
Field2 : Integer;

end record;
overriding function Primitive (Left : Child2_T; Right : Child2_T) return Integer is

(Left.Field * Right.Field);
overriding function "=" (Left : Child2_T; Right : Child2_T) return Boolean is

(Left.Field = Right.Field);
-- must create a constructor because new fields added
function Constructor (I : Integer := 0) return Child2_T is ((I, I));

end Types;

with Ada.Text_IO; use Ada.Text_IO;
with Types; use Types;
procedure Test_Exotic_Dispatching_Operations is

R1 : constant Root_T := (Field => 10);
R2 : constant Root_T := (Field => 20);
C1 : constant Child_T := (Field => 10);
Cl1 : constant Root_T'Class := R1;
Cl2 : constant Root_T'Class := R2;
Cl3 : constant Root_T'Class := C1;

procedure Test_Primitive is
begin

Put_Line ("Primitive");
Put_Line (Integer'Image (Primitive (R1, R2))); -- static: ok
-- Put_Line (Integer'Image (Primitive (R1, C1))); -- static: error
Put_Line (Integer'Image (Primitive (Cl1, Cl2))); -- dynamic: ok
-- Put_Line (Integer'Image (Primitive (R1, Cl1))); -- static: error
Put_Line (Integer'Image (Primitive (Root_T'Class (R1), Cl1))); -- dynamic: ok
Put_Line (Integer'Image (Primitive (Cl1, Cl3))); -- dynamic: error

end Test_Primitive;

procedure Test_Equality is
begin

Put_Line ("Equality");
Put_Line ("Cl1 = Cl2 " & Boolean'Image (Cl1 = Cl2));
Put_Line ("Cl2 = Cl3 " & Boolean'Image (Cl2 = Cl3));
Put_Line ("Cl3 = Cl1 " & Boolean'Image (Cl3 = Cl1));

end Test_Equality;

procedure Test_Constructor is
-- Static call to Root_T primitive
V1 : Root_T'Class := Root_T'(Constructor);
V2 : Root_T'Class := V1;
-- Static call to Child2_T primitive
V3 : Root_T'Class := Child2_T'(Constructor);
-- V4 : Root_T'Class := Constructor; -- What is the tag of V4?

begin
-- No
-- V1 := Constructor;

-- Yes
V1 := Root_T'(Constructor);

end Test_Constructor;

begin
Test_Equality;
Test_Constructor;
Test_Primitive;

end Test_Exotic_Dispatching_Operations;

https://learn.adacore.com/training_examples/fundamentals_of_ada/180_polymorphism.html#exotic-dispatching-operations

394 / 578

Polymorphism
Exotic Dispatching Operations

Multiple dispatching operands

Primitives with multiple dispatching operands are allowed if all
operands are of the same type

type Root is null tagged record;
procedure P (Left : Root; Right : Root);
type Child is new Root with null record;
overriding procedure P (Left : Child; Right : Child);

At call time, all actual parameters’ tags have to match, either
statically or dynamically

R1, R2 : Root;
C1, C2 : Child;
Cl1 : Root'Class := R1;
Cl2 : Root'Class := R2;
Cl3 : Root'Class := C1;
...
P (R1, R2); -- static: ok
P (R1, C1); -- static: error
P (Cl1, Cl2); -- dynamic: ok
P (Cl1, Cl3); -- dynamic: error
P (R1, Cl1); -- static: error
P (Root'Class (R1), Cl1); -- dynamic: ok

395 / 578

Polymorphism
Exotic Dispatching Operations

Special case for equality

Overriding the default equality for a tagged type involves the use
of a function with multiple controlling operands
As in general case, static types of operands have to be the same
If dynamic types differ, equality returns false instead of raising
exception

type Root is null tagged record;
function "=" (L : Root; R : Root) return Boolean;
type Child is new Root with null record;
overriding function "=" (L : Child; R : Child) return Boolean;
R1, R2 : Root;
C1, C2 : Child;
Cl1 : Root'Class := R1;
Cl2 : Root'Class := R2;
Cl3 : Root'Class := C1;
...
-- overridden "=" called via dispatching
if Cl1 = Cl2 then [...]
if Cl1 = Cl3 then [...] -- returns false

396 / 578

Polymorphism
Exotic Dispatching Operations

Controlling result (1/2)

The controlling operand may be the return type
This is known as the constructor pattern

type Root is tagged null record;
function F (V : Integer) return Root;

If the child adds fields, all such subprograms have to be overridden

type Root is tagged null record;
function F (V : Integer) return Root;

type Child is new Root with null record;
-- OK, F is implicitly inherited

type Child1 is new Root with record
X : Integer;

end record;
-- ERROR no implicitly inherited function F

Primitives returning abstract types have to be abstract

type Root is abstract tagged null record;
function F (V : Integer) return Root is abstract;

397 / 578

Polymorphism
Exotic Dispatching Operations

Controlling result (2/2)

Primitives returning tagged types can be used in a static context

type Root is tagged null record;
function F return Root;
type Child is new Root with null record;
function F return Child;
V : Root := F;

In a dynamic context, the type has to be known to correctly
dispatch

V1 : Root'Class := Root'(F); -- Static call to Root primitive
V2 : Root'Class := V1;
V3 : Root'Class := Child'(F); -- Static call to Child primitive
V4 : Root'Class := F; -- What is the tag of V4?
...
V1 := F; -- Dispatching call to Root primitive
V2 := F; -- Dispatching call to Root primitive
V3 := F; -- Dispatching call to Child primitive

No dispatching is possible when returning access types
398 / 578

Polymorphism
Lab

Lab

399 / 578

Polymorphism
Lab

Polymorphism Lab

Requirements
Create a multi-level types hierarchy of shapes

Level 1: Shape → Quadrilateral | Triangle
Level 2: Quadrilateral → Square

Types should have the following primitive operations

Description
Number of sides
Perimeter

Create a main program to print information about multiple shapes

Create a nested subprogram that takes a shape and prints all
relevant information

Hints
Top-level type should be abstract

But can have concrete operations

Nested subprogram in main should take a shape class parameter
400 / 578

Polymorphism
Lab

Polymorphism Lab Solution - Shapes (Spec)
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Shapes is

type Float_T is digits 6;
type Vertex_T is record

X : Float_T;
Y : Float_T;

end record;
type Vertices_T is array (Positive range <>) of Vertex_T;

type Shape_T is abstract tagged record
Description : Unbounded_String;

end record;
function Get_Description (Shape : Shape_T'Class) return String;
function Number_Of_Sides (Shape : Shape_T) return Natural is abstract;
function Perimeter (Shape : Shape_T) return Float_T is abstract;

type Quadrilateral_T is new Shape_T with record
Sides : Vertices_T (1 .. 4);

end record;
function Number_Of_Sides (Shape : Quadrilateral_T) return Natural;
function Perimeter (Shape : Quadrilateral_T) return Float_T;

type Square_T is new Quadrilateral_T with null record;
function Perimeter (Shape : Square_T) return Float_T;

type Triangle_T is new Shape_T with record
Sides : Vertices_T (1 .. 3);

end record;
function Number_Of_Sides (Shape : Triangle_T) return Natural;
function Perimeter (Shape : Triangle_T) return Float_T;

end Shapes;

401 / 578

Polymorphism
Lab

Polymorphism Lab Solution - Shapes (Body)
with Ada.Numerics.Generic_Elementary_Functions;
package body Shapes is

package Math is new Ada.Numerics.Generic_Elementary_Functions (Float_T);

function Distance (Vertex1 : Vertex_T;
Vertex2 : Vertex_T)
return Float_T is

(Math.Sqrt ((Vertex1.X - Vertex2.X)**2 + (Vertex1.Y - Vertex2.Y)**2));

function Perimeter (Vertices : Vertices_T) return Float_T is
Ret_Val : Float_T := 0.0;

begin
for I in Vertices'First .. Vertices'Last - 1 loop

Ret_Val := Ret_Val + Distance (Vertices (I), Vertices (I + 1));
end loop;
Ret_Val := Ret_Val + Distance (Vertices (Vertices'Last), Vertices (Vertices'First));
return Ret_Val;

end Perimeter;

function Get_Description (Shape : Shape_T'Class) return String is (To_String (Shape.Description));

function Number_Of_Sides (Shape : Quadrilateral_T) return Natural is (4);
function Perimeter (Shape : Quadrilateral_T) return Float_T is (Perimeter (Shape.Sides));

function Perimeter (Shape : Square_T) return Float_T is (4.0 * Distance (Shape.Sides (1), Shape.Sides (2)));

function Number_Of_Sides (Shape : Triangle_T) return Natural is (3);
function Perimeter (Shape : Triangle_T) return Float_T is (Perimeter (Shape.Sides));

end Shapes;

402 / 578

Polymorphism
Lab

Polymorphism Lab Solution - Main
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_IO; use Ada.Text_IO;
with Shapes; use Shapes;
procedure Main is

Rectangle : constant Shapes.Quadrilateral_T :=
(Description => To_Unbounded_String ("rectangle"),
Sides => ((0.0, 10.0), (0.0, 20.0), (1.0, 20.0), (1.0, 10.0)));

Triangle : constant Shapes.Triangle_T :=
(Description => To_Unbounded_String ("triangle"),
Sides => ((0.0, 0.0), (0.0, 3.0), (4.0, 0.0)));

Square : constant Shapes.Square_T :=
(Description => To_Unbounded_String ("square"),
Sides => ((0.0, 1.0), (0.0, 2.0), (1.0, 2.0), (1.0, 1.0)));

procedure Describe (Shape : Shapes.Shape_T'Class) is
begin

Put_Line (Shape.Get_Description);
if Shape not in Shapes.Shape_T then

Put_Line (" Number of sides:" & Integer'Image (Shape.Number_Of_Sides));
Put_Line (" Perimeter:" & Shapes.Float_T'Image (Shape.Perimeter));

end if;
end Describe;

begin

Describe (Rectangle);
Describe (Triangle);
Describe (Square);

end Main;

403 / 578

Polymorphism
Summary

Summary

404 / 578

Polymorphism
Summary

Summary

’Class operator
Allows subprograms to be used for multiple versions of a type

Dispatching
Abstract types require concrete versions

Abstract subprograms allow template definitions

Need an implementation for each abstract type referenced

Run-time call dispatch vs compile-time call dispatching
Compiler resolves appropriate call where it can
Run-time resolves appropriate call where it can
If not resolved, exception

405 / 578

Multiple Inheritance

Multiple Inheritance

406 / 578

Multiple Inheritance
Introduction

Introduction

407 / 578

Multiple Inheritance
Introduction

Multiple Inheritance Is Forbidden In Ada

There are potential conflicts with multiple inheritance
Some languages allow it: ambiguities have to be resolved when
entities are referenced
Ada forbids it to improve integration

type Graphic is tagged record
X, Y : Float;

end record;
function Get_X (V : Graphic) return Float;

type Shape is tagged record
X, Y : Float;

end record;
function Get_X (V : Shape) return Float;

type Displayable_Shape is new Shape and Graphic with ...
408 / 578

Multiple Inheritance
Introduction

Multiple Inheritance - Safe Case

If only one type has concrete operations and fields, this is fine

type Graphic is abstract tagged null record;
function Get_X (V : Graphic) return Float is abstract;

type Shape is tagged record
X, Y : Float;

end record;
function Get_X (V : Shape) return Float;

type Displayable_Shape is new Shape and Graphic with ...

