
Overview

Overview

1 / 103

Overview
Introduction

Introduction

2 / 103

Overview
Introduction

Origins and Purposes of Projects

Need for flexibility
Managing huge applications is a difficult task
Build tools are always useful

GNAT compilation model
Compiler needs to know where to find Ada files imported by Ada
unit being compiled

IDEs
AdaCore IDEs need to know where to find source and object files

Tools (metrics, documentation generator, etc)
AdaCore Tools benefit from having knowledge of application
structure

3 / 103

Overview
Introduction

Subsystems of Subsystems of ...

Projects support incremental, modular project definition
Projects can import other projects containing needed files
Child projects can extend parent projects

Inheriting all attributes of parent
Can optionally override source files and other attributes

Allows structuring of large development efforts into hierarchical
subsystems

Build decisions deferred to subsystem level

4 / 103

Overview
Project Files

Project Files

5 / 103

Overview
Project Files

GNAT Project Files

Text files with Ada-like syntax
Also known as GPR files due to file extension
Integrated into command-line tools

Specified via the -P project-file-name switch
Integrated into IDEs

A fundamental part
Automatically generated if desired

Should be under configuration management

6 / 103

Overview
Project Files

Configurable Properties

Source directories and specific files’ names
Output directory for object modules and .ali files
Target directory for executable programs
Switch settings for project-enabled tools
Source files for main subprogram(s) to be built
Source programming languages

Ada / C / C++ are preconfigured
Source file naming conventions
et cetera

7 / 103

Overview
Project Files

The Minimal Project File

project My_Project is
end My_Project;

8 / 103

Overview
Project Files

Specifying Main Subprogram(s)

Optional
If not specified in file, must be specified on command-line

Can have more than one file named
A project-level setting

project Foo is
for Main use ("bar.adb", "baz.adb");

end Foo;

9 / 103

Overview
Project Files

About Project Files and Makefiles

A Makefile performs actions (indirectly)
A project file describes a project
Command lines using project files fit naturally in Makefile paradigm

gprbuild -P <project-file> ...

10 / 103

Building with GPRbuild

Building with GPRbuild

11 / 103

Building with GPRbuild
Introduction

Introduction

12 / 103

Building with GPRbuild
Introduction

Generic Build Tool

Designed for construction of large multi-language systems
Allows subsystems and libraries

Manages three step build process:
Compilation phase:

Each compilation unit examined in turn, checked for consistency,
and, if necessary, compiled (or recompiled) as appropriate

Post-compilation phase (binding):
Compiled units from a given language are passed to
language-specific post-compilation tool (if any)
Objects grouped into static or dynamic libraries as specified

Linking phase:
Units or libraries from all subsystems are passed to appropriate
linker tool

13 / 103

Building with GPRbuild
Command Line

Command Line

14 / 103

Building with GPRbuild
Command Line

GPRbuild Command Line

Made up of three elements
Main project file (required)
Switches (optional)

gprbuild switches
Options for called tools

Main source files (optional)
If not specified, executable(s) specified in project file are built
If no main files specified, no executable is built

15 / 103

Building with GPRbuild
Command Line

Common Options Passed To Tools

-cargs options
Options passed to all compilers
Example:
-cargs -g

-cargs:<language> options
Options passed to compiler for specific language
Examples:
-cargs:Ada -gnatf
-cargs:C -E

-bargs options
Options passed to all binder drivers

-bargs:<language> options
Options passed to binder driver for specific language
Examples:
-bargs:Ada binder_prefix=ppc-elf
-bargs:C++ c_compiler_name=ccppc

-largs options
Options passed to linker for generating executable

16 / 103

Building with GPRbuild
Command Line

Common Command Line Switches

-P <project file> Name of main project file (space between P and <filename> is optional)

-aP <directory> Add <directory> to list of directories to search for project files

-u [<source file> [, <source file>...]] If sources specified, only compile these sources.
Otherwise, compile all sources in main project file

-U [<source file> [, <source file>...]] If sources specified, only compile these sources.
Otherwise, compile all sources in project tree

-Xnm=val Specify external reference that may be read via built-in function external.
--version Display information about GPRbuild: version, origin and legal status
--help Display GPRbuild usage

--config=<config project file name> Configuration project file name (default default.cgpr)

17 / 103

Building with GPRbuild
Command Line

Common Build Switches

Switches to be specified on command line or in Builder package of
main project file

--create-map-file[=<map file>] When linking, (if supported) by the platform, create a map file <map file> .

