
Static Analysis Via Compiler

Static Analysis Via Compiler

1 / 67

Static Analysis Via Compiler
Overview

Overview

2 / 67

Static Analysis Via Compiler
Overview

Typographical Styles Used

This is a definition
this/is/a.path
code is highlighted
commands are emphasised --like-this

3 / 67

Static Analysis Via Compiler
Overview

Introduction

GNAT can be configured to perform static analysis
Warnings enabled via compiler switches

GNAT can be told that a subset of the language will be adhered to
by the source code

Via language-defined pragma Restrictions
Affects code generation and run-time library candidates
Useful for certification

GNAT’s analysis is extensive, but not without limitations
A compiler rather than a static analyzer
CodePeer will be used as a counter-example

4 / 67

Static Analysis Via Compiler
GNAT Warnings

GNAT Warnings

5 / 67

Static Analysis Via Compiler
GNAT Warnings

Warning Categories

Definite errors
Probable errors
Possible mismatches with user expectations
Redundant code
Representation-related warnings

Biased integer representation, etc.
See GNAT User’s Guide for all switches and their meanings

6 / 67

Static Analysis Via Compiler
GNAT Warnings

Controlling Warnings With Switches

Activated with option -gnatw[x]
Where x is a character(s) specific to a warning

Deactivated with capitalized version of switch
E.g., -gnatwc activates, -gnatwC deactivates

GCC back-end offers distinct warnings too
Warnings for nasty cases are enabled by default

Unintentional address clause overlays
Others...

7 / 67

Static Analysis Via Compiler
GNAT Warnings

Warnings Example

1 function Bad (B1, B2 : Boolean) return Integer is
2 Result : Integer;
3 begin
4 Result := Result + 1;
5 if B1 then
6 return Result;
7 end if;
8 Result := Bad (B1, B2);
9 end Bad;

gcc -c -gnatwa bad.adb
bad.adb:4:14: warning: "Result" may be referenced before it has a value [enabled by default]
bad.adb:8:04: warning: possibly useless assignment to "Result", value might not be referenced [-gnatwm]
bad.adb:8:11: warning: "return" statement missing following this statement [enabled by default]
bad.adb:8:11: warning: Program_Error will be raised at run time [enabled by default]

8 / 67

Static Analysis Via Compiler
GNAT Warnings

Definite Errors

Compiler detects a runtime failure
Compiler can tell that an assertion is always false
Exceptions raised but not caught locally and
No_Exception_Propagation restriction is applied

9 / 67

Static Analysis Via Compiler
GNAT Warnings

Definite Error Examples

1 pragma Restrictions (No_Exception_Propagation);
2 procedure Test (Failure : Boolean) is
3 begin
4 if Failure then
5 raise Constraint_Error;
6 end if;
7 end Test;

test.adb:5:07: warning: pragma Restrictions (No_Exception_Propagation) in effect [-gnatw.x]
test.adb:5:07: warning: execution may raise unhandled exception [-gnatw.x]

1 procedure Test (Param : in out Integer) is
2 begin
3 pragma Assert (Integer'object_size = 64);
4 Param := Param + 1;
5 end Test;

test.adb:3:19: warning: assertion would fail at run time [-gnatw.a]

10 / 67

Static Analysis Via Compiler
GNAT Warnings

Probable Errors

Errors where compiler thinks coder made a mistake
Conditions that are always false or always true
Unused formal parameters

Can apply pragma Unreferenced, especially in OOP case
Variables that could be declared as constants

Not so much an error but should be heeded
Variables assigned but not read
Variables read but not assigned
Unchecked conversions with different source and target type sizes
Unlikely modulus value in type declaration
Suspicious actual parameter ordering
Missing parentheses may be confusing

11 / 67

Static Analysis Via Compiler
GNAT Warnings

Probable Errors - Source Code
1 with Unchecked_Conversion;
2 package body Examples is
3

4 function Convert is new Unchecked_Conversion (Integer, Character);
5 type Mod_T is mod 2 * 32;
6

7 procedure Example (A, B, C : Natural;
8 D : out Natural) is
9 E : Natural := A * B;

