
Fundamentals of Ada

Fundamentals of Ada

1 / 1033

Fundamentals of Ada
Overview

Overview

2 / 1033

Fundamentals of Ada
Overview
About This Course

About This Course

3 / 1033

Fundamentals of Ada
Overview
About This Course

Styles

This is a definition
this/is/a.path
code is highlighted
commands are emphasised --like-this

4 / 1033

Fundamentals of Ada
Overview
A Little History

A Little History

5 / 1033

Fundamentals of Ada
Overview
A Little History

The Name

First called DoD-1

Augusta Ada Byron, "first programmer"
Lord Byron’s daughter
Planned to calculate Bernouilli’s numbers
First computer program
On Babbage’s Analytical Engine

Writing ADA is like writing CPLUSPLUS

International Standards Organization standard
Updated about every 10 years

6 / 1033

Fundamentals of Ada
Overview
A Little History

Ada Evolution Highlights

Ada 83 Abstract Data Types
Modules
Concurrency
Generics
Exceptions

Ada 95 OOP
Efficient synchronization
Better Access Types
Child Packages
Annexes

Ada 2005 Multiple Inheritance
Containers
Better Limited Types
More Real-Time
Ravenscar

Ada 2012 Contracts
Iterators
Flexible Expressions
More containers
Multi-processor Support
More Real-Time

Ada 2022 'Image for all types
Target name symbol
Support for C varidics
Declare expression
Simplified renames

7 / 1033

Fundamentals of Ada
Overview
Big Picture

Big Picture

8 / 1033

Fundamentals of Ada
Overview
Big Picture

Language Structure (Ada95 and Onward)

Required Core implementation
Reference Manual (RM) sections 1 → 13
Predefined Language Environment (Annex A)
Foreign Language Interfaces (Annex B)

Optional Specialized Needs Annexes

No additional syntax
Systems Programming (C)
Real-Time Systems (D)
Distributed Systems (E)
Information Systems (F)
Numerics (G)
High-Integrity Systems (H)

9 / 1033

Fundamentals of Ada
Overview
Big Picture

Core Language Content

Ada is a compiled, multi-paradigm language
With a static and strong type model
Language-defined types,
including string
User-defined types
Overloading procedures and
functions
Compile-time visibility
control
Abstract Data Types (ADT)

Exceptions
Generic units
Dynamic memory
management
Low-level programming
Object-Oriented
Programming (OOP)
Concurrent programming
Contract-Based
Programming

10 / 1033

Fundamentals of Ada
Overview
Big Picture

Ada Type Model

Static Typing
Object type cannot change
... but run-time polymorphism available (OOP)

Strong Typing
Compiler-enforced operations and values
Explicit conversions for "related" types
Unchecked conversions possible

Predefined types

Application-specific types
User-defined
Checked at compilation and run-time

11 / 1033

Fundamentals of Ada
Overview
Big Picture

Strongly-Typed vs Weakly-Typed Languages

Weakly-typed:
Conversions are unchecked
Type errors are easy

typedef enum { north, south, east, west } direction ;
direction heading = north;

heading = 1 + 3 * south/sun;// what?

Strongly-typed:
Conversions are checked
Type errors are hard

type Directions is (North, South, East, West);
Heading : Directions := North;
...
Heading := 1 + 3 * South/Sun; -- Compile Error

12 / 1033

Fundamentals of Ada
Overview
Big Picture

The Type Model Saves Money

Shifts fixes and costs to early phases

Cheaper
Cost of an error during a flight?

13 / 1033

Fundamentals of Ada
Overview
Big Picture

Type Model Run-Time Costs

Checks at compilation and run-time

Same performance for identical programs
Run-time type checks can be disabled
Compile-time check is free

C
int X;
int Y; // range 1 .. 10
...
if (X > 0 && X < 11)

Y = X;
else

// signal a failure

Ada
X : Integer;
Y, Z : Integer range 1 .. 10;
...
Y := X;
Z := Y; -- no check required

14 / 1033

Fundamentals of Ada
Overview
Big Picture

Subprograms

Syntax differs between values and actions
function for a value

function Is_Leaf (T : Tree) return Boolean

procedure for an action

procedure Split (T : in out Tree;
Left : out Tree;
Right : out Tree)

Specification 6= Implementation

function Is_Leaf (T : Tree) return Boolean;
function Is_Leaf (T : Tree) return Boolean is
begin
...
end Is_Leaf;

15 / 1033

Fundamentals of Ada
Overview
Big Picture

Dynamic Memory Management

Raw pointers are error-prone

Ada access types abstract facility
Static memory
Allocated objects
Subprograms

Accesses are checked
Unless unchecked mode is used

Supports user-defined storage managers
Storage pools

16 / 1033

Fundamentals of Ada
Overview
Big Picture

Packages

Grouping of related entities

Separation of concerns
Definition 6= usage
Single definition by designer
Multiple use by users

Information hiding
Compiler-enforced visibility
Powerful privacy system

17 / 1033

Fundamentals of Ada
Overview
Big Picture

Package Structure

Declaration view
Can be referenced by user code
Exported types, variables...

Private view
Cannot be referenced by user code
Exported representations

Implementation view
Not exported

18 / 1033

Fundamentals of Ada
Overview
Big Picture

Abstract Data Types (ADT)

Variables of the type encapsulate the state

Classic definition of an ADT
Set of values
Set of operations
Hidden compile-time representation

Compiler-enforced
Check of values and operation
Easy for a computer
Developer can focus on earlier phase: requirements

19 / 1033

Fundamentals of Ada
Overview
Big Picture

Exceptions

Dealing with errors, unexpected events

Separate error-handling code from logic

Some flexibility
Re-raising
Custom messages

20 / 1033

Fundamentals of Ada
Overview
Big Picture

Generic Units

Code Templates
Subprograms
Packages

Parameterization
Strongly typed
Expressive syntax

21 / 1033

Fundamentals of Ada
Overview
Big Picture

Object-Oriented Programming

Extension of ADT
Sub-types
Run-time flexibility

Inheritance

Run-time polymorphism

Dynamic dispatching

Abstract types and subprograms

Interface for multiple inheritance

22 / 1033

Fundamentals of Ada
Overview
Big Picture

Contract-Based Programming

Pre- and post-conditions

Formalizes specifications

procedure Pop (S : in out Stack) with
Pre => not S.Empty, -- Requirement
Post => not S.Full; -- Guarantee

Type invariants

type Table is private with Invariant => Sorted (Table); -- Guarantee

23 / 1033

Fundamentals of Ada
Overview
Big Picture

Language-Based Concurrency

Expressive
Close to problem-space
Specialized constructs
Explicit interractions

Run-time handling
Maps to OS primitives
Several support levels (Ravenscar...)

Portable
Source code
People
OS & Vendors

24 / 1033

Fundamentals of Ada
Overview
Big Picture

Concurrency Mechanisms

Task
Active
Rich API
OS threads

Protected object
Passive
Monitors protected data
Restricted set of operations
No thread overhead
Very portable

Object-Oriented
Synchronized interfaces
Protected objects inheritance

25 / 1033

Fundamentals of Ada
Overview
Big Picture

Low Level Programming

Representation clauses

Bit-level layouts

Storage pools definition
With access safeties

Foreign language integration
C
C++
Assembly
etc. ...

Explicit specifications
Expressive
Efficient
Reasonably portable
Abstractions preserved

26 / 1033

Fundamentals of Ada
Overview
Big Picture

Standard Language Environment

Standardized common API
Types

Integer
Floating-point
Fixed-point
Boolean
Characters, Strings,
Unicode
etc. ...

Math
Trigonometric
Complexes

Pseudo-random number
generators

I/O
Text
Binary (direct /
sequential)
Files
Streams

Exceptions
Call-stack

Command-line arguments
Environment variables
Containers

Vector
Map

27 / 1033

Fundamentals of Ada
Overview
Big Picture

Language Examination Summary

Unique capabilities

Three main goals
Reliability, maintainability
Programming as a human activity
Efficiency

Easy-to-use
...and hard to misuse
Very few pitfalls and exceptions

28 / 1033

Fundamentals of Ada
Overview
Big Picture

So Why Isn’t Ada Used Everywhere?

"... in all matters of opinion
our adversaries are insane"

Mark Twain

29 / 1033

Fundamentals of Ada
Overview
Setup

Setup

30 / 1033

Fundamentals of Ada
Overview
Setup

Canonical First Program

1 with Ada.Text_IO;
2 -- Everyone's first program
3 procedure Say_Hello is
4 begin
5 Ada.Text_IO.Put_Line ("Hello, World!");
6 end Say_Hello;

Line 1 - with - Package dependency
Line 2 - -- - Comment
Line 3 - Say_Hello - Subprogram name
Line 4 - begin - Begin executable code
Line 5 - Ada.Text_IO.Put_Line () - Subprogram call
(cont) - "Hello, World!" - String literal (type-checked)

31 / 1033

Fundamentals of Ada
Overview
Setup

"Hello World" Lab - Command Line

Use an editor to enter the program shown on the previous slide
Use your favorite editor or just gedit/notepad/etc.

Save and name the file say_hello.adb exactly

In a command prompt shell, go to where the new file is located and
issue the following command:

gprbuild say_hello

In the same shell, invoke the resulting executable:
say_hello (Windows)
./say_hello (Linux/Unix)

32 / 1033

Fundamentals of Ada
Overview
Setup

"Hello World" Lab - GNAT Studio

Start GNAT Studio from the command-line (gnatstudio) or
Start Menu

Create new project

Select Simple Ada Project and click Next
Fill in a location to to deploy the project
Set main name to say_hello and click Apply

Expand the src level in the Project View and double-click
say_hello.adb

Replace the code in the file with the program shown on the
previous slide

Execute the program by selecting Build → Project →
Build & Run → say_hello.adb

Shortcut is the I in the icons bar

Result should appear in the bottom pane labeled Run:
say_hello.exe (or Run: say_hello on Linux)

33 / 1033

Fundamentals of Ada
Declarations

Declarations

34 / 1033

Fundamentals of Ada
Declarations
Introduction

Introduction

35 / 1033

Fundamentals of Ada
Declarations
Introduction

Identifiers

Legal identifiers
Phase2
A
Space_Person

Not legal identifiers
Phase2__1
A_
_space_person

36 / 1033

Fundamentals of Ada
Declarations
Introduction

String Literals

string_literal ::= "<string content>"

A_Null_String : constant string := "";
-- two double quotes with nothing inside

String_Of_Length_One : constant string := "A";
Embedded_Single_Quotes : constant string :=

"Embedded 'single' quotes";
Embedded_Double_Quotes : constant string :=

"Embedded ""double"" quotes";

37 / 1033

Fundamentals of Ada
Declarations
Identifiers, Comments, and Pragmas

Identifiers, Comments, and Pragmas

38 / 1033

Fundamentals of Ada
Declarations
Identifiers, Comments, and Pragmas

Identifiers

Syntax

identifier ::= letter {[underline] letter_or_digit}

Character set Unicode 4.0
8, 16, 32 bit-wide characters

Case not significant
SpacePerson ⇐⇒ SPACEPERSON
but different from Space_Person

Reserved words are forbidden

39 / 1033

Fundamentals of Ada
Declarations
Identifiers, Comments, and Pragmas

Reserved Words

abort else null reverse
abs elsif of select
abstract (95) end or separate
accept entry others some (2012)
access exception out subtype
aliased (95) exit overriding (2005) synchronized (2005)
all for package tagged (95)
and function parallel (2022) task
array generic pragma terminate
at goto private then
begin if procedure type
body in protected (95) until (95)
case interface (2005) raise use
constant is range when
declare limited record while
delay loop rem with
delta mod renames xor
digits new requeue (95)
do not return

40 / 1033

Fundamentals of Ada
Declarations
Identifiers, Comments, and Pragmas

Comments

Terminate at end of line (i.e., no comment terminator sequence)

-- This is a multi-
-- line comment
A : B; -- this is an end-of-line comment

41 / 1033

Fundamentals of Ada
Declarations
Identifiers, Comments, and Pragmas

Pragmas

Compiler directives
Compiler action not part of Ada grammar
Only suggestions, may be ignored
Either standard or implementation-defined

Unrecognized pragmas
No effect
Cause warning (standard mode)

Malformed pragmas are illegal

pragma Page;
pragma Optimize (Off);

42 / 1033

Fundamentals of Ada
Declarations
Identifiers, Comments, and Pragmas

Quiz

Which statement is legal?

A. Function : constant := 1;
B. Fun_ction : constant := 1;
C. Fun_ction : constant := --initial value-- 1;
D. integer Fun_ction;

Explanations

A. function is a reserved word
B. Correct
C. Cannot have inline comments
D. C-style declaration not allowed

43 / 1033

Fundamentals of Ada
Declarations
Identifiers, Comments, and Pragmas

Quiz

Which statement is legal?

A. Function : constant := 1;
B. Fun_ction : constant := 1;
C. Fun_ction : constant := --initial value-- 1;
D. integer Fun_ction;

Explanations

A. function is a reserved word
B. Correct
C. Cannot have inline comments
D. C-style declaration not allowed

43 / 1033

Fundamentals of Ada
Declarations
Numeric Literals

Numeric Literals

44 / 1033

Fundamentals of Ada
Declarations
Numeric Literals

Decimal Numeric Literals

Syntax

decimal_literal ::=
numeral [.num] E [+numeral|-numeral]

numeral ::= digit {[underline] digit}

Underscore is not significant

E (exponent) must always be integer

Examples

12 0 1E6 123_456
12.0 0.0 3.14159_26 2.3E-4

45 / 1033

Fundamentals of Ada
Declarations
Numeric Literals

Based Numeric Literals

based_literal ::= base # numeral [.numeral] # exponent
numeral ::= base_digit { '_' base_digit }

Base can be 2 .. 16

Exponent is always a base 10 integer

16#FFF# => 4095
2#1111_1111_1111# => 4095 -- With underline
16#F.FF#E+2 => 4095.0
8#10#E+3 => 4096 (8 * 8**3)

46 / 1033

Fundamentals of Ada
Declarations
Numeric Literals

Comparison To C’s Based Literals

Design in reaction to C issues

C has limited bases support
Bases 8, 10, 16
No base 2 in standard

Zero-prefixed octal 0nnn

Hard to read
Error-prone

47 / 1033

Fundamentals of Ada
Declarations
Numeric Literals

Quiz

Which statement is legal?

A. I : constant := 0_1_2_3_4;
B. F : constant := 12.;
C. I : constant := 8#77#E+1.0;
D. F : constant := 2#1111;

Explanations

A. Underscores are not significant - they can be anywhere (except
first and last character, or next to another underscore)

B. Must have digits on both sides of decimal
C. Exponents must be integers
D. Missing closing #

48 / 1033

Fundamentals of Ada
Declarations
Numeric Literals

Quiz

Which statement is legal?

A. I : constant := 0_1_2_3_4;
B. F : constant := 12.;
C. I : constant := 8#77#E+1.0;
D. F : constant := 2#1111;

Explanations

A. Underscores are not significant - they can be anywhere (except
first and last character, or next to another underscore)

B. Must have digits on both sides of decimal
C. Exponents must be integers
D. Missing closing #

48 / 1033

Fundamentals of Ada
Declarations
Object Declarations

Object Declarations

49 / 1033

Fundamentals of Ada
Declarations
Object Declarations

Declarations

Associate a name to an entity

Objects
Types
Subprograms
et cetera

Declaration must precede use

Some implicit declarations
Standard types and operations
Implementation-defined

50 / 1033

Fundamentals of Ada
Declarations
Object Declarations

Object Declarations

Variables and constants

Basic Syntax

<name> : subtype_indication [:= <initial value>];

Examples

Z, Phase : Analog;
Max : constant Integer := 200;
-- variable with a constraint
Count : Integer range 0 .. Max := 0;
-- dynamic initial value via function call
Root : Tree := F(X);

51 / 1033

Fundamentals of Ada
Declarations
Object Declarations

Multiple Object Declarations

Allowed for convenience

A, B : Integer := Next_Available(X);

Identical to series of single declarations

A : Integer := Next_Available(X);
B : Integer := Next_Available(X);

Warning: may get different value

T1, T2 : Time := Current_Time;

52 / 1033

Fundamentals of Ada
Declarations
Object Declarations

Predefined Declarations

Implicit declarations

Language standard

Annex A for Core
Package Standard

Standard types and operators

Numerical
Characters

About half the RM in size

"Specialized Needs Annexes" for optional

Also, implementation-specific extensions

53 / 1033

Fundamentals of Ada
Declarations
Object Declarations

Implicit vs. Explicit Declarations

Explicit → in the source

type Counter is range 0 .. 1000;

Implicit → automatically by the compiler

function "+" (Left, Right : Counter) return Counter;
function "-" (Left, Right : Counter) return Counter;
function "*" (Left, Right : Counter) return Counter;
function "/" (Left, Right : Counter) return Counter;
...

54 / 1033

Fundamentals of Ada
Declarations
Object Declarations

Elaboration

Effects of the declaration
Initial value calculations
Execution at run-time (if at all)

Objects
Memory allocation
Initial value

Linear elaboration
Follows the program text
Top to bottom

declare
First_One : Integer := 10;
Next_One : Integer := First_One;
Another_One : Integer := Next_One;

begin
...

55 / 1033

Fundamentals of Ada
Declarations
Object Declarations

Quiz

Which block is illegal?

A. A, B, C : integer;

B. Integer : Standard.Integer;

C. Null : integer := 0;

D. A : integer := 123;
B : integer := A * 3;

Explanations

A. Multiple objects can be created in one statement
B. integer is predefined so it can be overridden
C. null is reserved so it can not be overridden
D. Elaboration happens in order, so B will be 369

56 / 1033

Fundamentals of Ada
Declarations
Object Declarations

Quiz

Which block is illegal?

A. A, B, C : integer;

B. Integer : Standard.Integer;

C. Null : integer := 0;

D. A : integer := 123;
B : integer := A * 3;

Explanations

A. Multiple objects can be created in one statement
B. integer is predefined so it can be overridden
C. null is reserved so it can not be overridden
D. Elaboration happens in order, so B will be 369

56 / 1033

Fundamentals of Ada
Declarations
Universal Types

Universal Types

57 / 1033

Fundamentals of Ada
Declarations
Universal Types

Universal Types

Implicitly defined

Entire classes of numeric types
universal_integer
universal_real
universal_fixed

Match any integer / real type respectively
Implicit conversion, as needed

X : Integer64 := 2;
Y : Integer8 := 2;

58 / 1033

Fundamentals of Ada
Declarations
Universal Types

Numeric Literals Are Universally Typed

No need to type them
e.g 0UL as in C

Compiler handles typing
No bugs with precision

X : Unsigned_Long := 0;
Y : Unsigned_Short := 0;

59 / 1033

Fundamentals of Ada
Declarations
Universal Types

Literals Must Match "Class" of Context

universal_integer literals → integer

universal_real literals → fixed or floating point

Legal

X : Integer := 2;
Y : Float := 2.0;

Not legal

X : Integer := 2.0;
Y : Float := 2;

60 / 1033

Fundamentals of Ada
Declarations
Named Numbers

Named Numbers

61 / 1033

Fundamentals of Ada
Declarations
Named Numbers

Named Numbers

Associate a name with an expression
Used as constant
universal_integer, or universal_real
compatible with integer / real respectively
Expression must be static

Syntax

<name> : constant := <static_expression>;

Example

Pi : constant := 3.141592654;
One_Third : constant := 1.0 / 3.0;

62 / 1033

Fundamentals of Ada
Declarations
Named Numbers

A Sample Collection of Named Numbers

package Physical_Constants is
Polar_Radius : constant := 20_856_010.51;
Equatorial_Radius : constant := 20_926_469.20;
Earth_Diameter : constant :=

2.0 * ((Polar_Radius + Equatorial_Radius)/2.0);
Gravity : constant := 32.1740_4855_6430_4;
Sea_Level_Air_Density : constant :=

0.002378;
Altitude_Of_Tropopause : constant := 36089.0;
Tropopause_Temperature : constant := -56.5;

end Physical_Constants;

63 / 1033

Fundamentals of Ada
Declarations
Named Numbers

Named Number Benefit

Evaluation at compile time
As if used directly in the code
Perfect accuracy

Named_Number : constant := 1.0 / 3.0;
Typed_Constant : constant float := 1.0 / 3.0;

F32 : Float_32;
F64 : Float_64;
F128 : Float_128;

Assignment Actual Value

F32 := Named_Number; 3.33333E-01
F32 := Typed_Constant; 3.33333E-01
F64 := Named_Number; 3.33333333333333E-01
F64 := Typed_Constant; 3.333333_43267441E-01
F128 := Named_Number; 3.33333333333333333E-01
F128 := Typed_Constant 3.333333_43267440796E-01

64 / 1033

Fundamentals of Ada
Declarations
Scope and Visibility

Scope and Visibility

65 / 1033

Fundamentals of Ada
Declarations
Scope and Visibility

Scope and Visibility

Scope of a name

Where the name is potentially available
Determines lifetime
Scopes can be nested

Visibility of a name

Where the name is actually available
Defined by visibility rules
Hidden → in scope but not visible

66 / 1033

Fundamentals of Ada
Declarations
Scope and Visibility

Introducing Block Statements

Sequence of statements
Optional declarative part
Can be nested
Declarations can hide outer variables

Syntax
[<block-name> :] declare

<declarative part>
begin

<statements>
end [block-name];

Example
Swap: declare

Temp : Integer;
begin

Temp := U;
U := V;
V := Temp;

end Swap;

67 / 1033

Fundamentals of Ada
Declarations
Scope and Visibility

Scope and "Lifetime"

Object in scope → exists

No scoping keywords
C’s static, auto etc...