(If not specified, filename is <executable name>.map)

-j<num> Use <num> simultaneous compilation jobs

-k Keep going after compilation errors (default is to stop on first error)
-p (or --create-missing-dirs) Creating missing output directory (e.g. object directory)

18 / 103

Building with GPRbuild
Lab

Lab

19 / 103

Building with GPRbuild
Lab

Start GPRBuild

Open a command shell
Go to 020_building_with_gprbuild directory (under
source)

Contains a main procedure and a supporting package for the "8
Queens" problem

Use an editor to create minimum project file
Name the project anything you wish
Filename and project name should be the same

Build Queens using gprbuild and the project file as-is
Use -P argument on the command line to specify project file
Must also specify file name on command line to get executable

For example: gprbuild -P lab.gpr queens

Clean the project with gprclean
Use -P argument on the command line to specify project file
Note that the queens.exe executable remains

Plus (possibly) some intermediate files
20 / 103

Building with GPRbuild
Lab

GPRbuild Lab - Simple GPR File

project Lab is
end Lab;

gprbuild -P lab.gpr Only compiles source files

gprbuild -P lab.gpr queens Compiles source and creates
queens executable

gprclean -P lab.gpr Deletes ALI and object files for Queens and
Queens_Pkg

21 / 103

Building with GPRbuild
Lab

GPRbuild Lab Part 2

Change project file so that it specifies the main program
Build again, without specifying the main on the command line

Use only -P argument on the command line to specify project file
Clean the project with gprclean again

Note the queens executable is now also deleted (as well as any
intermediate files)

22 / 103

Building with GPRbuild
Lab

GPRbuild Lab - Main Program Specified

project Lab is
for Main use ("main.adb");

end Lab;

gprbuild -P lab.gpr Compiles source and creates queens
executable

gprclean -P lab.gpr Deletes all generated files

23 / 103

Project Properties

Project Properties

24 / 103

Project Properties
Introduction

Introduction

25 / 103

Project Properties
Introduction

Specifying Directories

Any number of Source Directories
Source Directories contain source files
If not specified, defaults to directory containing project file
Possible to create a project with no Source Directory

Not the same as not specifying the Source Directory!

One Object Directory
Contains object files and other tool-generated files
If not specified, defaults to directory containing project file

One Executables Directory
Contains executable(s)
If not specified, defaults to same location as Object Directory

Tip: use forward slashes rather than backslashes for the most
portability

Backslash will only work on Windows
Forward slash will work on all supported systems (including
Windows)

26 / 103

Project Properties
Introduction

Variables

Typed Set of possible string values

Untyped Unspecified set of values (strings and lists)

project Build is
type Targets is ("release", "test");
-- Typed variable
Target : Targets := external("target", "test");
-- Untyped string variable
Var := "foo";
-- Untyped string list variable
Var2 := ("-gnato", "-gnata");
...

end Build;

27 / 103

Project Properties
Introduction

Typed Versus Untyped Variables

Typed variables have only listed values possible
Case sensitive, unlike Ada

Typed variables are declared once per scope
Once at project or package level
Essentially read-only constants

Useful for external inputs
Untyped variables may be "declared" many times

No previous declaration required

28 / 103

Project Properties
Introduction

Property Values

Strings

Lists of strings

("-v", "-gnatv")

Associative arrays
Map input string to either single string or list of strings

for <name> (<string-index>) use <list-of_strings>;

for Switches ("Ada") use ("-gnaty", "-gnatwa");

29 / 103

Project Properties
Directories

Directories

30 / 103

Project Properties
Directories

Source Directories

One or more in any project file

Default is same directory as project file

Can specify additional / other directories

for Source_Dirs use ("src/mains", "src/drivers", "foo");

Can specify an entire tree of directories

for Source_Dirs use ("src/**");

src directory and every subdirectory underneath

31 / 103

Project Properties
Directories

Source Files

Must be at least one immediate source file
Immediate

Resides in project source directories OR
Specified through source-related attribute

