Type Contracts

Type Contracts

Type Contracts

Introduction

Introduction

N

/49

Type Contracts

Introduction

-
Strong Typing

m We know Ada supports strong typing

type Small_Integer_T is range -1_000 .. 1_000;
type Enumerated_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
type Array_T is array (1 .. 3) of Boolean;

m But what if we need stronger enforcement?

m Number must be even
m Subet of non-consecutive enumerals
m Array should always be sorted

m Type Invariant

m Property of type that is always true on external reference
m Guarantee to client, similar to subprogram postcondition

m Subtype Predicate

m Add more complicated constraints to a type
m Always enforced, just like other constraints

Type Contracts

Type Invariants

Type Invariants

Type Contracts
Type Invariants

Examples

package Bank is
type Account_T is private with Type_Invariant => Consistent_Balance (Account_T);
type Currency_T is delta 0.01 digits 12;
function Consistent_Balance (This : Account_T) return Boolean;
procedure Open (This : in out Account_T; Initial Deposit : Currency_T);
private
type List_T is array (1 100) of Currency_T;
type Transaction_List_T is record
Values : List_T;
Count : Natural :=

end record;
type Account_T is record T
Current_Balance : Currency_T := 0.0;
Withdrawals Transaction_List_T;
Deposits : Transaction_List_T;
end record;
end Bank;

package body Bank is
function Total (This : Transaction_List_T) return Currency_T is

Result : Currency_T := 0.0;
begin
for I in 1 .. This.Count loop —- 2
Result Result + This.Values (I);
end loop;
return Result;
end Total;

function Consistent_Balance (This : Account_T) return Boolean is
(Total (This.Deposits) - Total (This.Withdrawals) = This.Current_Balance);

procedure Open (This : in out Account_T; Initial Deposit : Curremcy_T) is

begin
This.Current_Balance := Initial Deposit;

This.Withdravals.Count := 0;
This.Deposits.Count ;
This.Deposits.Values (1) := Initial Deposit;

end Open; —-
end Bank;

Type Contracts

Type Invariants

o ——
Type Invariants

m There may be conditions that must hold over entire lifetime of
objects

m Pre/postconditions apply only to subprogram calls
m Sometimes low-level facilities can express it
subtype Weekdays is Days range Mon .. Fri;
-- Guaranteed (absent unchecked conversion)
Workday : Weekdays := Mon;

m Type invariants apply across entire lifetime for complex abstract
data types

m Part of ADT concept, so only for private types

Type Contracts

Type Invariants

Type Invariant Verifications

m Automatically inserted by compiler
m Evaluated as postcondition of creation, evaluation, or return object
m When objects first created
m Assignment by clients
m Type conversions
m Creates new instances
m Not evaluated on internal state changes

m Internal routine calls
m Internal assignments

m Remember - these are abstract data types

Black Box

Type Contracts

Type Invariants

Invariant Over Object Lifetime (Calls)

Automatic
Type Invariant
Check

Exported Routine Call

Raise

Assertion_Error
exception

Imported Routine Call

No invariant checks Exported Routine Call

Type Contracts

Type Invariants

-
Example Type Invariant

m A bank account balance must always be consistent

m Consistent Balance: Total Deposits - Total Withdrawals = Balance

package Bank is
type Account is private with
Type_Invariant => Consistent_Balance (Account);

-— Called automatically for all Account objects
function Consistent_Balance (This : Account)
return Boolean;

private

end Bank;

Type Contracts

Type Invariants

Example Type Invariant Implementation

package body Bank is

function Total (This : Transaction_List)
return Currency is
Result : Currency := 0.0;
begin
for Value of This loop -- no iteration +f list empty
Result := Result + Value;
end loop;
return Result;
end Total;
function Consistent_Balance (This : Account)
return Boolean is
begin
return Total (This.Deposits) - Total (This.Withdrawals)
= This.Current_Balance;
end Consistent_Balance;
end Bank;

Type Contracts
Type Invariants

Invariants Don't Apply Internally

m No checking within supplier package
m Otherwise there would be no way to implement anything!
m Only matters when clients can observe state

procedure Open (This : in out Account;
Name : in String;
Initial_Deposit : in Currency) is

begin
This.Owner := To_Unbounded_String (Name);
This.Current_Balance := Initial_Deposit;