68 / 1033

Fundamentals of Ada
Declarations
Scope and Visibility

Name Hiding

Caused by homographs
Identical name
Different entity

declare
M : Integer;

begin
... -- M here is an INTEGER
declare

M : Float;
begin

... -- M here is a FLOAT
end;
... -- M here is an INTEGER

end;
69 / 1033

Fundamentals of Ada
Declarations
Scope and Visibility

Overcoming Hiding

Add a prefix
Needs named scope

Homographs are a code smell
May need refactoring...

Outer : declare
M : Integer;

begin
...
declare

M : Float;
begin

Outer.M := Integer(M); -- Prefixed
end;
...

end Outer;
70 / 1033

Fundamentals of Ada
Declarations
Scope and Visibility

Quiz
What output does the following code
produce? (Assume Print prints the
current value of its argument)

1 declare
2 M : Integer := 1;
3 begin
4 M := M + 1;
5 declare
6 M : Integer := 2;
7 begin
8 M := M + 2;
9 Print (M);

10 end;
11 Print (M);
12 end;

A. 2, 2
B. 2, 4
C. 4, 4
D. 4, 2

Explanation
Inner M gets printed first. It
is initialized to 2 and
incremented by 2
Outer M gets printed second.
It is initialized to 1 and
incremented by 1

71 / 1033

Fundamentals of Ada
Declarations
Scope and Visibility

Quiz
What output does the following code
produce? (Assume Print prints the
current value of its argument)

1 declare
2 M : Integer := 1;
3 begin
4 M := M + 1;
5 declare
6 M : Integer := 2;
7 begin
8 M := M + 2;
9 Print (M);

10 end;
11 Print (M);
12 end;

A. 2, 2
B. 2, 4
C. 4, 4
D. 4, 2

Explanation
Inner M gets printed first. It
is initialized to 2 and
incremented by 2
Outer M gets printed second.
It is initialized to 1 and
incremented by 1

71 / 1033

Fundamentals of Ada
Declarations
Aspect Clauses

Aspect Clauses

72 / 1033

Fundamentals of Ada
Declarations
Aspect Clauses

Aspect Clauses
Ada 2012

Define additional properties of an entity
Representation (eg. with Pack)
Operations (eg. Inline)
Can be standard or implementation-defined

Usage close to pragmas
More explicit, typed
Cannot be ignored
Recommended over pragmas

Syntax
Note: always part of a declaration

with aspect_mark [=> expression]
{, aspect_mark [=> expression] }

73 / 1033

Fundamentals of Ada
Declarations
Aspect Clauses

Aspect Clause Example: Objects
Ada 2012

Updated object syntax

<name> : <subtype_indication> [:= <initial value>]
with aspect_mark [=> expression]
{, aspect_mark [=> expression] };

Usage

CR1 : Control_Register with
Size => 8,
Address => To_Address (16#DEAD_BEEF#);

-- Prior to Ada 2012
-- using *representation clauses*
CR2 : Control_Register;
for CR2'Size use 8;
for CR2'Address use To_Address (16#DEAD_BEEF#);

74 / 1033

Fundamentals of Ada
Declarations
Aspect Clauses

Boolean Aspect Clauses
Ada 2012

Boolean aspects only

Longhand

procedure Foo with Inline => True;

Aspect name only → True

procedure Foo with Inline; -- Inline is True

No aspect → False

procedure Foo; -- Inline is False

Original form!

75 / 1033

Fundamentals of Ada
Declarations
Summary

Summary

76 / 1033

Fundamentals of Ada
Declarations
Summary

Summary

Declarations of a single type, permanently
OOP adds flexibility

Named-numbers
Infinite precision, implicit conversion

Elaboration concept
Value and memory initialization at run-time

Simple scope and visibility rules
Prefixing solves hiding problems

Pragmas, Aspects

Detailed syntax definition in Annex P (using BNF)
77 / 1033

Fundamentals of Ada
Basic Types

Basic Types

78 / 1033

Fundamentals of Ada
Basic Types
Introduction

Introduction

79 / 1033

Fundamentals of Ada
Basic Types
Introduction

Ada Type Model

Static Typing
Object type cannot change

Strong Typing

By name
Compiler-enforced operations and values
Explicit conversion for "related" types
Unchecked conversions possible

80 / 1033

Fundamentals of Ada
Basic Types
Introduction

Strong Typing

Definition of type

Applicable values
Applicable primitive operations

Compiler-enforced
Check of values and operations
Easy for a computer
Developer can focus on earlier phase: requirement

81 / 1033

Fundamentals of Ada
Basic Types
Introduction

A Little Terminology

Declaration creates a type name

type <name> is <type definition>;

Type-definition defines its structure
Characteristics, and operations
Base "class" of the type

type Type_1 is digits 12; -- floating-point
type Type_2 is range -200 .. 200; -- signed integer
type Type_3 is mod 256; -- unsigned integer

Representation is the memory-layout of an object of the type

82 / 1033

Fundamentals of Ada
Basic Types
Introduction

Ada "Named Typing"

Name differentiate types

Structure does not

Identical structures may not be interoperable

type Yen is range 0 .. 100_000_000;
type Ruble is range 0 .. 100_000_000;
Mine : Yen;
Yours : Ruble;
...
Mine := Yours; -- not legal

83 / 1033

Fundamentals of Ada
Basic Types
Introduction

Categories of Types

84 / 1033

Fundamentals of Ada
Basic Types
Introduction

Scalar Types

Indivisible: No components

Relational operators defined (<, =, ...)
Ordered

Have common attributes

Discrete Types
Integer
Enumeration

Real Types
Floating-point
Fixed-point

85 / 1033

Fundamentals of Ada
Basic Types
Introduction

Discrete Types

Individual ("discrete") values
1, 2, 3, 4 ...
Red, Yellow, Green

Integer types
Signed integer types

Modular integer types

Unsigned
Wrap-around semantics
Bitwise operations

Enumeration types
Ordered list of logical values

86 / 1033

Fundamentals of Ada
Basic Types
Introduction

Attributes

Functions associated with a type
May take input parameters

Some are language-defined
May be implementation-defined
Built-in
Cannot be user-defined
Cannot be modified

See RM K.2 Language-Defined Attributes

Syntax

Type_Name'Attribute_Name;
Type_Name'Attribute_With_Param (Param);

’ often named tick
87 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Discrete Numeric Types

88 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Signed Integer Types

Range of signed whole numbers
Symmetric about zero (-0 = +0)

Syntax

type <identifier> is range <lower> .. <upper>;

Implicit numeric operators

-- 12-bit device
type Analog_Conversions is range 0 .. 4095;
Count : Analog_Conversions;
...
begin

...
Count := Count + 1;
...

end;
89 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Specifying Integer Type Bounds

Must be static
Compiler selects base type
Hardware-supported integer type
Compilation error if not possible

90 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Predefined Integer Types

Integer >= 16 bits wide

Other probably available
Long_Integer, Short_Integer, etc.
Guaranteed ranges: Short_Integer <= Integer <=
Long_Integer
Ranges are all implementation-defined

Portability not guaranteed
But may be difficult to avoid

91 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Operators for Any Integer Type

By increasing precedence

relational operator = | /= | < | <= | > | >=

binary adding operator + | -

unary adding operator + | -

multiplying operator * | / | mod | rem

highest precedence operator ** | abs

Note: for exponentiation **

Result will be Integer
So power must be Integer >= 0

Division by zero → Constraint_Error

92 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Integer Overflows

Finite binary representation
Common source of bugs

K : Short_Integer := Short_Integer'Last;
...
K := K + 1;

2#0111_1111_1111_1111# = (2**16)-1

+ 1

=======================
2#1000_0000_0000_0000# = -32,768

93 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Integer Overflow: Ada vs others

Ada
Constraint_Error standard exception
Incorrect numerical analysis

Java
Silently wraps around (as the hardware does)

C/C++
Undefined behavior (typically silent wrap-around)

94 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Modular Types

Integer type

Unsigned values

Adds operations and attributes
Typically bit-wise manipulation

Syntax

type <identifier> is mod <modulus>;

Modulus must be static

Resulting range is 0 .. modulus-1

type Unsigned_Word is mod 2**16; -- 16 bits, 0..65535
type Byte is mod 256; -- 8 bits, 0..255

95 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Modular Type Semantics

Standard Integer operators

Wraps-around in overflow
Like other languages’ unsigned types
Attributes 'Pred and 'Succ

Additional bit-oriented operations are defined
and, or, xor, not
Bit shifts
Values as bit-sequences

96 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Predefined Modular Types

In Interfaces package
Need explicit import

Fixed-size numeric types

Common name format
Unsigned_n
Integer_n

type Integer_8 is range -2 ** 7 .. 2 ** 7 - 1;
type Integer_16 is range -2 ** 15 .. 2 ** 15 - 1;
...
type Unsigned_8 is mod 2 ** 8;
type Unsigned_16 is mod 2 ** 16;

97 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Integer Type (Signed and Modular) Literals

Must not contain a fractional part
No silent promotion/demotion
Conversion can be used

type Counter_T is range 0 .. 40_000; -- integer type
OK : Counter_T := 0; -- Right type, legal
Bad : Counter_T := 0.0 ; -- Promotion, compile error
Legal : Counter_T := Counter_T (0.0); -- Conversion, legal

98 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

String Attributes For All Scalars

T'Image(input)

Converts T → String

T'Value(input)

Converts String → T

Number : Integer := 12345;
Input : String(1 .. N);
...
Put_Line(Integer'Image(Number));
...
Get(Input);
Number := Integer'Value(Input);

99 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Range Attributes For All Scalars

T'First
First (smallest) value of type T

T'Last
Last (greatest) value of type T

T'Range
Shorthand for T'First .. T'Last

type Signed_T is range -99 .. 100;
Smallest : Signed_T := Signed_T'First; -- -99
Largest : Signed_T := Signed_T'Last; -- 100

100 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Neighbor Attributes For All Scalars

T'Pred (Input)

Predecessor of specified value
Input type must be T

T'Succ (Input)

Successor of specified value
Input type must be T

type Signed_T is range -128 .. 127;
type Unsigned_T is mod 256;
Signed : Signed_T := -1;
Unsigned : Unsigned_T := 0;
...
Signed := Signed_T'Succ(Signed); -- Signed = 0
...
Unsigned := Unsigned_T'Pred(Unsigned); -- Signed = 255

101 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Min/Max Attributes For All Scalars

T'Min (Value_A, Value_B)
Lesser of two T

T'Max (Value_A, Value_B)
Greater of two T

Safe_Lower : constant := 10;
Safe_Upper : constant := 30;
C : Integer := 15;
...
C := Integer'Max (Safe_Lower, C - 1);
...
C := Integer'Min (Safe_Upper, C + 1);

102 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Quiz

What happens when you try to compile/run this code?

C1 : constant := 2 ** 1024;
C2 : constant := 2 ** 1024 + 10;
C3 : constant := C1 - C2;
V : Integer := C1 - C2;

A. Compile error
B. Run-time error
C. V is assigned to -10
D. Unknown - depends on the compiler

Explanations

21024 too big for most run-times BUT

C1, C2, and C3 are named numbers, not typed constants
Compiler uses unbounded precision for named numbers
Large intermediate representation does not get stored in object code

For assignment to V, subtraction is computed by compiler
V is assigned the value -10

103 / 1033

Fundamentals of Ada
Basic Types
Discrete Numeric Types

Quiz

What happens when you try to compile/run this code?

C1 : constant := 2 ** 1024;
C2 : constant := 2 ** 1024 + 10;
C3 : constant := C1 - C2;
V : Integer := C1 - C2;

A. Compile error
B. Run-time error
C. V is assigned to -10
D. Unknown - depends on the compiler

Explanations

21024 too big for most run-times BUT

C1, C2, and C3 are named numbers, not typed constants
Compiler uses unbounded precision for named numbers
Large intermediate representation does not get stored in object code

For assignment to V, subtraction is computed by compiler
V is assigned the value -10

103 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Enumeration Types

104 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Enumeration Types

Enumeration of logical values
Integer value is an implementation detail

Syntax

type <identifier> is (<identifier-list>) ;

Literals
Distinct, ordered
Can be in multiple enumerations

type Colors is (Red, Orange, Yellow, Green, Blue, Violet);
type Stop_Light is (Red, Yellow, Green);
...
-- Red both a member of Colors and Stop_Light
Shade : Colors := Red;
Light : Stop_Light := Red;

105 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Enumeration Type Operations

Assignment, relationals

Not numeric quantities
Possible with attributes
Not recommended

type Directions is (North, South, East, West);
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
Heading : Directions;
Today, Tomorrow : Days;
...
Today := Mon;
Today := North; -- compile error
Heading := South;
Heading := East + 1; -- compile error
if Today < Tomorrow then ...

106 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Character Types

Literals
Enclosed in single quotes eg. 'A'
Case-sensitive

Special-case of enumerated type
At least one character enumeral

System-defined Character

Can be user-defined

type EBCDIC is (nul, ..., 'a' , ..., 'A', ..., del);
Control : EBCDIC := 'A';
Nullo : EBCDIC := nul;

107 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Language-Defined Type Boolean

Enumeration

type Boolean is (False, True);

Supports assignment, relational operators, attributes

A : Boolean;
Counter : Integer;
...
A := (Counter = 22);

Logical operators and, or, xor, not

A := B or (not C); -- For A, B, C boolean

108 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Why Boolean Isn’t Just An Integer?

Example: Real-life error
HETE-2 satellite attitude
control system software
(ACS)
Written in C

Controls four "solar paddles"
Deployed after launch

109 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Why Boolean Isn’t Just An Integer!

Initially variable with paddles’ state
Either all deployed, or none deployed

Used int as a boolean

if (rom->paddles_deployed == 1)
use_deployed_inertia_matrix();

else
use_stowed_inertia_matrix();

Later paddles_deployed became a 4-bits value
One bit per paddle
0 → none deployed, 0xF → all deployed

Then, use_deployed_inertia_matrix() if only first paddle is
deployed!

Better: boolean function paddles_deployed()

Single line to modify
110 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Boolean Operators’ Operand Evaluation

Evaluation order not specified
May be needed

Checking value before operation
Dereferencing null pointers
Division by zero

if Divisor /= 0 and K / Divisor = Max then ... -- Problem!

111 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Short-Circuit Control Forms

Short-circuit → fixed evaluation order

Left-to-right

Right only evaluated if necessary
and then: if left is False, skip right

Divisor /= 0 and then K / Divisor = Max

or else: if left is True, skip right

Divisor = 0 or else K / Divisor = Max

112 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Quiz

type Enum_T is (Able, Baker, Charlie);

Which statement will generate an error?

A. V1 : Enum_T := Enum_T'Value ("Able");
B. V2 : Enum_T := Enum_T'Value ("BAKER");
C. V3 : Enum_T := Enum_T'Value (" charlie ");
D. V4 : Enum_T := Enum_T’Value ("Able Baker Charlie");

Explanations

A. Legal
B. Legal - conversion is case-insensitive
C. Legal - leading/trailing blanks are ignored
D. Value tries to convert entire string, which will fail at run-time

113 / 1033

Fundamentals of Ada
Basic Types
Enumeration Types

Quiz

type Enum_T is (Able, Baker, Charlie);

Which statement will generate an error?

A. V1 : Enum_T := Enum_T'Value ("Able");
B. V2 : Enum_T := Enum_T'Value ("BAKER");
C. V3 : Enum_T := Enum_T'Value (" charlie ");
D. V4 : Enum_T := Enum_T’Value ("Able Baker Charlie");

Explanations

A. Legal
B. Legal - conversion is case-insensitive
C. Legal - leading/trailing blanks are ignored
D. Value tries to convert entire string, which will fail at run-time

113 / 1033

Fundamentals of Ada
Basic Types
Real Types

Real Types

114 / 1033

Fundamentals of Ada
Basic Types
Real Types

Real Types

Approximations to continuous values
1.0, 1.1, 1.11, 1.111 ... 2.0, ...
Finite hardware → approximations

Floating-point
Variable exponent
Large range
Constant relative precision

Fixed-point
Constant exponent
Limited range
Constant absolute precision
Subdivided into Binary and Decimal

Class focuses on floating-point

115 / 1033

Fundamentals of Ada
Basic Types
Real Types

Real Type (Floating and Fixed) Literals

Must contain a fractional part
No silent promotion

type Phase is digits 8; -- floating-point
OK : Phase := 0.0;
Bad : Phase := 0; -- compile error

116 / 1033

Fundamentals of Ada
Basic Types
Real Types

Declaring Floating Point Types

Syntax

type <identifier> is
digits <expression> [range constraint];

digits → minimum number of significant digits
Decimal digits, not bits

Compiler chooses representation
From available floating point types
May be more accurate, but not less
If none available → declaration is rejected

117 / 1033

Fundamentals of Ada
Basic Types
Real Types

Predefined Floating Point Types

Type Float >= 6 digits

Additional implementation-defined types
Long_Float >= 11 digits

General-purpose

Best to avoid predefined types
Loss of portability
Easy to avoid

118 / 1033

Fundamentals of Ada
Basic Types
Real Types

Floating Point Type Operators

By increasing precedence

relational operator = | /= | < | >= | > | >=

binary adding operator + | -

unary adding operator + | -

multiplying operator * | /

highest precedence operator ** | abs

Note on floating-point exponentiation **

Power must be Integer

Not possible to ask for root
X**0.5 → sqrt(x)

119 / 1033

Fundamentals of Ada
Basic Types
Real Types

Floating Point Type Attributes

Core attributes

type Real is digits N; -- N static

Real'Digits

Number of digits requested (N)

Real'Base'Digits

Number of actual digits

Real'Rounding (X)

Integral value nearest to X
Note Float'Rounding (0.5) = 1 and
Float'Rounding (-0.5) = -1

Model-oriented attributes
Advanced machine representation of the floating-point type
Mantissa, strict mode

120 / 1033

Fundamentals of Ada
Basic Types
Real Types

Numeric Types Conversion

Ada’s integer and real are numeric
Holding a numeric value

Special rule: can always convert between numeric types
Explicitly
Real → Integer causes rounding

declare
N : Integer := 0;
F : Float := 1.5;

begin
N := Integer (F); -- N = 2
F := Float (N); -- F = 2.0

121 / 1033

Fundamentals of Ada
Basic Types
Real Types

Quiz

What is the output of this code?

declare
F : Float := 7.6;
I : Integer := 10;

begin
F := Float (Integer(F) / I);
Put_Line (Float'Image (F));

end;

A. 7.6
B. Compile Error
C. 8.0
D. 0.0

Explanations

A. Result of F := F / Float(I);
B. Result of F := F / I;
C. Result of F := Float (Integer (F)) / Float (I);
D. Integer value of F is 8. Integer result of dividing that by 10 is 0.