This is the definition of an interface (as in Java)

type Graphic is interface;
function Get_X (V : Graphic) return Float is abstract;

type Shape is tagged record
X, Y : Float;

end record;
function Get_X (V : Shape) return Float;

type Displayable_Shape is new Shape and Graphic with ...
409 / 578

Multiple Inheritance
Interfaces

Interfaces

410 / 578

Multiple Inheritance
Interfaces

Interfaces - Rules

An interface is a tagged type marked interface, containing
Abstract primitives
Null primitives
No fields

Null subprograms provide default empty bodies to primitives that
can be overridden

type I is interface;
procedure P1 (V : I) is abstract;
procedure P2 (V : access I) is abstract
function F return I is abstract;
procedure P3 (V : I) is null;

Note: null can be applied to any procedure (not only used for
interfaces)

411 / 578

Multiple Inheritance
Interfaces

Interface Derivation
An interface can be derived from another interface, adding
primitives

type I1 is interface;
procedure P1 (V : I) is abstract;
type I2 is interface and I1;
Procedure P2 (V : I) is abstract;

A tagged type can derive from several interfaces and can derive
from one interface several times

type I1 is interface;
type I2 is interface and I1;
type I3 is interface;

type R is new I1 and I2 and I3 ...

A tagged type can derive from a single tagged type and several
interfaces

type I1 is interface;
type I2 is interface and I1;
type R1 is tagged null record;

type R2 is new R1 and I1 and I2 ...
412 / 578

Multiple Inheritance
Interfaces

Interfaces And Privacy

If the partial view of the type is tagged, then both the partial and
the full view must expose the same interfaces

package Types is

type I1 is interface;
type R is new I1 with private;

private

type R is new I1 with record ...

413 / 578

Multiple Inheritance
Interfaces

Limited Tagged Types And Interfaces

When a tagged type is limited in the hierarchy, the whole hierarchy
has to be limited

Conversions to interfaces are "just conversions to a view"
A view may have more constraints than the actual object

limited interfaces can be implemented by BOTH limited types
and non-limited types

Non-limited interfaces have to be implemented by non-limited
types

414 / 578

Multiple Inheritance
Lab

Lab

415 / 578

Multiple Inheritance
Lab

Multiple Inheritance Lab

Requirements
Create a tagged type to define shapes

Possible components could include location of shape

Create an interface to draw lines

Possible accessor functions could include line color and width

Create a new type inheriting from both of the above for a
"printable object"

Implement a way to print the object using Ada.Text_IO
Does not have to be fancy!

Create a "printable object" type to draw something (rectangle,
triangle, etc)

Hints
This example is taken from Barnes’ Programming in Ada 2012
Section 21.2

416 / 578

Multiple Inheritance
Lab

Inheritance Lab Solution - Data Types
package Base_Types is

type Coordinate_T is record
X_Coord : Integer;
Y_Coord : Integer;

end record;

type Line_T is array (1 .. 2) of Coordinate_T;
-- convert Line_T so lowest X value is first
function Ordered (Line : Line_T) return Line_T;
type Lines_T is array (Natural range <>) of Line_T;

type Color_Range_T is mod 255;
type Color_T is record

Red : Color_Range_T;
Green : Color_Range_T;
Blue : Color_Range_T;

end record;

private
function Ordered (Line : Line_T) return Line_T is

(if Line (1).X_Coord > Line (2).X_Coord then (Line (2), Line (1)) else Line);
end Base_Types;

417 / 578

Multiple Inheritance
Lab

Inheritance Lab Solution - Shapes

with Base_Types;
package Geometry is

type Object_T is abstract tagged private;

private
type Object_T is abstract tagged record

Origin : Base_Types.Coordinate_T;
end record;
function Origin (Object : Object_T'Class)

return Base_Types.Coordinate_T is
(Object.Origin);

end Geometry;

418 / 578

Multiple Inheritance
Lab

Inheritance Lab Solution - Drawing (Spec)

with Base_Types;
package Line_Draw is

type Object_T is interface;
procedure Set_Color (Object : in out Object_T;

Color : Base_Types.Color_T)
is abstract;

function Color (Object : Object_T)
return Base_Types.Color_T
is abstract;

procedure Set_Pen (Object : in out Object_T;
Size : Positive)
is abstract;

function Pen (Object : Object_T)
return Positive
is abstract;

function Convert (Object : Object_T)
return Base_Types.Lines_T
is abstract;

procedure Print (Object : Object_T'Class);
end Line_Draw;

419 / 578

Multiple Inheritance
Lab

Inheritance Lab Solution - Drawing (Body)
with Ada.Text_IO;
with Line_Draw.Graph;
package body Line_Draw is

procedure Fill_Matrix (Matrix : in out Graph.Matrix_T;
Line : in Base_Types.Line_T) is

M, B : Float;
Vertical : Boolean;

begin
Graph.Find_Slope_And_Intercept (Line, M, B, Vertical);
if Vertical then

for Y in Integer'Min (Line (1).Y_Coord, Line (2).Y_Coord) ..
Integer'Max (Line (1).Y_Coord, Line (2).Y_Coord) loop

Matrix (Line (1).X_Coord, Y) := 'X';
end loop;

elsif Graph.Rise (Line) > Graph.Run (Line) then
Graph.Fill_Matrix_Vary_Y (Matrix, Line, M, B);

else
Graph.Fill_Matrix_Vary_X (Matrix, Line, M, B);

end if;
end Fill_Matrix;

procedure Print (Object : Object_T'Class) is
Lines : constant Base_Types.Lines_T := Object.Convert;
Max_X, Max_Y : Integer := Integer'First;
Min_X, Min_Y : Integer := Integer'Last;

begin
for Line of Lines loop

for Coord of Line loop
Max_X := Integer'Max (Max_X, Coord.X_Coord);
Min_X := Integer'Min (Min_X, Coord.X_Coord);
Max_Y := Integer'Max (Max_Y, Coord.Y_Coord);
Min_Y := Integer'Min (Min_Y, Coord.Y_Coord);

end loop;
end loop;
declare

Matrix : Graph.Matrix_T (Min_X .. Max_X, Min_Y .. Max_Y) := (others => (others => ' '));
begin

for Line of Lines loop
Fill_Matrix (Matrix, Base_Types.Ordered (Line));

end loop;
for Y in Matrix'Range (2) loop

for X in Matrix'Range (1) loop
Ada.Text_IO.Put (Matrix (X, Y));

end loop;
Ada.Text_IO.New_Line;

end loop;
end;

end Print;
end Line_Draw;

420 / 578

Multiple Inheritance
Lab

Inheritance Lab Solution - Graphics (Spec)
package Line_Draw.Graph is

type Matrix_T is array (Integer range <>, Integer range <>) of Character;

procedure Find_Slope_And_Intercept
(Line : in Base_Types.Line_T;
M : out Float;
B : out Float;
Vertical : out Boolean);

function Rise (Line : Base_Types.Line_T) return Float;
function Run (Line : Base_Types.Line_T) return Float;

procedure Fill_Matrix_Vary_X
(Matrix : in out Matrix_T;
Line : in Base_Types.Line_T;
M : in Float;
B : in Float);

procedure Fill_Matrix_Vary_Y
(Matrix : in out Matrix_T;
Line : in Base_Types.Line_T;
M : in Float;
B : in Float);

end Line_Draw.Graph;
421 / 578

Multiple Inheritance
Lab

Inheritance Lab Solution - Graphics (Body)
package body Line_Draw.Graph is

function Rise (Line : Base_Types.Line_T) return Float is
(Float (Line (2).Y_Coord - Line (1).Y_Coord));

function Run (Line : Base_Types.Line_T) return Float is
(Float (Line (2).X_Coord - Line (1).X_Coord));

procedure Fill_Matrix_Vary_Y (Matrix : in out Matrix_T;
Line : in Base_Types.Line_T;
M : in Float;
B : in Float) is
X : Integer;

begin
for Y in Line (1).Y_Coord .. Line (2).Y_Coord loop

X := Integer ((Float (Y) - B) / M);
Matrix (X, Y) := 'X';

end loop;
end Fill_Matrix_Vary_Y;

procedure Fill_Matrix_Vary_X (Matrix : in out Matrix_T;
Line : in Base_Types.Line_T;
M : in Float;
B : in Float) is

Y : Integer;
begin

for X in Line (1).X_Coord .. Line (2).X_Coord loop
Y := Integer (M * Float (X) + B);
Matrix (X, Y) := 'X';

end loop;
end Fill_Matrix_Vary_X;

procedure Find_Slope_And_Intercept (Line : in Base_Types.Line_T;
M : out Float;
B : out Float;
Vertical : out Boolean) is

begin
if Run (Line) = 0.0 then

M := 0.0;
B := 0.0;
Vertical := True;

else
M := Rise (Line) / Run (Line);
B := Float (Line (1).Y_Coord) - M * Float (Line (1).X_Coord);
Vertical := False;

end if;
end Find_Slope_And_Intercept;

end Line_Draw.Graph;

422 / 578

Multiple Inheritance
Lab

Inheritance Lab Solution - Printable Object
with Geometry;
with Line_Draw;
with Base_Types;
package Printable_Object is

type Object_T is abstract new Geometry.Object_T and Line_Draw.Object_T with private;
procedure Set_Color (Object : in out Object_T;

Color : Base_Types.Color_T);
function Color (Object : Object_T) return Base_Types.Color_T;
procedure Set_Pen (Object : in out Object_T;

Size : Positive);
function Pen (Object : Object_T) return Positive;

private
type Object_T is abstract new Geometry.Object_T and Line_Draw.Object_T with
record

Color : Base_Types.Color_T := (0, 0, 0);
Pen_Size : Positive := 1;

end record;
end Printable_Object;

package body Printable_Object is

procedure Set_Color (Object : in out Object_T;
Color : Base_Types.Color_T) is

begin
Object.Color := Color;

end Set_Color;
function Color (Object : Object_T) return Base_Types.Color_T is (Object.Color);

procedure Set_Pen (Object : in out Object_T;
Size : Positive) is

begin
Object.Pen_Size := Size;

end Set_Pen;
function Pen (Object : Object_T) return Positive is (Object.Pen_Size);

end Printable_Object;

423 / 578

Multiple Inheritance
Lab

Inheritance Lab Solution - Rectangle
with Base_Types;
with Printable_Object;
package Rectangle is

subtype Lines_T is Base_Types.Lines_T (1 .. 4);
type Object_T is new Printable_Object.Object_T with private;
procedure Set_Lines (Object : in out Object_T;

Lines : Lines_T);
function Lines (Object : Object_T) return Lines_T;

private
type Object_T is new Printable_Object.Object_T with record

Lines : Lines_T;
end record;
function Convert (Object : Object_T) return Base_Types.Lines_T is

(Object.Lines);
end Rectangle;

package body Rectangle is
procedure Set_Lines (Object : in out Object_T;

Lines : Lines_T) is
begin

Object.Lines := Lines;
end Set_Lines;

function Lines (Object : Object_T) return Lines_T is (Object.Lines);
end Rectangle;

424 / 578

Multiple Inheritance
Lab

Inheritance Lab Solution - Main

with Base_Types;
with Rectangle;
procedure Main is

Object : Rectangle.Object_T;
Line1 : constant Base_Types.Line_T := ((1, 1), (1, 10));
Line2 : constant Base_Types.Line_T := ((6, 6), (6, 15));
Line3 : constant Base_Types.Line_T := ((1, 1), (6, 6));
Line4 : constant Base_Types.Line_T := ((1, 10), (6, 15));

begin
Object.Set_Lines ((Line1, Line2, Line3, Line4));
Object.Print;

end Main;

425 / 578

Multiple Inheritance
Summary

Summary

426 / 578

Multiple Inheritance
Summary

Summary

Interfaces must be used for multiple inheritance
Usually combined with tagged types, but not necessary
By using only interfaces, only accessors are allowed

Typically there are other ways to do the same thing
In our example, the conversion routine could be common to simplify
things

But interfaces force the compiler to determine when operations are
missing

427 / 578

Advanced Exceptions

Advanced Exceptions

428 / 578

Advanced Exceptions
Introduction

Introduction

429 / 578

Advanced Exceptions
Introduction

Advanced Usages

Language-defined exceptions raising cases

Re-raising

Raising and handling from elaboration

Manipulating an exception with identity
Re-raising
Copying

430 / 578

Advanced Exceptions
Handlers

Handlers

431 / 578

Advanced Exceptions
Handlers

Exceptions Raised In Exception Handlers

Go immediately to caller
unless also handled
Goes to caller in any case, as
usual

begin
...

exception
when Some_Error =>

declare
New_Data : Some_Type;

begin
P(New_Data);
...

exception
when ...

end;
end;

432 / 578

Advanced Exceptions
Language-Defined Exceptions

Language-Defined Exceptions

433 / 578

Advanced Exceptions
Language-Defined Exceptions

Constraint_Error

Caused by violations of constraints on range, index, etc.