-- invariant would be false here!
This.Withdrawals := Transactions.Empty_List;
This.Deposits := Transactions.Empty_List;
This.Deposits.Append (Initial_Deposit);
-— 2nvariant s now true

end Open;

Type Contracts
Type Invariants

Default Type Initialization for Invariants

® Invariant must hold for initial value
m May need default type initialization to satisfy requirement

package P is
-- Type is private, so we can't use Default_Value here

type T is private with Type_Invariant => Zero (T);
procedure Op (This : in out T);
function Zero (This : T) return Boolean;

private
-- Type ts not a record, so we need to use aspect

-= (A record could use default values for its components)
type T is new Integer with Default_Value => O;
function Zero (This : T) return Boolean is
begin
return (This = 0);
end Zero;
end P;

Type Contracts

Type Invariants

Type Invariant Clause Placement

m Can move aspect clause to private part

package P is
type T is private;
procedure Op (This : in out T);
private
type T is new Integer with
Type_Invariant => T = O,
Default _Value => 0;
end P;

m It is really an implementation aspect

m Client shouldn’t care!

Type Contracts

Type Invariants

-
Invariants Are Not Foolproof

m Access to ADT representation via pointer could allow back door
manipulation

m These are private types, so access to internals must be granted by
the private type's code

m Granting internal representation access for an ADT is a highly
questionable design!

Type Contracts

Type Invariants

S
Quiz

package P is If DO_SOmething iS Ca”ed from
type Some_T is private; . . .
procedure Do_Something (X : in out Some_T); OUtS|de Of P, hOW many times Is
private
function Counter (I : Integer) return Boolean; Counter Ca”ed?
type Some_T is new Integer with A 1
Type_Invariant => Counter (Integer (Some_T));

end P; B 2
package body P is 3

function Local_Do_Something (X : Some_T)
return Some_T is
Z : Some_T := X + 1; m4
begin
return Z;
end Local_Do_Something;
procedure Do_Something (X : in out Some_T) is
begin
X =X+ 1;
X := Local_Do_Something (X);
end Do_Something;
function Counter (I : Integer)
return Boolean is
(True);
end P;

Type Contracts

Type Invariants

Quiz

package P is
type Some_T is private;
procedure Do_Something (X :
private
function Counter (I : Integer) return Boolean;
type Some_T is new Integer with

in out Some_T);

Type_Invariant => Counter (Integer (Some_T));

end P;

package body P is
function Local_Do_Something (X : Some_T)
return Some_T is
Z : Some_T := X + 1;
begin
return Z;
end Local_Do_Something;
procedure Do_Something (X :
begin
X =X+ 1;
X := Local_Do_Something (X);
end Do_Something;
function Counter (I : Integer)
return Boolean is

in out Some_T) is

(True);
end P;

If Do_Something is called from
outside of P, how many times is
Counter called?

1

B2

3

™4
Type Invariants are only evaluated
on entry into and exit from
externally visible subprograms. So
Counter is called when entering
and exiting Do_Something - not
Local_Do_Something, even
though a new instance of Some_T
is created

15 /49

Type Contracts

Subtype Predicates

Subtype Predicates

Subtype Predicates

Type Contracts

Examples

with Ada.Exceptions; use Ada.Exceptions;
with Ada.Text_ o Ada.Text_I0;

procedure Predicates is

Integer with Dynamic_Predicate => Even_T mod
5.200 with

subtype Even_T
ype Serial Baud Rate_T is range
Static_Predicate => Serial Baud_Rate_T in
2.400 | 4,800 | 9_600 | 14_400 | 19200 | 28800 | 38_400 | 56_000;

subtype Vowel T is Character with Dynamic_Predicate
AL R LT D

(case Vowel T is when 'A

True, when o

type Table_T is array (Integer range <) of Integer;
subtype Sorted_Table T is Table T (1 .. 5) with
Dynamic_Predicate =>
(for all K in Sorted_Table_T'Range
orted_Table_T'First or else Sorted_Table T (K -

) <= Sorted_Table_T

3 Even_T;
Values : Sorted_Table_T

begin
begin
Put_Line (" & J'In
J = Integer'Suce (1);
Put_Line (" & J'Ing);
J := Integer'Succ (3);
Put_Line (" & 3'Ing);
exception
vhen The_Err : others
t_Line (Exception Message (The_Err));
end.