Converting to float still gives us 0

122 / 1033

Fundamentals of Ada
Basic Types
Real Types

Quiz

What is the output of this code?

declare
F : Float := 7.6;
I : Integer := 10;

begin
F := Float (Integer(F) / I);
Put_Line (Float'Image (F));

end;

A. 7.6
B. Compile Error
C. 8.0
D. 0.0

Explanations

A. Result of F := F / Float(I);
B. Result of F := F / I;
C. Result of F := Float (Integer (F)) / Float (I);
D. Integer value of F is 8. Integer result of dividing that by 10 is 0.

Converting to float still gives us 0
122 / 1033

Fundamentals of Ada
Basic Types
Miscellaneous

Miscellaneous

123 / 1033

Fundamentals of Ada
Basic Types
Miscellaneous

Checked Type Conversions

Between "closely related" types
Numeric types
Inherited types
Array types

Illegal conversions rejected
Unsafe Unchecked_Conversion available

Functional syntax
Function named Target_Type
Implicitly defined
Must be explicitly called

Target_Float := Float (Source_Integer);

124 / 1033

Fundamentals of Ada
Basic Types
Miscellaneous

Default Value
Ada 2012

Not defined by language for scalars

Can be done with an aspect clause
Only during type declarations
<value> must be static

type Type_Name is <type_definition>
with Default_Value => <value>;

Example

type Tertiary_Switch is (Off, On, Neither)
with Default_Value => Neither;

Implicit : Tertiary_Switch; -- Implicit = Neither
Explicit : Tertiary_Switch := Neither;

125 / 1033

Fundamentals of Ada
Basic Types
Miscellaneous

Simple Static Type Derivation

New type from an existing type
Limited form of inheritance: operations
Not fully OOP
More details later

Strong type benefits
Only explicit conversion possible
eg. Meters can’t be set from a Feet value

Syntax

type identifier is new Base_Type [<constraints>]

Example

type Measurement is digits 6;
type Distance is new Measurement

range 0.0 .. Measurement'Last;
126 / 1033

Fundamentals of Ada
Basic Types
Subtypes

Subtypes

127 / 1033

Fundamentals of Ada
Basic Types
Subtypes

Subtype

May constrain an existing type

Still the same type

Syntax

subtype Defining_Identifier is Type_Name [constraints];

Type_Name is an existing type or subtype

If no constraint → type alias

128 / 1033

Fundamentals of Ada
Basic Types
Subtypes

Subtype Example

Enumeration type with range constraint

type Days is (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);
subtype Weekdays is Days range Mon .. Fri;
Workday : Weekdays; -- type Days limited to Mon .. Fri

Equivalent to anonymous subtype

Same_As_Workday : Days range Mon .. Fri;

129 / 1033

Fundamentals of Ada
Basic Types
Subtypes

Kinds of Constraints

Range constraints on discrete types

subtype Positive is Integer range 1 .. Integer'Last;
subtype Natural is Integer range 0 .. Integer'Last;
subtype Weekdays is Days range Mon .. Fri;
subtype Symmetric_Distribution is

Float range -1.0 .. +1.0;

Other kinds, discussed later

130 / 1033

Fundamentals of Ada
Basic Types
Subtypes

Effects of Constraints

Constraints only on values

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
subtype Weekdays is Days range Mon .. Fri;
subtype Weekend is Days range Sat .. Sun;

Functionalities are kept

subtype Positive is Integer range 1 .. Integer'Last;
P : Positive;
X : Integer := P; -- X and P are the same type

131 / 1033

Fundamentals of Ada
Basic Types
Subtypes

Assignment Respects Constraints

Right hand side of assigment must satisfy type constraints
Constraint_Error otherwise

Q : Integer := some_value;
P : Positive := Q; -- runtime error if Q <= 0
N : Natural := Q; -- runtime error if Q < 0
J : Integer := P; -- always legal
K : Integer := N; -- always legal

132 / 1033

Fundamentals of Ada
Basic Types
Subtypes

Range Constraint Examples

subtype Proper_Subset is Positive range 1 .. 10;
subtype Same_Constraints is Positive

range 1 .. Integer'Last;
subtype Letter is Character range 'A' .. 'z';
subtype Upper_Case is Letter range 'A' .. 'Z';
subtype Lower_Case is Letter range 'a' .. 'z';
subtype Null_Range is Integer

range 1 .. 0; -- silly when hard-coded...
-- evaluated when subtype defined, not when object declared
subtype Dynamic is Integer range Lower .. Upper;

133 / 1033

Fundamentals of Ada
Basic Types
Subtypes

Quiz

type Enum_T is (Sat, Sun, Mon, Tue, Wed, Thu, Fri);
subtype Enum_Sub_T is Enum_T range Mon .. Fri;

Which subtype definition is valid?

A. subtype A is Enum_Sub_T range Enum_Sub_T'Pred
(Enum_Sub_T'First) .. Enum_Sub_T'Last;

B. subtype B is range Sat .. Mon;
C. subtype C is Integer;
D. subtype D is digits 6;

Explanations

A. This generates a run-time error because the first enumeral
specified is not in the range of Enum_Sub_T

B. Compile error - no type specified
C. Correct - standalone subtype
D. Digits 6 is used for a type definition, not a subtype

134 / 1033

Fundamentals of Ada
Basic Types
Subtypes

Quiz

type Enum_T is (Sat, Sun, Mon, Tue, Wed, Thu, Fri);
subtype Enum_Sub_T is Enum_T range Mon .. Fri;

Which subtype definition is valid?

A. subtype A is Enum_Sub_T range Enum_Sub_T'Pred
(Enum_Sub_T'First) .. Enum_Sub_T'Last;

B. subtype B is range Sat .. Mon;
C. subtype C is Integer;
D. subtype D is digits 6;

Explanations

A. This generates a run-time error because the first enumeral
specified is not in the range of Enum_Sub_T

B. Compile error - no type specified
C. Correct - standalone subtype
D. Digits 6 is used for a type definition, not a subtype

134 / 1033

Fundamentals of Ada
Basic Types
Lab

Lab

135 / 1033

Fundamentals of Ada
Basic Types
Lab

Basic Types Lab

Create types to handle the following concepts
Determining average test score

Number of tests taken
Total of all test scores

Number of degrees in a circle

Collection of colors

Create objects for the types you’ve created
Assign initial values to the objects
Print the values of the objects

Modify the objects you’ve created and print the new values
Determine the average score for all the tests
Add 359 degrees to the initial circle value
Set the color object to the value right before the last possible value

136 / 1033

Fundamentals of Ada
Basic Types
Lab

Basic Types Lab Hints

Understand the properties of the types
Do you need fractions or just whole numbers?
What happens when you want the number to wrap?

Predefined package Ada.Text_IO is handy...
Procedure Put_Line takes a String as the parameter

Remember attribute ’Image returns a String

<typemark>'Image (Object)
Object'Image

137 / 1033

Fundamentals of Ada
Basic Types
Lab

Basic Types Lab Solution - Declarations

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

type Number_Of_Tests_T is range 0 .. 100;
type Test_Score_Total_T is digits 6 range 0.0 .. 10_000.0;

type Degrees_T is mod 360;

type Cymk_T is (Cyan, Magenta, Yellow, Black);

Number_Of_Tests : Number_Of_Tests_T;
Test_Score_Total : Test_Score_Total_T;

Angle : Degrees_T;

Color : Cymk_T;
138 / 1033

Fundamentals of Ada
Basic Types
Lab

Basic Types Lab Solution - Implementation
begin

-- assignment
Number_Of_Tests := 15;
Test_Score_Total := 1_234.5;
Angle := 180;
Color := Magenta;

Put_Line (Number_Of_Tests'Image);
Put_Line (Test_Score_Total'Image);
Put_Line (Angle'Image);
Put_Line (Color'Image);

-- operations / attributes
Test_Score_Total := Test_Score_Total / Test_Score_Total_T (Number_Of_Tests);
Angle := Angle + 359;
Color := Cymk_T'Pred (Cymk_T'Last);

Put_Line (Test_Score_Total'Image);
Put_Line (Angle'Image);
Put_Line (Color'Image);

end Main;
139 / 1033

Fundamentals of Ada
Basic Types
Lab

Basic Types Extra Credit

See what happens when your data is invalid / illegal
Number of tests = 0
Assign a very large number to the test score total
Color type only has one value
Add a number larger than 360 to the circle value

140 / 1033

Fundamentals of Ada
Basic Types
Summary

Summary

141 / 1033

Fundamentals of Ada
Basic Types
Summary

Benefits of Strongly Typed Numerics

Prevent subtle bugs

Cannot mix Apples and Oranges

Force to clarify representation needs
eg. constant with or with fractional part

type Yen is range 0 .. 1_000_000;
type Ruble is range 0 .. 1_000_000;
Mine : Yen := 1;
Yours : Ruble := 1;
Mine := Yours; -- illegal

142 / 1033

Fundamentals of Ada
Basic Types
Summary

User-Defined Numeric Type Benefits

Close to requirements
Types with explicit requirements (range, precision, etc.)
Best case: Incorrect state not possible

Either implemented/respected or rejected
No run-time (bad) suprise

Portability enhanced
Reduced hardware dependencies

143 / 1033

Fundamentals of Ada
Basic Types
Summary

Summary

User-defined types and strong typing is good
Programs written in application’s terms
Computer in charge of checking constraints
Security, reliability requirements have a price
Performance identical, given same requirements

User definitions from existing types can be good

Right trade-off depends on use-case
More types → more precision → less bugs
Storing both feet and meters in Float has caused bugs
More types → more complexity → more bugs
A Green_Round_Object_Altitude type is probably never
needed

Default initialization is possible
Use sparingly

144 / 1033

Fundamentals of Ada
Statements

Statements

145 / 1033

Fundamentals of Ada
Statements
Introduction

Introduction

146 / 1033

Fundamentals of Ada
Statements
Introduction

Statement Kinds

simple_statement ::=
null | assignment | exit |
goto | delay | raise |
procedure_call | return |
requeue | entry_call |
abort | code

compound_statement ::=
if | case | loop |
block | accept | select

147 / 1033

Fundamentals of Ada
Statements
Introduction

Procedure Calls (Overview)

Procedure calls are statements as shown here
More details in "Subprograms" section

procedure Activate (This : in out Foo; Wait : in Boolean);

Traditional call notation

Activate (Idle, True);

"Distinguished Receiver" notation
For tagged types

Idle.Activate (True);

148 / 1033

Fundamentals of Ada
Statements
Introduction

Parameter Associations In Calls

Traditional positional association is allowed

Nth actual parameter goes to nth formal parameter

Activate (Idle, True); -- positional

Named association also allowed
Name of formal parameter is explicit

Activate (This => Idle, Wait => True); -- named

Both can be used together

Activate (Idle, Wait => True); -- named then positional

But positional following named is a compile error

Activate (This => Idle, True); -- ERROR
149 / 1033

Fundamentals of Ada
Statements
Block Statements

Block Statements

150 / 1033

Fundamentals of Ada
Statements
Block Statements

Block Statements

Local scope

Optional declarative part

Used for
Temporary declarations
Declarations as part of statement sequence
Local catching of exceptions

Syntax

[block-name :]
[declare <declarative part>]
begin

<statements>
end [block-name];

151 / 1033

Fundamentals of Ada
Statements
Block Statements

Block Statements Example

begin
Get (V);
Get (U);
if U > V then -- swap them

Swap: declare
Temp : Integer;

begin
Temp := U;
U := V;
V := Temp;

end Swap;
-- Temp does not exist here

end if;
Print (U);
Print (V);

end;
152 / 1033

Fundamentals of Ada
Statements
Null Statements

Null Statements

153 / 1033

Fundamentals of Ada
Statements
Null Statements

Null Statements

Explicit no-op statement

Constructs with required statement

Explicit statements help compiler
Oversights
Editing accidents

case Today is
when Monday .. Thursday =>

Work (9.0);
when Friday =>

Work (4.0);
when Saturday .. Sunday =>

null;
end case;

154 / 1033

Fundamentals of Ada
Statements
Assignment Statements

Assignment Statements

155 / 1033

Fundamentals of Ada
Statements
Assignment Statements

Assignment Statements

Syntax

<variable> := <expression>;

Value of expression is copied to target variable

The type of the RHS must be same as the LHS
Rejected at compile-time otherwise

type Miles_T is range 0 .. Max_Miles;
type Km_T is range 0 .. Max_Kilometers
...
M : Miles_T := 2; -- universal integer legal for any integer
K : Km_T := 2; -- universal integer legal for any integer
M := K; -- compile error

156 / 1033

Fundamentals of Ada
Statements
Assignment Statements

Assignment Statements, Not Expressions

Separate from expressions
No Ada equivalent for these:

int a = b = c = 1;
while (line = readline(file))

{ ...do something with line... }

No assignment in conditionals
E.g. if (a == 1) compared to if (a = 1)

157 / 1033

Fundamentals of Ada
Statements
Assignment Statements

Assignable Views

A view controls the way an entity can be treated
At different points in the program text

The named entity must be an assignable variable
Thus the view of the target object must allow assignment

Various un-assignable views
Constants
Variables of limited types
Formal parameters of mode in

Max : constant Integer := 100;
...
Max := 200; -- illegal

158 / 1033

Fundamentals of Ada
Statements
Assignment Statements

Target Variable Constraint Violations

Prevent update to target value
Target is not changed at all

May compile but will raise error at runtime
Predefined exception Constraint_Error is raised

May be detected by compiler
Static value
Value is outside base range of type

Max : Integer range 1 .. 100 := 100;
...
Max := 0; -- run-time error

159 / 1033

Fundamentals of Ada
Statements
Assignment Statements

Implicit Range Constraint Checking

The following code

procedure Demo is
K : Integer;
P : Integer range 0 .. 100;

begin
...
P := K;
...

end Demo;

Generates assignment checks similar to

if K < 0 or K > 100 then
raise Constraint_Error;

else
P := K;

end if;

Run-time performance impact
160 / 1033

Fundamentals of Ada
Statements
Assignment Statements

Not All Assignments Are Checked

Compilers assume variables of a subtype have appropriate values

No check generated in this code

procedure Demo is
P, K : Integer range 0 .. 100;

begin
...
P := K;
...

end Demo;

161 / 1033

Fundamentals of Ada
Statements
Assignment Statements

Quiz
type One_T is range 0 .. 100;
type Two_T is range 0 .. 100;
A : constant := 100;
B : constant One_T := 99;
C : constant Two_T := 98;
X : One_T := 0;
Y : Two_T := 0;

Which block is illegal?
A. X := A;

Y := A;
B. X := B;

Y := C;
C. X := One_T(X + C);
D. X := One_T(Y);

Y := Two_T(X);

Explanations
A. Legal - A is an untyped constant
B. Legal - B, C are correctly typed
C. Illegal - C must be cast by itself
D. Legal - Values are typecast

appropriately

162 / 1033

Fundamentals of Ada
Statements
Assignment Statements

Quiz
type One_T is range 0 .. 100;
type Two_T is range 0 .. 100;
A : constant := 100;
B : constant One_T := 99;
C : constant Two_T := 98;
X : One_T := 0;
Y : Two_T := 0;

Which block is illegal?
A. X := A;

Y := A;
B. X := B;

Y := C;
C. X := One_T(X + C);
D. X := One_T(Y);

Y := Two_T(X);
Explanations
A. Legal - A is an untyped constant
B. Legal - B, C are correctly typed
C. Illegal - C must be cast by itself
D. Legal - Values are typecast

appropriately

162 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Conditional Statements

163 / 1033

Fundamentals of Ada
Statements
Conditional Statements

If-then-else Statements

Control flow using Boolean expressions

Syntax

if <boolean expression> then -- No parentheses
<statements>;

[else
<statements>;]

end if;

At least one statement must be supplied
null for explicit no-op

164 / 1033

Fundamentals of Ada
Statements
Conditional Statements

If-then-elsif Statements

Sequential choice with alternatives
Avoids if nesting
elsif alternatives, tested in textual order
else part still optional

1 if Valve(N) /= Closed then
2 Isolate (Valve(N));
3 Failure (Valve (N));
4 else
5 if System = Off then
6 Failure (Valve (N));
7 end if;
8 end if;

1 if Valve(N) /= Closed then
2 Isolate (Valve(N));
3 Failure (Valve (N));
4 elsif System = Off then
5 Failure (Valve (N));
6 end if;

165 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Case Statements

Exclusionary choice among alternatives

Syntax

case <expression> is
when <choice> => <statements>;
{ when <choice> => <statements>; }

end case;

choice ::= <expression> | <discrete range>
| others { "|" <other choice> }

166 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Simple case Statements

type Directions is (Forward, Backward, Left, Right);
Direction : Directions;
...
case Direction is

when Forward => Go_Forward (1);
when Backward => Go_Backward (1);
when Left => Go_Left (1);
when Right => Go_Right (1);

end case;

Note: No fall-through between cases

167 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Case Statement Rules

More constrained than a if-elsif structure

All possible values must be covered
Explicitly
... or with others keyword

Choice values cannot be given more than once (exclusive)
Must be known at compile time

168 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Others Choice

Choice by default
"everything not specified so far"

Must be in last position

case Today is -- work schedule
when Monday =>

Go_To (Work, Arrive=>Late, Leave=>Early);
when Tuesday | Wednesday | Thursday => -- Several choices

Go_To (Work, Arrive=>Early, Leave=>Late);
when Friday =>

Go_To (Work, Arrive=>Early, Leave=>Early);
when others => -- weekend

Go_To (Home, Arrive=>Day_Before, Leave=>Day_After);
end case;

169 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Case Statements Range Alternatives

case Altitude_Ft is
when 0 .. 9 =>

Set_Flight_Indicator (Ground);
when 10 .. 40_000 =>

Set_Flight_Indicator (In_The_Air);
when others => -- Large altitude

Set_Flight_Indicator (Too_High);
end case;

170 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Dangers of Others Case Alternative

Maintenance issue: new value requiring a new alternative?
Compiler won’t warn: others hides it

type Agencies_T is (NASA, ESA, RFSA); -- could easily grow
Bureau : Agencies_T;
...
case Bureau is

when ESA =>
Set_Region (Europe);

when NASA =>
Set_Region (America);

when others =>
Set_Region (Russia); -- New agencies will be Russian!

end case;

171 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Quiz

A : integer := 100;
B : integer := 200;

Which choice needs to be modified to make a valid if block

A. if A == B and then A != 0 then
A := Integer’First;
B := Integer’Last;

B. elsif A < B then
A := B + 1;

C. elsif A > B then
B := A - 1;

D. end if;

Explanations

A uses the C-style equality/inequality operators
D is legal because else is not required

172 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Quiz

A : integer := 100;
B : integer := 200;

Which choice needs to be modified to make a valid if block

A. if A == B and then A != 0 then
A := Integer’First;
B := Integer’Last;

B. elsif A < B then
A := B + 1;

C. elsif A > B then
B := A - 1;

D. end if;

Explanations

A uses the C-style equality/inequality operators
D is legal because else is not required

172 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Quiz

type Enum_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
A : Enum_T;

