
Type Contracts

Type Contracts

1 / 49

Type Contracts
Introduction

Introduction

2 / 49

Type Contracts
Introduction

Strong Typing

We know Ada supports strong typing

type Small_Integer_T is range -1_000 .. 1_000;
type Enumerated_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
type Array_T is array (1 .. 3) of Boolean;

But what if we need stronger enforcement?
Number must be even
Subet of non-consecutive enumerals
Array should always be sorted

Type Invariant
Property of type that is always true on external reference
Guarantee to client, similar to subprogram postcondition

Subtype Predicate
Add more complicated constraints to a type
Always enforced, just like other constraints

3 / 49

Type Contracts
Type Invariants

Type Invariants

4 / 49

Type Contracts
Type Invariants

Examples
package Bank is

type Account_T is private with Type_Invariant => Consistent_Balance (Account_T);
type Currency_T is delta 0.01 digits 12;
function Consistent_Balance (This : Account_T) return Boolean;
procedure Open (This : in out Account_T; Initial_Deposit : Currency_T);

private
type List_T is array (1 .. 100) of Currency_T;
type Transaction_List_T is record

Values : List_T;
Count : Natural := 0;

end record;
type Account_T is record -- initial state MUST satisfy invariant

Current_Balance : Currency_T := 0.0;
Withdrawals : Transaction_List_T;
Deposits : Transaction_List_T;

end record;
end Bank;

package body Bank is
function Total (This : Transaction_List_T) return Currency_T is

Result : Currency_T := 0.0;
begin

for I in 1 .. This.Count loop -- no iteration if list empty
Result := Result + This.Values (I);

end loop;
return Result;

end Total;
function Consistent_Balance (This : Account_T) return Boolean is

(Total (This.Deposits) - Total (This.Withdrawals) = This.Current_Balance);
procedure Open (This : in out Account_T; Initial_Deposit : Currency_T) is
begin

This.Current_Balance := Initial_Deposit;
-- if we checked, the invariant would be false here!
This.Withdrawals.Count := 0;
This.Deposits.Count := 1;
This.Deposits.Values (1) := Initial_Deposit;

end Open; -- invariant is now true
end Bank;

5 / 49

Type Contracts
Type Invariants

Type Invariants

There may be conditions that must hold over entire lifetime of
objects

Pre/postconditions apply only to subprogram calls

Sometimes low-level facilities can express it

subtype Weekdays is Days range Mon .. Fri;

-- Guaranteed (absent unchecked conversion)
Workday : Weekdays := Mon;

Type invariants apply across entire lifetime for complex abstract
data types

Part of ADT concept, so only for private types

6 / 49

Type Contracts
Type Invariants

Type Invariant Verifications

Automatically inserted by compiler

Evaluated as postcondition of creation, evaluation, or return object
When objects first created

Assignment by clients

Type conversions

Creates new instances

Not evaluated on internal state changes
Internal routine calls
Internal assignments

Remember - these are abstract data types

7 / 49

Type Contracts
Type Invariants

Invariant Over Object Lifetime (Calls)

8 / 49

Type Contracts
Type Invariants

Example Type Invariant

A bank account balance must always be consistent
Consistent Balance: Total Deposits - Total Withdrawals = Balance

package Bank is
type Account is private with

Type_Invariant => Consistent_Balance (Account);
...
-- Called automatically for all Account objects
function Consistent_Balance (This : Account)

return Boolean;
...

private
...

end Bank;

9 / 49

Type Contracts
Type Invariants

Example Type Invariant Implementation

package body Bank is
...

function Total (This : Transaction_List)
return Currency is

Result : Currency := 0.0;
begin

for Value of This loop -- no iteration if list empty
Result := Result + Value;

end loop;
return Result;

end Total;
function Consistent_Balance (This : Account)

return Boolean is
begin

return Total (This.Deposits) - Total (This.Withdrawals)
= This.Current_Balance;

end Consistent_Balance;
end Bank;

10 / 49

Type Contracts
Type Invariants

Invariants Don’t Apply Internally

No checking within supplier package
Otherwise there would be no way to implement anything!