for Baud in Serial_Baud_Rate_T loop
Put_Line (Baud
end loop;

(Vouel_T*Succ

Put_Line (
(Vowel T'Pred (

vhen The_Err : others
Put_Line (Exception Message (The Err));

Subtype Predicates

Type Contracts

Subtype Predicates Concept

m Ada defines support for various kinds of constraints

m Range constraints
m Index constraints
m Others...

m Language defines rules for these constraints

m All range constraints are contiguous
m Matter of efficiency

m Subtype predicates generalize possibilities

m Define new kinds of constraints

Type Contracts

Subtype Predicates

Predicates

m Something asserted to be true about some subject
m When true, said to "hold"
m Expressed as any legal boolean expression in Ada

m Quantified and conditional expressions
m Boolean function calls

m Two forms in Ada
m Static Predicates
m Specified via aspect named Static__Predicate
m Dynamic Predicates

m Specified via aspect named Dynamic_Predicate

Type Contracts

Subtype Predicates

Really, type and subtype Predicates

m Applicable to both
m Applied via aspect clauses in both cases
m Syntax

type name is type_definition
with aspect_mark [=> expression] { ,
aspect_mark [=> expression] }
subtype defining identifier is subtype_indication
with aspect_mark [=> expression] { ,
aspect_mark [=> expression] }

Type Contracts

Subtype Predicates

Why Two Predicate Forms?

Static Dynamic

Content More Restricted Less Restricted
Placement Less Restricted More Restricted

m Static predicates can be used in more contexts

m More restrictions on content
m Can be used in places Dynamic Predicates cannot

m Dynamic predicates have more expressive power

m Fewer restrictions on content
m Not as widely available

Subtype Predicates

Type Contracts

Subtype Predicate Examples

m Dynamic Predicate

subtype Even is Integer with Dynamic_Predicate =>
Even mod 2 = 0; -- Boolean expression
-- (Even indicates "current instance')

m Static Predicate
type Serial_Baud_Rate is range 110 .. 115200
with Static_Predicate => Serial Baud_Rate in

-— Non-contiguous range
110 | 300 | 600 | 1200 | 2400 | 4800 |
9600 | 14400 | 19200 | 28800 | 38400 | 56000 |

57600 | 115200;

Type Contracts

Subtype Predicates

Predicate Checking

m Calls inserted automatically by compiler

m Violations raise exception Assertion_Error

m When predicate does not hold (evaluates to False)

m Checks are done before value change

m Same as language-defined constraint checks

m Associated variable is unchanged when violation is detected

Type Contracts

Subtype Predicates

Predicate Checks Placement

m Anywhere value assigned that may violate target constraint
m Assignment statements

m Explicit initialization as part of object declaration

Subtype conversion

m Parameter passing

m All modes when passed by copy
® Modes in out and out when passed by reference

Implicit default initialization for record components

m On default type initialization values, when taken

Subtype Predicates

Type Contracts

References Are Not Checked

with Ada.Text_I0; use Ada.Text_IO;
procedure Test is

subtype Even is Integer with Dynamic_Predicate => Even mod 2 = O;
J, K : Even;
begin

-- predicates are not checked here
Put_Line ("K is" & K'Img);
Put_Line ("J is" & J'Img);
-- predicate is checked here
K := J; -- assertion fatlure here
Put_Line ("K is" & K'Img);
Put_Line ("J is" & J'Img);
end Test;

m Output would look like

K is 1969492223

J is 4220029

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE:
Dynamic_Predicate failed at test.adb:9

Type Contracts

Subtype Predicates

Predicate Expression Content

m Reference to value of type itself, i.e., "current instance"

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = O;
J, K : Even := 42;

m Any visible object or function in scope

m Does not have to be defined before use

m Relaxation of "declared before referenced" rule of linear elaboration

m Intended especially for (expression) functions declared in same
package spec

Type Contracts

Subtype Predicates

Static Predicates

m Static means known at compile-time, informally

m Language defines meaning formally (RM 3.2.4)

m Allowed in contexts in which compiler must be able to verify
properties

m Content restrictions on predicate are necessary

Type Contracts

Subtype Predicates

Allowed Static Predicate Content (1)

m Ordinary Ada static expressions
m Static membership test selected by current instance
m Example 1

type Serial_Baud_Rate is range 110 .. 115200
with Static_Predicate => Serial Baud_Rate in
-— Non-contiguous range
110 | 300 | 600 | 1200 | 2400 | 4800 | 9600 |
14400 | 19200 | 28800 | 38400 | 56000 | 57600 | 115200;

m Example 2

type Days is (Sun, Mon, Tues, We, Thu, Fri, Sat);