10 F : Natural;
11 begin
12 if E >= 0 then
13 D := D + A / B;
14 F := E;
15 end if;
16 end Example;
17

18 procedure Test (A, B, C : Integer;
19 D : out Integer) is
20 begin
21 Example (A, C, B, D);
22 D := -D mod B;
23 end Test;
24

25 end Examples;

12 / 67

Static Analysis Via Compiler
GNAT Warnings

Probable Errors - Results
examples.adb:3:04: warning: types for unchecked conversion have different sizes [-gnatwz]
examples.adb:4:24: warning: suspicious "mod" value, was ** intended? [-gnatw.m]
examples.adb:6:13: warning: formal parameter "C" is not referenced [-gnatwu]
examples.adb:8:07: warning: "E" is not modified, could be declared constant [-gnatwk]
examples.adb:9:07: warning: variable "F" is assigned but never read [-gnatwm]
examples.adb:11:12: warning: condition can only be False if invalid values present [-gnatwc]
examples.adb:11:12: warning: condition is always True [-gnatwc]
examples.adb:13:15: warning: "D" may be referenced before it has a value [enabled by default]
examples.adb:21:07: warning: actuals for this call may be in wrong order [-gnatw.p]
examples.adb:22:12: warning: unary minus expression should be parenthesized here [enabled by default]

13 / 67

Static Analysis Via Compiler
GNAT Warnings

Probable Errors - Explanations

Line 5 - Coder probably meant 2 ** 32

But maybe not? It could be a bit location

Line 12 - E is natural, so it can never be less than zero (without
invalid data)

Line 13 - D is an out parameter, so there is no guarantee on it’s
initial value

Line 22 - Did you mean -(D mod B) or (-D) mod B?

14 / 67

Static Analysis Via Compiler
GNAT Warnings

Redundant Code

Comparing boolean expression to boolean value
Type conversion when the entity is already of the target type

15 / 67

Static Analysis Via Compiler
GNAT Warnings

Redundant Code - Examples

1 package body Redundant_Code is
2

3 procedure Test
4 (A, B, C : Integer;
5 D : in out Integer) is
6 begin
7 if (A > B) = True then
8 D := D - 1;
9 end if;

10 D := D - Integer (C);
11 end Test;
12

13 end Redundant_Code;
redundant_code.adb:7:18: warning: comparison with True is redundant [-gnatwr]
redundant_code.adb:10:16: warning: redundant conversion, "C" is of type "Integer" [-gnatwr]

16 / 67

Static Analysis Via Compiler
GNAT Warnings

Controlling Warnings With A Single Switch

Switch -gnatwa enables almost all warnings
Those typically useful
Good balance between actual problems and false positives

Switch -gnatw.e enables absolutely all warnings
Including those not activated by -gnatwa
Not recommended for typical use
Likely generates many warnings you’ll end up ignoring
But you might want some of them, individually

17 / 67

Static Analysis Via Compiler
GNAT Warnings

Highly Optional Warnings -gnatw.e

Implicit dereferencing (missing optional .all)
Activate tagging (warning messages tagged with certain strings)
Suspicious Subp’Access
Warnings for GNAT sources
Hiding (Potentially confusing hiding of declarations)
Holes/gaps in records
Redefinition of names in package Standard
Elaboration pragmas
List inherited aspects
Atomic synchronization
Modified but unreferenced parameters
Out of order record representation clauses
Overridden size clauses
Tracking of deleted conditional code
Unordered enumeration types
Warnings Off pragmss (flags unnecessary pragmas)
Activate information messages for why package needs a body

18 / 67

Static Analysis Via Compiler
GNAT Warnings

Unordered Enumeration Value Comparisons

Most enumerations are not semantically ordered

-- not semantically ordered
type Colors_T is (Red, Yellow, Green);
-- semantically ordered
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

Comparisons other than equality are suspect

14 if Current_Color > Yellow then -- must be Green, so go

Maintainers (you!) may change order later

type Colors_T is (Green, Yellow, Red);

GNAT pragma Ordered can be used say that such comparisons
make sense

pragma Ordered (Days);