Unless explicitly specified none present

for Source_Files use ();

Can specify source files by name

for Source_Files use ("pack1.ads","pack2.adb");

Can specify an external file containing source names

for Source_List_File use "source_list.txt";

32 / 103

Project Properties
Directories

Object Directory

Specifies location for compiler-generated files
Such as .ali files and object files

For the project’s immediate sources

project Release is
for Object_Dir use "release";
...

end Release;

Only one object directory per project

If Child extends project Parent and then building Child

For any source that exists only in Parent but has not been
compiled, it’s object files will appear in the Child object directory

33 / 103

Project Properties
Directories

Executable Directory

Specifies the location for executable image

project Release is
for Exec _Dir use "executables";
...

end Release;

Default is same directory as object files

Only one per project

34 / 103

Project Properties
Project Packages

Project Packages

35 / 103

Project Properties
Project Packages

Packages Correspond to Tools

Packages within project file contain switches (generally) for
specific tools
Allowable names and content defined by vendor

Not by users
Binder
Builder
Check
Clean
Compiler
Cross_Reference
Documentation
Eliminate
Finder
Gnatls

Gnatstub
IDE
Install
Linker
Metrics
Naming
Pretty_Printer
Remote
Stack
Synchronize

36 / 103

Project Properties
Project Packages

Setting Tool Switches

May be specified to apply by default

package Compiler is
for Default_Switches ("Ada") use ("-gnaty", "-v");

end Compiler;

May be specified on per-unit basis
Associative array "Switches" indexed by unit name

package Builder is
for Switches ("main1.adb") use ("-O2");
for Switches ("main2.adb") use ("-g");

end Builder;

37 / 103

Project Properties
Naming Considerations

Naming Considerations

38 / 103

Project Properties
Naming Considerations

Rationale

Project files assume source files have GNAT naming conventions
Specification <unitname>[-<childunit>].ads

Body <unitname>[-<childunit>].adb
Sometimes you want different conventions

Third-party libraries
Legacy code used different compiler

Changing filenames would make tracking changes harder

39 / 103

Project Properties
Naming Considerations

Source File Naming Schemes

Allow arbitrary naming conventions
Other than GNAT default convention

May be applied to all source files in a project
Specified in a package named Naming

May be applied to specific files in a project
Individual attribute specifications

40 / 103

Project Properties
Naming Considerations

Foreign Default File Naming Example

Sample source file names
Package spec for Utilities in utilities.spec

Package body for Utilities in utilities.body

Package spec for Utilities.Child in utilities.child.spec

Package body for Utilities.Child in utilities.child.body

project Legacy_Code is
...
package Naming is

for Casing use "lowercase";
for Dot_Replacement use ".";
for Spec_Suffix ("Ada") use ".spec";
for Body_Suffix ("Ada") use ".body";

end Naming;
...

end Legacy_Code;
41 / 103

Project Properties
Naming Considerations

GNAT Default File Naming Example

Sample source file names
Package spec for Utilities in utilities.ads
Package body for Utilities in utilities.adb
Package spec for Utilities.Child in utilities-child.ads
Package body for Utilities.Child in utilities-child.adb

project GNAT is
...
package Naming is

for Casing use "lowercase";
for Dot_Replacement use "-";
for Spec_Suffix ("Ada") use ".ads";
for Body_Suffix ("Ada") use ".adb";

end Naming;
...

end GNAT;
42 / 103

Project Properties
Naming Considerations

Individual (Arbitrary) File Naming

Uses associative arrays to specify file names
Index is a string containing the unit name

Case insensitive
Value is a string containing the file name

Case sensitivity depends on host file system

Has distinct attributes for specs and bodies

for Spec ("<unit name>") use "<filename>";

for Spec ("MyPack.MyChild") use "MMS1AF32.A";

for Body ("MyPack.MyChild") use "MMS1AF32.B";