-- only way to create subtype of non-contiguous values
subtype Weekend is Days

with Static_Predicate => Weekend in Sat | Sun;

Type Contracts

Subtype Predicates

Allowed Static Predicate Content (2)

m Case expressions in which dependent expressions are static and
selected by current instance

type Days is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Weekend is Days with Static_Predicate =>
(case Weekend is
when Sat | Sun => True,
when Mon .. Fri => False);

m Note: if-expressions are disallowed, and not needed

subtype Drudge is Days with Static_Predicate =>

-- not legal
(if Drudge in Mon .. Fri then True else False);
—-— should be
subtype Drudge is Days with Static_Predicate =>
Drudge in Mon .. Fri;

Type Contracts

Subtype Predicates

Allowed Static Predicate Content (3)

m Acall to =, /=, <, <=, >, or >= where one operand is the
current instance (and the other is static)

m Calls to operators and, or, xor, not

m Only for pre-defined type Boolean
m Only with operands of the above

m Short-circuit controls with operands of above

m Any of above in parentheses

Type Contracts

Subtype Predicates

Dynamic Predicate Expression Content

m Any arbitrary boolean expression
m Hence all allowed static predicates’ content
m Plus additional operators, etc.

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = 0;
subtype Vowel is Character with Dynamic_Predicate =>
(case Vowel is
when 'A' | 'E' | 'I" | '0" | 'U' => True,
when others => False); -- ewvaluated at run-time

m Plus calls to functions

m User-defined
m Language-defined

Type Contracts

Subtype Predicates

Types Controlling For-Loops

m Types with dynamic predicates cannot be used
m Too expensive to implement

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = 0;

-— not legal - how many iterations?
for K in Even loop

end loop;
m Types with static predicates can be used

type Days is (Sun, Mon, Tues, We, Thu, Fri, Sat);
subtype Weekend is Days

with Static_Predicate => Weekend in Sat | Sun;
-— Loop uses "Days", and only enters loop when in Weekend
-- So "Sun" is first value for K
for K in Weekend loop

end loop;

Type Contracts

Subtype Predicates

Why Allow Types with Static Predicates?

m Efficient code can be generated for usage

type Days is (Sun, Mon, Tues, We, Thu, Fri, Sat);
subtype Weekend is Days with Static_Predicate => Weekend in Sat | Sun;

for W in Weekend loop
GNAT.IO0.Put_Line (W'Img);
end loop;

m for loop generates code like

declare
w : weekend := sun;
begin
loop
gnat__io__put_line__2 (w'Img);
case w is
when sun =>
w := sat;
when sat =>
exit;
when others =>
w := weekend'succ(w);
end case;
end loop;
end;

Type Contracts

Subtype Predicates

In Some Cases Neither Kind Is Allowed

m No predicates can be used in cases where contiguous layout
required

m Efficient access and representation would be impossible
m Hence no array index or slice specification usage

type Play is array (Weekend) of Integer; -- <llegal
type List is array (Days range <>) of Integer;
L : List (Weekend); -- not legal

Type Contracts

Subtype Predicates

Special Attributes for Predicated Types

m Attributes 'First__Valid and 'Last__Valid

Can be used for any static subtype

Especially useful with static predicates

"First__Valid returns smallest valid value, taking any range or
predicate into account

"Last__Valid returns largest valid value, taking any range or
predicate into account

m Attributes 'Range, 'First and 'Last are not allowed

Reflect non-predicate constraints so not valid
'Range is just a shorthand for 'First .. ’Last

m 'Succ and 'Pred are allowed since work on underlying type

Type Contracts

Subtype Predicates

Initial Values Can Be Problematic

m Users might not initialize when declaring objects
m Most predefined types do not define automatic initialization
m No language guarantee of any specific value (random bits)
m Example

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = O;
K : Even; -- unknown (invalid?) initial value

m The predicate is not checked on a declaration when no initial value
is given

m So can reference such junk values before assigned

m This is not illegal (but is a bounded error)