Can set warning -gnatw.u to flag unordered relations
examples.adb:14:32: warning: comparison on unordered enumeration type "Colors_t" declared at colors.ads:4 [-gnatw.u]

19 / 67

Static Analysis Via Compiler
GNAT Warnings

Notifications of Deleted Conditional Code

Also known as deactivated code
Applies to if-statements and case-statements
May be useful in certified applications

3 procedure Test (A : in out Integer) is
4 begin
5 if False then
6 Put_Line ("Commented out for now");
7 else
8 Put_Line (A'image);
9 end if;

10 end Test;
examples.adb:6:10: warning: this code can never be executed and has been deleted [-gnatwt]

20 / 67

Static Analysis Via Compiler
GNAT Warnings

Controlling Warnings Within the Source Text
Via pragma Warnings

See Implementation Defined Pragmas in GNAT Reference
Manual

Syntax
All have an optional string literal parameter Reason ignored by
compiler but perhaps processed by other tools

pragma Warnings ([TOOL_NAME,] DETAILS [, REASON]);

DETAILS ::= On | Off

Enable/Disable all warnings

DETAILS ::= On | Off, Local_Name

Enable/Disable all warnings for Local_Name

DETAILS ::= Static_String_Expression

Enable/Disable warnings based on compiler switches specified in
Static_String_Expression

DETAILS ::= On | Off, Static_String_Expression

Enable/Disable all warnings based on warning message specified in
Static_String_Expression

TOOL_NAME ::= SPARK | GNATprove

Control which tool responds to pragma

REASON ::= Reason => STRING_LITERAL {& STRING_LITERAL}

Informational message that can be parsed by external tools

21 / 67

Static Analysis Via Compiler
GNAT Warnings

Pragma Warnings Usage Examples

All warnings off in this region of code only

pragma Warnings (Off);
Free (X);
pragma Warnings (On);

All warnings off for this object, throughout its scope

New_Tgt_Node : Counter;
pragma Warnings (Off, New_Tgt_Node);

All warnings off that emit messages matching this text, in this
region of code only

-- Optional; matches any message text
pragma Warnings (Off, "loop range is null*");
-- On monoprocessor targets, the following loop will
-- never execute (no other CPUs).
for CPU_Id in CPU'First + 1 .. CPU'Last loop

Start_CPU (CPU_Id);
end loop ;
pragma Warnings (On, "loop range is null*");

22 / 67

Static Analysis Via Compiler
GNAT Style Checking

GNAT Style Checking

23 / 67

Static Analysis Via Compiler
GNAT Style Checking

"Style" Checking

Style rules we use within AdaCore
Not a general coding standards checker (see GNATcheck)
Some are arbitrary
Main thing is to be consistent

Categories of checks
Layout/presentation
Sound Engineering

Note that you don’t have to use any/all of these!

24 / 67

Static Analysis Via Compiler
GNAT Style Checking

GNAT Style Enforcement Switches

Activated with option -gnatyxx
Where xx is replaced with list of style check parameters

Deactivated after minus (-):
-gnatyc activates, -gnaty-c deactivates

-gnaty activates most style warnings (also -gnatyY)
Equivalent to -gnaty3abcefhiklmnprst
(Descriptions on following pages)

-gnatyN suppresses all style warnings
See GNAT User’s Guide section 3.2.5 for all the options available

25 / 67

Static Analysis Via Compiler
GNAT Style Checking

GNAT Modes

Internal GNAT implementation mode -gnatg →
-gnatyg -gnatw.ge
GNAT-Style mode -gnatyg → -gnatyydISuxz

y All standard check options
d No DOS line-terminators
I No explicit in keyword
S then / else statements on different line
u No unnecessary blank lines
x No extra parentheses in conditionals
z No extra parentheses in operations

GNAT source warnings -gnatw.g (next slide)
Activate every optional warning -gnatw.e