Only matters when clients can observe state

procedure Open (This : in out Account;
Name : in String;
Initial_Deposit : in Currency) is

begin
This.Owner := To_Unbounded_String (Name);
This.Current_Balance := Initial_Deposit;
-- invariant would be false here!
This.Withdrawals := Transactions.Empty_List;
This.Deposits := Transactions.Empty_List;
This.Deposits.Append (Initial_Deposit);
-- invariant is now true

end Open;
11 / 49

Type Contracts
Type Invariants

Default Type Initialization for Invariants

Invariant must hold for initial value
May need default type initialization to satisfy requirement

package P is
-- Type is private, so we can't use Default_Value here
type T is private with Type_Invariant => Zero (T);
procedure Op (This : in out T);
function Zero (This : T) return Boolean;

private
-- Type is not a record, so we need to use aspect
-- (A record could use default values for its components)
type T is new Integer with Default_Value => 0;
function Zero (This : T) return Boolean is
begin

return (This = 0);
end Zero;

end P;
12 / 49

Type Contracts
Type Invariants

Type Invariant Clause Placement

Can move aspect clause to private part

package P is
type T is private;
procedure Op (This : in out T);

private
type T is new Integer with

Type_Invariant => T = 0,
Default_Value => 0;

end P;

It is really an implementation aspect
Client shouldn’t care!

13 / 49

Type Contracts
Type Invariants

Invariants Are Not Foolproof

Access to ADT representation via pointer could allow back door
manipulation
These are private types, so access to internals must be granted by
the private type’s code
Granting internal representation access for an ADT is a highly
questionable design!

14 / 49

Type Contracts
Type Invariants

Quiz

package P is
type Some_T is private;
procedure Do_Something (X : in out Some_T);

private
function Counter (I : Integer) return Boolean;
type Some_T is new Integer with

Type_Invariant => Counter (Integer (Some_T));
end P;

package body P is
function Local_Do_Something (X : Some_T)

return Some_T is
Z : Some_T := X + 1;

begin
return Z;

end Local_Do_Something;
procedure Do_Something (X : in out Some_T) is
begin

X := X + 1;
X := Local_Do_Something (X);

end Do_Something;
function Counter (I : Integer)

return Boolean is
(True);

end P;

If Do_Something is called from
outside of P, how many times is
Counter called?

A. 1
B. 2
C. 3
D. 4

Type Invariants are only evaluated
on entry into and exit from
externally visible subprograms. So
Counter is called when entering
and exiting Do_Something - not
Local_Do_Something, even
though a new instance of Some_T
is created

15 / 49

Type Contracts
Type Invariants

Quiz

package P is
type Some_T is private;
procedure Do_Something (X : in out Some_T);

private
function Counter (I : Integer) return Boolean;
type Some_T is new Integer with

Type_Invariant => Counter (Integer (Some_T));
end P;

package body P is
function Local_Do_Something (X : Some_T)

return Some_T is
Z : Some_T := X + 1;

begin
return Z;

end Local_Do_Something;
procedure Do_Something (X : in out Some_T) is
begin

X := X + 1;
X := Local_Do_Something (X);

end Do_Something;
function Counter (I : Integer)

return Boolean is
(True);

end P;

If Do_Something is called from
outside of P, how many times is
Counter called?