Which choice needs to be modified to make a valid case block

case A is

A. when Sun =>
Put_Line ("Day Off");

B. when Mon | Fri =>
Put_Line ("Short Day");

C. when Tue .. Thu =>
Put_Line ("Long Day");

D. end case;

Explanations

Ada requires all possibilities to be covered
Add when others or when Sat

173 / 1033

Fundamentals of Ada
Statements
Conditional Statements

Quiz

type Enum_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
A : Enum_T;

Which choice needs to be modified to make a valid case block

case A is

A. when Sun =>
Put_Line ("Day Off");

B. when Mon | Fri =>
Put_Line ("Short Day");

C. when Tue .. Thu =>
Put_Line ("Long Day");

D. end case;

Explanations

Ada requires all possibilities to be covered
Add when others or when Sat

173 / 1033

Fundamentals of Ada
Statements
Loop Statements

Loop Statements

174 / 1033

Fundamentals of Ada
Statements
Loop Statements

Basic Loops and Syntax

All kind of loops can be expressed
Optional iteration controls
Optional exit statements

Syntax

[<name> :] [iteration_scheme] loop
<statements>

end loop [<name>];

iteration_scheme ::= while <boolean expression>
| for <loop_parameter_specification>
| for <loop_iterator_specification>

Example

Wash_Hair : loop
Lather (Hair);
Rinse (Hair);

end loop Wash_Hair;
175 / 1033

Fundamentals of Ada
Statements
Loop Statements

Loop Exit Statements

Leaves innermost loop
Unless loop name is specified

Syntax

exit [<loop name>] [when <boolean expression>];

exit when exits with condition

loop
...
-- If it's time to go then exit
exit when Time_to_Go;
...

end loop;

176 / 1033

Fundamentals of Ada
Statements
Loop Statements

Exit Statement Examples

Equivalent to C’s do while

loop
Do_Something;
exit when Finished;

end loop;

Nested named loops and exit

Outer : loop
Do_Something;
Inner : loop

...
exit Outer when Finished; -- will exit all the way out
...

end loop Inner;
end loop Outer;

177 / 1033

Fundamentals of Ada
Statements
Loop Statements

While-loop Statements

Syntax

while boolean_expression loop
sequence_of_statements

end loop;

Identical to

loop
exit when not boolean_expression;
sequence_of_statements

end loop;

Example

while Count < Largest loop
Count := Count + 2;
Display (Count);

end loop;
178 / 1033

Fundamentals of Ada
Statements
Loop Statements

For-loop Statements

One low-level form
General-purpose (looping, array indexing, etc.)
Explicitly specified sequences of values
Precise control over sequence

Two high-level forms
Ada 2012
Focused on objects
Seen later with Arrays

179 / 1033

Fundamentals of Ada
Statements
Loop Statements

For in Statements

Successive values of a discrete type
eg. enumerations values

Syntax

for name in [reverse] discrete_subtype_definition loop
...
end loop;

Example

for Day in Days_T loop
Refresh_Planning (Day);

end loop;

180 / 1033

Fundamentals of Ada
Statements
Loop Statements

Variable and Sequence of Values

Variable declared implicitly by loop statement
Has a view as constant
No assignment or update possible

Initialized as 'First, incremented as 'Succ

Syntactic sugar: several forms allowed

-- All values of a type or subtype
for Day in Days_T loop
for Day in Days_T range Mon .. Fri -- anonymous subtype
-- Constant and variable range
for Day in Mon .. Fri loop
Today, Tomorrow : Days_T;
...
for Day in Today .. Tomorrow loop

181 / 1033

Fundamentals of Ada
Statements
Loop Statements

Low-Level For-loop Parameter Type

The type can be implicit
As long as it is clear for the compiler
Warning: same name can belong to several enums

-- Error if Red and Green in Color_T and Stoplight_T
for Color in Red .. Green loop

Type Integer by default
Each bound must be a universal_integer

182 / 1033

Fundamentals of Ada
Statements
Loop Statements

Null Ranges

Null range when lower bound > upper bound
1 .. 0, Fri .. Mon
Literals and variables can specify null ranges

No iteration at all (not even one)

Shortcut for upper bound validation

-- Null range: loop not entered
for Today in Fri .. Mon loop

183 / 1033

Fundamentals of Ada
Statements
Loop Statements

Reversing Low-Level Iteration Direction

Keyword reverse reverses iteration values
Range must still be ascending
Null range still cause no iteration

for This_Day in reverse Mon .. Fri loop

184 / 1033

Fundamentals of Ada
Statements
Loop Statements

For-Loop Parameter Visibility

Scope rules don’t change

Inner objects can hide outer objects

Block: declare
Counter : Float := 0.0;

begin
-- For_Loop.Counter hides Block.Counter
For_Loop : for Counter in Integer range A .. B loop
...
end loop;

end;

185 / 1033

Fundamentals of Ada
Statements
Loop Statements

Referencing Hidden Names

Must copy for-loop parameter to some other object if needed after
the loop exits
Use dot notation with outer scope name when hiding occurs

Foo:
declare

Counter : Float := 0.0;
begin

...
for Counter in Integer range 1 .. Number_Read loop

-- set declared "Counter" to loop counter
Foo.Counter := Float (Counter);
...

end loop;
...

end Foo;
186 / 1033

Fundamentals of Ada
Statements
Loop Statements

Iterations Exit Statements

Early loop exit

Syntax

exit [<loop_name>] [when <condition>]

No name: Loop exited entirely
Not only current iteration

for K in 1 .. 1000 loop
exit when K > F(K);

end loop;

With name: Specified loop exited

for J in 1 .. 1000 loop
Inner: for K in 1 .. 1000 loop

exit Inner when K > F(K);
end loop;

end loop;
187 / 1033

Fundamentals of Ada
Statements
Loop Statements

For-Loop with Exit Statement Example

-- find position of Key within Table
Found := False;
-- iterate over Table
Search : for Index in Table'Range loop

if Table(Index) = Key then
Found := True;
Position := Index;
exit Search;

elsif Table(Index) > Key then
-- no point in continuing
exit Search;

end if;
end loop Search;

188 / 1033

Fundamentals of Ada
Statements
Loop Statements

Quiz
A, B : Integer := 123;

Which loop block is illegal?

A. for A in 1 .. 10 loop
A := A + 1;

end loop;

B. for B in 1 .. 10 loop
Put_Line (Integer'Image (B));

end loop;

C. for C in reverse 1 .. 10 loop
Put_Line (Integer'Image (A));

end loop;

D. for D in 10 .. 1 loop
Put_Line (Integer'Image (D));

end loop;

Explanations

A. Cannot assign to a loop parameter
B. Legal - 10 iterations
C. Legal - 10 iterations
D. Legal - 0 iterations

.
189 / 1033

Fundamentals of Ada
Statements
Loop Statements

Quiz
A, B : Integer := 123;

Which loop block is illegal?

A. for A in 1 .. 10 loop
A := A + 1;

end loop;

B. for B in 1 .. 10 loop
Put_Line (Integer'Image (B));

end loop;

C. for C in reverse 1 .. 10 loop
Put_Line (Integer'Image (A));

end loop;

D. for D in 10 .. 1 loop
Put_Line (Integer'Image (D));

end loop;

Explanations

A. Cannot assign to a loop parameter
B. Legal - 10 iterations
C. Legal - 10 iterations
D. Legal - 0 iterations

.
189 / 1033

Fundamentals of Ada
Statements
GOTO Statements

GOTO Statements

190 / 1033

Fundamentals of Ada
Statements
GOTO Statements

GOTO Statements

Syntax

goto_statement ::= goto label;
label ::= << identifier >>

Rationale
Historic usage
Arguably cleaner for some situations

Restrictions
Based on common sense
Example: cannot jump into a case statement

191 / 1033

Fundamentals of Ada
Statements
GOTO Statements

GOTO Use

Mostly discouraged
May simplify control flow
For example in-loop continue construct

loop
-- lots of code
...
goto continue;
-- lots more code
...
<<continue>>

end loop;

As always maintainability beats hard set rules

192 / 1033

Fundamentals of Ada
Statements
Lab

Lab

193 / 1033

Fundamentals of Ada
Statements
Lab

Statements Lab

Requirements
Create a simple algorithm to count number of hours worked in a
week

Use Ada.Text_IO.Get_Line to ask user for hours worked on each
day
Any hours over 8 gets counted as 1.5 times number of hours (e.g.
10 hours worked will get counted as 11 hours towards total)
Saturday hours get counted at 1.5 times number of hours
Sunday hours get counted at 2 times number of hours

Print total number of hours "worked"

Hints
Use for loop to iterate over days of week
Use if statement to determine overtime hours
Use case statement to determine weekend bonus

194 / 1033

Fundamentals of Ada
Statements
Lab

Statements Lab Extra Credit

Use an inner loop when getting hours worked to check validity
Less than 0 should exit outer loop
More than 24 should not be allowed

195 / 1033

Fundamentals of Ada
Statements
Lab

Statements Lab Solution
with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

type Days_Of_Week_T is
(Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday);

type Hours_Worked is digits 6;

Total_Worked : Hours_Worked := 0.0;
Hours_Today : Hours_Worked;
Overtime : Hours_Worked;

begin
Day_Loop :
for Day in Days_Of_Week_T loop

Put_Line (Day'Image);
Input_Loop :
loop

Hours_Today := Hours_Worked'Value (Get_Line);
exit Day_Loop when Hours_Today < 0.0;
if Hours_Today > 24.0 then

Put_Line ("I don't believe you");
else

exit Input_Loop;
end if;

end loop Input_Loop;
if Hours_Today > 8.0 then

Overtime := Hours_Today - 8.0;
Hours_Today := Hours_Today + 0.5 * Overtime;

end if;
case Day is

when Monday .. Friday => Total_Worked := Total_Worked + Hours_Today;
when Saturday => Total_Worked := Total_Worked + Hours_Today * 1.5;
when Sunday => Total_Worked := Total_Worked + Hours_Today * 2.0;

end case;
end loop Day_Loop;

Put_Line (Total_Worked'Image);
end Main;

196 / 1033

Fundamentals of Ada
Statements
Summary

Summary

197 / 1033

Fundamentals of Ada
Statements
Summary

Summary

Assignments must satisfy any constraints of LHS
Invalid assignments don’t alter target

Intent to do nothing must be explicitly specified

Case statements alternatives don’t fall through

Any kind of loop can be expressed with building blocks

198 / 1033

Fundamentals of Ada
Array Types

Array Types

199 / 1033

Fundamentals of Ada
Array Types
Introduction

Introduction

200 / 1033

Fundamentals of Ada
Array Types
Introduction

Introduction

Traditional array concept supported to any dimension

declare
type Hours is digits 6;
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Schedule is array (Days) of Hours;
Workdays : Schedule;

begin
...
Workdays (Mon) := 8.5;

201 / 1033

Fundamentals of Ada
Array Types
Introduction

Terminology

Index type

Specifies the values to be used to access the array components

Component type

Specifies the type of values contained by objects of the array type
All components are of this same type

type Array_T is array (Index_T) of Component_T;

202 / 1033

Fundamentals of Ada
Array Types
Introduction

Array Type Index Constraints

Must be of an integer or enumeration type

May be dynamic

Default to predefined Integer
Same rules as for-loop parameter default type

Allowed to be null range
Defines an empty array
Meaningful when bounds are computed at run-time

Can be applied on type or subtype

type Schedule is array (Days range Mon .. Fri) of Float;
type Flags_T is array (-10 .. 10) of Boolean;
-- this may or may not be null range
type Dynamic is array (1 .. N) of Integer;

subtype Line is String (1 .. 80);
subtype Translation is Matrix (1..3, 1..3);

203 / 1033

Fundamentals of Ada
Array Types
Introduction

Run-Time Index Checking

Array indices are checked at run-time as needed
Invalid index values result in Constraint_Error

procedure Test is
type List is array (1..10) of Integer;
A : List;
K : Integer;

begin
A := (others => 0);
K := FOO;
A (K) := 42; -- runtime error if Foo returns < 1 or > 10
Put_Line (A(K)'Image);

end Test;

204 / 1033

Fundamentals of Ada
Array Types
Introduction

Kinds of Array Types

Constrained Array Types
Bounds specified by type declaration
All objects of the type have the same bounds

Unconstrained Array Types
Bounds not constrained by type declaration
Objects share the type, but not the bounds
More flexible

type Unconstrained is array (Positive range <>)
of Integer;

U1 : Unconstrained (1 .. 10);
S1 : String (1 .. 50);
S2 : String (35 .. 95);

205 / 1033

Fundamentals of Ada
Array Types
Constrained Array Types

Constrained Array Types

206 / 1033

Fundamentals of Ada
Array Types
Constrained Array Types

Constrained Array Type Declarations

Syntax

constrained_array_definition ::=
array index_constraint of subtype_indication

index_constraint ::= (discrete_subtype_definition
{, discrete_subtype_indication})

discrete_subtype_definition ::=
discrete_subtype_indication | range

subtype_indication ::= subtype_mark [constraint]
range ::= range_attribute_reference |

simple_expression .. simple_expression

Examples

type Full_Week_T is array (Days) of Float;
type Work_Week_T is array (Days range Mon .. Fri) of Float;
type Weekdays is array (Mon .. Fri) of Float;
type Workdays is array (Weekdays'Range) of Float;

207 / 1033

Fundamentals of Ada
Array Types
Constrained Array Types

Multiple-Dimensioned Array Types

Declared with more than one
index definition

Constrained array types
Unconstrained array types

Components accessed by
giving value for each index

type Three_Dimensioned is
array (

Boolean,
12 .. 50,
Character range 'a' .. 'z')
of Integer;

TD : Three_Dimensioned;
...

begin
TD (True, 42, 'b') := 42;
TD (Flag, Count, Char) := 42;

208 / 1033

Fundamentals of Ada
Array Types
Constrained Array Types

Tic-Tac-Toe Winners Example

-- 9 positions on a board
type Move_Number is range 1 .. 9;
-- 8 ways to win
type Winning_Combinations is

range 1 .. 8;
-- need 3 positions to win
type Required_Positions is

range 1 .. 3;
Winning : constant array (

Winning_Combinations,
Required_Positions)
of Move_Number := (1 => (1,2,3),

2 => (1,4,7),
...

1 X 2 X 3 X
4 5 6
7 8 9

1 X 2 3
4 X 5 6
7 X 8 9

1 X 2 3
4 5 X 6
7 8 9 X

209 / 1033

Fundamentals of Ada
Array Types
Constrained Array Types

Quiz

type Array1_T is array (1 .. 8) of Boolean;
type Array2_T is array (0 .. 7) of Boolean;
X1, Y1 : Array1_T;
X2, Y2 : Array2_T;
Which statement is not legal?

A. X1(1) := Y1(1);
B. X1 := Y1;
C. X1(1) := X2(1);
D. X2 := X1;

Explanations
A. Legal - elements are Boolean
B. Legal - object types match
C. Legal - elements are Boolean
D. Although the sizes are the

same and the elements are
the same, the type is
different

210 / 1033

Fundamentals of Ada
Array Types
Constrained Array Types

Quiz

type Array1_T is array (1 .. 8) of Boolean;
type Array2_T is array (0 .. 7) of Boolean;
X1, Y1 : Array1_T;
X2, Y2 : Array2_T;
Which statement is not legal?

A. X1(1) := Y1(1);
B. X1 := Y1;
C. X1(1) := X2(1);
D. X2 := X1;

Explanations
A. Legal - elements are Boolean
B. Legal - object types match
C. Legal - elements are Boolean
D. Although the sizes are the

same and the elements are
the same, the type is
different

210 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Unconstrained Array Types

211 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Unconstrained Array Type Declarations

Do not specify bounds for objects

Thus different objects of the same type may have different bounds

Bounds cannot change once set

Syntax (with simplifications)

unconstrained_array_definition ::=
array (index_subtype_definition

{, index_subtype_definition})
of subtype_indication

index_subtype_definition ::= subtype_mark range <>

Examples

type Index is range 1 .. Integer'Last;
type CharList is array (Index range <>) of Character;

212 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Supplying Index Constraints for Objects

Bounds set by:
Object declaration
Constant’s value
Variable’s initial value
Further type definitions (shown later)
Actual parameter to subprogram (shown later)

Once set, bounds never change

type Schedule is array (Days range <>) of Float;
Work : Schedule (Mon .. Fri);
All_Days : Schedule (Days);

213 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Bounds Must Satisfy Type Constraints

Must be somewhere in the range of possible values specified by the
type declaration
Constraint_Error otherwise

type Index is range 1 .. 100;
type List is array (Index range <>) of Character;
...
Wrong : List (0 .. 10); -- runtime error
OK : List (50 .. 75);

214 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

"String" Types

Language-defined unconstrained array types
Allow double-quoted literals as well as aggregates
Always have a character component type
Always one-dimensional

Language defines various types
String, with Character as component

subtype Positive is Integer range 1 .. Integer'Last;
type String is array (Positive range <>) of Character;

Wide_String, with Wide_Character as component

Wide_Wide_String, with Wide_Wide_Character as component

Can be defined by applications too

215 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Application-Defined String Types

Like language-defined string types
Always have a character component type
Always one-dimensional

Recall character types are enumeration types with at least one
character literal value

type Roman_Digit is ('I', 'V', 'X', 'L', 'C', 'D', 'M');
type Roman_Number is array (Positive range <>)

of Roman_Digit;
Orwellian : constant Roman_Number := "MCMLXXXIV";

216 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Specifying Constraints via Initial Value

Lower bound is Index_subtype'First
Upper bound is taken from number of items in value

subtype Positive is Integer range 1 .. Integer'Last;
type String is array (Positive range <>)

of Character;
...
M : String := "Hello World!";
-- M'first is positive'first (1)

type Another_String is array (Integer range <>)
of Character;

...
M : Another_String := "Hello World!";
-- M'first is integer'first

217 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Index Constraints for Subtypes

Specify bounds for unconstrained array types

type Vector is array (Positive range <>) of Real;
subtype Position_Vector is Vector (1..3);
V : Position_Vector;

Index constraints must not already be specified

type String is array (Positive range <>) of Character;
subtype Full_Name is String (1 .. Max);
subtype First_Name is

Full_Name (1 .. N); -- compile error

218 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

No Unconstrained Component Types

Arrays: consecutive elements of the exact same type

Component size must be defined
No unconstrained types
Constrained subtypes allowed

type Good is array (1 .. 10) of String (1 .. 20); -- OK
type Bad is array (1 .. 10) of String; -- Illegal

219 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Arrays of Arrays

Allowed (of course!)
As long as the "component" array type is constrained

Indexed using multiple parenthesized values
One per array

declare
type Array_of_10 is array (1..10) of Integer;
type Array_of_Array is array (Boolean) of Array_of_10;
A : Array_of_Array;

begin
...
A (True)(3) := 42;

220 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Quiz

type Array_T is array (Integer range <>) of Integer;
subtype Array1_T is Array_T (1 .. 4);
subtype Array2_T is Array_T (0 .. 3);
X : Array_T := (1, 2, 3, 4);
Y : Array1_T := (1, 2, 3, 4);
Z : Array2_T := (1, 2, 3, 4);
Which statement is illegal?

A. X (1) := Y (1);
B. Y (1) := Z (1);
C. Y := X;
D. Z := X;

Explanations
A. Array_T starts at

Integer'First not 1
B. OK, both in range
C. OK, same type and size
D. OK, same type and size

221 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Quiz

type Array_T is array (Integer range <>) of Integer;
subtype Array1_T is Array_T (1 .. 4);
subtype Array2_T is Array_T (0 .. 3);
X : Array_T := (1, 2, 3, 4);
Y : Array1_T := (1, 2, 3, 4);
Z : Array2_T := (1, 2, 3, 4);
Which statement is illegal?