The most common exceptions encountered

K : Integer range 1 .. 10;
...
K := -1;

L : array (1 .. 100) of Some_Type;
...
L (400) := SomeValue;

434 / 578

Advanced Exceptions
Language-Defined Exceptions

Program_Error

When runtime control structure is violated
Elaboration order errors and function bodies

When implementation detects bounded errors
Discussed momentarily

function F return Some_Type is
begin

if something then
return Some_Value;

end if; -- program error - no return statement
end F;

435 / 578

Advanced Exceptions
Language-Defined Exceptions

Storage_Error

When insufficient storage is available

Potential causes
Declarations
Explicit allocations
Implicit allocations

Data : array (1..1e20) of Big_Type;

436 / 578

Advanced Exceptions
Language-Defined Exceptions

Explicitly-Raised Exceptions

Raised by application via
raise statements

Named exception becomes
active

Syntax
raise_statement ::= raise; |

raise exception_name
[with string_expression];

with string_expression
only available in Ada 2005
and later

A raise by itself is only
allowed in handlers (more
later)

if Unknown (User_ID) then
raise Invalid_User;

end if;

if Unknown (User_ID) then
raise Invalid_User

with "Attempt by " &
Image (User_ID);

end if;

437 / 578

Advanced Exceptions
Propagation

Propagation

438 / 578

Advanced Exceptions
Propagation

Partially Handling Exceptions

Handler eventually re-raises
the current exception
Achieved using raise by
itself, since re-raising

Current active exception is
then propagated to caller

procedure Joy_Ride is
...

begin
while not Bored loop

Steer_Aimlessly (Bored);
Consume_Fuel (Hot_Rod);

end loop;
exception

when Fuel_Exhausted =>
Pull_Over;
raise; -- no gas available

end Joy_Ride;

439 / 578

Advanced Exceptions
Propagation

Typical Partial Handling Example

Log (or display) the error and re-raise to caller
Same exception or another one

procedure Get (Item : out Integer; From : in File) is
begin

Ada.Integer_Text_IO.Get (From, Item);
exception

when Ada.Text_IO.End_Error =>
Display_Error ("Attempted read past end of file");
raise Error;

when Ada.Text_IO.Mode_Error =>
Display_Error ("Read from file opened for writing");
raise Error;

when Ada.Text_IO.Status_Error =>
Display_Error ("File must be opened prior to use");
raise Error;

when others =>
Display_Error ("Error in Get(Integer) from file");
raise;

end Get;
440 / 578

Advanced Exceptions
Propagation

Exceptions Raised During Elaboration

I.e., those occurring before the begin

Go immediately to the caller

No handlers in that frame are applicable
Could reference declarations that failed to elaborate!

procedure P (Output : out BigType) is
-- storage error handled by caller
N : array (Positive) of BigType;
...

begin
...

exception
when Storage_Error =>

-- failure to define N not handled here
Output := N (1); -- if it was, this wouldn't work
...

end P;
441 / 578

Advanced Exceptions
Propagation

Handling Elaboration Exceptions

procedure Test is
procedure P is

X : Positive := 0; -- Constraint_Error!
begin

...
exception

when Constraint_Error =>
Ada.Text_IO.Put_Line ("Got it in P");

end P;
begin

P;
exception

when Constraint_Error =>
Ada.Text_IO.Put_Line ("Got Constraint_Error in Test");

end Test;
442 / 578

Advanced Exceptions
Propagation

Quiz
with Ada.Text_IO; use Ada.Text_IO;
procedure Exception_Test (Input_Value : Integer) is

Known_Problem : exception;
function F (P : Integer) return Integer is
begin

if P > 0 then
return P * P;

end if;
exception

when others => raise Known_Problem;
end F;
procedure P (X : Integer) is

A : array (1 .. F (X)) of Float;
begin

A := (others => 0.0);
exception

when others => raise Known_Problem;
end P;

begin
P (Input_Value);
Put_Line ("Success");

exception
when Known_Problem => Put_Line ("Known problem");
when others => Put_Line ("Unknown problem");

end Exception_Test;

What will get printed for these values of Input_Value?

A. Integer’Last

Known Problem

B. Integer’First

Unknown Problem

C. 10000

Unknown Problem

D. 100

Success

Explanations

A → When F is called with a large P, its own exception handler
captures the exception and raises Constraint_Error (which the main
exception handler processes)

B/C → When the creation of A fails (due to Program_Error from
passing F a negative number or Storage_Error from passing F a large
number), then P raises an exception during elaboration, which is
propagated to Main

443 / 578

Advanced Exceptions
Propagation

Quiz
with Ada.Text_IO; use Ada.Text_IO;
procedure Exception_Test (Input_Value : Integer) is

Known_Problem : exception;
function F (P : Integer) return Integer is
begin

if P > 0 then
return P * P;

end if;
exception

when others => raise Known_Problem;
end F;
procedure P (X : Integer) is

A : array (1 .. F (X)) of Float;
begin

A := (others => 0.0);
exception

when others => raise Known_Problem;
end P;

begin
P (Input_Value);
Put_Line ("Success");

exception
when Known_Problem => Put_Line ("Known problem");
when others => Put_Line ("Unknown problem");

end Exception_Test;

What will get printed for these values of Input_Value?

A. Integer’Last Known Problem
B. Integer’First Unknown Problem
C. 10000 Unknown Problem
D. 100 Success

Explanations

A → When F is called with a large P, its own exception handler
captures the exception and raises Constraint_Error (which the main
exception handler processes)

B/C → When the creation of A fails (due to Program_Error from
passing F a negative number or Storage_Error from passing F a large
number), then P raises an exception during elaboration, which is
propagated to Main

443 / 578

Advanced Exceptions
Exceptions as Objects

Exceptions as Objects

444 / 578

Advanced Exceptions
Exceptions as Objects

Exceptions Scope

Some differences for scope and visibility
May be propagated out of scope

Hidden predefined exceptions are still available

Are not dynamically allocated (unlike variables)

A rarely-encountered issue involving recursion

445 / 578

Advanced Exceptions
Exceptions as Objects

Example Propagation Beyond Scope

package P is
procedure Q;

end P;
package body P is

Error : exception;
procedure Q is
begin

...
raise Error;

end Q;
end P;

with P;
procedure Client is
begin

P.Q;
exception

-- not visible
when P.Error =>

...
-- captured here
when others =>

...
end Client;

446 / 578

Advanced Exceptions
Exceptions as Objects

User Subprogram Parameter Example

with Ada.Exceptions; use Ada.Exceptions;
procedure Display_Exception

(Error : in Exception_Occurrence)
is

Msg : constant String := Exception_Message (Error);
Info : constant String := Exception_Information (Error);

begin
New_Line;
if Info /= "" then

Put ("Exception information => ");
Put_Line (Info);

elsif Msg /= "" then
Put ("Exception message => ");
Put_Line (Msg);

else
Put ("Exception name => ");
Put_Line (Exception_Name (Error));

end if;
end Display_Exception;

447 / 578

Advanced Exceptions
Exceptions as Objects

Exception Identity

Attribute ’Identity converts exceptions to the type

package Ada.Exceptions is
...
type Exception_Id is private;
...
procedure Raise_Exception(E : in Exception_Id;

Message : in String := "");
...

end Ada.Exceptions;

Primary use is raising exceptions procedurally

Foo : exception;
...
Ada.Exceptions.Raise_Exception (Foo'Identity,

Message => "FUBAR!");
448 / 578

Advanced Exceptions
Exceptions as Objects

Re-Raising Exceptions Procedurally

Typical raise mechanism

begin
...

exception
when others =>

Cleanup;
raise;

end;

Procedural raise mechanism

begin
...

exception
when X : others =>

Cleanup;
Ada.Exceptions.Reraise_Occurrence (X);

end;
449 / 578

Advanced Exceptions
Exceptions as Objects

Copying Exception_Occurrence Objects

Via procedure Save_Occurrence
No assignment operation since is a limited type

Error : Exception_Occurrence;

begin
...

exception
when X : others =>

Cleanup;
Ada.Exceptions.Save_Occurrence (X, Target => Error);

end;

450 / 578

Advanced Exceptions
Exceptions as Objects

Re-Raising Outside Dynamic Call Chain
procedure Demo is

package Exceptions is new
Limited_Ended_Lists (Exception_Occurrence,

Save_Occurrence);
Errors : Exceptions.List;
Iteration : Exceptions.Iterator;
procedure Normal_Processing

(Troubles : in out Exceptions.List) is ...
begin

Normal_Processing (Errors);
Iteration.Initialize (Errors);
while Iteration.More loop

declare
Next_Error : Exception_Occurrence;

begin
Iteration.Read (Next_Error);
Put_Line (Exception_Information (Next_Error));
if Exception_Identity (Next_Error) =

Trouble.Fatal_Error'Identity
then

Reraise_Occurrence (Next_Error);
end if;

end;
end loop;
Put_Line ("Done");

end Demo;

451 / 578

Advanced Exceptions
In Practice

In Practice

452 / 578

Advanced Exceptions
In Practice

Fulfill Interface Promises To Clients
If handled and not re-raised, normal processing continues at point
of client’s call
Hence caller expectations must be satisfied

procedure Get (Reading : out Sensor_Reading) is
begin

...
Reading := New_Value;
...

exceptions
when Some_Error =>

Reading := Default_Value;
end Get;

function Foo return Some_Type is
begin

...
return Determined_Value;
...

exception
when Some_Error =>

return Default_Value; -- error if this isn't here
end Foo;

453 / 578

Advanced Exceptions
In Practice

Allow Clients To Avoid Exceptions

Callee

package Stack is
Overflow : exception;
Underflow : exception;
function Full return Boolean;
function Empty return Boolean;
procedure Push (Item : in Some_Type);
procedure Pop (Item : out Some_Type);

end Stack;

Caller

if not Stack.Empty then
Stack.Pop(...); -- will not raise Underflow

454 / 578

Advanced Exceptions
In Practice

You Can Suppress Run-Time Checks

Syntax (could use a compiler switch instead)

pragma Suppress (check-name [, [On =>] name]);

Language-defined checks emitted by compiler

Compiler may ignore request if unable to comply

Behavior will be unpredictable if exceptions occur
Raised within the region of suppression
Propagated into region of suppression

pragma Suppress (Range_Check);
pragma Suppress (Index_Check, On => Table);

455 / 578

Advanced Exceptions
In Practice

Error Classifications

Some errors must be detected at run-time
Corresponding to the predefined exceptions

Bounded Errors
Need not be detected prior to/during execution if too hard

If not detected, range of possible effects is bounded

Possible effects are specified per error

Example: evaluating an un-initialized scalar variable

It might "work"!