26 / 67

Static Analysis Via Compiler
GNAT Style Checking

GNAT Source Warnings -gnatw.g

GNAT Source warnings meaning may evolve and switches may
change

As of now, -gnatw.g → -gnatwAao.q.s.CI.V.X.Z

Aao Reset warnings to -gnatwa
.q Questionable / inneficient layout of record type
.s Overriden size clause (sizes mismatch)
.C No warning for incomplete component representation clause
I No warning on with of internal GNAT package
.V No info message on non-default bit-order
.X No warning for Restriction (No_Exception_Propagation)
.Z No warning for 'Size mod 'Alignment /= 0

27 / 67

Static Analysis Via Compiler
GNAT Style Checking

Layout and Presentation Checks

Style check Behavior

1-9 check indentation
a check attribute casing
b check no blanks at end of lines
c check comment format (two spaces)
C check comment format (one space)
d check no DOS line terminators
f check no form feeds/vertical tabs in source
h check no horizontal tabs in source
i check if-then layout
k check casing rules for keywords
l check reference manual layout
m check line length <= 79 characters
Mnn check line length <= nn characters
n check casing of package Standard identifiers
o check subprogram bodies in alphabetical order
p check pragma casing
r check casing for identifier references
S check separate lines after THEN or ELSE
t check token separation rules
u check no unnecessary blank lines

28 / 67

Static Analysis Via Compiler
GNAT Style Checking

Layout and Presentation Example
79 -- Procedure to find the defining name for the node
80 procedure Find_Defining_Name (Node : Lal.Ada_Node'Class) is
81 Parent : Lal.Ada_Node := node.Parent;
82 begin
83 -- Go up the tree until we find what we are looking for
84 Search_Loop:
85 While not Parent.Is_Null loop
86 exit Search_Loop when Names.Map_Size = Natural'last;
87 if Parent.Kind = Lalco.Ada_Defining_Name then
88 if Valid_Length (Qualified_Name) then
89 Names.Add_Name (Qualified_Name);
90 end if;
91 end if;
92 Parent := Parent.Parent;
93 end loop Search_Loop;
94 end Find_Defining_Name;

Message Caused by
obfuscate.adb:79:07: (style) space required -gnatyc
obfuscate.adb:81:32: (style) bad casing of "Node" declared at line 80 -gnatyr
obfuscate.adb:84:18: (style) space required -gnatyt
obfuscate.adb:85:07: (style) reserved words must be all lower case -gnatyk
obfuscate.adb:86:57: (style) bad capitalization, mixed case required -gnatya
obfuscate.adb:89:15: (style) bad indentation -gnaty3

29 / 67

Static Analysis Via Compiler
GNAT Style Checking

Sound Engineering Checks

Style check Behavior

A check array attribute indexes
B check no use of AND/OR for boolean expressions
e check end/exit labels present
I check mode in
Lnn check max nest level < nn
O check overriding indicators
s check separate subprogram specs present
x check extra parentheses around conditionals

30 / 67

Static Analysis Via Compiler
GNAT Style Checking

Sound Engineering Example
4 package Example is
5 Count : Natural;
6 type Tagged_T is tagged null record;
7 procedure Primitive (R : in Tagged_T);
8 type Child_T is new Tagged_T with record
9 Field : Natural;

10 end record;
11 procedure Primitive (R : in Child_T);
12 end Example;
13

14 package body Example is
15 procedure Primitive (R : in Tagged_T) is
16 begin
17 if (Count > 0) then Count := 0; end if;
18 end Primitive;
19 procedure Primitive (R : in Child_T) is
20 begin
21 Lup :
22 while (Count > 0) and (Count < 100) loop
23 Count := Count + R.Field;
24 exit when Count = 50;
25 end loop Lup;
26 end Primitive;
27 end Example;

Message Caused by
examples.adb:7:32: (style) "in" should be omitted -gnatyI
examples.adb:11:07: (style) missing "overriding" indicator in declaration of "Primitive" -gnatyO
examples.adb:17:13: (style) redundant parentheses -gnatyx
examples.adb:17:30: (style) no statements may follow "then" on same line -gnatyS
examples.adb:19:07: (style) missing "overriding" indicator in body of "Primitive" -gnatyO
examples.adb:22:28: (style) "and then" required -gnatyB
examples.adb:24:13: (style) "exit Lup" required -gnatye