A. 1
B. 2
C. 3
D. 4

Type Invariants are only evaluated
on entry into and exit from
externally visible subprograms. So
Counter is called when entering
and exiting Do_Something - not
Local_Do_Something, even
though a new instance of Some_T
is created

15 / 49

Type Contracts
Subtype Predicates

Subtype Predicates

16 / 49

Type Contracts
Subtype Predicates

Examples
with Ada.Exceptions; use Ada.Exceptions;
with Ada.Text_IO; use Ada.Text_IO;
procedure Predicates is

subtype Even_T is Integer with Dynamic_Predicate => Even_T mod 2 = 0;
type Serial_Baud_Rate_T is range 110 .. 115_200 with

Static_Predicate => Serial_Baud_Rate_T in -- Non-contiguous range
2_400 | 4_800 | 9_600 | 14_400 | 19_200 | 28_800 | 38_400 | 56_000;

-- This must be dynamic because "others" will be evaluated at run-time
subtype Vowel_T is Character with Dynamic_Predicate =>

(case Vowel_T is when 'A' | 'E' | 'I' | 'O' | 'U' => True, when others => False);

type Table_T is array (Integer range <>) of Integer;
subtype Sorted_Table_T is Table_T (1 .. 5) with

Dynamic_Predicate =>
(for all K in Sorted_Table_T'Range =>

(K = Sorted_Table_T'First or else Sorted_Table_T (K - 1) <= Sorted_Table_T (K)));

J : Even_T;
Values : Sorted_Table_T := (1, 3, 5, 7, 9);

begin
begin

Put_Line ("J is" & J'Img);
J := Integer'Succ (J); -- assertion failure here
Put_Line ("J is" & J'Img);
J := Integer'Succ (J); -- or maybe here
Put_Line ("J is" & J'Img);

exception
when The_Err : others =>

Put_Line (Exception_Message (The_Err));
end;

for Baud in Serial_Baud_Rate_T loop
Put_Line (Baud'Image);

end loop;

Put_Line (Vowel_T'Image (Vowel_T'Succ ('A')));
Put_Line (Vowel_T'Image (Vowel_T'Pred ('Z')));

begin
Values (3) := 0; -- not an exception
Values := (1, 3, 0, 7, 9); -- exception

exception
when The_Err : others =>

Put_Line (Exception_Message (The_Err));
end;

end Predicates;

17 / 49

Type Contracts
Subtype Predicates

Subtype Predicates Concept

Ada defines support for various kinds of constraints
Range constraints
Index constraints
Others...

Language defines rules for these constraints
All range constraints are contiguous
Matter of efficiency

Subtype predicates generalize possibilities
Define new kinds of constraints

18 / 49

Type Contracts
Subtype Predicates

Predicates

Something asserted to be true about some subject
When true, said to "hold"

Expressed as any legal boolean expression in Ada
Quantified and conditional expressions
Boolean function calls

Two forms in Ada
Static Predicates

Specified via aspect named Static_Predicate

Dynamic Predicates

Specified via aspect named Dynamic_Predicate

19 / 49

Type Contracts
Subtype Predicates

Really, type and subtype Predicates

Applicable to both

Applied via aspect clauses in both cases

Syntax

type name is type_definition
with aspect_mark [=> expression] { ,

aspect_mark [=> expression] }
subtype defining_identifier is subtype_indication

with aspect_mark [=> expression] { ,
aspect_mark [=> expression] }

20 / 49

Type Contracts
Subtype Predicates

Why Two Predicate Forms?

Static Dynamic

Content More Restricted Less Restricted
Placement Less Restricted More Restricted

Static predicates can be used in more contexts
More restrictions on content
Can be used in places Dynamic Predicates cannot

Dynamic predicates have more expressive power
Fewer restrictions on content
Not as widely available

21 / 49

Type Contracts
Subtype Predicates

Subtype Predicate Examples

Dynamic Predicate

subtype Even is Integer with Dynamic_Predicate =>
Even mod 2 = 0; -- Boolean expression
-- (Even indicates "current instance")

Static Predicate

type Serial_Baud_Rate is range 110 .. 115200
with Static_Predicate => Serial_Baud_Rate in

-- Non-contiguous range
110 | 300 | 600 | 1200 | 2400 | 4800 |
9600 | 14400 | 19200 | 28800 | 38400 | 56000 |
57600 | 115200;