43 / 103

Project Properties
Variables for Conditional Processing

Variables for Conditional Processing

44 / 103

Project Properties
Variables for Conditional Processing

Two Sample Projects for Different Switch Settings
project Debug is

for Object_Dir use "debug";
package Builder is

for Default_Switches ("Ada")
use ("-g");

end Builder;
package Compiler is

for Default_Switches ("Ada")
use ("-fstack-check",

"-gnata",
"-gnato");

end Compiler;
end Debug;

project Release is
for Object_Dir use "release";
package Compiler is

for Default_Switches ("Ada")
use ("-O2");

end Compiler;
end Release;

45 / 103

Project Properties
Variables for Conditional Processing

External and Conditional References

Allow project file content to depend on value of environment
variables and command-line arguments

Reference to external values is by function

external (<name> [, default])

Returns value of name as supplied via
Command line
Environment variable
If not specified, uses default or else ""

Command line switch

gprbuild -P... -Xname=value ...

gprbuild -P common/build.gpr -Xtarget=test common/main.adb

Note: Command line values override environment variables
46 / 103

Project Properties
Variables for Conditional Processing

External/Conditional Reference Example

project Build is
type Targets is ("release", "test");
Target : Targets := external("target", "test");
case Target is -- project attributes

when "release" =>
for Object_Dir use "release";
for Exec_Dir use ".";

when "test" =>
for Object_Dir use "debug";

end case;
package Compiler is

case Target is
when "release" =>

for Default_Switches ("Ada") use ("-O2");
when "test" =>

for Default_Switches ("Ada") use
("-g", "-fstack-check", "-gnata", "-gnato");

end case;
end Compiler;
...

end Build;
47 / 103

Project Properties
Variables for Conditional Processing

Scenario Controlling Source File Selection
project Demo is

...
type Displays is ("Win32", "ANSI");
Output : Displays := external ("OUTPUT", "Win32");
...
package Naming is

case Output is
when "Win32" =>

for Body ("Console") use "console_win32.adb";
when "ANSI" =>

for Body ("Console") use "console_ansi.adb";
end case;

end Naming;
end Demo;

Source Files

console.ads console_win32.adb console_ansi.adb

package Console is package body Console is package body Console is
...
end Console; end Console; end Console;

48 / 103

Project Properties
Lab

Lab

49 / 103

Project Properties
Lab

Project Properties Lab

Create new project file in an empty directory
Specify source and output directories

Use source files from the 030_project_properties directory
(under source)
Specify where object files and executable should be located

Build and run executable (pass command line argument of 200)
Note location of object files and executable
Execution should get Constraint_Error

50 / 103

Project Properties
Lab

Directories Solution

Project File

project Lab is
for Source_Dirs use ("source/030_project_properties");
for Main use ("main.adb");
for Object_Dir use "obj";
for Exec_Dir use "exec";

end Lab;

Executable Output

...
41 267914296
42 433494437
43 701408733
44 1134903170
45 1836311903

raised CONSTRAINT_ERROR : fibonacci.adb:16 overflow check failed
51 / 103

Project Properties
Lab

Project Properties Lab - Switches

Modify project file to disable overflow checking
Add the Compiler package
Insert Default_Switches attribute for Ada in Compiler package
Set switch -gnato0 in the attribute

Disable overflow checking
Build and run again

Need to use switch -f on command line to force rebuild
(Changes to GPR file do not automatically force recompile)

No Constraint_Error
But data doesn’t look right due to overflow issues

52 / 103

Project Properties
Lab

Switches Solution
Project File

project Lab is
for Source_Dirs use ("source/030_project_properties");
for Main use ("main.adb");

package Compiler is
for Default_Switches ("Ada") use ("-gnato0");

end Compiler;
...

end Lab;

Executable Output

...
43 701408733
44 1134903170
45 1836311903
46 -1323752223
47 512559680
48 -811192543
49 -298632863
50 -1109825406
...

53 / 103

Project Properties
Lab

Project Properties Lab - Naming

Modify project file to use naming conventions from a different
compiler

Change source directories to point to naming folder
File naming conventions:

Spec: <unitname>[.child].1.ada
Body: <unitname>[.child].2.ada

Remember to fix executable name

Build and run again
Note: Accumulator uses more bits, so failure condition happens
later

54 / 103

Project Properties
Lab

Naming Solution
Project File

project Lab is
for Source_Dirs use ("source/030_project_properties/naming");

package Naming is
for Casing use "lowercase";
for Dot_Replacement use ".";
for Spec_Suffix ("Ada") use ".1.ada";
for Body_Suffix ("Ada") use ".2.ada";

end Naming;

for Main use ("main.2.ada");
...

end Lab;

Executable Output

...
88 1779979416004714189
89 2880067194370816120
90 4660046610375530309
91 7540113804746346429
92 -6246583658587674878
93 1293530146158671551
94 -4953053512429003327
95 -3659523366270331776
96 -8612576878699335103
...