Erroneous Execution
Need not be detected prior to/during execution if too hard
If not detected, range of possible effects is not bounded
Example: Occurrence of a suppressed check

456 / 578

Advanced Exceptions
Lab

Lab

457 / 578

Advanced Exceptions
Lab

Advanced Exceptions Lab

(Simplified) Calculator

Overview
Create an application that allows users to enter a simple calculation
and get a result

Goal
Application should allow user to add, subtract, multiply, and divide
We want to track exceptions without actually "interrupting" the
application
When the user has finished entering data, the application should
report the errors found

458 / 578

Advanced Exceptions
Lab

Project Requirements

Exception Tracking
Input errors should be flagged (e.g. invalid operator, invalid
numbers)
Divide by zero should be it’s own special case exception
Operational errors (overflow, etc) should be flagged in the list of
errors

Driver
User should be able to enter a string like "1 + 2" and the program
will print "3"
User should not be interrupted by error messages
When user is done entering data, print all errors (raised exceptions)

Extra Credit
Allow multiple operations on a line

459 / 578

Advanced Exceptions
Lab

Advanced Exceptions Lab Solution - Calculator (Spec)

package Calculator is
Formatting_Error : exception;
Divide_By_Zero : exception;
type Integer_T is range -1_000 .. 1_000;
function Add

(Left, Right : String)
return Integer_T;

function Subtract
(Left, Right : String)
return Integer_T;

function Multiply
(Left, Right : String)
return Integer_T;

function Divide
(Top, Bottom : String)
return Integer_T;

end Calculator;
460 / 578

Advanced Exceptions
Lab

Advanced Exceptions Lab Solution - Main
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_IO; use Ada.Text_IO;
with Calculator; use Calculator;
with Debug_Pkg;
with Input; use Input;
procedure Main is

Illegal_Operator : exception;
procedure Parser

(Str : String;
Left : out Unbounded_String;
Operator : out Unbounded_String;
Right : out Unbounded_String) is
I : Integer := Str'first;

begin
while I <= Str'length and then Str (I) /= ' ' loop

Left := Left & Str (I);
I := I + 1;

end loop;
while I <= Str'length and then Str (I) = ' ' loop

I := I + 1;
end loop;
while I <= Str'length and then Str (I) /= ' ' loop

Operator := Operator & Str (I);
I := I + 1;

end loop;
while I <= Str'length and then Str (I) = ' ' loop

I := I + 1;
end loop;
while I <= Str'length and then Str (I) /= ' ' loop

Right := Right & Str (I);
I := I + 1;

end loop;
end Parser;

begin
loop

declare
Left, Operator, Right : Unbounded_String;
Input : constant String := Get_String ("Sequence");

begin
exit when Input'length = 0;
Parser (Input, Left, Operator, Right);
case Element (Operator, 1) is

when '+' =>
Put_Line

(" => " &
Integer_T'image (Add (To_String (Left), To_String (Right))));

when '-' =>
Put_Line

(" => " &
Integer_T'image

(Subtract (To_String (Left), To_String (Right))));
when '*' =>

Put_Line
(" => " &
Integer_T'image

(Multiply (To_String (Left), To_String (Right))));
when '/' =>

Put_Line
(" => " &
Integer_T'image

(Divide (To_String (Left), To_String (Right))));
when others =>

raise Illegal_Operator;
end case;

exception
when The_Err : others =>

Debug_Pkg.Save_Occurrence (The_Err);
end;

end loop;
Debug_Pkg.Print_Exceptions;

end Main;

461 / 578

Advanced Exceptions
Lab

Advanced Exceptions Lab Solution - Calculator (Body)
package body Calculator is

function Value
(Str : String)
return Integer_T is

begin
return Integer_T'value (Str);

exception
when Constraint_Error =>

raise Formatting_Error;
end Value;
function Add

(Left, Right : String)
return Integer_T is

begin
return Value (Left) + Value (Right);

end Add;
function Subtract

(Left, Right : String)
return Integer_T is

begin
return Value (Left) - Value (Right);

end Subtract;
function Multiply

(Left, Right : String)
return Integer_T is

begin
return Value (Left) * Value (Right);

end Multiply;
function Divide

(Top, Bottom : String)
return Integer_T is

begin
if Value (Bottom) = 0 then

raise Divide_By_Zero;
else

return Value (Top) / Value (Bottom);
end if;

end Divide;
end Calculator;

462 / 578

Advanced Exceptions
Lab

Advanced Exceptions Lab Solution - Debug
with Ada.Exceptions;
package Debug_Pkg is

procedure Save_Occurrence (X : Ada.Exceptions.Exception_Occurrence);
procedure Print_Exceptions;

end Debug_Pkg;

with Ada.Exceptions;
with Ada.Text_IO;
use type Ada.Exceptions.Exception_Id;
package body Debug_Pkg is

Exceptions : array (1 .. 100) of Ada.Exceptions.Exception_Occurrence;
Next_Available : Integer := 1;
procedure Save_Occurrence (X : Ada.Exceptions.Exception_Occurrence) is
begin

Ada.Exceptions.Save_Occurrence (Exceptions (Next_Available), X);
Next_Available := Next_Available + 1;

end Save_Occurrence;
procedure Print_Exceptions is
begin

for I in 1 .. Next_Available - 1 loop
declare

E : Ada.Exceptions.Exception_Occurrence renames Exceptions (I);
Flag : Character := ' ';

begin
if Ada.Exceptions.Exception_Identity (E) =

Constraint_Error'identity
then

Flag := '*';
end if;
Ada.Text_IO.Put_Line

(Flag & " " & Ada.Exceptions.Exception_Information (E));
end;

end loop;
end Print_Exceptions;

end Debug_Pkg;

463 / 578

Advanced Exceptions
Summary

Summary

464 / 578

Advanced Exceptions
Summary

Summary

Re-raising exceptions is possible

Suppressing checks is allowed but requires care
Testing only proves presence of errors, not absence
Exceptions may occur anyway, with unpredictable effects

465 / 578

Advanced Tasking

Advanced Tasking

466 / 578

Advanced Tasking
Introduction

Introduction

467 / 578

Advanced Tasking
Introduction

A Simple Task

Parallel code execution via task

limited types (No copies allowed)

procedure Main is
task T;
task body T is
begin

loop
delay 1.0;
Put_Line ("T");

end loop;
end T;

begin
loop

delay 1.0;
Put_Line ("Main");

end loop;
end;

A task is started when its declaration scope is elaborated

Its enclosing scope exits when all tasks have finished
468 / 578

Advanced Tasking
Introduction

Two Synchronization Models

Active
Rendezvous
Client / Server model
Server entries
Client entry calls

Passive
Protected objects model
Concurrency-safe semantics

469 / 578

Advanced Tasking
Tasks

Tasks

470 / 578

Advanced Tasking
Tasks

Rendezvous Definitions
Server declares several entry

Client calls entries like subprograms

Server accept the client calls

At each standalone accept, server task blocks
Until a client calls the related entry

task type Msg_Box_T is
entry Start;
entry Receive_Message (S : String);

end Msg_Box_T;

task body Msg_Box_T is
begin

loop
accept Start;
Put_Line ("start");

accept Receive_Message (S : String) do
Put_Line (S);

end Receive_Message;
end loop;

end Msg_Box_T;
471 / 578

Advanced Tasking
Tasks

Rendezvous Entry Calls

Upon calling an entry, client blocks
Until server reaches end of its accept block

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
T.Receive_Message ("2");

May be executed as follows:

calling start
start -- May switch place with line below
calling receive 1 -- May switch place with line above
Receive 1
calling receive 2
-- Blocked until another task calls Start

472 / 578

Advanced Tasking
Tasks

Accepting a Rendezvous

accept statement
Wait on single entry
If entry call waiting: Server handles it
Else: Server waits for an entry call

select statement
Several entries accepted at the same time
Can time-out on the wait
Can be not blocking if no entry call waiting
Can terminate if no clients can possibly make entry call
Can conditionally accept a rendezvous based on a guard
expression

473 / 578

Advanced Tasking
Tasks

Rendezvous Calls

When calling an entry, the caller waits until the task is ready to
be called

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
-- Locks until somebody calls Start
T.Receive_Message ("2");

Results in an output like:

calling start
start
calling receive 1
Receive 1
calling receive 2

474 / 578

Advanced Tasking
Tasks

Accepting a Rendezvous

Simple accept statement
Used by a server task to indicate a willingness to provide the service
at a given point

Selective accept statement (later in these slides)
Wait for more than one rendezvous at any time
Time-out if no rendezvous within a period of time
Withdraw its offer if no rendezvous is immediately available
Terminate if no clients can possibly call its entries
Conditionally accept a rendezvous based on a guard expression

475 / 578

Advanced Tasking
Tasks

Example: Task - Declaration

package Tasks is

task T is
entry Start;
entry Receive_Message (V : String);

end T;

end Tasks;

476 / 578

Advanced Tasking
Tasks

Example: Task - Body

with Ada.Text_IO; use Ada.Text_IO;

package body Tasks is

task body T is
begin

loop
accept Start do

Put_Line ("Start");
end Start;

accept Receive_Message (V : String) do
Put_Line ("Receive " & V);

end Receive_Message;
end loop;

end T;

end Tasks;
477 / 578

Advanced Tasking
Tasks

Example: Main

with Ada.Text_IO; use Ada.Text_IO;
with Tasks; use Tasks;

procedure Main is
begin

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
-- Locks until somebody calls Start
T.Receive_Message ("2");

end Main;

478 / 578

Advanced Tasking
Tasks

Quiz

task type T is
entry Go;

end T;

task body T is
begin

accept Go do
loop

null;
end loop;

end Go;
end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Runtime error
C. The calling task hangs
D. My_Task hangs

479 / 578

Advanced Tasking
Tasks

Quiz

task type T is
entry Go;

end T;

task body T is
begin

accept Go do
loop

null;
end loop;

end Go;
end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Runtime error
C. The calling task hangs
D. My_Task hangs

479 / 578

Advanced Tasking
Tasks

Quiz

task type T is
entry Go;

end T;

task body T is
begin

accept Go;
loop

null;
end loop;

end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Runtime error
C. The calling task hangs
D. My_Task hangs

480 / 578

Advanced Tasking
Tasks

Quiz

task type T is
entry Go;

end T;

task body T is
begin

accept Go;
loop

null;
end loop;

end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Runtime error
C. The calling task hangs
D. My_Task hangs

480 / 578

Advanced Tasking
Tasks

Quiz

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

task T is
entry Hello;
entry Goodbye;

end T;
task body T is
begin

loop
accept Hello do

Put_Line ("Hello");
end Hello;
accept Goodbye do

Put_Line ("Goodbye");
end Goodbye;

end loop;
Put_Line ("Finished");

end T;
begin

T.Hello;
T.Goodbye;
Put_Line ("Done");

end Main;

What is the output of this
program?
A. Hello, Goodbye, Finished,

Done
B. Hello, Goodbye, Finished
C. Hello, Goodbye, Done
D. Hello, Goodbye

- Entries Hello and Goodbye are
reached (so "Hello" and
"Goodbye" are printed).
- After Goodbye, task returns to
Main (so "Done" is printed) but
the loop in the task never finishes
(so "Finished" is never printed).

481 / 578

Advanced Tasking
Tasks

Quiz

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

task T is
entry Hello;
entry Goodbye;

end T;
task body T is
begin

loop
accept Hello do

Put_Line ("Hello");
end Hello;
accept Goodbye do

Put_Line ("Goodbye");
end Goodbye;

end loop;
Put_Line ("Finished");

end T;
begin

T.Hello;
T.Goodbye;
Put_Line ("Done");

end Main;

What is the output of this
program?
A. Hello, Goodbye, Finished,

Done
B. Hello, Goodbye, Finished
C. Hello, Goodbye, Done
D. Hello, Goodbye

- Entries Hello and Goodbye are
reached (so "Hello" and
"Goodbye" are printed).
- After Goodbye, task returns to
Main (so "Done" is printed) but
the loop in the task never finishes
(so "Finished" is never printed).