22 / 49

Type Contracts
Subtype Predicates

Predicate Checking

Calls inserted automatically by compiler

Violations raise exception Assertion_Error

When predicate does not hold (evaluates to False)

Checks are done before value change
Same as language-defined constraint checks

Associated variable is unchanged when violation is detected

23 / 49

Type Contracts
Subtype Predicates

Predicate Checks Placement

Anywhere value assigned that may violate target constraint

Assignment statements

Explicit initialization as part of object declaration

Subtype conversion

Parameter passing
All modes when passed by copy
Modes in out and out when passed by reference

Implicit default initialization for record components

On default type initialization values, when taken

24 / 49

Type Contracts
Subtype Predicates

References Are Not Checked

with Ada.Text_IO; use Ada.Text_IO;
procedure Test is

subtype Even is Integer with Dynamic_Predicate => Even mod 2 = 0;
J, K : Even;

begin
-- predicates are not checked here
Put_Line ("K is" & K'Img);
Put_Line ("J is" & J'Img);
-- predicate is checked here
K := J; -- assertion failure here
Put_Line ("K is" & K'Img);
Put_Line ("J is" & J'Img);

end Test;

Output would look like

K is 1969492223
J is 4220029

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE:
Dynamic_Predicate failed at test.adb:9

25 / 49

Type Contracts
Subtype Predicates

Predicate Expression Content

Reference to value of type itself, i.e., "current instance"

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = 0;

J, K : Even := 42;

Any visible object or function in scope
Does not have to be defined before use
Relaxation of "declared before referenced" rule of linear elaboration
Intended especially for (expression) functions declared in same
package spec

26 / 49

Type Contracts
Subtype Predicates

Static Predicates

Static means known at compile-time, informally
Language defines meaning formally (RM 3.2.4)

Allowed in contexts in which compiler must be able to verify
properties

Content restrictions on predicate are necessary

27 / 49

Type Contracts
Subtype Predicates

Allowed Static Predicate Content (1)

Ordinary Ada static expressions

Static membership test selected by current instance

Example 1

type Serial_Baud_Rate is range 110 .. 115200
with Static_Predicate => Serial_Baud_Rate in

-- Non-contiguous range
110 | 300 | 600 | 1200 | 2400 | 4800 | 9600 |
14400 | 19200 | 28800 | 38400 | 56000 | 57600 | 115200;

Example 2

type Days is (Sun, Mon, Tues, We, Thu, Fri, Sat);
-- only way to create subtype of non-contiguous values

subtype Weekend is Days
with Static_Predicate => Weekend in Sat | Sun;

28 / 49

Type Contracts
Subtype Predicates

Allowed Static Predicate Content (2)

Case expressions in which dependent expressions are static and
selected by current instance

type Days is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Weekend is Days with Static_Predicate =>

(case Weekend is
when Sat | Sun => True,
when Mon .. Fri => False);

Note: if-expressions are disallowed, and not needed

subtype Drudge is Days with Static_Predicate =>
-- not legal
(if Drudge in Mon .. Fri then True else False);

-- should be
subtype Drudge is Days with Static_Predicate =>

Drudge in Mon .. Fri;
29 / 49

Type Contracts
Subtype Predicates

Allowed Static Predicate Content (3)

A call to =, /=, <, <=, >, or >= where one operand is the
current instance (and the other is static)

Calls to operators and, or, xor, not

Only for pre-defined type Boolean
Only with operands of the above

Short-circuit controls with operands of above

Any of above in parentheses

30 / 49

Type Contracts
Subtype Predicates

Dynamic Predicate Expression Content

Any arbitrary boolean expression
Hence all allowed static predicates’ content

Plus additional operators, etc.