A. X (1) := Y (1);
B. Y (1) := Z (1);
C. Y := X;
D. Z := X;

Explanations
A. Array_T starts at

Integer'First not 1
B. OK, both in range
C. OK, same type and size
D. OK, same type and size

221 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Quiz

type My_Array is array (Boolean range <>) of Boolean;

Object : My_Array (False .. False) := (others => True);

What is the value of Object (True)?

A. False
B. True
C. None: Compilation error
D. None: Runtime error

True is not a valid index for Object.

NB: GNAT will emit a warning by default.

222 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Quiz

type My_Array is array (Boolean range <>) of Boolean;

Object : My_Array (False .. False) := (others => True);

What is the value of Object (True)?

A. False
B. True
C. None: Compilation error
D. None: Runtime error

True is not a valid index for Object.

NB: GNAT will emit a warning by default.

222 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Quiz

type My_Array is array (Integer range <>) of Boolean;

Object : My_Array (0 .. -1) := (others => True);

What is the value of Object'Length?

A. 1
B. 0
C. None: Compilation error
D. None: Runtime error

Valid index for empty array, and others initialization allowed for empty
range.

223 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Quiz

type My_Array is array (Integer range <>) of Boolean;

Object : My_Array (0 .. -1) := (others => True);

What is the value of Object'Length?

A. 1
B. 0
C. None: Compilation error
D. None: Runtime error

Valid index for empty array, and others initialization allowed for empty
range.

223 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Quiz

type I_0 is range 0 .. 0;

type My_Array is array (I_0 range <>) of Boolean;

How to declare an empty object of type My_Array ?

A. O : My_Array (null);
B. O : My_Array (I_0'First .. I_0'First);
C. O : My_Array (I_0’First + 1 .. I_0’First);
D. O : My_Array (I_0'Last .. I_0'First);

For initializing empty arrays, index values out of the range are allowed.

NB: for enumerated index type, this may be impossible.

224 / 1033

Fundamentals of Ada
Array Types
Unconstrained Array Types

Quiz

type I_0 is range 0 .. 0;

type My_Array is array (I_0 range <>) of Boolean;

How to declare an empty object of type My_Array ?

A. O : My_Array (null);
B. O : My_Array (I_0'First .. I_0'First);
C. O : My_Array (I_0’First + 1 .. I_0’First);
D. O : My_Array (I_0'Last .. I_0'First);

For initializing empty arrays, index values out of the range are allowed.

NB: for enumerated index type, this may be impossible.

224 / 1033

Fundamentals of Ada
Array Types
Attributes

Attributes

225 / 1033

Fundamentals of Ada
Array Types
Attributes

Array Attributes

Return info about array index bounds

O’Length number of array components

O’First value of lower index bound

O’Last value of upper index bound

O’Range another way of saying T'First .. T'Last

Meaningfully applied to constrained array types
Only constrained array types provide index bounds
Returns index info specified by the type (hence all such objects)

Meaningfully applied to array objects
Returns index info for the object
Especially useful for objects of unconstrained array types

226 / 1033

Fundamentals of Ada
Array Types
Attributes

Attributes’ Benefits

Allow code to be more robust
Relationships are explicit
Changes are localized

Optimizer can identify redundant checks

declare
type List is array (5 .. 15) of Integer;
L : List;
List_Index : Integer range List'Range := List'First;
Count : Integer range 0 .. List'Length := 0;

begin
...
for K in L'Range loop

L (K) := K * 2;
end loop;

227 / 1033

Fundamentals of Ada
Array Types
Attributes

Nth Dimension Array Attributes

Attribute with parameter

T'Length (n)
T'First (n)
T'Last (n)
T'Range (n)

n is the dimension
defaults to 1

type Two_Dimensioned is array
(1 .. 10, 12 .. 50) of T;

TD : Two_Dimensioned;

TD'First (2) = 12
TD'Last (2) = 50
TD'Length (2) = 39
TD'First = TD'First (1) = 1

228 / 1033

Fundamentals of Ada
Array Types
Attributes

Quiz

subtype Index1_T is Integer range 0 .. 7;
subtype Index2_T is Integer range 1 .. 8;
type Array_T is array (Index1_T, Index2_T) of Integer;
X : Array_T;

Which comparison is False?

A. X'Last(2) = Index2_T'Last
B. X’Last(1)*X’Last(2) = X’Length(1)*X’Length(2)
C. X'Length(1) = X'Length(2)
D. X'Last(1) = 7

Explanations

A. 8 = 8
B. 7*8 /= 8*8
C. 8 = 8
D. 7 = 7

229 / 1033

Fundamentals of Ada
Array Types
Attributes

Quiz

subtype Index1_T is Integer range 0 .. 7;
subtype Index2_T is Integer range 1 .. 8;
type Array_T is array (Index1_T, Index2_T) of Integer;
X : Array_T;

Which comparison is False?

A. X'Last(2) = Index2_T'Last
B. X’Last(1)*X’Last(2) = X’Length(1)*X’Length(2)
C. X'Length(1) = X'Length(2)
D. X'Last(1) = 7

Explanations

A. 8 = 8
B. 7*8 /= 8*8
C. 8 = 8
D. 7 = 7

229 / 1033

Fundamentals of Ada
Array Types
Operations

Operations

230 / 1033

Fundamentals of Ada
Array Types
Operations

Object-Level Operations

Assignment of array objects

A := B;

Equality and inequality

if A = B then

Conversions

C := Foo (B);

Component types must be the same type
Index types must be the same or convertible
Dimensionality must be the same
Bounds must be compatible (not necessarily equal)

231 / 1033

Fundamentals of Ada
Array Types
Operations

Extra Object-Level Operations

Only for 1-dimensional arrays!

Concatenation

type String_Type is array
(Integer range <>) of Character;

A : constant String_Type := "foo";
B : constant String_Type := "bar";
C : constant String_Type := A & B;
-- C now contains "foobar"

Relational (for discrete component types)

Logical (for Boolean component type)

Slicing
Portion of array

232 / 1033

Fundamentals of Ada
Array Types
Operations

Slicing

Contiguous subsection of an array
On any one-dimensional array type

Any component type

procedure Test is
S1 : String (1 .. 9) := "Hi Adam!!";
S2 : String := "We love !";

begin
S2 (9..11) := S1 (4..6);
Put_Line (S2);

end Test;

Result: We love Ada!

233 / 1033

Fundamentals of Ada
Array Types
Operations

Slicing With Explicit Indexes

Imagine a requirement to have a name with two parts: first and
last

declare
Full_Name : String (1 .. 20);

begin
Put_Line (Full_Name);
Put_Line (Full_Name (1..10)); -- first half of name
Put_Line (Full_Name (11..20)); -- second half of name

234 / 1033

Fundamentals of Ada
Array Types
Operations

Slicing With Named Subtypes for Indexes

Subtype name indicates the slice index range
Names for constraints, in this case index constraints

Enhances readability and robustness

procedure Test is
subtype First_Name is Positive range 1 .. 10;
subtype Last_Name is Positive range 11 .. 20;
Full_Name : String(First_Name'First..Last_Name'Last);

begin
Put_Line(Full_Name(First_Name)); -- Full_Name(1..10)
if Full_Name (Last_Name) = SomeString then ...

235 / 1033

Fundamentals of Ada
Array Types
Operations

Dynamic Subtype Constraint Example

Useful when constraints not known at compile-time
Example: remove file name extension

File_Name
(File_Name'First
..
Index (File_Name, '.', Direction => Backward));

236 / 1033

Fundamentals of Ada
Array Types
Operations

Quiz

type Index_T is range 1 .. 10;
type OneD_T is array (Index_T) of Boolean;
type ThreeD_T is array (Index_T, Index_T, Index_T) of OneD_T;
A : ThreeD_T;
B : OneD_T;

Which statement is illegal?

A. B(1) := A(1,2,3)(1) or A(4,3,2)(1);
B. B := A(2,3,4) and A(4,3,2);
C. A(1,2,3..4) := A(2,3,4..5);
D. B(3..4) := B(4..5);

Explanations

A. All three objects are just boolean values
B. An element of A is the same type as B
C. No slicing of multi-dimensional arrays
D. Slicing allowed on single-dimension arrays

237 / 1033

Fundamentals of Ada
Array Types
Operations

Quiz

type Index_T is range 1 .. 10;
type OneD_T is array (Index_T) of Boolean;
type ThreeD_T is array (Index_T, Index_T, Index_T) of OneD_T;
A : ThreeD_T;
B : OneD_T;

Which statement is illegal?

A. B(1) := A(1,2,3)(1) or A(4,3,2)(1);
B. B := A(2,3,4) and A(4,3,2);
C. A(1,2,3..4) := A(2,3,4..5);
D. B(3..4) := B(4..5);

Explanations

A. All three objects are just boolean values
B. An element of A is the same type as B
C. No slicing of multi-dimensional arrays
D. Slicing allowed on single-dimension arrays

237 / 1033

Fundamentals of Ada
Array Types
Operations Added for Ada2012

Operations Added for Ada2012

238 / 1033

Fundamentals of Ada
Array Types
Operations Added for Ada2012

Default Initialization for Array Types
Ada 2012

Supports constrained and unconstrained array types

Supports arrays of any dimensionality
No matter how many dimensions, there is only one component type

Uses aspect Default_Component_Value

type Vector is array (Positive range <>) of Float
with Default_Component_Value => 0.0;

239 / 1033

Fundamentals of Ada
Array Types
Operations Added for Ada2012

Two High-Level For-Loop Kinds
Ada 2012

For arrays and containers
Arrays of any type and form

Iterable containers

Those that define iteration (most do)
Not all containers are iterable (e.g., priority queues)!

For iterator objects
Known as "generalized iterators"
Language-defined, e.g., most container data structures

User-defined iterators too

We focus on the arrays/containers form for now

240 / 1033

Fundamentals of Ada
Array Types
Operations Added for Ada2012

Array/Container For-Loops
Ada 2012

Work in terms of elements within an object

Syntax hides indexing/iterator controls

for name of [reverse] array_or_container_object loop
...
end loop;

Starts with "first" element unless you reverse it

Loop parameter name is a constant if iterating over a constant, a
variable otherwise

241 / 1033

Fundamentals of Ada
Array Types
Operations Added for Ada2012

Array Component For-Loop Example
Ada 2012

Given an array

Primes : constant array (1 .. 5) of Integer :=
(2, 3, 5, 7, 11);

Component-based looping would look like

for P of Primes loop
Put_Line (Integer'Image (P));

end loop;

While index-based looping would look like

for P in Primes'range loop
Put_Line (Integer'Image (Primes(P)));

end loop;
242 / 1033

Fundamentals of Ada
Array Types
Operations Added for Ada2012

For-Loops with Multidimensional Arrays
Ada 2012

Same syntax, regardless of
number of dimensions
As if a set of nested loops,
one per dimension

Last dimension is in
innermost loop, so changes
fastest

In low-level format looks like
for each row loop

for each column loop
print Identity (

row, column)
end loop

end loop

declare
subtype Rows is Positive;
subtype Columns is Positive;
type Matrix is array

(Rows range <>,
Columns range <>) of Float;

Identity : constant Matrix
(1..3, 1..3) :=

((1.0, 0.0, 0.0),
(0.0, 1.0, 0.0),
(0.0, 0.0, 1.0));

begin
for C of Identity loop

Put_Line (Float'Image(C));
end loop;

243 / 1033

Fundamentals of Ada
Array Types
Operations Added for Ada2012

Quiz

declare
type Array_T is array (1..3, 1..3) of Integer

with Default_Component_Value => 1;
A : Array_T;

begin
for I in Index_T range 2 .. 3 loop

for J in Index_T range 2 .. 3 loop
A (I, J) := I * 10 + J;

end loop;
end loop;
for I of reverse A loop

Put (I'Image);
end loop;

end;
Which output is correct?

A. 1 1 1 1 22 23 1 32 33
B. 33 32 1 23 22 1 1 1 1
C. 0 0 0 0 22 23 0 32 33
D. 33 32 0 23 22 0 0 0 0

Explanations
A. There is a reverse
B. Yes
C. Default value is 1
D. No

NB: Without Default_Component_Value, init. values are random
244 / 1033

Fundamentals of Ada
Array Types
Operations Added for Ada2012

Quiz

declare
type Array_T is array (1..3, 1..3) of Integer

with Default_Component_Value => 1;
A : Array_T;

begin
for I in Index_T range 2 .. 3 loop

for J in Index_T range 2 .. 3 loop
A (I, J) := I * 10 + J;

end loop;
end loop;
for I of reverse A loop

Put (I'Image);
end loop;

end;
Which output is correct?

A. 1 1 1 1 22 23 1 32 33
B. 33 32 1 23 22 1 1 1 1
C. 0 0 0 0 22 23 0 32 33
D. 33 32 0 23 22 0 0 0 0

Explanations
A. There is a reverse
B. Yes
C. Default value is 1
D. No

NB: Without Default_Component_Value, init. values are random
244 / 1033

Fundamentals of Ada
Array Types
Aggregates

Aggregates

245 / 1033

Fundamentals of Ada
Array Types
Aggregates

Aggregates

Literals for composite types
Array types
Record types

Two distinct forms
Positional
Named

Syntax (simplified):

component_expr ::=
expression -- Defined value
| <> -- Default value

array_aggregate ::= (
{component_expr ,} -- Positional

| {discrete_choice_list => component_expr,}) -- Named
-- Default "others" indices
[others => expression]

246 / 1033

Fundamentals of Ada
Array Types
Aggregates

Aggregate "Positional" Form

Specifies array component values explicitly
Uses implicit ascending index values

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;
Week : Working;
...
-- Saturday and Sunday are False, everything else True
Week := (True, True, True, True, True, False, False);

247 / 1033

Fundamentals of Ada
Array Types
Aggregates

Aggregate "Named" Form

Explicitly specifies both index and corresponding component values
Allows any order to be specified
Ranges and choice lists are allowed (like case choices)

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;
Week : Working;
...
Week := (Sat => False, Sun => False, Mon..Fri => True);
Week := (Sat | Sun => False, Mon..Fri => True);

248 / 1033

Fundamentals of Ada
Array Types
Aggregates

Combined Aggregate Forms Not Allowed

Some cases lead to ambiguity, therefore never allowed for array
types
Are only allowed for record types (shown in subsequent section)

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;
Week : Working;
...
Week := (True, True, True, True, True, False, False);
Week := (Sat => False, Sun => False, Mon..Fri => True);
Week := (True, True, True, True, True,

Sat => False, Sun => False); -- invalid
Week := (Sat | Sun => False, Mon..Fri => True);

249 / 1033

Fundamentals of Ada
Array Types
Aggregates

Aggregates Are True Literal Values

Used any place a value of the type may be used

type Schedule is array (Mon .. Fri) of Float;
Work : Schedule;
Normal : constant Schedule := (8.0, 8.0, 8.0, 8.0, 8.0);
...
Work := (8.5, 8.5, 8.5, 8.5, 6.0);
...
if Work = Normal then ...
...
if Work = (10.0, 10.0, 10.0, 10.0, 0.0) then -- 4-day week ...

250 / 1033

Fundamentals of Ada
Array Types
Aggregates

Aggregate Consistency Rules

Must always be complete
They are literals, after all
Each component must be given a value
But defaults are possible (more in a moment)

Must provide only one value per index position
Duplicates are detected at compile-time

Compiler rejects incomplete or inconsistent aggregates

Week := (Sat => False,
Sun => False,
Mon .. Fri => True,
Wed => False);

251 / 1033

Fundamentals of Ada
Array Types
Aggregates

"Others"

Indicates all components not yet assigned a value
All remaining components get this single value
Similar to case statement’s others
Can be used to apply defaults too

type Schedule is array (Days) of Float;
Work : Schedule;
Normal : constant Schedule := (8.0, 8.0, 8.0, 8.0, 8.0,

others => 0.0);

252 / 1033

Fundamentals of Ada
Array Types
Aggregates

Nested Aggregates

For multiple dimensions
For arrays of composite component types

type Matrix is array (Positive range <>,
Positive range <>) of Float;

Mat_4x2 : Matrix (1..4, 1..2) := (1 => (2.5, 3.0),
2 => (1.5, 0.0),
3 => (2.1, 0.0),
4 => (9.0, 0.0));

253 / 1033

Fundamentals of Ada
Array Types
Aggregates

Tic-Tac-Toe Winners Example

type Move_Number is range 1 .. 9;
-- 8 ways to win
type Winning_Combinations is range 1 .. 8;
-- need 3 places to win
type Required_Positions is range 1 .. 3;
Winning : constant array (Winning_Combinations,

Required_Positions) of
Move_Number := (-- rows

1 => (1, 2, 3),
2 => (4, 5, 6),
3 => (7, 8, 9),
-- columns
4 => (1, 4, 7),
5 => (2, 5, 8),
6 => (3, 6, 9),
-- diagonals
7 => (1, 5, 9),
8 => (3, 5, 7));

254 / 1033

Fundamentals of Ada
Array Types
Aggregates

Defaults Within Array Aggregates
Ada 2005

Specified via the box notation

Value for component is thus taken as for stand-alone object
declaration

So there may or may not be a defined default!

Can only be used with "named association" form
But others counts as named form

Syntax

discrete_choice_list => <>

Example

type List is array (1 .. N) of Integer;
Primes : List := (1 => 2, 2 .. N => <>);

255 / 1033

Fundamentals of Ada
Array Types
Aggregates

Named Format Aggregate Rules

Bounds cannot overlap
Index values must be specified once and only once

All bounds must be static
Avoids run-time cost to verify coverage of all index values
Except for single choice format

type List is array (Integer range <>) of Float;
Ages : List (1 .. 10) := (1 .. 3 => X, 4 .. 10 => Y);
-- illegal: 3 appears twice
Overlap : List (1 .. 10) := (1 .. 4 => X, 3 .. 10 => Y);
N, M, K, L : Integer;
-- illegal: cannot determine if
-- every index covered at compile time
Not_Static : List (1 .. 10) := (M .. N => X, K .. L => Y);
-- This is legal
Values : List (1 .. N) := (1 .. N => X);

256 / 1033

Fundamentals of Ada
Array Types
Aggregates

Quiz

type Array_T is array (1 .. 5) of Integer;
X : Array_T;
J : Integer := X'First;

Which statement is correct?

A. X := (1, 2, 3, 4 => 4, 5 => 5);
B. X := (1..3 => 100, 4..5 => -100, others => -1);
C. X := (J => -1, J + 1..X'Last => 1);
D. X := (1..3 => 100, 3..5 => 200);

Explanations

A. Cannot mix positional and named notation
B. Correct - others not needed but is allowed
C. Dynamic values must be the only choice. (This could be fixed by

making J a constant.)
D. Overlapping index values (3 appears more than once)

257 / 1033

Fundamentals of Ada
Array Types
Aggregates

Quiz

type Array_T is array (1 .. 5) of Integer;
X : Array_T;
J : Integer := X'First;

Which statement is correct?

A. X := (1, 2, 3, 4 => 4, 5 => 5);
B. X := (1..3 => 100, 4..5 => -100, others => -1);
C. X := (J => -1, J + 1..X'Last => 1);
D. X := (1..3 => 100, 3..5 => 200);

Explanations

A. Cannot mix positional and named notation
B. Correct - others not needed but is allowed
C. Dynamic values must be the only choice. (This could be fixed by

making J a constant.)
D. Overlapping index values (3 appears more than once)

257 / 1033

Fundamentals of Ada
Array Types
Anonymous Array Types

Anonymous Array Types

258 / 1033

Fundamentals of Ada
Array Types
Anonymous Array Types

Anonymous Array Types

Array objects need not be of
a named type
A : array (1 .. 3) of B;
Without a type name, no
object-level operations

Cannot be checked for
type compatibility
Operations on components
are still ok if compatible

declare
-- These are not same type!