55 / 103

Project Properties
Lab

Project Properties Lab - Conditional

Modify project file to select precision via compiler switch
conditional folder has two more package bodies using different
accumulators
Read a variable from the command line to determine which body to
use

Hint: Naming will need to use a case statement to select
appropriate body

Build and run again
Hint: Name used in external call must be same casing as in
gprbuild command, i.e

external ("FooBar"); means gprbuild -XFooBar...

56 / 103

Project Properties
Lab

Conditional Solution
Project File

project Lab is

for Source_Dirs use ("source/030_project_properties/naming",
"source/030_project_properties/conditional");

type Precision_T is ("unsigned", "float", "default");
Precision : Precision_T := external ("PRECISION", "default");

package Naming is
...

case Precision is
when "unsigned" =>

for Body ("Fibonacci") use "fibonacci.unsigned";
when "float" =>

for Body ("Fibonacci") use "fibonacci.float";
when "default" =>

for Body ("Fibonacci") use "fibonacci.2.ada";
end case;

end Naming;

...
end Lab;

Executable Output

1 1.00000000000000E+00
2 2.00000000000000E+00
3 3.00000000000000E+00
4 5.00000000000000E+00
5 8.00000000000000E+00
6 1.30000000000000E+01
7 2.10000000000000E+01
8 3.40000000000000E+01
9 5.50000000000000E+01
10 8.90000000000000E+01
...

57 / 103

Structuring Your Application

Structuring Your Application

58 / 103

Structuring Your Application
Introduction

Introduction

59 / 103

Structuring Your Application
Introduction

Introduction

Most applications can be broken into pieces
Modules, components, etc - whatever you want to call them

Helpful to have a project file for each component
Or even multiple project files for better organization

60 / 103

Structuring Your Application
Introduction

Dependency

Units of one component typically depend units in other
components

Types packages, utilities, external interfaces, etc
A project can with another project to allow visibility

Ambiguity issues can occur if the same unit appears in multiple
projects

61 / 103

Structuring Your Application
Introduction

Extension

Sometimes we want to replace units for certain builds
Testing might require different package bodies
Different targets might require different values for constants

A project can extend another project
Project inherits properties and units from its parent
Project can create new properties and units to override parent

62 / 103

Structuring Your Application
Building an Application

Building an Application

63 / 103

Structuring Your Application
Building an Application

Importing Projects

Source files of one project may depend on source files of other
projects

Depend in Ada sense (contains with clauses)
Want to localize properties of other projects

Switches etc.
Defined in one place and not repeated elsewhere

Thus dependent projects import other projects to add source files
to search path

64 / 103

Structuring Your Application
Building an Application

Project Import Notation

Similar to Ada’s with clauses
But uses strings

with <literal string> {, <literal string>};

String literals are path names of project files
Relative
Absolute

with "/gui/gui.gpr", "../math.gpr";
project MyApp is

...
end MyApp;

65 / 103

Structuring Your Application
Building an Application

Importing Projects Example

with GUI, Math;
package body Pack is

...

Source Architecture

/gui /myapp /math

gui.gpr → myapp.gpr ← math.gpr
gui.ads pack.ads math.ads
gui.adb pack.adb math.adb

main.adb

Project File

with "/gui/gui.gpr", "/math/math.gpr";
project MyApp is

...
end MyApp;

66 / 103

Structuring Your Application
Building an Application

Referencing Imported Content

When referencing imported projects, use the Ada dot notation
concept for declarations

Start with the project name

Use the tick (’) for attributes

with "foo.gpr";
project P is

package Compiler is
for Default_Switches ("Ada") use

Foo.Compiler'Default_Switches("Ada") & "-gnatwa";
end Compiler;

end P;