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = 0;

subtype Vowel is Character with Dynamic_Predicate =>
(case Vowel is
when 'A' | 'E' | 'I' | 'O' | 'U' => True,
when others => False); -- evaluated at run-time

Plus calls to functions
User-defined
Language-defined

31 / 49

Type Contracts
Subtype Predicates

Types Controlling For-Loops

Types with dynamic predicates cannot be used
Too expensive to implement

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = 0;

...
-- not legal - how many iterations?
for K in Even loop

...
end loop;

Types with static predicates can be used

type Days is (Sun, Mon, Tues, We, Thu, Fri, Sat);
subtype Weekend is Days

with Static_Predicate => Weekend in Sat | Sun;
-- Loop uses "Days", and only enters loop when in Weekend
-- So "Sun" is first value for K
for K in Weekend loop

...
end loop;

32 / 49

Type Contracts
Subtype Predicates

Why Allow Types with Static Predicates?
Efficient code can be generated for usage

type Days is (Sun, Mon, Tues, We, Thu, Fri, Sat);
subtype Weekend is Days with Static_Predicate => Weekend in Sat | Sun;
...
for W in Weekend loop

GNAT.IO.Put_Line (W'Img);
end loop;

for loop generates code like

declare
w : weekend := sun;

begin
loop

gnat__io__put_line__2 (w'Img);
case w is

when sun =>
w := sat;

when sat =>
exit;

when others =>
w := weekend'succ(w);

end case;
end loop;

end;
33 / 49

Type Contracts
Subtype Predicates

In Some Cases Neither Kind Is Allowed

No predicates can be used in cases where contiguous layout
required

Efficient access and representation would be impossible

Hence no array index or slice specification usage

type Play is array (Weekend) of Integer; -- illegal
type List is array (Days range <>) of Integer;
L : List (Weekend); -- not legal

34 / 49

Type Contracts
Subtype Predicates

Special Attributes for Predicated Types

Attributes ’First_Valid and ’Last_Valid
Can be used for any static subtype
Especially useful with static predicates
’First_Valid returns smallest valid value, taking any range or
predicate into account
’Last_Valid returns largest valid value, taking any range or
predicate into account

Attributes 'Range, ’First and ’Last are not allowed
Reflect non-predicate constraints so not valid
'Range is just a shorthand for ’First .. ’Last

’Succ and ’Pred are allowed since work on underlying type

35 / 49

Type Contracts
Subtype Predicates

Initial Values Can Be Problematic

Users might not initialize when declaring objects
Most predefined types do not define automatic initialization

No language guarantee of any specific value (random bits)

Example

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = 0;

K : Even; -- unknown (invalid?) initial value

The predicate is not checked on a declaration when no initial value
is given

So can reference such junk values before assigned
This is not illegal (but is a bounded error)

36 / 49

Type Contracts
Subtype Predicates

Subtype Predicates Aren’t Bullet-Proof

For composite types, predicate checks apply to whole object
values, not individual components

procedure Demo is
type Table is array (1 .. 5) of Integer

-- array should always be sorted
with Dynamic_Predicate =>

(for all K in Table'Range =>
(K = Table'First or else Table(K-1) <= Table(K)));

Values : Table := (1, 3, 5, 7, 9);
begin

...
Values (3) := 0; -- does not generate an exception!
...
Values := (1, 3, 0, 7, 9); -- does generate an exception
...

end Demo;
37 / 49

Type Contracts
Subtype Predicates

Beware Accidental Recursion In Predicate

Involves functions because predicates are expressions

Caused by checks on function arguments

Infinitely recursive example

type Sorted_Table is array (1 .. N) of Integer with
Dynamic_Predicate => Sorted (Sorted_Table);

-- on call, predicate is checked!
function Sorted (T : Sorted_Table) return Boolean;

Non-recursive example

type Sorted_Table is array (1 .. N) of Integer with
Dynamic_Predicate =>
(for all K in Sorted_Table'Range =>

(K = Sorted_Table'First
or else Sorted_Table (K - 1) <= Sorted_Table (K)));