31 / 67

Static Analysis Via Compiler
GNAT Style Checking

Warnings Versus Errors

If you must ensure issues are caught, failing to compile is the most
rigorous enforcement
Compiler can be told to treat warnings as errors

Thus code rejected at compile-time
Use switch -gnatwe

Warnings become errors
Style violations become errors too
Warning messages still appear but no code generation

32 / 67

Static Analysis Via Compiler
GNAT Style Checking

IDE Integration (Project Properties Editor)

33 / 67

Static Analysis Via Compiler
GNAT Style Checking

Warnings Dialog

34 / 67

Static Analysis Via Compiler
GNAT Style Checking

Style Checks Dialog

35 / 67

Static Analysis Via Compiler
GNAT Style Checking

Dialog Pop-Ups Explain Style Options

36 / 67

Static Analysis Via Compiler
Language Subset Definitions

Language Subset Definitions

37 / 67

Static Analysis Via Compiler
Language Subset Definitions

Definition of Language Subsets

Uses language-defined pragma Restrictions

pragma Restrictions (restriction{, restriction});
restriction ::= restriction_identifier |

restriction_parameter_identifier =>
restriction_parameter_argument

Provides control over many features
Tasking, exceptions, dispatching, code generation, elaboration, etc.

Benefits
Faster execution on compatible run-time library
Safer coding
Certification restrictions compliance
Compiler/target portability

Restrictions can also be added by setting up a runtime profile via
Pragma Profile(<runtime>) which enables all restrictions
implemented in the specified runtime

38 / 67

Static Analysis Via Compiler
Language Subset Definitions

Example Restriction & Violation Message
1 pragma Restrictions (No_Implicit_Heap_Allocations);
2
3 with Ada.Command_Line;
4 package Lib_Level is
5 -- Command_Name returns an unconstrained type
6 Command_Name : constant String := Ada.Command_Line.Command_Name;
7 end Lib_Level;

lib_level.ads:6:04: error: violation of restriction "No_Implicit_Heap_Allocations" at line 1

Only happens for library level package specs, not just any package and
not package bodies.

39 / 67

Static Analysis Via Compiler
Language Subset Definitions

Restriction Identifiers

All language-defined identifiers are implemented
Core restrictions (see 13.12.1)
Real-time tasking restrictions (see D.7)
High integrity restrictions (see H.4)

GNAT defines additional restriction identifiers
All restrictions, both language-defined and GNAT-defined, are
listed and described in the GNAT Reference Manual

40 / 67

Static Analysis Via Compiler
Language Subset Definitions

Restriction Categories

Portability

Allocation

Access Types & Values

Exceptions

OOP

Tasking

Real-Time Programming

Code Generation

Miscellaneous

GNAT defines additional restrictions in all these categories
We examine some of them here...

41 / 67

Static Analysis Via Compiler
Language Subset Definitions

Applying Restriction Identifiers

In source or in configuration file
Configuration file name should be specified in the GPR file
package Compiler is

for Local_Configuration_Pragmas
use "configuration_pragmas.adc";

end Compiler;
Or, if not GPR file is in use, in the default config file gnat.adc

pragma Restrictions (No_Implicit_Heap_Allocations);
pragma Restrictions (No_Implicit_Conditionals);
pragma Restrictions (No_Entry_Calls_In_Elaboration_Code);

GNATbind can list all restrictions that could be applied to the
code corresponding to a given ALI file

Via -r switch
Useful for code audit, and code generation control

42 / 67

Static Analysis Via Compiler
Language Subset Definitions

OOP Restrictions

No_Dispatch (RM H.4)
Ensures no occurrences of T'Class for any tagged type T
Prevents dynamic dispatching (but also other usage)

No_Dispatching_Calls (GNAT)
Ensures generated code involves no dispatching calls
Allows