Type Contracts

Subtype Predicates

Subtype Predicates Aren't Bullet-Proof

m For composite types, predicate checks apply to whole object
values, not individual components

procedure Demo is
type Table is array (1 .. 5) of Integer
-- array should always be sorted
with Dynamic_Predicate =>
(for all K in Table'Range =>
(K = Table'First or else Table(K-1) <= Table(K)));
Values : Table := (1, 3, 5, 7, 9);

begin
véiues (3) := 0; -- does not generate an exception!
Values := (1, 3, 0, 7, 9); -- does generate an exception
end Demo;

Type Contracts

Subtype Predicates

Beware Accidental Recursion In Predicate

m Involves functions because predicates are expressions
m Caused by checks on function arguments
m Infinitely recursive example

type Sorted_Table is array (1 .. N) of Integer with
Dynamic_Predicate => Sorted (Sorted_Table);

-- on call, predicate is checked!

function Sorted (T : Sorted_Table) return Boolean;

m Non-recursive example

type Sorted_Table is array (1 .. N) of Integer with
Dynamic_Predicate =>
(for all K in Sorted_Table'Range =>
(K = Sorted_Table'First
or else Sorted_Table (K - 1) <= Sorted_Table (K)));

m Type-based example

type Table is array (1 .. N) of Integer;

subtype Sorted_Table is Table with
Dynamic_Predicate => Sorted (Sorted_Table);

function Sorted (T : Table) return Boolean;

Type Contracts

Subtype Predicates

GNAT-Specific Aspect Name Predicate

m Conflates two language-defined names

m Takes on kind with widest applicability possible

m Static if possible, based on predicate expression content
m Dynamic if cannot be static

m Remember: static predicates allowed anywhere that dynamic
predicates allowed

m But not inverse

m Slight disadvantage: you don't find out if your predicate is not
actually static

m Until you use it where only static predicates are allowed

Type Contracts

Subtype Predicates

Enabling/Disabling Contract Verification

m Corresponds to controlling specific run-time checks
m Syntax

pragma Assertion_Policy (policy_name);
pragma Assertion_Policy (
assertion_name => policy_name
{, assertion_name => policy_name});

m Vendors may define additional policies (GNAT does)
m Default, without pragma, is implementation-defined

m Vendors almost certainly offer compiler switch

m GNAT uses same switch as for pragma Assert: -gnata

Type Contracts

Subtype Predicates

Quiz

type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
function Is_Weekday (D : Days_T) return Boolean is
(D /= Sun and then D /= Sat);

Which of the following is a valid subtype predicate?

subtype T is Days_T with
Static_Predicate => T in Sun | Sat;

B subtype T is Days_T with Static_Predicate =>
(if T = Sun or else T = Sat then True else False);

subtype T is Days_T with
Static_Predicate => not Is_Weekday (T);

B subtype T is Days_T with
Static_Predicate =>
case T is when Sat | Sun => True,
when others => False;

Type Contracts

Subtype Predicates

Quiz

type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
function Is_Weekday (D : Days_T) return Boolean is
(D /= Sun and then D /= Sat);

Which of the following is a valid subtype predicate?

subtype T is Days_T with
Static_Predicate => T in Sun | Sat;

B subtype T is Days_T with Static_Predicate =>
(if T = Sun or else T = Sat then True else False);

subtype T is Days_T with
Static_Predicate => not Is_Weekday (T);

B subtype T is Days_T with
Static_Predicate =>
case T is when Sat | Sun => True,
when others => False;

Explanations

Correct

B If statement not allowed in a predicate

Function call not allowed in Static_Predicate (this would be
OK for Dynamic_Predicate)

B Missing parentheses around case expression

Type Contracts

Lab

Lab

Type Contracts

Lab

-
Type Contracts Lab

m Overview
m Create simplistic class scheduling system

m Client will specify name, day of week, start time, end time
m Supplier will add class to schedule
® Supplier must also be able to print schedule

m Requirements

m Monday, Wednesday, and/or Friday classes can only be 1 hour long
m Tuesday and/or Thursday classes can only be 1.5 hours long
m Classes without a set day meet for any non-negative length of time

m Hints
m Subtype Predicate to create subtypes of day of week

m Type Invariant to ensure that every class meets for correct length of
time
m To enable assertions in the run-time from GNAT STUDIO

[W Edit =8l Project Properties

m Build — Switches — Ada
m Click on Enable assertions

Type Contracts

Lab

Type Contracts Lab Solution - Schedule (Spec)