Type-based example

type Table is array (1 .. N) of Integer;
subtype Sorted_Table is Table with

Dynamic_Predicate => Sorted (Sorted_Table);
function Sorted (T : Table) return Boolean;

38 / 49

Type Contracts
Subtype Predicates

GNAT-Specific Aspect Name Predicate

Conflates two language-defined names

Takes on kind with widest applicability possible
Static if possible, based on predicate expression content
Dynamic if cannot be static

Remember: static predicates allowed anywhere that dynamic
predicates allowed

But not inverse

Slight disadvantage: you don’t find out if your predicate is not
actually static

Until you use it where only static predicates are allowed

39 / 49

Type Contracts
Subtype Predicates

Enabling/Disabling Contract Verification

Corresponds to controlling specific run-time checks
Syntax

pragma Assertion_Policy (policy_name);
pragma Assertion_Policy (

assertion_name => policy_name
{, assertion_name => policy_name});

Vendors may define additional policies (GNAT does)

Default, without pragma, is implementation-defined

Vendors almost certainly offer compiler switch
GNAT uses same switch as for pragma Assert: -gnata

40 / 49

Type Contracts
Subtype Predicates

Quiz
type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
function Is_Weekday (D : Days_T) return Boolean is

(D /= Sun and then D /= Sat);

Which of the following is a valid subtype predicate?

A. subtype T is Days_T with
Static_Predicate => T in Sun | Sat;

B. subtype T is Days_T with Static_Predicate =>
(if T = Sun or else T = Sat then True else False);

C. subtype T is Days_T with
Static_Predicate => not Is_Weekday (T);

D. subtype T is Days_T with
Static_Predicate =>

case T is when Sat | Sun => True,
when others => False;

Explanations

A. Correct
B. If statement not allowed in a predicate
C. Function call not allowed in Static_Predicate (this would be

OK for Dynamic_Predicate)
D. Missing parentheses around case expression

41 / 49

Type Contracts
Subtype Predicates

Quiz
type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
function Is_Weekday (D : Days_T) return Boolean is

(D /= Sun and then D /= Sat);

Which of the following is a valid subtype predicate?

A. subtype T is Days_T with
Static_Predicate => T in Sun | Sat;

B. subtype T is Days_T with Static_Predicate =>
(if T = Sun or else T = Sat then True else False);

C. subtype T is Days_T with
Static_Predicate => not Is_Weekday (T);

D. subtype T is Days_T with
Static_Predicate =>

case T is when Sat | Sun => True,
when others => False;

Explanations

A. Correct
B. If statement not allowed in a predicate
C. Function call not allowed in Static_Predicate (this would be

OK for Dynamic_Predicate)
D. Missing parentheses around case expression

41 / 49

Type Contracts
Lab

Lab

42 / 49

Type Contracts
Lab

Type Contracts Lab

Overview
Create simplistic class scheduling system

Client will specify name, day of week, start time, end time
Supplier will add class to schedule
Supplier must also be able to print schedule

Requirements
Monday, Wednesday, and/or Friday classes can only be 1 hour long
Tuesday and/or Thursday classes can only be 1.5 hours long
Classes without a set day meet for any non-negative length of time

Hints
Subtype Predicate to create subtypes of day of week

Type Invariant to ensure that every class meets for correct length of
time

To enable assertions in the run-time from GNAT Studio

Edit → Project Properties
Build → Switches → Ada
Click on Enable assertions

43 / 49

Type Contracts
Lab

Type Contracts Lab Solution - Schedule (Spec)
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Schedule is

Maximum_Classes : constant := 24;
type Days_T is (Mon, Tue, Wed, Thu, Fri, None);
type Time_T is delta 0.5 range 0.0 .. 23.5;
type Classes_T is tagged private;
procedure Add_Class (Classes : in out Classes_T;