481 / 578

Advanced Tasking
Protected Objects

Protected Objects

482 / 578

Advanced Tasking
Protected Objects

Protected Objects

Multitask-safe accessors to get and set state
No direct state manipulation
No concurrent modifications
limited types (No copies allowed)

483 / 578

Advanced Tasking
Protected Objects

Protected: Functions and Procedures

A function can get the state
Multiple-Readers
Protected data is read-only
Concurrent call to function is allowed
No concurrent call to procedure

A procedure can set the state
Single-Writer
No concurrent call to either procedure or function

In case of concurrency, other callers get blocked
Until call finishes

Support for read-only locks depends on OS
Windows has no support for those
In that case, function are blocking as well

484 / 578

Advanced Tasking
Protected Objects

Protected: Limitations

No potentially blocking action
select, accept, entry call, delay, abort

task creation or activation

Some standard lib operations, eg. IO

Depends on implementation

May raise Program_Error or deadlocks

Will cause performance and portability issues

pragma Detect_Blocking forces a proactive runtime detection

Solve by deferring blocking operations
Using eg. a FIFO

485 / 578

Advanced Tasking
Protected Objects

Protected: Lock-Free Implementation

GNAT-Specific

Generates code without any locks

Best performance

No deadlock possible

Very constrained
No reference to entities outside the scope
No direct or indirect entry, goto, loop, procedure call
No access dereference
No composite parameters
See GNAT RM 2.100

protected Object
with Lock_Free is

486 / 578

Advanced Tasking
Protected Objects

Example: Protected Objects - Declaration

package Protected_Objects is

protected Object is

procedure Set (Prompt : String; V : Integer);
function Get (Prompt : String) return Integer;

private
Local : Integer := 0;

end Object;

end Protected_Objects;

487 / 578

Advanced Tasking
Protected Objects

Example: Protected Objects - Body
with Ada.Text_IO; use Ada.Text_IO;

package body Protected_Objects is

protected body Object is

procedure Set (Prompt : String; V : Integer) is
Str : constant String := "Set " & Prompt & V'Image;

begin
Local := V;
Put_Line (Str);

end Set;

function Get (Prompt : String) return Integer is
Str : constant String := "Get " & Prompt & Local'Image;

begin
Put_Line (Str);
return Local;

end Get;

end Object;

end Protected_Objects;
488 / 578

Advanced Tasking
Protected Objects

Quiz

procedure Main is
protected type O is

entry P;
end O;

protected body O is
entry P when True is
begin

Put_Line ("OK");
end P;

end O;
begin

O.P;
end Main;

What is the result of compiling and running this code?

A. "OK"
B. Nothing
C. Compilation error
D. Runtime error

O is a protected type, needs instantiation

489 / 578

Advanced Tasking
Protected Objects

Quiz

procedure Main is
protected type O is

entry P;
end O;

protected body O is
entry P when True is
begin

Put_Line ("OK");
end P;

end O;
begin

O.P;
end Main;

What is the result of compiling and running this code?

A. "OK"
B. Nothing
C. Compilation error
D. Runtime error

O is a protected type, needs instantiation
489 / 578

Advanced Tasking
Protected Objects

Quiz
protected O is

function Get return Integer;
procedure Set (V : Integer);

private
Val, Access_Count : Integer := 0;

end O;

protected body O is
function Get return Integer is
begin

Access_count := Access_Count + 1;
return Val;

end Get;

procedure Set (V : Integer) is
begin

Access_count := Access_Count + 1;
Val := V;

end Set;
end O;

What is the result of compiling and running this code?

A. No error
B. Compilation error
C. Runtime error

Cannot set Access_Count from a function

490 / 578

Advanced Tasking
Protected Objects

Quiz
protected O is

function Get return Integer;
procedure Set (V : Integer);

private
Val, Access_Count : Integer := 0;

end O;

protected body O is
function Get return Integer is
begin

Access_count := Access_Count + 1;
return Val;

end Get;

procedure Set (V : Integer) is
begin

Access_count := Access_Count + 1;
Val := V;

end Set;
end O;

What is the result of compiling and running this code?

A. No error
B. Compilation error
C. Runtime error

Cannot set Access_Count from a function

490 / 578

Advanced Tasking
Protected Objects

Quiz
protected P is

procedure Initialize (V : Integer);
procedure Increment;
function Decrement return Integer;
function Query return Integer;

private
Object : Integer := 0;

end P;

What of the following completions for P’s members is illegal?

A. procedure Initialize (V : Integer) is
begin

Object := V;
end Initialize;

B. procedure Increment is
begin

Object := Object + 1;
end Increment;

C. function Decrement return Integer is
begin

Object := Object - 1;
return Object;

end Decrement;

D. function Query return Integer is begin
return Object;

end Query;

A. Legal
B. Legal - subprograms do not need parameters
C. Functions in a protected object cannot modify global objects
D. Legal

491 / 578

Advanced Tasking
Protected Objects

Quiz
protected P is

procedure Initialize (V : Integer);
procedure Increment;
function Decrement return Integer;
function Query return Integer;

private
Object : Integer := 0;

end P;

What of the following completions for P’s members is illegal?

A. procedure Initialize (V : Integer) is
begin

Object := V;
end Initialize;

B. procedure Increment is
begin

Object := Object + 1;
end Increment;

C. function Decrement return Integer is
begin

Object := Object - 1;
return Object;

end Decrement;

D. function Query return Integer is begin
return Object;

end Query;

A. Legal
B. Legal - subprograms do not need parameters
C. Functions in a protected object cannot modify global objects
D. Legal

491 / 578

Advanced Tasking
Delays

Delays

492 / 578

Advanced Tasking
Delays

Delay keyword

delay keyword part of tasking
Blocks for a time
Relative: Blocks for at least Duration
Absolute: Blocks until no earlier than Calendar.Time or
Real_Time.Time

with Calendar;

procedure Main is
Relative : Duration := 1.0;
Absolute : Calendar.Time

:= Calendar.Time_Of (2030, 10, 01);
begin

delay Relative;
delay until Absolute;

end Main;
493 / 578

Advanced Tasking
Task and Protected Types

Task and Protected Types

494 / 578

Advanced Tasking
Task and Protected Types

Task Activation

Instantiated tasks start running when activated

On the stack
When enclosing declarative part finishes elaborating

On the heap
Immediately at instantiation

task type First_T is ...
type First_T_A is access all First_T;

task body First_T is ...
...
declare

V1 : First_T;
V2 : First_T_A;

begin -- V1 is activated
V2 := new First_T; -- V2 is activated immediately

495 / 578

Advanced Tasking
Task and Protected Types

Single Declaration

Instantiate an anonymous task (or protected) type
Declares an object of that type

task type Task_T is
entry Start;

end Task_T;

type Task_Ptr_T is access all Task_T;

task body Task_T is
begin

accept Start;
end Task_T;
...

V1 : Task_T;
V2 : Task_Ptr_T;

begin
V1.Start;
V2 := new Task_T;
V2.all.Start;

496 / 578

Advanced Tasking
Task and Protected Types

Task Scope

Nesting is possible in any declarative block

Scope has to wait for tasks to finish before ending

At library level: program ends only when all tasks finish

package P is
task T;

end P;

package body P is
task body T is

loop
delay 1.0;
Put_Line ("tick");

end loop;
end T;

end P;
497 / 578

Advanced Tasking
Task and Protected Types

Waiting On Different Entries

It is convenient to be able to accept several entries

The select statements can wait simultaneously on a list of entries
For task only
It accepts the first one that is requested

select
accept Receive_Message (V : String)
do

Put_Line ("Message : " & String);
end Receive_Message;

or
accept Stop;

exit;
end select;

498 / 578

Advanced Tasking
Task and Protected Types

Example: Protected Objects - Declaration

package Protected_Objects is

protected type Object is
procedure Set (Caller : Character; V : Integer);
function Get return Integer;
procedure Initialize (My_Id : Character);

private

Local : Integer := 0;
Id : Character := ' ';

end Object;

O1, O2 : Object;

end Protected_Objects;
499 / 578

Advanced Tasking
Task and Protected Types

Example: Protected Objects - Body
with Ada.Text_IO; use Ada.Text_IO;

package body Protected_Objects is

protected body Object is

procedure Initialize (My_Id : Character) is
begin

Id := My_Id;
end Initialize;

procedure Set (Caller : Character; V : Integer) is
begin

Local := V;
Put_Line ("Task-" & Caller & " Object-" & Id & " => " & V'Image);

end Set;

function Get return Integer is
begin

return Local;
end Get;

end Object;

end Protected_Objects;
500 / 578

Advanced Tasking
Task and Protected Types

Example: Tasks - Declaration

package Tasks is
task type T is

entry Start
(Id : Character; Initial_1, Initial_2 : Integer);

entry Receive_Message (Delta_1, Delta_2 : Integer);
end T;

T1, T2 : T;
end Tasks;

501 / 578

Advanced Tasking
Task and Protected Types

Example: Tasks - Body

task body T is
My_Id : Character := ' ';
...
accept Start (Id : Character; Initial_1, Initial_2 : Integer) do

My_Id := Id;
O1.Set (My_Id, Initial_1);
O2.Set (My_Id, Initial_2);

end Start;

loop
accept Receive_Message (Delta_1, Delta_2 : Integer) do

declare
New_1 : constant Integer := O1.Get + Delta_1;
New_2 : constant Integer := O2.Get + Delta_2;

begin
O1.Set (My_Id, New_1);
O2.Set (My_Id, New_2);

end;
end Receive_Message;

end loop;
502 / 578

Advanced Tasking
Task and Protected Types

Example: Main

with Tasks; use Tasks;
with Protected_Objects; use Protected_Objects;

procedure Test_Protected_Objects is
begin

O1.Initialize ('X');
O2.Initialize ('Y');
T1.Start ('A', 1, 2);
T2.Start ('B', 1_000, 2_000);
T1.Receive_Message (1, 2);
T2.Receive_Message (10, 20);

-- Ugly...
abort T1;
abort T2;

end Test_Protected_Objects;
503 / 578

Advanced Tasking
Some Advanced Concepts

Some Advanced Concepts

504 / 578

Advanced Tasking
Some Advanced Concepts

Waiting With a Delay

A select statement can wait with a delay

If that delay is exceeded with no entry call, block is executed

The delay until statement can be used as well

There can be multiple delay statements
(useful when the value is not hard-coded)

select
accept Receive_Message (V:String) do

Put_Line ("Message : " & String);
end Receive_Message;

or
delay 50.0;
Put_Line ("Don't wait any longer");
exit;

end select;
505 / 578

Advanced Tasking
Some Advanced Concepts

Calling an Entry With a Delay Protection

A call to entry blocks the task until the entry is accept ’ed
Wait for a given amount of time with select ... delay
Only one entry call is allowed
No accept statement is allowed

task Msg_Box is
entry Receive_Message (V : String);

end Msg_Box;

procedure Main is
begin

select
Msg_Box.Receive_Message ("A");

or
delay 50.0;

end select;
end Main;

506 / 578

Advanced Tasking
Some Advanced Concepts

The Delay Is Not A Timeout

The time spent by the client is actually not bounded
Delay’s timer stops on accept
The call blocks until end of server-side statements

In this example, the total delay is up to 1010 s

task body Msg_Box is
accept Receive_Message (S : String) do

delay 1000.0;
end Receive_Message;

...
procedure Client is
begin

select
Msg_Box.Receive_Message ("My_Message")

or
delay 10.0;

end select;
507 / 578

Advanced Tasking
Some Advanced Concepts

Non-blocking Accept or Entry

Using else

Task skips the accept or entry call if they are not ready to be
entered

On an accept

select
accept Receive_Message (V : String) do

Put_Line ("T: Receive " & V);
end Receive_Message;

else
Put_Line ("T: Nothing received");

end select;