A, B : array (Foo) of Bar;
begin

A := B; -- illegal
B := A; -- illegal
-- legal assignment of values
A(J) := B(K);

end;

259 / 1033

Fundamentals of Ada
Array Types
Lab

Lab

260 / 1033

Fundamentals of Ada
Array Types
Lab

Array Lab

Requirements
Create an array type whose index is days of the week and each
element is a number

Create two objects of the array type, one of which is constant

Perform the following operations

Copy the constant object to the non-constant object and
Print the contents of the non-constant object
Use an array aggregate to initialize the non-constant object
For each element of the array, print the array index and the value
Move part ("source") of the non-constant object to another part
("destination"), and then clear the source location
Print the contents of the non-constant object

Hints
When you want to combine multiple strings (which are arrays!) use
the concatenation operator (&)
Slices are how you access part of an array
Use aggregates (either named or positional) to initialize data

261 / 1033

Fundamentals of Ada
Array Types
Lab

Multiple Dimensions

Requirements
For each day of the week, you need an array of three strings
containing names of workers for that day
Two sets of workers: weekend and weekday, but the store is closed
on Wednesday (no workers)
Initialize the array and then print it hierarchically

262 / 1033

Fundamentals of Ada
Array Types
Lab

Array Lab Solution - Declarations

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

type Days_Of_Week_T is
(Mon, Tue, Wed, Thu, Fri, Sat, Sun);

type Unconstrained_Array_T is
array (Days_Of_Week_T range <>) of Natural;

Const_Arr : constant Unconstrained_Array_T :=
(1, 2, 3, 4, 5, 6, 7);

Array_Var : Unconstrained_Array_T (Days_Of_Week_T);

type Name_T is array (1 .. 6) of Character;
Weekly_Staff : array (Days_Of_Week_T, 1 .. 3) of Name_T;

263 / 1033

Fundamentals of Ada
Array Types
Lab

Array Lab Solution - Implementation
begin

Array_Var := Const_Arr;
for Item of Array_Var loop

Put_Line (Item'Image);
end loop;
New_Line;

Array_Var :=
(Mon => 111, Tue => 222, Wed => 333, Thu => 444, Fri => 555, Sat => 666,
Sun => 777);

for Index in Array_Var'Range loop
Put_Line (Index'Image & " => " & Array_Var (Index)'Image);

end loop;
New_Line;

Array_Var (Mon .. Wed) := Const_Arr (Wed .. Fri);
Array_Var (Wed .. Fri) := (others => Natural'First);
for Item of Array_Var loop

Put_Line (Item'Image);
end loop;
New_Line;

Weekly_Staff := (Mon | Tue | Thu | Fri => ("Fred ", "Barney", "Wilma "),
Wed => ("closed", "closed", "closed"),
others => ("Pinky ", "Inky ", "Blinky"));

for Day in Weekly_Staff'Range (1) loop
Put_Line (Day'Image);
for Staff in Weekly_Staff'Range (2) loop

Put_Line (" " & String (Weekly_Staff (Day, Staff)));
end loop;

end loop;
end Main;

264 / 1033

Fundamentals of Ada
Array Types
Summary

Summary

265 / 1033

Fundamentals of Ada
Array Types
Summary

Final Notes on Type String

Any single-dimensioned array of some character type is a
string type

Language defines types String, Wide_String, etc.

Just another array type: no null termination

Language-defined support defined in Appendix A
Ada.Strings.*
Fixed-length, bounded-length, and unbounded-length
Searches for pattern strings and for characters in program-specified
sets
Transformation (replacing, inserting, overwriting, and deleting of
substrings)
Translation (via a character-to-character mapping)

266 / 1033

Fundamentals of Ada
Array Types
Summary

Summary

Any dimensionality directly supported

Component types can be any (constrained) type

Index types can be any discrete type
Integer types
Enumeration types

Constrained array types specify bounds for all objects

Unconstrained array types leave bounds to the objects
Thus differently-sized objects of the same type

Default initialization for large arrays may be expensive!

Anonymously-typed array objects used in examples for brevity but
that doesn’t mean you should in real programs

267 / 1033

Fundamentals of Ada
Record Types

Record Types

268 / 1033

Fundamentals of Ada
Record Types
Introduction

Introduction

269 / 1033

Fundamentals of Ada
Record Types
Introduction

Syntax and Examples

Syntax (simplified)

type T is record
Component_Name : Type [:= Default_Value];
...

end record;

type T_Empty is null record;

Example

type Record1_T is record
Field1 : integer;
Field2 : boolean;

end record;

Records can be discriminated as well

type T (Size : Natural := 0) is record
Text : String (1 .. Size);

end record;
270 / 1033

Fundamentals of Ada
Record Types
Components Rules

Components Rules

271 / 1033

Fundamentals of Ada
Record Types
Components Rules

Characteristics of Components

Heterogeneous types allowed
Referenced by name
May be no components, for empty records
No anonymous types (e.g., arrays) allowed
No constant components
No recursive definitions

272 / 1033

Fundamentals of Ada
Record Types
Components Rules

Components Declarations

Multiple declarations are allowed (like objects)

type Several is record
A, B, C : Integer;

end record;

Recursive definitions are not allowed

type Not_Legal is record
A, B : Some_Type;
C : Not_Legal;

end record;

273 / 1033

Fundamentals of Ada
Record Types
Components Rules

"Dot" Notation for Components Reference

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
Arrival : Date;
...
Arrival.Day := 27; -- components referenced by name
Arrival.Month := November;
Arrival.Year := 1990;

Can reference nested components

Employee
.Birth_Date

.Month := March;
274 / 1033

Fundamentals of Ada
Record Types
Components Rules

Quiz

type Record_T is record
-- Definition here

end record;

Which record definition is legal?

A. Component_1 : array (1 .. 3) of Boolean
B. Component_2, Component_3 : Integer
C. Component_1 : Record_T
D. Component_1 : constant Integer := 123

A. Anonymous types not allowed
B. Correct
C. No recursive definition
D. No constant component

275 / 1033

Fundamentals of Ada
Record Types
Components Rules

Quiz

type Record_T is record
-- Definition here

end record;

Which record definition is legal?

A. Component_1 : array (1 .. 3) of Boolean
B. Component_2, Component_3 : Integer
C. Component_1 : Record_T
D. Component_1 : constant Integer := 123

A. Anonymous types not allowed
B. Correct
C. No recursive definition
D. No constant component

275 / 1033

Fundamentals of Ada
Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don’t specify its size.

276 / 1033

Fundamentals of Ada
Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don’t specify its size.

276 / 1033

Fundamentals of Ada
Record Types
Operations

Operations

277 / 1033

Fundamentals of Ada
Record Types
Operations

Available Operations

Predefined
Equality (and thus inequality)

if A = B then

Assignment

A := B;

Component-level operations

Based on components’ types

if A.component < B.component then

User-defined
Subprograms

278 / 1033

Fundamentals of Ada
Record Types
Operations

Assignment Examples

declare
type Complex is record

Real : Float;
Imaginary : Float;

end record;
...
Phase1 : Complex;
Phase2 : Complex;

begin
...

-- object reference
Phase1 := Phase2; -- entire object reference
-- component references
Phase1.Real := 2.5;
Phase1.Real := Phase2.Real;

end;
279 / 1033

Fundamentals of Ada
Record Types
Operations

Limited Types - Quick Intro

A record type can be limited
And some other types, described later

limited types cannot be copied or compared
As a result they cannot be assigned
May still be modified component-wise

type Lim is limited record
A, B : Integer;

end record;

L1, L2 : Lim := (1, 2); -- Initial value OK

L1 := L2; -- Illegal
if L1 /= L2 then -- Illegal
[...]

280 / 1033

Fundamentals of Ada
Record Types
Aggregates

Aggregates

281 / 1033

Fundamentals of Ada
Record Types
Aggregates

Aggregates

Literal values for composite types
As for arrays
Default value / selector: <>, others

Can use both named and positional
Unambiguous

Example:

(Pos_1_Value,
Pos_2_Value,
Component_3 => Pos_3_Value,
Component_4 => <>, -- Default value (Ada 2005)
others => Remaining_Value)

282 / 1033

Fundamentals of Ada
Record Types
Aggregates

Record Aggregate Examples

type Color_T is (Red);
type Car_T is record

Color : Color_T;
Plate_No : String (1 .. 6);
Year : Natural;

end record;
type Complex_T is record

Real : Float;
Imaginary : Float;

end record;

declare
Car : Car_T := (Red, "ABC123", Year => 2_022);
Phase : Complex_T := (1.2, 3.4);

begin
Phase := (Real => 5.6, Imaginary => 7.8);

end;
283 / 1033

Fundamentals of Ada
Record Types
Aggregates

Aggregate Completeness

All component values must
be accounted for

Including defaults via box
Allows compiler to check for
missed components
Type definition
type Struct is record

A : Integer;
B : Integer;
C : Integer;
D : Integer;

end record;
S : Struct;

Compiler will not catch the
missing component
S.A := 10;
S.B := 20;
S.C := 12;
Send (S);
Aggregate must be complete
- compiler error
S := (10, 20, 12);
Send (S);

284 / 1033

Fundamentals of Ada
Record Types
Aggregates

Named Associations

Any order of associations

Provides more information to the reader
Can mix with positional

Restriction
Must stick with named associations once started

type Complex is record
Real : Float;
Imaginary : Float;

end record;
Phase : Complex := (0.0, 0.0);
...
Phase := (10.0, Imaginary => 2.5);
Phase := (Imaginary => 12.5, Real => 0.212);
Phase := (Imaginary => 12.5, 0.212); -- illegal

285 / 1033

Fundamentals of Ada
Record Types
Aggregates

Nested Aggregates

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
type Person is record

Born : Date;
Hair : Color;

end record;
John : Person := ((21, November, 1990), Brown);
Julius : Person := ((2, August, 1995), Blond);
Heather : Person := ((2, March, 1989), Hair => Blond);
Megan : Person := (Hair => Blond,

Born => (16, December, 2001));
286 / 1033

Fundamentals of Ada
Record Types
Aggregates

Aggregates with Only One Component

Must use named form
Same reason as array aggregates

type Singular is record
A : Integer;

end record;

S : Singular := (3); -- illegal
S : Singular := (3 + 1); -- illegal
S : Singular := (A => 3 + 1); -- required

287 / 1033

Fundamentals of Ada
Record Types
Aggregates

Aggregates with others

Indicates all components not yet specified (like arrays)
All others get the same value

They must be the exact same type

type Poly is record
A : Real;
B, C, D : Integer;

end record;

P : Poly := (2.5, 3, others => 0);

type Homogeneous is record
A, B, C : Integer;

end record;

Q : Homogeneous := (others => 10);
288 / 1033

Fundamentals of Ada
Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type Record_T is record

A, B, C : Integer := 0;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

The aggregate is incomplete. The aggregate must specify all
components, you could use box notation (A => 1, others => <>)

289 / 1033

Fundamentals of Ada
Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type Record_T is record

A, B, C : Integer := 0;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

The aggregate is incomplete. The aggregate must specify all
components, you could use box notation (A => 1, others => <>)

289 / 1033

Fundamentals of Ada
Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer := 0;
D : My_Integer := 0;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

All components associated to a value using others must be of the
same type.

290 / 1033

Fundamentals of Ada
Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer := 0;
D : My_Integer := 0;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

All components associated to a value using others must be of the
same type.

290 / 1033

Fundamentals of Ada
Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer := 0;
D : My_Integer := 0;

end record;

V : Record_T := (others => <>);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

<> is an exception to the rule for others, it can apply to several
components of a different type.

291 / 1033

Fundamentals of Ada
Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer := 0;
D : My_Integer := 0;

end record;

V : Record_T := (others => <>);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

<> is an exception to the rule for others, it can apply to several
components of a different type.

291 / 1033

Fundamentals of Ada
Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A : Integer := 0;
end record;

V : Record_T := (1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

Single-valued aggregate must use named association.

292 / 1033

Fundamentals of Ada
Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A : Integer := 0;
end record;

V : Record_T := (1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

Single-valued aggregate must use named association.
292 / 1033

Fundamentals of Ada
Record Types
Aggregates

Quiz

type Nested_T is record
Field : Integer := 1_234;

end record;
type Record_T is record

One : Integer := 1;
Two : Character;
Three : Integer := -1;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment(s) is(are) illegal?

A. X := (1, ’2’, Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

293 / 1033

Fundamentals of Ada
Record Types
Aggregates

Quiz

type Nested_T is record
Field : Integer := 1_234;

end record;
type Record_T is record

One : Integer := 1;
Two : Character;
Three : Integer := -1;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment(s) is(are) illegal?

A. X := (1, ’2’, Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

293 / 1033

Fundamentals of Ada
Record Types
Default Values

Default Values

294 / 1033

Fundamentals of Ada
Record Types
Default Values

Component Default Values

type Complex is
record

Real : Real := 0.0;
Imaginary : Real := 0.0;

end record;
-- all components use defaults
Phasor : Complex;
-- all components must be specified
I : constant Complex := (0.0, 1.0);

295 / 1033

Fundamentals of Ada
Record Types
Default Values

Default Component Value Evaluation

Occurs when object is elaborated
Not when the type is elaborated

Not evaluated if explicitly overridden

type Structure is
record

A : Integer;
R : Time := Clock;

end record;
-- Clock is called for S1
S1 : Structure;
-- Clock is not called for S2
S2 : Structure := (A => 0, R => Yesterday);

296 / 1033

Fundamentals of Ada
Record Types
Default Values

Defaults Within Record Aggregates
Ada 2005

Specified via the box notation

Value for the component is thus taken as for a stand-alone object
declaration

So there may or may not be a defined default!

Can only be used with "named association" form
But can mix forms, unlike array aggregates

type Complex is
record

Real : Float := 0.0;
Imaginary : Float := 0.0;

end record;
Phase := (42.0, Imaginary => <>);

297 / 1033

Fundamentals of Ada
Record Types
Default Values

Default Initialization Via Aspect Clause
Ada 2012

Not definable for entire record type
Components of scalar types take type’s default if no explicit
default value specified by record type

type Toggle_Switch is (Off, On)
with Default_Value => Off;

type Controller is record
-- Off unless specified during object initialization
Override : Toggle_Switch;
-- default for this component
Enable : Toggle_Switch := On;

end record;
C : Controller; -- Override => off, Enable => On
D : Controller := (On, Off); -- All defaults replaced

298 / 1033

Fundamentals of Ada
Record Types
Default Values

Quiz
Ada 2012

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

299 / 1033

Fundamentals of Ada
Record Types
Default Values

Quiz
Ada 2012

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

299 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Discriminated Records

300 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Discriminated Record Types

Discriminated record type
Different objects may have different components
All object still share the same type

Kind of storage overlay

Similar to union in C
But preserves type checking
And object size is related to discriminant

Aggregate assignment is allowed

301 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Discriminants

type Person_Group is (Student, Faculty);
type Person (Group : Person_Group) is record

Name : String (1 .. 10);
case Group is

when Student => -- 1st variant
Gpa : Float range 0.0 .. 4.0;

when Faculty => -- 2nd variant
Pubs : Integer;

end case;
end record;

Group is the discriminant

Run-time check for component consistency
A_Person.Pubs := 1; checks if A_Person.Group = Faculty
Constraint_Error if check fails

Discriminant is constant
Unless object is mutable

302 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Semantics

Person objects are constrained by their discriminant
Unless mutable
Assignment from same variant only
Representation requirements

Pat : Person(Student); -- No Pat.Pubs
Prof : Person(Faculty); -- No Prof.GPA
Soph : Person := (Group => Student,

Name => "John Jones",
GPA => 3.2);

X : Person; -- Illegal: must specify discriminant

Pat := Soph; -- OK
Soph := Prof; -- Constraint_Error at run time

303 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Mutable Discriminated Record

When discriminant has a default value
Objects instantiated using the default are mutable
Objects specifying an explicit value are not mutable

Mutable records have variable discriminants

Use same storage for several variant

-- Potentially mutable
type Person (Group : Person_Group := Student) is record

-- Use default value: mutable
S : Person;
-- Explicit value: *not* mutable
-- even if Student is also the default
S2 : Person (Group => Student);
...
S := (Group => Student, Gpa => 0.0);
S := (Group => Faculty, Pubs => 10);

304 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Quiz

type T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

O : T (1);

Which component does O contain?

A. O.I, O.B
B. O.N
C. None: Compilation error
D. None: Runtime error

305 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Quiz

type T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

O : T (1);

Which component does O contain?

A. O.I, O.B
B. O.N
C. None: Compilation error
D. None: Runtime error

305 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Quiz

type T (Floating : Integer) is record
case Floating is

when 0 =>
I : Integer;

when 1 =>
F : Float;

end case;
end record;

O : T (1);

Which component does O contain?

A. O.F, O.I
B. O.F
C. None: Compilation error
D. None: Runtime error

The variant case must cover all the possible values of Integer.

306 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Quiz

type T (Floating : Integer) is record
case Floating is

when 0 =>
I : Integer;

when 1 =>
F : Float;

end case;
end record;

O : T (1);

Which component does O contain?

A. O.F, O.I
B. O.F
C. None: Compilation error
D. None: Runtime error

The variant case must cover all the possible values of Integer.
306 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Quiz

type T (Floating : Boolean) is record
case Floating is

when False =>
I : Integer;

when True =>
F : Float;

end case;
I2 : Integer;

end record;

O : T (True);

Which component does O contain?

A. O.F, O.I2
B. O.F
C. None: Compilation error
D. None: Runtime error

The variant part cannot be followed by a component declaration
(I2 : integer there)

307 / 1033

Fundamentals of Ada
Record Types
Discriminated Records

Quiz

type T (Floating : Boolean) is record
case Floating is

when False =>
I : Integer;

when True =>
F : Float;

end case;
I2 : Integer;

end record;

O : T (True);

Which component does O contain?