Record extensions
Classwide membership tests
Other classwide features

Does not allow involving implicit dispatching
Comparable to No_Dispatch

Except allows all classwide constructs that do not imply dispatching

43 / 67

Static Analysis Via Compiler
Language Subset Definitions

Quiz

package Definition is
type T is tagged record

Data : Natural;
end record;
procedure P (X : T);
type Dt is new T with record

More_Data : Natural;
end record;
not overriding procedure Q (X : Dt);

end Definition;
1 pragma Restrictions (No_Dispatching_Calls);
2
3 with Definition; use Definition;
4 procedure Demo (O : T'class) is
5 N : Natural := O'size;
6 C : T'class := O;
7 begin
8 if O in Dt'class then
9 Q (Dt (O));

10 else
11 P (O);
12 end if;
13 end Demo;

Which line(s) violate the restriction?
A. 5, 6, 8, 9, 11
B. 11
C. 5, 6, 11
D. No violations

Line 5 - Dispatch needed to
determine size of O
Line 6 - Just a memory copy
(no dispatching)
Line 8 - Membership not a
dispatching call
Line 9 - Type conversion so
no dispatching
Line 11 - Dispatch needed to
find correct P

44 / 67

Static Analysis Via Compiler
Language Subset Definitions

Quiz

package Definition is
type T is tagged record

Data : Natural;
end record;
procedure P (X : T);
type Dt is new T with record

More_Data : Natural;
end record;
not overriding procedure Q (X : Dt);

end Definition;
1 pragma Restrictions (No_Dispatching_Calls);
2
3 with Definition; use Definition;
4 procedure Demo (O : T'class) is
5 N : Natural := O'size;
6 C : T'class := O;
7 begin
8 if O in Dt'class then
9 Q (Dt (O));

10 else
11 P (O);
12 end if;
13 end Demo;

Which line(s) violate the restriction?
A. 5, 6, 8, 9, 11
B. 11
C. 5, 6, 11
D. No violations

Line 5 - Dispatch needed to
determine size of O
Line 6 - Just a memory copy
(no dispatching)
Line 8 - Membership not a
dispatching call
Line 9 - Type conversion so
no dispatching
Line 11 - Dispatch needed to
find correct P

44 / 67

Static Analysis Via Compiler
Language Subset Definitions

Exceptions Restrictions Form A Spectrum

No_Exceptions (RM H.4)
No raise statements and no handlers

No_Exception_Handlers (GNAT)
No exception handlers
Raised exception raised result in call to the last chance handler

No_Exception_Propagation (GNAT)
Exceptions never propagated out of subprogram
Handlers are allowed

May not contain an exception occurrence identifier
Handler must be in same subprogram

Raise is essentially a goto statement
Any other raise statement considered unhandled

45 / 67

Static Analysis Via Compiler
Language Subset Definitions

No_Implicit_Conditionals (GNAT)

Generated code does not contain any implicit conditionals
E.g., comparisons of composite objects (maybe)
E.g., the Max/Min attributes (maybe)

Modifies the generated code where possible, or rejects any
construct that would otherwise generate an implicit conditional
If rejected, the programmer must make the condition explicit in
the source

46 / 67

Static Analysis Via Compiler
Language Subset Definitions

No_Implicit_Loops (GNAT)

Ensures generated code does not contain any implicit loops
Actual code
X : array (1 .. 100) of Integer := (1, 2, others => 3);
Generated code
x (1) := 1;
x (2) := 2;
k : integer := 2;
while k < 100 loop

k := k + 1;
x (k) := 3;

end loop;
Modifies code generation approach where possible, or rejects
construct
If rejected, programmer must make loop explicit
Can improve code performance

47 / 67

Static Analysis Via Compiler
Language Subset Definitions

GNAT Initialization Restrictions

No_Initialize_Scalars

No unit in partition compiled with pragma Initialize_Scalars
Allows generation of more efficient code

No_Default_Initialization

Forbids any default variable initialization of any kind

1 pragma Restrictions (No_Default_Initialization);
2 procedure Demo is
3 type Record_T is record
4 Field : Integer := 42;
5 end record;
6 Bad : Record_T;
7 Good : Record_T := (Field => 42);

demo.adb:6:04: error: violation of restriction "No_Default_Initialization" at line 1

48 / 67

Static Analysis Via Compiler
Language Subset Definitions

Miscellaneous GNAT Restrictions

No_Direct_Boolean_Operators
Short-circuit forms required everywhere
More restrictive than GNAT style switch