As caller on an entry

select
T.Stop;

else
Put_Line ("No stop");

end select;

delay is not allowed in this case
508 / 578

Advanced Tasking
Some Advanced Concepts

Issues With "Double Non-Blocking"
For accept ... else the server peeks into the queue

Server does not wait

For <entry-call> ... else the caller looks for a waiting
server

If both use it, the entry will never be called

Server

select
accept Receive_Message (V : String) do

Put_Line ("T: Receive " & V);
end Receive_Message;

else
Put_Line ("T: Nothing received");

end select;

Caller

select
T.Receive_Message ("1");

else
Put_Line ("No message sent");

end select;
509 / 578

Advanced Tasking
Some Advanced Concepts

Terminate Alternative

An entry can’t be called anymore if all tasks calling it are over

Handled through or terminate alternative
Terminates the task if all others are terminated
Or are blocked on or terminate themselves

Task is terminated immediately
No additional code executed

select
accept Entry_Point

or
terminate;

end select;

510 / 578

Advanced Tasking
Some Advanced Concepts

Guard Expressions

accept may depend on a guard condition with when

Evaluated when entering select

task body T is
Val : Integer;
Initialized : Boolean := False;

begin
loop

select
accept Put (V : Integer) do

Val := V;
Initialized := True;

end Put;
or

when Initialized =>
accept Get (V : out Integer) do

V := Val;
end Get;

end select;
end loop;

end T;
511 / 578

Advanced Tasking
Some Advanced Concepts

Protected Object Entries

Special kind of protected procedure

May use a barrier, that only allows call on a boolean condition

Barrier is evaluated and may be relieved when
A task calls entry
A protected entry or procedure is exited

Several tasks can be waiting on the same entry

Only one will be re-activated when the barrier is relieved

protected body Stack is
entry Push (V : Integer) when Size < Buffer'Length is
...
entry Pop (V : out Integer) when Size > 0 is
...

end Object;
512 / 578

Advanced Tasking
Some Advanced Concepts

Select On Protected Objects Entries

Same as select but on task entries
With a delay part

select
O.Push (5);

or
delay 10.0;
Put_Line ("Delayed overflow");

end select;

or with an else part

select
O.Push (5);

else
Put_Line ("Overflow");

end select;
513 / 578

Advanced Tasking
Some Advanced Concepts

Queue

Protected entry, procedure, and tasks entry are activated by
one task at a time

Mutual exclusion section

Other tasks trying to enter are queued
In First-In First-Out (FIFO) by default

When the server task terminates, tasks still queued receive
Tasking_Error

514 / 578

Advanced Tasking
Some Advanced Concepts

Queuing Policy

Queuing policy can be set using

pragma Queuing_Policy (<policy_identifier>);

The following policy_identifier are available
FIFO_Queuing (default)
Priority_Queuing

FIFO_Queuing
First-in First-out, classical queue

Priority_Queuing
Takes into account priority
Priority of the calling task at time of call

515 / 578

Advanced Tasking
Some Advanced Concepts

Setting Task Priority

GNAT available priorities are 0 .. 30, see gnat/system.ads
Tasks with the highest priority are prioritized more
Priority can be set statically

task T
with Priority => <priority_level>
is ...

Priority can be set dynamically

with Ada.Dynamic_Priorities;

task body T is
begin

Ada.Dynamic_Priorities.Set_Priority (10);
end T;

516 / 578

Advanced Tasking
Some Advanced Concepts

requeue Instruction

requeue can be called in any entry (task or protected)

Puts the requesting task back into the queue
May be handled by another entry
Or the same one...

Reschedule the processing for later

entry Extract (Qty : Integer) when True is
begin

if not Try_Extract (Qty) then
requeue Extract;

end if;
end Extract;

Same parameter values will be used on the queue
517 / 578

Advanced Tasking
Some Advanced Concepts

requeue Tricks

Only an accepted call can be requeued

Accepted entries are waiting for end

Not in a select ... or delay ... else anymore

So the following means the client blocks for 2 seconds

task body Select_Requeue_Quit is
begin

accept Receive_Message (V : String) do
requeue Receive_Message;

end Receive_Message;
delay 2.0;

end Select_Requeue_Quit;
...
select

Select_Requeue_Quit.Receive_Message ("Hello");
or

delay 0.1;
end select;

518 / 578

Advanced Tasking
Some Advanced Concepts

Abort Statements

abort stops the tasks immediately
From an external caller
No cleanup possible
Highly unsafe - should be used only as last resort

procedure Main is
task T;

task T is
begin

loop
delay 1.0;
Put_Line ("A");

end loop;
end T;

begin
delay 10.0;
abort T;

end;
519 / 578

Advanced Tasking
Some Advanced Concepts

select ... then abort

select can call abort
Can abort anywhere in the processing
Highly unsafe

520 / 578

Advanced Tasking
Some Advanced Concepts

Multiple Select Example

loop
select

accept Receive_Message (V : String) do
Put_Line ("Select_Loop_Task Receive: " & V);

end Receive_Message;
or

accept Send_Message (V : String) do
Put_Line ("Select_Loop_Task Send: " & V);

end Send_Message;
or when Termination_Flag =>

accept Stop;
or

delay 0.5;
Put_Line

("No more waiting at" & Day_Duration'Image (Seconds (Clock)));
exit;

end select;
end loop;

521 / 578

Advanced Tasking
Some Advanced Concepts

Example: Main

with Ada.Text_IO; use Ada.Text_IO;
with Task_Select; use Task_Select;

procedure Main is
begin

Select_Loop_Task.Receive_Message ("1");
Select_Loop_Task.Send_Message ("A");
Select_Loop_Task.Send_Message ("B");
Select_Loop_Task.Receive_Message ("2");
Select_Loop_Task.Stop;

exception
when Tasking_Error =>

Put_Line ("Expected exception: Entry not reached");
end Main;

522 / 578

Advanced Tasking
Some Advanced Concepts

Quiz

task T is
entry E1;
entry E2;

end T;
...
task body Other_Task is
begin

select
T.E1;

or
T.E2;

end select;
end Other_Task;

What is the result of compiling and running this code?

A. T.E1 is called
B. Nothing
C. Compilation error
D. Runtime error

A select entry call can only call one entry at a time.

523 / 578

Advanced Tasking
Some Advanced Concepts

Quiz

task T is
entry E1;
entry E2;

end T;
...
task body Other_Task is
begin

select
T.E1;

or
T.E2;

end select;
end Other_Task;

What is the result of compiling and running this code?

A. T.E1 is called
B. Nothing
C. Compilation error
D. Runtime error

A select entry call can only call one entry at a time.
523 / 578

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

task T is
entry A;

end T;

task body T is
begin

select
accept A;
Put ("A");

else
delay 1.0;

end select;
end T;

begin
select

T.A;
else

delay 1.0;
end select;

end Main;

What is the output of this code?
A. "AAAAA..."
B. Nothing
C. Compilation error
D. Runtime error

Common mistake: Main and T
won’t wait on each other and will
both execute their delay
statement only.

.
524 / 578

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

task T is
entry A;

end T;

task body T is
begin

select
accept A;
Put ("A");

else
delay 1.0;

end select;
end T;

begin
select

T.A;
else

delay 1.0;
end select;

end Main;

What is the output of this code?
A. "AAAAA..."
B. Nothing
C. Compilation error
D. Runtime error

Common mistake: Main and T
won’t wait on each other and will
both execute their delay
statement only.

.
524 / 578

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

task type T is
entry A;

end T;

task body T is
begin

select
accept A;

or
terminate;

end select;

Put_Line ("Terminated");
end T;

My_Task : T;
begin

null;
end Main;

What is the output of this code?

A. "Terminated"
B. Nothing
C. Compilation error
D. Runtime error

T is terminated at the end of Main

525 / 578

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

task type T is
entry A;

end T;

task body T is
begin

select
accept A;

or
terminate;

end select;

Put_Line ("Terminated");
end T;

My_Task : T;
begin

null;
end Main;

What is the output of this code?

A. "Terminated"
B. Nothing
C. Compilation error
D. Runtime error

T is terminated at the end of Main

525 / 578

Advanced Tasking
Some Advanced Concepts

Quiz

procedure Main is
begin

select
delay 2.0;

then abort
loop

delay 1.5;
Put ("A");

end loop;
end select;

Put ("B");
end Main;

What is the output of this code?

A. "A"
B. "AAAA..."
C. "AB"
D. Compilation error
E. Runtime error

then abort aborts the select only, not Main.

526 / 578

Advanced Tasking
Some Advanced Concepts

Quiz

procedure Main is
begin

select
delay 2.0;

then abort
loop

delay 1.5;
Put ("A");

end loop;
end select;

Put ("B");
end Main;

What is the output of this code?

A. "A"
B. "AAAA..."
C. "AB"
D. Compilation error
E. Runtime error

then abort aborts the select only, not Main.
526 / 578

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

Ok : Boolean := False

protected O is
entry P;

end O;

protected body O is
begin

entry P when Ok is
Put_Line ("OK");

end P;
end O;

begin
O.P;

end Main;

What is the result of compiling and running this code?

A. "OK"
B. Nothing
C. Compilation error
D. Runtime error

Stuck on waiting for Ok to be set, Main will never terminate.

527 / 578

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

Ok : Boolean := False

protected O is
entry P;

end O;

protected body O is
begin

entry P when Ok is
Put_Line ("OK");

end P;
end O;

begin
O.P;

end Main;

What is the result of compiling and running this code?

A. "OK"
B. Nothing
C. Compilation error
D. Runtime error

Stuck on waiting for Ok to be set, Main will never terminate.
527 / 578

Advanced Tasking
Some Advanced Concepts

Standard "Embedded" Tasking Profiles

Better performances but more constrained
Ravenscar profile

Ada 2005
No select
No entry for tasks
Single entry for protected types
No entry queues

Jorvik profile
Ada 2022
Less constrained, still performant
Any number of entry for protected types
Entry queues

See RM D.13

528 / 578

Advanced Tasking
Summary

Summary

529 / 578

Advanced Tasking
Summary

Summary

Tasks are language-based multithreading mechanisms
Not necessarily designed to be operated in parallel
Original design assumed task-switching / time-slicing

Multiple mechanisms to synchronize tasks
Delay
Rendezvous
Protected Objects

530 / 578

Low Level Programming

Low Level Programming

531 / 578

Low Level Programming
Introduction

Introduction

532 / 578

Low Level Programming
Introduction

Introduction

Sometimes you need to get your hands dirty

Hardware Issues
Register or memory access
Assembler code for speed or size issues

Interfacing with other software
Object sizes
Endianness
Data conversion

533 / 578

Low Level Programming
Data Representation

Data Representation

534 / 578

Low Level Programming
Data Representation

Data Representation vs Requirements

Developer usually defines requirements on a type

type My_Int is range 1 .. 10;

The compiler then generates a representation for this type that
can accommodate requirements

In GNAT, can be consulted using -gnatR2 switch

type My_Int is range 1 .. 10;
for My_Int'Object_Size use 8;
for My_Int'Value_Size use 4;
for My_Int'Alignment use 1;

-- using Ada 2012 aspects
type Ada2012_Int is range 1 .. 10

with Object_Size => 8,
Value_Size => 4,
Alignment => 1;

These values can be explicitly set, the compiler will check their
consistency

They can be queried as attributes if needed

X : Integer := My_Int'Alignment;
535 / 578

Low Level Programming
Data Representation

Value_Size / Size

Value_Size (or Size in the Ada Reference Manual) is the
minimal number of bits required to represent data