Project P uses all the compiler switches in project Foo and adds
-gnatwa
Note: in GPR files, "&" can be used to concatenate string lists and
string

67 / 103

Structuring Your Application
Building an Application

Renaming

Packages can rename (imported) packages
Effect is as if the package is declared locally

Much like the Ada language

with "../naming_schemes/rational.gpr";
project Clients is

package Naming renames Rational.Naming;
for Languages use ("Ada");
for Object_Dir use ".";
...

end Clients;

68 / 103

Structuring Your Application
Building an Application

Project Source Code Dependencies
Not unusual for projects to be interdependent

In the Nav project
with Hmi.Controls;
package body Nav.Engine is

Global_Speed : Speed_T := 0.0;
procedure Increase_Speed (Change : Speed_Delta_T) is

Max_Change : Speed_T := Global_Speed * 0.10;
begin

Global_Speed :=
Global_Speed + Speed_T'max (Speed_T (Change),

Max_Change);
Hmi.Controls.Display_Speed (Global_Speed);

end Increase_Speed;
end Nav.Engine;
In the HMI project
package body Hmi.Controls is

procedure Display_Speed (Speed : Nav.Engine.Speed_T) is
begin

Display_Speed_On_Console (Speed);
end Display_Speed;
procedure Change_Speed (Speed_Change : Nav.Engine.Speed_Delta_T) is
begin

Nav.Engine.Increase_Speed (Speed_Change);
end Change_Speed;

end Hmi.Controls;
69 / 103

Structuring Your Application
Building an Application

Project Dependencies

Project files cannot create a cycle using with

Neither direct (Hmi → Nav → Hmi)
Nor indirect (Hmi → Nav → Monitor → Hmi)

So how do we allow the sources in each project to interact?
limited with
Allows sources to be interdependent, but not the projects

limited with "Hmi.gpr";
project Nav is

package Compiler is
for Switches ("Ada") use

Hmi.Compiler'Switches & "-gnatwa"; -- illegal
end Compiler;

end Nav;
70 / 103

Structuring Your Application
Building an Application

Subsystems

Sets of sources and folders managed together
Represented by project files

Connected by project with clauses or project extensions
Generally one primary project file
Potentially many project files, assuming subsystems composed of
other subsystems

Have at most one objects folder per subsystem
A defining characteristic
Typical, not required

71 / 103

Structuring Your Application
Building an Application

Subsystems Example
with "gui.gpr";
with "utilities.gpr";
with "hardware.gpr";
project Application is

for Main use ("demo");
for Object_Dir use ("objs");
...

end Application;

with "utilities.gpr";
project Gui is

for Object_Dir use ("objs");
...

end Gui;

with "utilities.gpr";
project Hardware is

for Object_Dir use ("objs");
...

end Hardware;

project Utilities is
for Object_Dir use ("objs");
...

end Utilities;

72 / 103

Structuring Your Application
Building an Application

Building Subsystems

One project file given to the builder
Everything necessary will be built, transitively

Build Utilities
Only source specified in utilities.gpr will be built

Build Hardware (or Gui)
Source specified in hardware.gpr (or gui.gpr) will be built
Source specified in utilities.gpr will be built if needed

Build Application
Any source specified in any of the project files will be built as
needed

73 / 103

Structuring Your Application
Extending Projects

Extending Projects

74 / 103

Structuring Your Application
Extending Projects

Extending Projects

Allows using modified versions of source files without changing the
original sources
Based on inheritance of parent project’s properties

Source files
Switch settings

Supports localized build decisions and properties
Inherited properties may be overridden with new versions

Hierarchies permitted

75 / 103

Structuring Your Application
Extending Projects

Limits on Extending Projects

A project that extends/modifies a project can also import other
projects.
Can’t import both a parent and a modified project.

If you import the extension, you get the parent
Can extend only one other project at a time.