No_Elaboration_Code
No elaboration code is generated
Not the same as pragma Preelaborate

No_Enumeration_Maps
No 'Image and 'Value applied to enumeration types

No need to keep strings
Compare to pragma Discard_Names

Applies to enumeration types, tagged types, and exceptions

49 / 67

Static Analysis Via Compiler
Language Subset Definitions

GNAT Stream Restrictions

No_Stream_Optimizations
Performs all I/O operations on a per-character basis

Rather than larger whole-array object basis
No_Streams

No stream objects created and no use of stream attributes
Less code generated
Worth considering if using tagged types on memory-constrained
targets

50 / 67

Static Analysis Via Compiler
Language Subset Definitions

No_Finalization (GNAT)

Disables features described in Ada Reference Manual section 7.6
plus all forms of code generation supporting them

Initialization as well as finalization
Following types are no longer controlled types

Ada.Finalization.Controlled and Limited_Controlled
Types derived from Controlled or Limited_Controlled
Class-wide types
Protected types
Task types
Array and record types with controlled components

Compiler no longer generates code to initialize, finalize or adjust
objects

51 / 67

Static Analysis Via Compiler
Getting Representation Info

Getting Representation Info

52 / 67

Static Analysis Via Compiler
Getting Representation Info

Traceability from Source Code to Object Code

Expanded sources can be viewed
Shows how tasks implemented, aggregates expanded, etc.
Facilitates certification activities

Expanded code syntax described in GNAT User’s Guide
Enabled via -gnatG

Add -gnatL to intersperse source lines as comments

53 / 67

Static Analysis Via Compiler
Getting Representation Info

Expanded Code Example
Actual code

1 procedure Demo is
2 X : array (1 .. 100) of Integer := (1, 2, others => 3);
3 begin
4 null;
5 end Demo;

Generated code

-- 1: procedure Demo is
procedure demo is
-- 2: X : array (1 .. 100) of Integer := (1, 2, others => 3);

[type demo__TxB is array (1 .. 100 range <>) of integer]
freeze demo__TxB []
[subtype demo__TxT1b is demo__TxB (1 .. 100)]
freeze demo__TxT1b []
x : array (1 .. 100) of integer;
x (1) := 1;
x (2) := 2;
J6b : integer := 2;
L7b : while J6b < 100 loop

[constraint_error when
J6b = 16#7FFF_FFFF#
"overflow check failed"]

J6b := integer'succ(J6b);
x (J6b) := 3;

end loop L7b;
-- 3: begin
begin
-- 4: null;

null;
-- 5: end Demo;

return;
end demo;

54 / 67

Static Analysis Via Compiler
Getting Representation Info

See How Types and Objects Are Represented

Compiler switch shows all representation aspects
Size in memory
Size required for values
Alignment
Component sizes

Reflects user specifications
Record type representation
Array component sizes
et cetera

Reflects compiler defaults
When not specified by application code

55 / 67

Static Analysis Via Compiler
Getting Representation Info

Settings for Viewing Representations

-gnatR0 No information

-gnatR1 Size / alignment for array and record types

-gnatR2 Size / alignment for all types and objects

-gnatR3 Symbolic expressions for variant record info

If the switch is followed by an ’s’ the output is to a file with the
name <file>.rep where <file> is the name of the
corresponding source file
Note -gnatR is same as - gnatR1

56 / 67

Static Analysis Via Compiler
Getting Representation Info

Viewing Data Representations Example
Performing gcc -c -gnatR3 on:

package Some_Types is
type Temperature is range -275 .. 1_000;
type Identity is range 1 .. 127;
type Info is record

T : Temperature;
Id : Identity;

end record;
end Some_Types;

Generates:

for Temperature'Object_Size use 16;
for Temperature'Value_Size use 11;
for Temperature'Alignment use 2;

for Identity'Object_Size use 8;
for Identity'Value_Size use 7;
for Identity'Alignment use 1;

for Info'Object_Size use 32;
for Info'Value_Size use 24;
for Info'Alignment use 2;
for Info use record

T at 0 range 0 .. 15;
Id at 2 range 0 .. 7;

end record;

57 / 67

Static Analysis Via Compiler
GNAT versus CodePeer

GNAT versus CodePeer

58 / 67

Static Analysis Via Compiler
GNAT versus CodePeer

CodePeer

A static analyzer
Provides deep analysis prior to execution and test

Helps identify vulnerabilities and bugs
Better than the compiler
Better than a human!