For example, Boolean'Size = 1

The compiler is allowed to use larger size to represent an actual
object, but will check that the minimal size is enough

type T1 is range 1 .. 4;
for T1'Size use 3;

-- using Ada 2012 aspects
type T2 is range 1 .. 4

with Size => 3;

536 / 578

Low Level Programming
Data Representation

Object Size (GNAT-Specific)

Object_Size represents the size of the object in memory

It must be a multiple of Alignment * Storage_Unit (8), and at
least equal to Size

type T1 is range 1 .. 4;
for T1'Value_Size use 3;
for T1'Object_Size use 8;

-- using Ada 2012 aspects
type T2 is range 1 .. 4

with Value_Size => 3,
Object_Size => 8;

Object size is the default size of an object, can be changed if
specific representations are given

537 / 578

Low Level Programming
Data Representation

Alignment

Number of bytes on which the type has to be aligned

Some alignment may be more efficient than others in terms of
speed (e.g. boundaries of words (4, 8))

Some alignment may be more efficient than others in terms of
memory usage

type T1 is range 1 .. 4;
for T1'Size use 4;
for T1'Alignment use 8;

-- using Ada 2012 aspects
type T2 is range 1 .. 4

with Size => 4,
Alignment => 8;

538 / 578

Low Level Programming
Data Representation

Record Types

Ada doesn’t force any
particular memory layout
Depending on optimization
of constraints, layout can be
optimized for speed, size, or
not optimized

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record;

539 / 578

Low Level Programming
Data Representation

Pack Aspect
pack aspect (or pragma) applies to composite types (record and
array)

Compiler optimizes data for size no matter performance impact

Unpacked

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record;
type Ar is array (1 .. 1000) of Boolean;
-- Rec'Size is 56, Ar'Size is 8000

Packed

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record with Pack;
type Ar is array (1 .. 1000) of Boolean;
pragma Pack (Ar);
-- Rec'Size is 36, Ar'Size is 1000

540 / 578

Low Level Programming
Data Representation

Record Representation Clauses

The developer can specify
the exact mapping between a
record and its binary
representation
This mapping can be used for
optimization purposes, or to
match hardware requirements

driver mapped on the
address space,
communication protocol,
binary file representation...

Fields represented as
<name> at <byte> range

<starting-bit> ..
<ending-bit>

type Rec1 is record
A : Integer range 0 .. 4;
B : Boolean;
C : Integer;
D : Enum;

end record;
for Rec1 use record

A at 0 range 0 .. 2;
B at 0 range 3 .. 3;
C at 0 range 4 .. 35;
-- unused space here
D at 5 range 0 .. 2;

end record;

541 / 578

Low Level Programming
Data Representation

Array Representation Clauses

The size of an array component can be specified with the
Component_Size aspect (or attribute)

type Ar1 is array (1 .. 1000) of Boolean;
for Ar1'Component_Size use 2;

-- using Ada 2012 aspects
type Ar2 is array (1 .. 1000) of Boolean

with Component_Size => 2;

542 / 578

Low Level Programming
Data Representation

Endianness Specification (GNAT Specific)
GNAT allows defining the endianness through the
Scalar_Storage_Order aspect, on composite types
Need to be associated with a consistent Bit_Order (convention
for the bit range numbering)
The compiler will perform bitwise transformations if needed when
sending data to the processor

type Rec is record
A : Integer;
B : Boolean;

end record;
for Rec'Bit_Order use System.High_Order_First;
for Rec'Scalar_Storage_Order use System.High_Order_First;

type Ar is array (1 .. 1000) of Boolean;
for Ar'Scalar_Storage_Order use System.Low_Order_First;

-- using Ada 2012 aspects
type Rec is record

A : Integer;
B : Boolean;

end record with
Bit_Order => High_Order_First,
Scalar_Storage_Order => High_Order_First;

type Ar is array (1 .. 1000) of Boolean with
Scalar_Storage_Order => Low_Order_First;

543 / 578

Low Level Programming
Data Representation

Change of Representation

Explicit conversion can be used to change representation
Very useful to unpack data from file/hardware to speed up
references

type Rec_T is record
Field1 : Unsigned_8;
Field2 : Unsigned_16;
Field3 : Unsigned_8;

end record;
type Packed_Rec_T is new Rec_T;
for Packed_Rec_T use record

Field1 at 0 range 0 .. 7;
Field2 at 0 range 8 .. 23;
Field3 at 0 range 24 .. 31;

end record;
R : Rec_T;
P : Packed_Rec_T;
...
R := Rec_T (P);
P := Packed_Rec_T (R);

544 / 578

Low Level Programming
Address Clauses and Overlays

Address Clauses and Overlays

545 / 578

Low Level Programming
Address Clauses and Overlays

Address

Ada distinguishes the notions of
A reference to an object
An abstract notion of address (System.Address)
The integer representation of an address

Safety is preserved by letting the developer manipulate the right
level of abstraction

Conversion between pointers, integers and addresses are possible

The address of an object can be specified through the Address
aspect

546 / 578

Low Level Programming
Address Clauses and Overlays

Address Clauses

Ada allows specifying the address of an entity

Var : Unsigned_32;
for Var'Address use ... ;

Very useful to declare I/O registers
For that purpose, the object should be declared volatile:

pragma Volatile (Var);

Useful to read a value anywhere

function Get_Byte (Addr : Address) return Unsigned_8 is
V : Unsigned_8;
for V'Address use Addr;
pragma Import (Ada, V);

begin
return V;

end;

In particular the address doesn’t need to be constant
But must match alignment

547 / 578

Low Level Programming
Address Clauses and Overlays

Address Values

The type Address is declared in System
But this is a private type
You cannot use a number

Ada standard way to set constant addresses:
Use System.Storage_Elements which allows arithmetic on
address

for V'Address use
System.Storage_Elements.To_Address (16#120#);

GNAT specific attribute ’To_Address
Handy but not portable

for V'Address use System'To_Address (16#120#);
548 / 578

Low Level Programming
Address Clauses and Overlays

Volatile

The Volatile property can be set using an aspect (in Ada2012
only) or a pragma

Ada also allows volatile types as well as objects.

type Volatile_U16 is mod 2**16;
pragma Volatile(Volatile_U16);
type Volatile_U32 is mod 2**32 with Volatile; -- Ada 2012

Volatile means that the exact sequence of reads and writes of an
object indicated in the source code must be respected in the
generated code.

No optimization of reads and writes please!

Volatile types are passed by-reference.

549 / 578

Low Level Programming
Address Clauses and Overlays

Ada Address Example

type Bitfield is array (Integer range <>) of Boolean;

V : aliased Integer; -- object can be referenced elsewhere
Pragma Volatile (V); -- may be updated at any time

V2 : aliased Integer;
Pragma Volatile (V2);

V_A : System.Address := V'Address;
V_I : Integer_Address := To_Integer (V_A);

-- This maps directly on to the bits of V
V3 : aliased Bitfield (1 .. V'Size);
For V3'address use V_A; -- overlay

V4 : aliased Integer;
-- Trust me, I know what I'm doing, this is V2
For V4'address use To_Address (V_I - 4);

550 / 578

Low Level Programming
Address Clauses and Overlays

Aliasing Detection

Aliasing happens when one object has two names
Two pointers pointing to the same object
Two references referencing the same object
Two variables at the same address

Var1'Has_Same_Storage (Var2) checks if two objects occupy
exactly the same space

Var'Overlaps_Storage (Var2) checks if two object are
partially or fully overlapping

551 / 578

Low Level Programming
Address Clauses and Overlays

Unchecked Conversion

Unchecked_Conversion allows an unchecked bitwise conversion
of data between two types.

Needs to be explicitly instantiated

type Bitfield is array (1 .. Integer'Size) of Boolean;
function To_Bitfield is new

Ada.Unchecked_Conversion (Integer, Bitfield);
V : Integer;
V2 : Bitfield := To_Bitfield (V);

Avoid conversion if the sizes don’t match
Not defined by the standard

552 / 578

Low Level Programming
Inline Assembly

Inline Assembly

553 / 578

Low Level Programming
Inline Assembly

Calling Assembly Code

Calling assembly code is a vendor-specific extension

GNAT allows passing assembly scripts directly to the linker
through System.Machine_Code.ASM

The developer is responsible for mapping variables on temporaries
or registers

See documentation
GNAT RM 13.1 Machine Code Insertion
GCC UG 6.39 Assembler Instructions with C Expression Operands

554 / 578

Low Level Programming
Inline Assembly

Simple Statement

Instruction without inputs/outputs

Asm ("halt", Volatile => True);

Specify Volatile to avoid compiler optimization
GNAT is picky on that point

You can group several instructions

Asm ("nop" & ASCII.LF & ASCII.HT
& "nop", Volatile => True);

Asm ("nop; nop", Volatile => True);

The compiler doesn’t check the assembly, only the assembler will
Error message might be difficult to read

555 / 578

Low Level Programming
Inline Assembly

Operands

It is often useful to have inputs or outputs...
Asm_Input and Asm_Output attributes on types

556 / 578

Low Level Programming
Inline Assembly

Mapping Inputs / Outputs on Temporaries

Asm (<script referencing $<input> >,
Inputs => ({<type>'Asm_Input (<constraint>,

<variable>)}),
Outputs => ({<type>'Asm_Output (<constraint>,

<variable>)});

assembly script containing assembly instructions + references to
registers and temporaries
constraint specifies how variable can be mapped on memory (see
documentation for full details)

Constraint Meaning

R General purpose register
M Memory
F Floating-point register
I A constant
D edx (on x86)
a eax (on x86)

557 / 578

Low Level Programming
Inline Assembly

Main Rules

No control flow between assembler statements
Use Ada control flow statement
Or use control flow within one statement

Avoid using fixed registers
Makes compiler’s life more difficult
Let the compiler choose registers
You should correctly describe register constraints

On x86, the assembler uses AT&T convention
First operand is source, second is destination
See GNU assembler manual for details

558 / 578

Low Level Programming
Inline Assembly

Volatile and Clobber ASM Parameters

Volatile → True deactivates optimizations with regards to
suppressed instructions

Clobber → "reg1, reg2, ..." contains the list of registers considered
to be "destroyed" by the use of the ASM call

Use ’memory’ if the memory is accessed in an unpredictable fashion.
The compiler will not keep memory values cached in registers across
the instruction.