A. O.F, O.I2
B. O.F
C. None: Compilation error
D. None: Runtime error

The variant part cannot be followed by a component declaration
(I2 : integer there)

307 / 1033

Fundamentals of Ada
Record Types
Lab

Lab

308 / 1033

Fundamentals of Ada
Record Types
Lab

Record Types Lab

Requirements
Create a simple First-In/First-Out (FIFO) queue record type and
object

Allow the user to:

Add ("push") items to the queue
Remove ("pop") the next item to be serviced from the queue
(Print this item to ensure the order is correct)

When the user is done manipulating the queue, print out the
remaining items in the queue

Hints
Queue record should at least contain:

Array of items
Index into array where next item will be added

309 / 1033

Fundamentals of Ada
Record Types
Lab

Record Types Lab Solution - Declarations

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

type Name_T is array (1 .. 6) of Character;
type Index_T is range 0 .. 1_000;
type Queue_T is array (Index_T range 1 .. 1_000) of Name_T;

type Fifo_Queue_T is record
Next_Available : Index_T := 1;
Last_Served : Index_T := 0;
Queue : Queue_T := (others => (others => ' '));

end record;

Queue : Fifo_Queue_T;
Choice : Integer;

310 / 1033

Fundamentals of Ada
Record Types
Lab

Record Types Lab Solution - Implementation
begin

loop
Put ("1 = add to queue | 2 = remove from queue | others => done: ");
Choice := Integer'Value (Get_Line);
if Choice = 1 then

Put ("Enter name: ");
Queue.Queue (Queue.Next_Available) := Name_T (Get_Line);
Queue.Next_Available := Queue.Next_Available + 1;

elsif Choice = 2 then
if Queue.Next_Available = 1 then

Put_Line ("Nobody in line");
else

Queue.Last_Served := Queue.Last_Served + 1;
Put_Line ("Now serving: " & String (Queue.Queue (Queue.Last_Served)));

end if;
else

exit;
end if;
New_Line;

end loop;

Put_Line ("Remaining in line: ");
for Index in Queue.Last_Served + 1 .. Queue.Next_Available - 1 loop

Put_Line (" " & String (Queue.Queue (Index)));
end loop;

end Main;

311 / 1033

Fundamentals of Ada
Record Types
Summary

Summary

312 / 1033

Fundamentals of Ada
Record Types
Summary

Summary

Heterogeneous types allowed for components

Default initial values allowed for components
Evaluated when each object elaborated, not the type
Not evaluated if explicit initial value specified

Aggregates express literals for composite types
Can mix named and positional forms

313 / 1033

Fundamentals of Ada
Discriminated Record Types

Discriminated Record Types

314 / 1033

Fundamentals of Ada
Discriminated Record Types
Introduction

Introduction

315 / 1033

Fundamentals of Ada
Discriminated Record Types
Introduction

Discriminated Record Types

Discriminated record type
Different objects may have different components
All object still share the same type

Kind of storage overlay

Similar to union in C
But preserves type checking
And object size is related to discriminant

Aggregate assignment is allowed

316 / 1033

Fundamentals of Ada
Discriminated Record Types
Introduction

Example Discriminated Record Description

Record / structure type for a person
Person is either a student or a faculty member (discriminant)
Person has a name (string)
Each student has a GPA (floating point) and a graduation year
(non-negative integer)
Each faculty has a count of publications (non-negative integer)

317 / 1033

Fundamentals of Ada
Discriminated Record Types
Introduction

Example Defined in C

enum person_group {Student, Faculty};

struct Person {
enum person_group group;
char name [10];
union {

struct { float gpa; int year; } s;
int pubs;

};
};

Issue: maintaining consistency between group and union
components is responsibility of the programmer

Source of potential vulnerabilities

318 / 1033

Fundamentals of Ada
Discriminated Record Types
Introduction

Example Defined in Ada

type Person_Group is (Student, Faculty);
type Person (Group : Person_Group) is -- Group is the discriminant

record
Name : String(1..10); -- Always present
case Group is

when Student => -- 1st variant
GPA : Float range 0.0 .. 4.0;
Year : Integer range 1..4;

when Faculty => -- 2nd variant
Pubs : Integer;

end case;
end record;

Group value enforces component availability
Can only access GPA and Year when Group is Student
Can only access Pubs when Group is Faculty

319 / 1033

Fundamentals of Ada
Discriminated Record Types
Introduction

Variant Part of Record

Variant part of record specifies alternate list of componenents

type Variant_Record_T (Discriminant : Integer) is record
Common_Component : String (1 .. 10);
case Discriminant is

when Integer'First .. -1 =>
Negative_Component : Float;

when 1 .. Integer'Last =>
Positive_Component : Integer;

when others =>
Zero_Component : Boolean;

end case;
end record;

Choice is determined by discriminant value

Record can only contain one variant part

Variant must be last part of record definition
320 / 1033

Fundamentals of Ada
Discriminated Record Types
Discriminated Record Semantics

Discriminated Record Semantics

321 / 1033

Fundamentals of Ada
Discriminated Record Types
Discriminated Record Semantics

Discriminant in Ada Discriminated Records

Variant record type contains a special discriminant component

Value indicates which variant is present

When a component in a variant is selected, run-time check ensures
that discriminant value is consistent with the selection

If you could store into Pubs but read GPA, type safety would not be
guaranteed

Ada prevents this type of access
Discriminant (Group) established when object of type Person
created

Run-time check verifies that component selected from variant is
consistent with discriminant value

Constraint_Error raised if the check fails

Can only read discriminant (as any other component), not write
Aggregate assignment is allowed

322 / 1033

Fundamentals of Ada
Discriminated Record Types
Discriminated Record Semantics

Semantics

Variable of type Person is constrained by value of discriminant
supplied at object declaration

Determines minimal storage requirements
Limits object to corresponding variant

Pat : Person(Student); -- May select Pat.GPA, not Pat.Pubs
Prof : Person(Faculty); -- May select Prof.Pubs, not Prof.GPA
Soph : Person := (Group => Student,

Name => "John Jones",
GPA => 3.2,
Year => 2);

X : Person; -- Illegal; discriminant must be initialized

Assignment between Person objects requires same discriminant
values for LHS and RHS

Pat := Soph; -- OK
Soph := Prof; -- Constraint_Error at run time

323 / 1033

Fundamentals of Ada
Discriminated Record Types
Discriminated Record Semantics

Implementation

Typically type and operations would be treated as an ADT
Implemented in its own package

package Person_Pkg is
type Person_Group is (Student, Faculty);
type Person (Group : Person_Group) is

record
Name : String(1..10);
case Group is

when Student =>
GPA : Float range 0.0 .. 4.0;
Year : Integer range 1..4;

when Faculty =>
Pubs : Integer;

end case;
end record;

-- parameters can be unconstrained (constraint comes from caller)
procedure Put (Item : in Person);
procedure Get (Item : in out Person);

end Person_Pkg;
324 / 1033

Fundamentals of Ada
Discriminated Record Types
Discriminated Record Semantics

Primitives
Output

procedure Put (Item : in Person) is
begin

Put_Line("Group:" & Person_Group'Image(Item.Group));
Put_Line("Name: " & Item.Name);
-- Group specified by caller
case Item.Group is

when Student =>
Put_Line("GPA:" & Float'Image(Item.GPA));
Put_Line("Year:" & Integer'Image(Item.Year));

when Faculty =>
Put_Line("Pubs:" & Integer'Image(Item.Pubs));

end case;
end Put;

Input

procedure Get (Item : in out Person) is
begin

-- Group specified by caller
case Item.Group is

when Student =>
Item.GPA := Get_GPA;
Item.Year := Get_Year;

when Faculty =>
Item.Pubs := Get_Pubs;

end case;
end Get;

325 / 1033

Fundamentals of Ada
Discriminated Record Types
Discriminated Record Semantics

Usage
with Person_Pkg; use Person_Pkg;
with Ada.Text_IO; use Ada.Text_IO;
procedure Person_Test is

Group : Person_Group;
Line : String(1..80);
Index : Natural;

begin
loop

Put("Group (Student or Faculty, empty line to quit): ");
Get_Line(Line, Index);
exit when Index=0;
Group := Person_Group'Value(Line(1..Index));
declare

Someone : Person(Group);
begin

Get(Someone);
case Someone.Group is

when Student => Student_Do_Something (Someone);
when Faculty => Faculty_Do_Something (Someone);

end case;
Put(Someone);

end;
end loop;

end Person_Test;
326 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Discriminated Records

Unconstrained Discriminated Records

327 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Discriminated Records

Adding Flexibility to Discriminated Records

Previously, declaration of Person implies that object, once
created, is always constrained by initial value of Group

Assigning Person (Faculty) to Person (Student) or vice
versa, raises Constraint_Error

Additional flexibility is sometimes desired
Allow declaration of unconstrained Person, to which either
Person (Faculty) or Person (Student) can be assigned
To do this, declare discriminant with default initialization

Type safety is not compromised
Modification of discriminant is only permitted when entire record is
assigned

Either through copying an object or aggregate assignment

328 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Discriminated Records

Unconstrained Discriminated Record Example
declare

type Mutant(Group : Person_Group := Faculty) is
record

Name : String(1..10);
case Group is

when Student =>
GPA : Float range 0.0 .. 4.0;
Year : Integer range 1..4;

when Faculty =>
Pubs : Integer;

end case;
end record;

Pat : Mutant(Student); -- Constrained
Doc : Mutant(Faculty); -- Constrained
Zork : Mutant; -- Unconstrained (Zork.Group = Faculty)

begin
Zork := Pat; -- OK, Zork.Group was Faculty, is now Student
Zork.Group := Faculty; -- Illegal to assign to discriminant
Zork := Doc; -- OK, Zork.Group is now Faculty
Pat := Zork; -- Run-time error (Constraint_Error)

end;
329 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Discriminated Records

Quiz
procedure Main is

type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

when Circle =>
Radius : Float;

end case;
end record;
-- V and V2 declaration...

begin
V := V2;

Which declaration(s) is(are) legal for this piece of code?

A. V : Shape := (Circle, others => 0.0)
V2 : Shape (Line);

B. V : Shape := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

C. V : Shape (Line) := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

D. V : Shape;
V2 : Shape (Circle);

A. Cannot assign with different discriminant
B. OK
C. V initial value has a different discriminant
D. Shape cannot be mutable: V must have a discriminant

330 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Discriminated Records

Quiz
procedure Main is

type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

when Circle =>
Radius : Float;

end case;
end record;
-- V and V2 declaration...

begin
V := V2;

Which declaration(s) is(are) legal for this piece of code?

A. V : Shape := (Circle, others => 0.0)
V2 : Shape (Line);

B. V : Shape := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

C. V : Shape (Line) := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

D. V : Shape;
V2 : Shape (Circle);

A. Cannot assign with different discriminant
B. OK
C. V initial value has a different discriminant
D. Shape cannot be mutable: V must have a discriminant

330 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Discriminated Records

Quiz
type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

Which declaration(s) is(are) legal?

A. when Circle =>
Cord : Shape (Line);

B. when Circle =>
Center : array (1 .. 2) of Float;
Radius : Float;

C. when Circle =>
Center_X, Center_Y : Float;
Radius : Float;

D. when Circle =>
X, Y, Radius : Float;

A. Referencing itself
B. anonymous array in record declaration
C. OK
D. X, Y are duplicated with the Line variant

331 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Discriminated Records

Quiz
type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

Which declaration(s) is(are) legal?

A. when Circle =>
Cord : Shape (Line);

B. when Circle =>
Center : array (1 .. 2) of Float;
Radius : Float;

C. when Circle =>
Center_X, Center_Y : Float;
Radius : Float;

D. when Circle =>
X, Y, Radius : Float;

A. Referencing itself
B. anonymous array in record declaration
C. OK
D. X, Y are duplicated with the Line variant

331 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Arrays

Unconstrained Arrays

332 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Arrays

Varying Lengths of Array Objects

In Ada, array objects have to be fixed length

S : String(1..80);
A : array (M .. K*L) of Integer;

We would like an object with a maximum length, but current
length is variable

Need two pieces of data

Array contents
Location of last valid element

For common usage, we want this to be a type (probably a record)
Maximum size array for contents
Index for last valid element

333 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Arrays

Simple Unconstrained Array
type Simple_VString is

record
Length : Natural range 0 .. Max_Length := 0;
Data : String (1 .. Max_Length) := (others => ' ');

end record;

function "&"(Left, Right : Simple_VString) return Simple_VString is
Result : Simple_VString;

begin
if Left.Length + Right.Length > Max_Length then

raise Constraint_Error;
else

Result.Length := Left.Length + Right.Length;
Result.Data (1 .. Result.Length) :=

Left.Data (1 .. Left.Length) & Right.Data (1 .. Right.Length);
return Result;

end if;
end "&";

Issues
Every object has same maximum length
Length needs to be maintained by program logic
Need to define "="

334 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Arrays

Varying Length Array via Discriminated Records

Discriminant can serve as bound of array component

type VString (Max_Length : Natural := 0) is
record

Data : String(1..Max_Length) := (others => ' ');
end record;

Discriminant default value?
With default discriminant value, objects can be copied even if
lengths are different
With no default discriminant value, objects of different lengths
cannot be copied

335 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Arrays

Varying Length Array via Discriminated Records and
Subtypes

Discriminant can serve as bound of array component
Subtype serves as upper bound for Size_T'Last

subtype VString_Size is Natural range 0 .. Max_Length;

type VString (Size : VString_Size := 0) is
record

Data : String (1 .. Size) := (others => ' ');
end record;

Empty_VString : constant VString := (0, "");

function Make (S : String) return VString is
((Size => S'Length, Data => S));

336 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Arrays

Quiz

type My_Array is array (Integer range <>) of Boolean;

How to declare an array of two elements?

A. O : My_Array (2)
B. O : My_Array (1 .. 2)
C. O : My_Array (1 .. 3)
D. O : My_Array (1, 3)

337 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Arrays

Quiz

type My_Array is array (Integer range <>) of Boolean;

How to declare an array of two elements?

A. O : My_Array (2)
B. O : My_Array (1 .. 2)
C. O : My_Array (1 .. 3)
D. O : My_Array (1, 3)

337 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Arrays

Quiz

type R (Size : Integer := 0) is record
S : String (1 .. Size);

end record;

Which proposition(s) will compile and run without error?

A. V : R := (6, "Hello")
B. V : R := (5, "Hello")
C. V : R (5) := (5, S => "Hello")
D. V : R (6) := (6, S => "Hello")

When V is declared without specifying its size, it becomes mutable, at
this point the S'Length = Positive'Last, causing a Runtime_Error.
Furthermore the length of "Hello" is 5, it cannot be stored in a String
of Length 6.

338 / 1033

Fundamentals of Ada
Discriminated Record Types
Unconstrained Arrays

Quiz

type R (Size : Integer := 0) is record
S : String (1 .. Size);

end record;

Which proposition(s) will compile and run without error?

A. V : R := (6, "Hello")
B. V : R := (5, "Hello")
C. V : R (5) := (5, S => "Hello")
D. V : R (6) := (6, S => "Hello")

When V is declared without specifying its size, it becomes mutable, at
this point the S'Length = Positive'Last, causing a Runtime_Error.
Furthermore the length of "Hello" is 5, it cannot be stored in a String
of Length 6.

338 / 1033

Fundamentals of Ada
Discriminated Record Types
Discriminated Record Details

Discriminated Record Details

339 / 1033

Fundamentals of Ada
Discriminated Record Types
Discriminated Record Details

Semantics of Discriminated Records

A discriminant is a parameter to a record type
The value of a discriminant affects the presence, constraints, or
initialization of other components

A type may have more than one discriminant
Either all have default initializations, or none do

Ada restricts the kinds of types that may be used to declare a
discriminant

Discrete types (i.e., enumeration or integer type)
Access types (not covered here)

340 / 1033

Fundamentals of Ada
Discriminated Record Types
Discriminated Record Details

Use of Discriminants in Record Definition

Within the record type definition, a discriminant may only be
referenced in the following contexts

In "case" of variant part
As a bound of a record component that is an unconstrained array
As an initialization expression for a component
As the value of a discriminant for a component that itself a variant
record

A discriminant is not allowed as the bound of a range constraint

341 / 1033

Fundamentals of Ada
Discriminated Record Types
Lab

Lab

342 / 1033

Fundamentals of Ada
Discriminated Record Types
Lab

Discriminated Record Types Lab

Requirements for a simplistic employee database
Create a package to handle varying length strings using variant
records

The string type must be private!
The variant can appear on the partial definition or the full

Create a package to create employee data in a variant record

Store first name, last name, and hourly pay rate for all employees
Supervisors must also include the project they are supervising
Managers must also include the number of employees they are
managing and the department name

Main program should read employee information from the console

Any number of any type of employees can be entered in any order
When data entry is done, print out all appropriate information for
each employee

Hints
Create concatenation functions for your varying length string type
Is it easier to create an input function for each employee category,
or a common one?

343 / 1033

Fundamentals of Ada
Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Vstring
package Vstring is

Max_String_Length : constant := 1_000;
type Vstring_T is private;
function To_Vstring (Str : String) return Vstring_T;
function To_String (Vstr : Vstring_T) return String;
function "&" (L, R : Vstring_T) return Vstring_T;
function "&" (L : String; R : Vstring_T) return Vstring_T;
function "&" (L : Vstring_T; R : String) return Vstring_T;

private
subtype Index_T is Integer range 0 .. Max_String_Length;
type Vstring_T (Length : Index_T := 0) is record

Text : String (1 .. Length);
end record;

end Vstring;

package body Vstring is
function To_Vstring (Str : String) return Vstring_T is

((Length => Str'Length, Text => Str));
function To_String (Vstr : Vstring_T) return String is

(Vstr.Text);
function "&" (L, R : Vstring_T) return Vstring_T is

Ret_Val : constant String := L.Text & R.Text;
begin

return (Length => Ret_Val'Length, Text => Ret_Val);
end "&";

function "&" (L : String; R : Vstring_T) return Vstring_T is
Ret_Val : constant String := L & R.Text;

begin
return (Length => Ret_Val'Length, Text => Ret_Val);

end "&";

function "&" (L : Vstring_T; R : String) return Vstring_T is
Ret_Val : constant String := L.Text & R;

begin
return (Length => Ret_Val'Length, Text => Ret_Val);

end "&";
end Vstring;

344 / 1033

Fundamentals of Ada
Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Employee (Spec)
with Vstring; use Vstring;
package Employee is

type Category_T is (Staff, Supervisor, Manager);
type Pay_T is delta 0.01 range 0.0 .. 1_000.00;

type Employee_T (Category : Category_T := Staff) is record
Last_Name : Vstring.Vstring_T;
First_Name : Vstring.Vstring_T;
Hourly_Rate : Pay_T;
case Category is

when Staff =>
null;

when Supervisor =>
Project : Vstring.Vstring_T;

when Manager =>
Department : Vstring.Vstring_T;
Staff_Count : Natural;

end case;
end record;

function Get_Staff return Employee_T;
function Get_Supervisor return Employee_T;
function Get_Manager return Employee_T;

end Employee;

345 / 1033

Fundamentals of Ada
Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Employee
(Body)

with Ada.Text_IO; use Ada.Text_IO;
package body Employee is

function Read (Prompt : String) return String is
begin

Put (Prompt & " > ");
return Get_Line;

end Read;

function Get_Staff return Employee_T is
Ret_Val : Employee_T (Staff);

begin
Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
Ret_Val.First_Name := To_Vstring (Read ("First name"));
Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
return Ret_Val;

end Get_Staff;

function Get_Supervisor return Employee_T is
Ret_Val : Employee_T (Supervisor);

begin
Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
Ret_Val.First_Name := To_Vstring (Read ("First name"));
Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
Ret_Val.Project := To_Vstring (Read ("Project"));
return Ret_Val;

end Get_Supervisor;

function Get_Manager return Employee_T is
Ret_Val : Employee_T (Manager);

begin
Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
Ret_Val.First_Name := To_Vstring (Read ("First name"));
Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
Ret_Val.Department := To_Vstring (Read ("Department"));
Ret_Val.Staff_Count := Integer'Value (Read ("Staff count"));
return Ret_Val;

end Get_Manager;
end Employee;

346 / 1033

Fundamentals of Ada
Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Employee;
with Vstring; use Vstring;
procedure Main is

procedure Print (Member : Employee.Employee_T) is
First_Line : constant Vstring.Vstring_T :=

Member.First_Name & " " & Member.Last_Name & " " &
Member.Hourly_Rate'Image;

begin
Put_Line (Vstring.To_String (First_Line));
case Member.Category is

when Employee.Supervisor =>
Put_Line (" Project: " & Vstring.To_String (Member.Project));

when Employee.Manager =>
Put_Line (" Overseeing " & Member.Staff_Count'Image & " in " &

Vstring.To_String (Member.Department));
when others => null;

end case;
end Print;

List : array (1 .. 1_000) of Employee.Employee_T;
Count : Natural := 0;

begin
loop

Put_Line ("E => Employee");
Put_Line ("S => Supervisor");
Put_Line ("M => Manager");
Put ("E/S/M (any other to stop): ");
declare

Choice : constant String := Get_Line;
begin

case Choice (1) is
when 'E' | 'e' =>

Count := Count + 1;
List (Count) := Employee.Get_Staff;

when 'S' | 's' =>
Count := Count + 1;
List (Count) := Employee.Get_Supervisor;

when 'M' | 'm' =>
Count := Count + 1;
List (Count) := Employee.Get_Manager;

when others =>
exit;

end case;
end;

end loop;

for Item of List (1 .. Count) loop
Print (Item);

end loop;
end Main;

347 / 1033

Fundamentals of Ada
Discriminated Record Types
Summary

Summary

348 / 1033

Fundamentals of Ada
Discriminated Record Types
Summary

Properties of Discriminated Record Types

Rules
Case choices for variants must partition possible values for
discriminant
Field names must be unique across all variants

Style
Typical processing is via a case statement that "dispatches" based
on discriminant
This centralized functional processing is in contrast to decentralized
object-oriented approach