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Schedule is
Maximum_Classes : constant :=

type Days_T is (Mon, Tue, Wed, Thu, Fri, None);

type Time_T is delta 0.5 range 0 2

type Classes_T is tagged private;

procedure Add_Class (Classes in out Classes_T;
Name String;
Day Days_T;
Start_Time Time_T;
End_Tine Time_T) with

Pre => Count (Classes) < Maximun_Classes;
procedure Print (Classes : Classes_T);
function Count (Classes

Classes_T) return Natural;
private

subtype Short_Class_T is Days_T with Static_Predicate => Short_Class_T in Mon | Wed | Fri;
subtype Long_Class_T is Days_T with Static_Predicate => Long_Class_T in Tue | Thu;
type Class_T is tagged record

N

ane Unbounded_String := Null_Unbounded_String;
Day Days_T = None;
Start_Time : Time_T 0;
End_Tine Time_T 0;

end record;

subtype Class_Size T is Natural range 0 .. Maximum_Classes;
subtype Class_Index T is Class_Size T range 1 .. Class_Size T'Last;
type Class_Array_T is array (Class_Index_T range <>) of Class_T;
type Classes_T is tagged record

Size : Class_Size T := 0;

List : Class_Array T (Class_Index_T);
end record with Type_Invariant =>

(for all Index in 1 .. Size => Valid_Times (Classes_T.List (Index)));
function Valid_Times (Class : Class_T) return Boolean is
(if Class.Day in Short_Class_T then Class.End_Time - Class.Start_Time =
elsif Class.Day in Long_Class_T then Class.End_Time - Class.Start_Time = 1.5
else Class.End_Time >= Class.Start_Time);

function Count (Classes :
end Schedule;

Classes_T) return Natural is (Classes.Size);

Lab

Type Contracts Lab Solution - Schedule (Body)

with Ada.Text_IO; use Ada.Text_IO;
package body Schedule is

procedure Add_Class

(Classes : in out Classes_T;

Name : String;

Day : Days_T;

Start_Time : Time_T;

End_Time : Time_T) is
begin

Classes.Size

:= Classes.Size + 1;
Classes.List (Classes.Size) :=

(Name => To_Unbounded_String (Name), Day => Day,

Start_Time => Start_Time, End_Time => End_Time);
end Add_Class;

procedure Print (Classes : Classes_T) is

begin
for Index in 1 .. Classes.Size loop
Put_Line
(Days_T'Image (Classes.List (Index).Day) & ": " &
To_String (Classes.List (Index).Name) & " (" &
Time_T'Image (Classes.List (Index).Start_Time) & " -" &
Time_T'Image (Classes.List (Index).End_Time) & ")");
end loop;
end Print;

end Schedule;

Type Contracts

Lab

-
Type Contracts Lab Solution - Main

with Ada.Exceptions; use Ada.Exceptions;
with Ada.Text_IO; use Ada.Text_IO;
with Schedule; use Schedule;
procedure Main is

Classes : Classes_T;

begin

Classes.Add_Class (Name => "Calculus",
Day => Mon,
Start_Time => 10.0,
End_Time => 11.0);

Classes.Add_Class (Name => "History",
Day => Tue,
Start_Time => 11.0,
End_Time => 12.5);

Classes.Add_Class (Name => "Biology",

Day => Ved,
Start_Time => 13.0,
End_Time => 14.0);
Classes.Print;

begin
Classes.Add_Class (Name => "Biology",
Day => Thu,
Start_Time => 13.0,
End_Time => 14.0);
exception

when The_Err : others =>
Put_Line (Exception_Information (The_Err));
end;
end Main;

Type Contracts

Summary

Summary

Type Contracts

Summary

o ——
Working with Type Invariants

m They are not fully foolproof

m External corruption is possible
m Requires dubious usage

m Violations are intended to be supplier bugs

m But not necessarily so, since not always bullet-proof

m However, reasonable designs will be foolproof

Type Contracts

Summary

o ——
Type Invariants vs Predicates

m Type Invariants are valid at external boundary

m Useful for complex types - type may not be consistent during an
operation

m Predicates are like other constraint checks

m Checked on declaration, assignment, calls, etc

	Introduction
	Type Invariants
	Subtype Predicates
	Lab
	Summary