559 / 578

Low Level Programming
Inline Assembly

Instruction Counter Example (x86)

with System.Machine_Code; use System.Machine_Code;
with Ada.Text_IO; use Ada.Text_IO;
with Interfaces; use Interfaces;
procedure Main is

Low : Unsigned_32;
High : Unsigned_32;
Value : Unsigned_64;
use ASCII;

begin
Asm ("rdtsc" & LF,

Outputs =>
(Unsigned_32'Asm_Output ("=d", Low),
Unsigned_32'Asm_Output ("=a", High)),

Volatile => True);
Values := Unsigned_64 (Low) +

Unsigned_64 (High) * 2 ** 32;
Put_Line (Values'Img);

end Main;
560 / 578

Low Level Programming
Inline Assembly

Reading a Machine Register (ppc)

function Get_MSR return MSR_Type is
Res : MSR_Type;

begin
Asm ("mfmsr %0",

Outputs => MSR_Type'Asm_Output ("=r", Res),
Volatile => True);

return Res;
end Get_MSR;
generic

Spr : Natural;
function Get_Spr return Unsigned_32;
function Get_Spr return Unsigned_32 is

Res : Unsigned_32;
begin

Asm ("mfspr %0,%1",
Inputs => Natural'Asm_Input ("K", Spr),
Outputs => Unsigned_32'Asm_Output ("=r", Res),
Volatile => True);

return Res;
end Get_Spr;
function Get_Pir is new Get_Spr (286);

561 / 578

Low Level Programming
Inline Assembly

Writing a Machine Register (ppc)

generic
Spr : Natural;

procedure Set_Spr (V : Unsigned_32);
procedure Set_Spr (V : Unsigned_32) is
begin

Asm ("mtspr %0,%1",
Inputs => (Natural'Asm_Input ("K", Spr),

Unsigned_32'Asm_Input ("r", V)));
end Set_Spr;

562 / 578

Low Level Programming
Tricks

Tricks

563 / 578

Low Level Programming
Tricks

Package Interfaces

Package Interfaces provide integer and unsigned types for many
sizes

Integer_8, Integer_16, Integer_32, Integer_64
Unsigned_8, Unsigned_16, Unsigned_32, Unsigned_64

With shift/rotation functions for unsigned types

564 / 578

Low Level Programming
Tricks

Fat/Thin pointers for Arrays

Unconstrained array access is a fat pointer

type String_Acc is access String;
Msg : String_Acc;
-- array bounds stored outside array pointer

Use a size representation clause for a thin pointer

type String_Acc is access String;
for String_Acc'size use 32;
-- array bounds stored as part of array pointer

565 / 578

Low Level Programming
Tricks

Flat Arrays

A constrained array access is a thin pointer
No need to store bounds

type Line_Acc is access String (1 .. 80);

You can use big flat array to index memory
See GNAT.Table
Not portable

type Char_array is array (natural) of Character;
type C_String_Acc is access Char_Array;

566 / 578

Low Level Programming
Lab

Lab

567 / 578

Low Level Programming
Lab

Low Level Programming Lab

(Simplified) Message generation / propagation

Overview
Populate a message structure with data and a CRC (cyclic
redundancy check)
"Send" and "Receive" messages and verify data is valid

Goal
You should be able to create, "send", "receive", and print messages
Creation should include generation of a CRC to ensure data security
Receiving should include validation of CRC

568 / 578

Low Level Programming
Lab

Project Requirements

Message Generation
Message should at least contain:

Unique Identifier
(Constrained) string field
Two other fields
CRC value

"Send" / "Receive"
To simulate send/receive:

"Send" should do a byte-by-byte write to a text file
"Receive" should do a byte-by-byte read from that same text file

Receiver should validate received CRC is valid
You can edit the text file to corrupt data

569 / 578

Low Level Programming
Lab

Hints

Use a representation clause to specify size of record
To get a valid size, individual components may need new types with
their own rep spec

CRC generation and file read/write should be similar processes
Need to convert a message into an array of "something"

570 / 578

Low Level Programming
Lab

Low Level Programming Lab Solution - CRC
with System;
package Crc is

type Crc_T is mod 2**32;
for Crc_T'size use 32;
function Generate

(Address : System.Address;
Size : Natural)
return Crc_T;

end Crc;

package body Crc is
type Array_T is array (Positive range <>) of Crc_T;
function Generate

(Address : System.Address;
Size : Natural)
return Crc_T is
Word_Count : Natural;
Retval : Crc_T := 0;

begin
if Size > 0
then

Word_Count := Size / 32;
if Word_Count * 32 /= Size
then

Word_Count := Word_Count + 1;
end if;
declare

Overlay : Array_T (1 .. Word_Count);
for Overlay'address use Address;

begin
for I in Overlay'range
loop

Retval := Retval + Overlay (I);
end loop;

end;
end if;
return Retval;

end Generate;
end Crc;

571 / 578

Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Spec)
with Crc; use Crc;
package Messages is

type Message_T is private;
type Command_T is (Noop, Direction, Ascend, Descend, Speed);
for Command_T use

(Noop => 0, Direction => 1, Ascend => 2, Descend => 4, Speed => 8);
for Command_T'size use 8;
function Create (Command : Command_T;

Value : Positive;
Text : String := "")
return Message_T;

function Get_Crc (Message : Message_T) return Crc_T;
procedure Write (Message : Message_T);
procedure Read (Message : out Message_T;

valid : out boolean);
procedure Print (Message : Message_T);

private
type U32_T is mod 2**32;
for U32_T'size use 32;
Max_Text_Length : constant := 20;
type Text_Index_T is new Integer range 0 .. Max_Text_Length;
for Text_Index_T'size use 8;
type Text_T is record

Text : String (1 .. Max_Text_Length);
Last : Text_Index_T;

end record;
for Text_T'size use Max_Text_Length * 8 + Text_Index_T'size;
type Message_T is record

Unique_Id : U32_T;
Command : Command_T;
Value : U32_T;
Text : Text_T;
Crc : Crc_T;

end record;
end Messages;

572 / 578

Low Level Programming
Lab

Low Level Programming Lab Solution - Main (Helpers)
with Ada.Text_IO; use Ada.Text_IO;
with Messages;
procedure Main is

Message : Messages.Message_T;
function Command return Messages.Command_T is
begin

loop
Put ("Command (");
for E in Messages.Command_T
loop

Put (Messages.Command_T'image (E) & " ");
end loop;
Put ("): ");
begin

return Messages.Command_T'value (Get_Line);
exception

when others =>
Put_Line ("Illegal");

end;
end loop;

end Command;
function Value return Positive is
begin

loop
Put ("Value: ");
begin

return Positive'value (Get_Line);
exception

when others =>
Put_Line ("Illegal");

end;
end loop;

end Value;
function Text return String is
begin

Put ("Text: ");
return Get_Line;

end Text;

573 / 578

Low Level Programming
Lab

Low Level Programming Lab Solution - Main
procedure Create is

C : constant Messages.Command_T := Command;
V : constant Positive := Value;
T : constant String := Text;

begin
Message := Messages.Create

(Command => C,
Value => V,
Text => T);

end Create;
procedure Read is

Valid : Boolean;
begin

Messages.Read (Message, Valid);
Ada.Text_IO.Put_Line("Message valid: " & Boolean'Image (Valid));

end read;
begin

loop
Put ("Create Write Read Print: ");
declare

Command : constant String := Get_Line;
begin

exit when Command'length = 0;
case Command (Command'first) is

when 'c' | 'C' =>
Create;

when 'w' | 'W' =>
Messages.Write (Message);

when 'r' | 'R' =>
read;

when 'p' | 'P' =>
Messages.Print (Message);

when others =>
null;

end case;
end;

end loop;
end Main;

574 / 578

Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Helpers)
with Ada.Text_IO;
with Unchecked_Conversion;
package body Messages is

Global_Unique_Id : U32_T := 0;
function To_Text (Str : String) return Text_T is

Length : Integer := Str'length;
Retval : Text_T := (Text => (others => ' '), Last => 0);

begin
if Str'length > Retval.Text'length then

Length := Retval.Text'length;
end if;
Retval.Text (1 .. Length) := Str (Str'first .. Str'first + Length - 1);
Retval.Last := Text_Index_T (Length);
return Retval;

end To_Text;
function From_Text (Text : Text_T) return String is

Last : constant Integer := Integer (Text.Last);
begin

return Text.Text (1 .. Last);
end From_Text;
function Get_Crc (Message : Message_T) return Crc_T is
begin

return Message.Crc;
end Get_Crc;
function Validate (Original : Message_T) return Boolean is

Clean : Message_T := Original;
begin

Clean.Crc := 0;
return Crc.Generate (Clean'address, Clean'size) = Original.Crc;

end Validate;

575 / 578

Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Body)
function Create (Command : Command_T;

Value : Positive;
Text : String := "")
return Message_T is

Retval : Message_T;
begin

Global_Unique_Id := Global_Unique_Id + 1;
Retval :=

(Unique_Id => Global_Unique_Id, Command => Command,
Value => U32_T (Value), Text => To_Text (Text), Crc => 0);

Retval.Crc := Crc.Generate (Retval'address, Retval'size);
return Retval;

end Create;
type Char is new Character;
for Char'size use 8;
type Overlay_T is array (1 .. Message_T'size / 8) of Char;
function Convert is new Unchecked_Conversion (Message_T, Overlay_T);
function Convert is new Unchecked_Conversion (Overlay_T, Message_T);
Const_Filename : constant String := "message.txt";
procedure Write (Message : Message_T) is

Overlay : constant Overlay_T := Convert (Message);
File : Ada.Text_IO.File_Type;

begin
Ada.Text_IO.Create (File, Ada.Text_IO.Out_File, Const_Filename);
for I in Overlay'range loop

Ada.Text_IO.Put (File, Character (Overlay (I)));
end loop;
Ada.Text_IO.New_Line (File);
Ada.Text_IO.Close (File);

end Write;
procedure Read (Message : out Message_T;

Valid : out Boolean) is
Overlay : Overlay_T;
File : Ada.Text_IO.File_Type;

begin
Valid := False;
Ada.Text_IO.Open (File, Ada.Text_IO.In_File, Const_Filename);
declare

Str : constant String := Ada.Text_IO.Get_Line (File);
begin

Ada.Text_IO.Close (File);
for I in Str'range loop

Overlay (I) := Char (Str (I));
end loop;
Message := Convert (Overlay);
Valid := Validate (Message);

end;
end Read;
procedure Print (Message : Message_T) is
begin

Ada.Text_IO.Put_Line ("Message" & U32_T'image (Message.Unique_Id));
Ada.Text_IO.Put_Line (" " & Command_T'image (Message.Command) & " =>" &

U32_T'image (Message.Value));
Ada.Text_IO.Put_Line (" Additional Info: " & From_Text (Message.Text));

end Print;
end Messages;

576 / 578

Low Level Programming
Summary

Summary

577 / 578

Low Level Programming
Summary

Summary

Like C, Ada allows access to assembly-level programming
Unlike C, Ada imposes some more restrictions to maintain some
level of safety
Ada also supplies language constructs and libraries to make low
level programming easier

578 / 578

	Ada Basic Types - Advanced
	Subtypes - Full Picture
	Base Type
	Modular Types
	Representation Values
	Character Types

	Record Types
	Introduction
	Components Rules
	Operations
	Aggregates
	Default Values
	Discriminated Records
	Lab
	Summary

	Discriminated Record Types
	Introduction
	Variant Record Semantics
	Unconstrained Variant Records
	Varying Length Arrays
	Variant Record Details
	Lab
	Summary

	Advanced Primitives
	Type Derivation
	Tagged Inheritance

	Quantified Expressions
	Quantified Expressions
	Lab
	Summary

	Limited Types
	Introduction
	Declarations
	Creating Values
	Extended Return Statements
	Combining Limited and Private Views
	Lab
	Summary

	Advanced Privacy
	Type Views
	Incomplete Types
	Private Library Units
	Lab
	Summary

	Advanced Access Types
	Introduction
	Access Types
	Pool-Specific Access Types
	General Access Types
	Accessibility Checks
	Memory Corruption
	Memory Management
	Memory Debugging
	Memory Control
	Lab
	Summary

	Genericity
	Introduction
	Creating Generics
	Generic Data
	Generic Formal Data
	Generic Completion
	Lab
	Summary

	Tagged Derivation
	Introduction
	Tagged Derivation
	Lab
	Summary

	Polymorphism
	Introduction
	Classes of Types
	Dispatching and Redispatching
	Exotic Dispatching Operations
	Lab
	Summary

	Multiple Inheritance
	Introduction
	Interfaces
	Lab
	Summary

	Advanced Exceptions
	Introduction
	Handlers
	Language-Defined Exceptions
	Propagation
	Exceptions as Objects
	In Practice
	Lab
	Summary

	Advanced Tasking
	Introduction
	Tasks
	Protected Objects
	Delays
	Task and Protected Types
	Some Advanced Concepts
	Summary

	Low Level Programming
	Introduction
	Data Representation
	Address Clauses and Overlays
	Inline Assembly
	Tricks
	Lab
	Summary