Name : String;
Day : Days_T;
Start_Time : Time_T;
End_Time : Time_T) with
Pre => Count (Classes) < Maximum_Classes;

procedure Print (Classes : Classes_T);
function Count (Classes : Classes_T) return Natural;

private
subtype Short_Class_T is Days_T with Static_Predicate => Short_Class_T in Mon | Wed | Fri;
subtype Long_Class_T is Days_T with Static_Predicate => Long_Class_T in Tue | Thu;
type Class_T is tagged record

Name : Unbounded_String := Null_Unbounded_String;
Day : Days_T := None;
Start_Time : Time_T := 0.0;
End_Time : Time_T := 0.0;

end record;
subtype Class_Size_T is Natural range 0 .. Maximum_Classes;
subtype Class_Index_T is Class_Size_T range 1 .. Class_Size_T'Last;
type Class_Array_T is array (Class_Index_T range <>) of Class_T;
type Classes_T is tagged record

Size : Class_Size_T := 0;
List : Class_Array_T (Class_Index_T);

end record with Type_Invariant =>
(for all Index in 1 .. Size => Valid_Times (Classes_T.List (Index)));

function Valid_Times (Class : Class_T) return Boolean is
(if Class.Day in Short_Class_T then Class.End_Time - Class.Start_Time = 1.0
elsif Class.Day in Long_Class_T then Class.End_Time - Class.Start_Time = 1.5
else Class.End_Time >= Class.Start_Time);

function Count (Classes : Classes_T) return Natural is (Classes.Size);
end Schedule;

44 / 49

Type Contracts
Lab

Type Contracts Lab Solution - Schedule (Body)
with Ada.Text_IO; use Ada.Text_IO;
package body Schedule is

procedure Add_Class
(Classes : in out Classes_T;
Name : String;
Day : Days_T;
Start_Time : Time_T;
End_Time : Time_T) is

begin
Classes.Size := Classes.Size + 1;
Classes.List (Classes.Size) :=

(Name => To_Unbounded_String (Name), Day => Day,
Start_Time => Start_Time, End_Time => End_Time);

end Add_Class;

procedure Print (Classes : Classes_T) is
begin

for Index in 1 .. Classes.Size loop
Put_Line

(Days_T'Image (Classes.List (Index).Day) & ": " &
To_String (Classes.List (Index).Name) & " (" &
Time_T'Image (Classes.List (Index).Start_Time) & " -" &
Time_T'Image (Classes.List (Index).End_Time) & ")");

end loop;
end Print;

end Schedule;

45 / 49

Type Contracts
Lab

Type Contracts Lab Solution - Main
with Ada.Exceptions; use Ada.Exceptions;
with Ada.Text_IO; use Ada.Text_IO;
with Schedule; use Schedule;
procedure Main is

Classes : Classes_T;
begin

Classes.Add_Class (Name => "Calculus",
Day => Mon,
Start_Time => 10.0,
End_Time => 11.0);

Classes.Add_Class (Name => "History",
Day => Tue,
Start_Time => 11.0,
End_Time => 12.5);

Classes.Add_Class (Name => "Biology",
Day => Wed,
Start_Time => 13.0,
End_Time => 14.0);

Classes.Print;
begin

Classes.Add_Class (Name => "Biology",
Day => Thu,
Start_Time => 13.0,
End_Time => 14.0);

exception
when The_Err : others =>

Put_Line (Exception_Information (The_Err));
end;

end Main;

46 / 49

Type Contracts
Summary

Summary

47 / 49

Type Contracts
Summary

Working with Type Invariants

They are not fully foolproof
External corruption is possible
Requires dubious usage

Violations are intended to be supplier bugs
But not necessarily so, since not always bullet-proof

However, reasonable designs will be foolproof

48 / 49

Type Contracts
Summary

Type Invariants vs Predicates

Type Invariants are valid at external boundary
Useful for complex types - type may not be consistent during an
operation

Predicates are like other constraint checks
Checked on declaration, assignment, calls, etc

49 / 49

	Introduction
	Type Invariants
	Subtype Predicates
	Lab
	Summary