76 / 103

Structuring Your Application
Extending Projects

Multiple Versions of Unit Bodies Example

Assume Baseline directory structure:
baseline.gpr contains

filename.ads
filename.adb
application.adb

For testing, you want to
Replace filename.adb with a dummy version
Use test_driver.adb as the main program

77 / 103

Structuring Your Application
Extending Projects

Multiple Versions of Unit Bodies Files

Baseline GPR file might look like:

project Baseline is
for Source_Dirs use ("src");
for Main use ("application");

end Baseline;

Test GPR file might look like:

project Test_Baseline extends "Baseline" is
for Source_Dirs use ("test_code");
for Main use ("test_driver");

end Test_Baseline;

78 / 103

Structuring Your Application
Lab

Lab

79 / 103

Structuring Your Application
Lab

Structuring Your Application Lab

Source is included in folder
040_structuring_your_application
Very simplistic speed monitor

Reads current distance
Determines amount of time since last read
Calculates speed
Sends message

Four subsystems
Base - types and speed calculator
Sensors - reads distance from some register
Messages - sends message to some memory location
Application - main program

We could build one GPR file and point to all source directories
But as our application grew, this would become harder to maintain

80 / 103

Structuring Your Application
Lab

Assignment Part One

1 Build GPR files for each subsystem

Hint: These subsystems depend on each other, they do not
override source files
As you build each GPR file, run gprbuild -P <gprfile> to
make sure everything works
Main program is in main.adb

2 Run main

This will fail (leading up to Part Two of the assignment)

3 Modify base_types.ads

Just so source code needs to be compiled

4 Rebuild your main program

Even though the modified source file is not directly referenced in
the main GPR file, gprbuild should compile everything it needs

81 / 103

Structuring Your Application
Lab

Assignment Part One - Solution
with "../base/base.gpr";
with "../messages/messages.gpr";
with "../sensors/sensors.gpr";
project Application is

for Source_Dirs use ("src");
for Object_Dir use "obj";
for Main use ("main.adb") & project'Main;

end Application;

with "../base/base.gpr";
project Messages is

for Source_Dirs use ("src");
for Object_Dir use "obj";

end Messages;

with "../base/base.gpr";
project Sensors is

for Source_Dirs use ("src");
for Object_Dir use "obj";

end Sensors;

project Base is
for Source_Dirs use ("src");
for Object_Dir use "obj";

end Base;

82 / 103

Structuring Your Application
Lab

Assignment Part Two

1 Build GPR files to create test stubs for Odometer and Sender

Test bodies exist in the appropriate test subfolders
Create extensions for messages.gpr and sensors.gpr

We want to inherit the package spec, but use the "test" package
bodies

2 Build a GPR file for the main application

Main still works, we just need the GPR file to access our stubs
We could create a new GPR file, or extend the original. Which is
easier?

3 Build and run your main program

83 / 103

Structuring Your Application
Lab

Assignment Part Two - Solution

messages/test directory

project Messages_Test extends "../Messages.gpr" is
for Source_Dirs use (".");

end Messages_Test;

sensors/test directory

project Sensors_Test extends "../sensors.gpr" is
for Source_Dirs use (".");

end Sensors_Test;

test directory

with "../messages/test/messages_test.gpr";
with "../sensors/test/sensors_test.gpr";
project Test extends "../application/application.gpr" is

for Main use ("main.adb") & project'Main;
end Test;

84 / 103

Advanced Capabilities

Advanced Capabilities

85 / 103

Advanced Capabilities
Introduction

Introduction

86 / 103

Advanced Capabilities
Introduction

Other Types of GPR Files

Project files can also be used for
Building libraries
Building systems

Project files can also have children
Similar to Ada packages

87 / 103

Advanced Capabilities
Library Projects

Library Projects

88 / 103

Advanced Capabilities
Library Projects

Libraries

Subsystems packaged in specific way

Represented by project files with specific attributes

Referenced by other project files, as usual
Contents become available automatically, etc.

Library Project

library project Static_Lib is
-- keyword "library" is optional
...

end Static_Lib;

Standard Project referencing library

with "static_lib.gpr";
project Main is

...
end Main;

89 / 103

Advanced Capabilities
Library Projects

Creating Library Projects

Several global attributes are involved/possible

Required attributes

Library_Name Name of library

Library_Dir Where library is installed

Important optional attributes

Library_Kind static, static-pic, dynamic, relocatable (same as
dynamic)

Library_Interface Restrict interface to subset of units

Library_Auto_Init Should autoinit at load (if supported)