Is modular and scalable
Can be used on an entire project or a single file
Can be configured to be more or less strict

Is flexible
Usable with all Ada language variants
Usable with other vendors’ compilers

59 / 67

Static Analysis Via Compiler
GNAT versus CodePeer

Why Not Just Use the Compiler?

The compiler does generate useful warnings
But CodePeer far exceeds the compiler’s analyses

CodePeer
Does much more thorough job
Finds problems compiler doesn’t look for

60 / 67

Static Analysis Via Compiler
GNAT versus CodePeer

How Does GNAT Analysis Work?

Intraprocedural
Ignores interactions between caller and called subprograms

Flow-sensitive but path- and context-insensitive
Recognizes order of statements
Ignores effects of conditional statements
Ignores calling context

Low-noise
Very useful, but not complete

61 / 67

Static Analysis Via Compiler
GNAT versus CodePeer

Flow Tracing

1 function Example (K : Integer) return Integer is
2 A, B, C, D : Integer;
3 begin
4 C := A;
5 if K > 4 then
6 B := 3;
7 end if;
8 D := B;
9 return D;

10 end Example;

Compiler results:

example.adb:2:04: warning: variable "A" is read but never assigned [-gnatwv]

CodePeer results

example.adb:4:9: high: validity check: A is uninitialized here
example.adb:8:9: medium: validity check: B might be uninitialized

62 / 67

Static Analysis Via Compiler
GNAT versus CodePeer

Value Tracing

1 function Example (K : Integer) return Integer is
2 A : Integer;
3 begin
4 A := 4;
5 if A > 3 then
6 A := A + 1;
7 end if;
8 if A > 4 then
9 A := A + 1;

10 end if;
11 return A + K;
12 end Example;

GNAT does only rudimentary value tracing
Traces constant values assigned in straight-line code with no
conditions

example.adb:5:14: warning: condition is always True

CodePeer does full value tracing

example.adb:5:09: warning: condition is always True
example.adb:8:9: medium warning: test always true because A = 5

63 / 67

Static Analysis Via Compiler
GNAT versus CodePeer

"Intra"procedural vs. "Inter"procedural Analysis

1 function Example (K : Integer) return Integer is
2 A, B, C : Integer;
3 function Zero return Integer is (0);
4 begin
5 A := 0;
6 B := K / A;
7 C := B / Zero;
8 return C;
9 end Example;

GNAT only analyzes one routine at a time
example.adb:6:13: warning: division by zero [enabled by default]

CodePeer does whole-program analysis
example.adb:6:11: high: divide by zero fails here
example.adb:7:11: high: divide by zero fails here: requires (zero'Result) /= 0

64 / 67

Static Analysis Via Compiler
GNAT versus CodePeer

CodePeer’s Capabilities Beyond the Compiler’s

Detecting race conditions in tasking code
Incremental analysis

Historical database preserves results of every run
Allows user to focus on new problems or compare against baseline
Only the changes need be analyzed

Contract-based Programming support
Can generate contracts automatically from the code
Can detect incorrect contracts (statically)
Can use existing contracts in further analysis

Others...

65 / 67

Static Analysis Via Compiler
Summary

Summary

66 / 67

Static Analysis Via Compiler
Summary

Summary

Compiler can generate a large number of useful warnings
Multiple warning categories supported

Layout and presentation
Sound engineering coding practices
Language subset definitions

See the docs: we did not examine every possibility
CodePeer can do much better, and much more

And analysis is sound
You can use these facilities directly but you can also apply them
via GNATcheck

67 / 67

	Overview
	GNAT Warnings
	GNAT Style Checking
	Language Subset Definitions
	Getting Representation Info
	GNAT versus CodePeer
	Summary