Library_Options Extra arguments to pass to linker

Library_GCC Use custom linker
90 / 103

Advanced Capabilities
Library Projects

Supported Library Types

Static Libraries
Code statically linked into client applications
Becomes permanent part of client during build
Each client gets separate, independent copy

Dynamic Libraries
Code dynamically linked at run-time
Not permanent part of application
Code shared among all clients

Stand-Alone Libraries (SAL)
Minimize client recompilations when library internals change
Contain all necessary elaboration code for Ada units within
Can be static or shared

See the GNAT Pro Users Guide for details

91 / 103

Advanced Capabilities
Library Projects

Static Library Project Example

library project Name is
for Source_Dirs use ("src1", "src2");
for Library_Dir use "lib";
for Library_Name use "name";
for Library_Kind use "static";

end Name;

Creates library libname.a on Windows

92 / 103

Advanced Capabilities
Library Projects

Standalone Library Project Example

library project Name is
Version := "1";
for Library_Interface use ("int1", "int1.child");
for Library_Dir use "lib";
for Library_Name use "name";
for Library_Kind use "relocatable";
for Library_Version use "libdummy.so." & Version;

end Name;

Creates library libname.so.1 with a symlink libname.so that
points to it

93 / 103

Advanced Capabilities
Aggregate Projects

Aggregate Projects

94 / 103

Advanced Capabilities
Aggregate Projects

Complex Applications

Many applications have multiple exectuables and/or libraries
Shared source code
Multiple "top-level" project files

Assume project A withs project B and project C
Build of project A will only compile/link whatever is necessary for
project A’s executable(s)
Executables in project B and C will need to be generated separately
Running gprbuild on all three projects causes redundant
processing

Determination of files that need to be compiled
Libraries are always built when gprbuild is called

95 / 103

Advanced Capabilities
Aggregate Projects

Aggregate Projects

Represent multiple, related projects
Related especially by common source code

Allow managing options in a centralized way
Compilation optimized for sources common to multiple projects

Doesn’t compile more than necessary

96 / 103

Advanced Capabilities
Aggregate Projects

Aggregate Project Example

aggregate project Agg is
-- Projects to be built
for Project_Files use ("A.gpr", "B.gpr", "C.gpr");
-- Directories to search for project files
for Project_Path use ("../dir1", "../dir1/dir2");
-- Scenario variable
for external ("BUILD") use "PRODUCTION";

-- Common build switches
package Builder is

for Global_Compilation_Switches ("Ada")
use ("-O1", "-g");

end Builder;
end Agg;

97 / 103

Advanced Capabilities
Child Projects

Child Projects

98 / 103

Advanced Capabilities
Child Projects

Grouping Projects

Sometimes we want to emphasize project relationships
Similar to parent/child relationship in Ada packages

Child project
Declare child of project same as in Ada:
project Parent.Child ...
No inheritance assumed (unlike Ada)
Behavior of child follows normal project definition rules

99 / 103

Advanced Capabilities
Child Projects

Child Projects

Original project

-- math_proj.gpr
project Math_Proj is

...
end Math_Proj;

Child depends on parent

with "math_proj.gpr";
project Math_Proj.Tests is

...
end Math_Proj.Tests;

Child extends parent

project Math_Proj.High_Performance extends "math_proj.gpr" is
...

end Math_Proj.High_Performance;

Illegal project

project Math_Proj.Test is
...

end Math_Proj.Test;
100 / 103

Summary

Summary

101 / 103

Summary
Conclusion

Conclusion

102 / 103

Summary
Conclusion

GNAT Project Manager Summary

Supports hierarchical, localized build decisions
IDEs provide direct support
GPRbuild allows broad or narrow control over build process
See the GPRbuild and GPR Companion Tools User’s Guide for
further functionality and capabilities

Target build processing
Distributed builds
Etc

103 / 103

	Overview
	Introduction
	Project Files

	Building with GPRbuild
	Introduction
	Command Line
	Lab

	Project Properties
	Introduction
	Directories
	Project Packages
	Naming Considerations
	Variables for Conditional Processing
	Lab

	Structuring Your Application
	Introduction
	Building an Application
	Extending Projects
	Lab

	Advanced Capabilities
	Introduction
	Library Projects
	Aggregate Projects
	Child Projects

	Summary
	Conclusion