Flexibility
Variant parts may be nested, if some components common to a set
of variants

349 / 1033

Fundamentals of Ada
Type Derivation

Type Derivation

350 / 1033

Fundamentals of Ada
Type Derivation
Introduction

Introduction

351 / 1033

Fundamentals of Ada
Type Derivation
Introduction

Type Derivation

Type derivation allows for reusing code

Type can be derived from a base type

Base type can be substituted by the derived type

Subprograms defined on the base type are inherited on derived
type

This is not OOP in Ada
Tagged derivation is OOP in Ada

352 / 1033

Fundamentals of Ada
Type Derivation
Introduction

Ada Mechanisms for Type Inheritance

Primitive operations on types
Standard operations like + and -
Any operation that acts on the type

Type derivation
Define types from other types that can add limitations
Can add operations to the type

Tagged derivation
This is OOP in Ada
Seen in other chapter

353 / 1033

Fundamentals of Ada
Type Derivation
Primitives

Primitives

354 / 1033

Fundamentals of Ada
Type Derivation
Primitives

Primitive Operations

A type is characterized by two elements
Its data structure
The set of operations that applies to it

The operations are called primitive operations in Ada

type T is new Integer;
procedure Attrib_Function(Value : T);

355 / 1033

Fundamentals of Ada
Type Derivation
Primitives

General Rule For a Primitive

Primitives are subprograms

S is a primitive of type T iff
S is declared in the scope of T

S "uses" type T

As a parameter
As its return type (for function)

S is above freeze-point

Rule of thumb
Primitives must be declared right after the type itself

In a scope, declare at most a single type with primitives

package P is
type T is range 1 .. 10;
procedure P1 (V : T);
procedure P2 (V1 : Integer; V2 : T);
function F return T;

end P;
356 / 1033

Fundamentals of Ada
Type Derivation
Simple Derivation

Simple Derivation

357 / 1033

Fundamentals of Ada
Type Derivation
Simple Derivation

Simple Type Derivation

Any type (except tagged) can be derived

type Child is new Parent;

Child inherits from:
The data representation of the parent
The primitives of the parent

Conversions are possible from child to parent

type Parent is range 1 .. 10;
procedure Prim (V : Parent);
type Child is new Parent; -- Freeze Parent
procedure Not_A_Primitive (V : Parent);
C : Child;
...
Prim (C); -- Implicitly declared
Not_A_Primitive (Parent (C));

358 / 1033

Fundamentals of Ada
Type Derivation
Simple Derivation

Simple Derivation and Type Structure

The type "structure" can not change
array cannot become record
Integers cannot become floats

But can be constrained further

Scalar ranges can be reduced

type Tiny_Int is range -100 .. 100;
type Tiny_Positive is new Tiny_Int range 1 .. 100;

Unconstrained types can be constrained

type Arr is array (Integer range <>) of Integer;
type Ten_Elem_Arr is new Arr (1 .. 10);
type Rec (Size : Integer) is record

Elem : Arr (1 .. Size);
end record;
type Ten_Elem_Rec is new Rec (10);

359 / 1033

Fundamentals of Ada
Type Derivation
Simple Derivation

Overriding Indications
Ada 2005

Optional indications

Checked by compiler

type Root is range 1 .. 100;
procedure Prim (V : Root);
type Child is new Root;

Replacing a primitive: overriding indication

overriding procedure Prim (V : Child);

Adding a primitive: not overriding indication

not overriding procedure Prim2 (V : Child);

Removing a primitive: overriding as abstract

overriding procedure Prim (V : Child) is abstract;
360 / 1033

Fundamentals of Ada
Type Derivation
Simple Derivation

Quiz

type T1 is range 1 .. 100;
procedure Proc_A (X : in out T1);

type T2 is new T1 range 2 .. 99;
procedure Proc_B (X : in out T1);
procedure Proc_B (X : in out T2);

-- Other scope
procedure Proc_C (X : in out T2);

type T3 is new T2 range 3 .. 98;

procedure Proc_C (X : in out T3);
Which are T1’s primitives

A. Proc_A
B. Proc_B
C. Proc_C
D. No primitives of T1

Explanations
A. Correct
B. Freeze: T1 has been derived
C. Freeze: scope change
D. Incorrect

.
361 / 1033

Fundamentals of Ada
Type Derivation
Simple Derivation

Quiz

type T1 is range 1 .. 100;
procedure Proc_A (X : in out T1);

type T2 is new T1 range 2 .. 99;
procedure Proc_B (X : in out T1);
procedure Proc_B (X : in out T2);

-- Other scope
procedure Proc_C (X : in out T2);

type T3 is new T2 range 3 .. 98;

procedure Proc_C (X : in out T3);
Which are T1’s primitives

A. Proc_A
B. Proc_B
C. Proc_C
D. No primitives of T1

Explanations
A. Correct
B. Freeze: T1 has been derived
C. Freeze: scope change
D. Incorrect

.
361 / 1033

Fundamentals of Ada
Type Derivation
Summary

Summary

362 / 1033

Fundamentals of Ada
Type Derivation
Summary

Summary

Primitive of a type
Subprogram above freeze-point that takes or return the type
Can be a primitive for multiple types

Freeze point rules can be tricky

Simple type derivation
Types derived from other types can only add limitations

Constraints, ranges
Cannot change underlying structure

363 / 1033

Fundamentals of Ada
Subprograms

Subprograms

364 / 1033

Fundamentals of Ada
Subprograms
Introduction

Introduction

365 / 1033

Fundamentals of Ada
Subprograms
Introduction

Introduction

Are syntactically distinguished as function and procedure

Functions represent values
Procedures represent actions

function Is_Leaf (T : Tree) return Boolean
procedure Split (T : in out Tree;

Left : out Tree;
Right : out Tree)

Provide direct syntactic support for separation of specification
from implementation

function Is_Leaf (T : Tree) return Boolean;
function Is_Leaf (T : Tree) return Boolean is
begin
...
end Is_Leaf;

366 / 1033

Fundamentals of Ada
Subprograms
Introduction

Recognizing Procedures and Functions

Functions’ results must be treated as values
And cannot be ignored

Procedures cannot be treated as values

You can always distinguish them via the call context

10 Open (Source, "SomeFile.txt");
11 while not End_of_File (Source) loop
12 Get (Next_Char, From => Source);
13 if Found (Next_Char, Within => Buffer) then
14 Display (Next_Char);
15 end if;
16 end loop;

367 / 1033

Fundamentals of Ada
Subprograms
Introduction

A Little "Preaching" About Names

Procedures are abstractions for actions

Functions are abstractions for values

Use names that reflect those facts!
Imperative verbs for procedure names

Nouns for function names, as for mathematical functions

Questions work for boolean functions

procedure Open (V : in out Valve);
procedure Close (V : in out Valve);
function Square_Root (V: Real) return Real;
function Is_Open (V: Valve) return Boolean;

368 / 1033

Fundamentals of Ada
Subprograms
Syntax

Syntax

369 / 1033

Fundamentals of Ada
Subprograms
Syntax

Specification and Body

Subprogram specification is the external (user) interface
Declaration and specification are used synonymously

Specification may be required in some cases
eg. recursion

Subprogram body is the implementation

370 / 1033

Fundamentals of Ada
Subprograms
Syntax

Procedure Specification Syntax (Simplified)

procedure Swap (A, B : in out Integer);

procedure_specification ::=
procedure program_unit_name

(parameter_specification
{ ; parameter_specification});

parameter_specification ::=
identifier_list : mode subtype_mark [:= expression]

mode ::= [in] | out | in out

371 / 1033

Fundamentals of Ada
Subprograms
Syntax

Function Specification Syntax (Simplified)

function F (X : Real) return Real;

Close to procedure specification syntax
With return
Can be an operator: + - * / mod rem ...

function_specification ::=
function designator

(parameter_specification
{ ; parameter_specification})
return result_type;

designator ::= program_unit_name | operator_symbol

372 / 1033

Fundamentals of Ada
Subprograms
Syntax

Body Syntax

subprogram_specification is
[declarations]

begin
sequence_of_statements

end [designator];

procedure Hello is
begin

Ada.Text_IO.Put_Line ("Hello World!");
Ada.Text_IO.New_Line (2);

end Hello;

function F (X : Real) return Real is
Y : constant Real := X + 3.0;

begin
return X * Y;

end F;
373 / 1033

Fundamentals of Ada
Subprograms
Syntax

Completions

Bodies complete the specification
There are other ways to complete

Separate specification is not required
Body can act as a specification

A declaration and its body must fully conform
Mostly semantic check
But parameters must have same name

procedure P (J, K : Integer)
procedure P (J : Integer; K : Integer)
procedure P (J, K : in Integer)
-- Invalid
procedure P (A : Integer; B : Integer)

374 / 1033

Fundamentals of Ada
Subprograms
Syntax

Completion Examples
Specifications

procedure Swap (A, B : in out Integer);
function Min (X, Y : Person) return Person;

Completions

procedure Swap (A, B : in out Integer) is
Temp : Integer := A;

begin
A := B;
B := Temp;

end Swap;

-- Completion as specification
function Less_Than (X, Y : Person) return boolean is
begin

return X.Age < Y.Age;
endf Less_Than

function Min (X, Y : Person) return Person;
begin

if Less_Than (X, Y) then
return X;

else
return Y;

end if;
end Min;

375 / 1033

Fundamentals of Ada
Subprograms
Syntax

Direct Recursion - No Declaration Needed

When is is reached, the subprogram becomes visible
It can call itself without a declaration

type List is array (Natural range <>) of Integer;
Empty_List : constant List (1 .. 0) := (others => 0);

function Get_List return List is
Next : Integer;

begin
Get (Next);

if Next = 0 then
return Empty_List;

else
return Get_List & Next;

end if;
end Input;

376 / 1033

Fundamentals of Ada
Subprograms
Syntax

Indirect Recursion Example

Elaboration in linear order

procedure P;

procedure F is
begin

P;
end F;

procedure P is
begin

F;
end P;

377 / 1033

Fundamentals of Ada
Subprograms
Syntax

Quiz

Which profile is semantically different from the others?

A. procedure P (A : Integer; B : Integer);
B. procedure P (A, B : Integer);
C. procedure P (B : Integer; A : Integer);
D. procedure P (A : in Integer; B : in Integer);

Parameter names are important in Ada. The other selections have the
names in the same order with the same mode and type.

378 / 1033

Fundamentals of Ada
Subprograms
Syntax

Quiz

Which profile is semantically different from the others?

A. procedure P (A : Integer; B : Integer);
B. procedure P (A, B : Integer);
C. procedure P (B : Integer; A : Integer);
D. procedure P (A : in Integer; B : in Integer);

Parameter names are important in Ada. The other selections have the
names in the same order with the same mode and type.

378 / 1033

Fundamentals of Ada
Subprograms
Parameters

Parameters

379 / 1033

Fundamentals of Ada
Subprograms
Parameters

Subprogram Parameter Terminology

Actual parameters are values passed to a call

Variables, constants, expressions

Formal parameters are defined by specification

Receive the values passed from the actual parameters
Specify the types required of the actual parameters
Type cannot be anonymous

procedure Something (Formal1 : in Integer);

ActualX : Integer;
...
Something (ActualX);

380 / 1033

Fundamentals of Ada
Subprograms
Parameters

Parameter Associations In Calls

Associate formal parameters with actuals
Both positional and named association allowed

Something (ActualX, Formal2 => ActualY);
Something (Formal2 => ActualY, Formal1 => ActualX);

Having named then positional is forbidden

-- Compilation Error
Something (Formal1 => ActualX, ActualY);

381 / 1033

Fundamentals of Ada
Subprograms
Parameters

Actual Parameters Respect Constraints

Must satisfy any constraints of formal parameters
Constraint_Error otherwise

declare
Q : Integer := ...
P : Positive := ...
procedure Foo (This : Positive);

begin
Foo (Q); -- runtime error if Q <= 0
Foo (P);

382 / 1033

Fundamentals of Ada
Subprograms
Parameters

Parameter Modes and Return

Mode in

Actual parameter is constant
Can have default, used when no value is provided

procedure P (N : in Integer := 1; M : in Positive);
-- ...
P (M => 2);

Mode out

Writing is expected
Reading is allowed
Actual must be a writable object

Mode in out

Actual is expected to be both read and written
Actual must be a writable object

Function return

Must always be handled
383 / 1033

Fundamentals of Ada
Subprograms
Parameters

Why Read Mode out Parameters?

Convenience of writing the body
No need for readable temporary variable

Warning: initial value is not defined

procedure Compute (Value : out Integer) is
begin

Value := 0;
for K in 1 .. 10 loop

Value := Value + K; -- this is a read AND a write
end loop;

end Compute;

384 / 1033

Fundamentals of Ada
Subprograms
Parameters

Parameter Passing Mechanisms

By-Copy

The formal denotes a separate object from the actual
in, in out: actual is copied into the formal on entry to the
subprogram
out, in out: formal is copied into the actual on exit from the
subprogram

By-Reference

The formal denotes a view of the actual
Reads and updates to the formal directly affect the actual
More efficient for large objects

Parameter types control mechanism selection
Not the parameter modes
Compiler determines the mechanism

385 / 1033

Fundamentals of Ada
Subprograms
Parameters

By-Copy vs By-Reference Types

By-Copy
Scalar types
access types

By-Reference
tagged types
task types and protected types
limited types

array, record

By-Reference when they have by-reference components
By-Reference for implementation-defined optimizations
By-Copy otherwise

private depends on its full definition
386 / 1033

Fundamentals of Ada
Subprograms
Parameters

Unconstrained Formal Parameters or Return

Unconstrained formals are allowed
Constrained by actual

Unconstrained return is allowed too
Constrained by the returned object

type Vector is array (Positive range <>) of Real;
procedure Print (Formal : Vector);

Phase : Vector (X .. Y);
State : Vector (1 .. 4);
...
begin

Print (Phase); -- Formal'Range is X .. Y
Print (State); -- Formal'Range is 1 .. 4
Print (State (3 .. 4)); -- Formal'Range is 3 .. 4

387 / 1033

Fundamentals of Ada
Subprograms
Parameters

Unconstrained Parameters Surprise

Assumptions about formal bounds may be wrong

type Vector is array (Positive range <>) of Real;
function Subtract (Left, Right : Vector) return Vector;

V1 : Vector (1 .. 10); -- length = 10
V2 : Vector (15 .. 24); -- length = 10
R : Vector (1 .. 10); -- length = 10
...
-- What are the indices returned by Subtract?
R := Subtract (V2, V1);

388 / 1033

Fundamentals of Ada
Subprograms
Parameters

Naive Implementation

Assumes bounds are the same everywhere

Fails when Left'First /= Right'First

Fails when Left'First /= 1

function Subtract (Left, Right : Vector)
return Vector is
Result : Vector (1 .. Left'Length);

begin
...
for K in Result'Range loop

Result (K) := Left (K) - Right (K);
end loop;

389 / 1033

Fundamentals of Ada
Subprograms
Parameters

Correct Implementation

Covers all bounds
return indexed by Left'Range

function Subtract (Left, Right : Vector) return Vector is
Result : Vector (Left'Range);
Offset : constant Integer := Right'First - Result'First;

begin
...
for K in Result'Range loop

Result (K) := Left (K) - Right (K + Offset);
end loop;

390 / 1033

Fundamentals of Ada
Subprograms
Parameters

Quiz

function F (P1 : in Integer := 0;
P2 : in out Integer;
P3 : in Character := ' ';
P4 : out Character)

return Integer;
J1, J2 : Integer;
C : Character;

Which call is legal?

A. J1 := F (P1 => 1, P2 => J2, P3 => '3', P4 => '4');
B. J1 := F (P1 => 1, P3 => '3', P4 => C);
C. J1 := F (1, J2, ’3’, C);
D. F (J1, J2, '3', C);

Explanations

A. P4 is out, it must be a variable
B. P2 has no default value, it must be specified
C. Correct
D. F is a function, its return must be handled

391 / 1033

Fundamentals of Ada
Subprograms
Parameters

Quiz

function F (P1 : in Integer := 0;
P2 : in out Integer;
P3 : in Character := ' ';
P4 : out Character)

return Integer;
J1, J2 : Integer;
C : Character;

Which call is legal?

A. J1 := F (P1 => 1, P2 => J2, P3 => '3', P4 => '4');
B. J1 := F (P1 => 1, P3 => '3', P4 => C);
C. J1 := F (1, J2, ’3’, C);
D. F (J1, J2, '3', C);

Explanations

A. P4 is out, it must be a variable
B. P2 has no default value, it must be specified
C. Correct
D. F is a function, its return must be handled

391 / 1033

Fundamentals of Ada
Subprograms
Null Procedures

Null Procedures

392 / 1033

Fundamentals of Ada
Subprograms
Null Procedures

Null Procedure Declarations
Ada 2005

Shorthand for a procedure body that does nothing

Longhand form

procedure NOP is
begin

null;
end NOP;

Shorthand form

procedure NOP is null;

The null statement is present in both cases

Explicitly indicates nothing to be done, rather than an accidental
removal of statements

393 / 1033

Fundamentals of Ada
Subprograms
Null Procedures

Null Procedures As Completions
Ada 2005

Completions for a distinct, prior declaration

procedure NOP;
...
procedure NOP is null;

A declaration and completion together
A body is then not required, thus not allowed

procedure NOP is null;
...
procedure NOP is -- compile error
begin

null;
end NOP;

394 / 1033

Fundamentals of Ada
Subprograms
Null Procedures

Typical Use for Null Procedures: OOP
Ada 2005

When you want a method to be concrete, rather than abstract,
but don’t have anything for it to do

The method is then always callable, including places where an
abstract routine would not be callable
More convenient than full null-body definition

395 / 1033

Fundamentals of Ada
Subprograms
Null Procedures

Null Procedure Summary
Ada 2005

Allowed where you can have a full body
Syntax is then for shorthand for a full null-bodied procedure

Allowed where you can have a declaration!
Example: package declarations

Syntax is shorthand for both declaration and completion

Thus no body required/allowed

Formal parameters are allowed

procedure Do_Something (P : integer) is null;

396 / 1033

Fundamentals of Ada
Subprograms
Nested Subprograms

Nested Subprograms

397 / 1033

Fundamentals of Ada
Subprograms
Nested Subprograms

Subprograms within Subprograms

Subprograms can be placed in any declarative block
So they can be nested inside another subprogram
Or even within a declare block

Useful for performing sub-operations without passing parameter
data

398 / 1033

Fundamentals of Ada
Subprograms
Nested Subprograms

Nested Subprogram Example

1 procedure Main is
2

3 function Read (Prompt : String) return Types.Line_T is
4 begin
5 Put ("> ");
6 return Types.Line_T'Value (Get_Line);
7 end Read;
8

9 Lines : Types.Lines_T (1 .. 10);
10 begin
11 for J in Lines'Range loop
12 Lines (J) := Read ("Line " & J'Image);
13 end loop;

399 / 1033

Fundamentals of Ada
Subprograms
Procedure Specifics

Procedure Specifics

400 / 1033

Fundamentals of Ada
Subprograms
Procedure Specifics

Return Statements In Procedures

Returns immediately to caller
Optional

Automatic at end of body
execution

Fewer is traditionally
considered better

procedure P is
begin

...
if Some_Condition then

return; -- early return
end if;
...

end P; -- automatic return

401 / 1033

Fundamentals of Ada
Subprograms
Function Specifics

Function Specifics

402 / 1033

Fundamentals of Ada
Subprograms
Function Specifics

Return Statements In Functions

Must have at least one
Compile-time error otherwise
Unless doing machine-code insertions

Returns a value of the specified (sub)type

Syntax

function defining_designator [formal_part]
return subtype_mark is

declarative_part
begin

{statements}
return expression;

end designator;

403 / 1033

Fundamentals of Ada
Subprograms
Function Specifics

No Path Analysis Required By Compiler

Running to the end of a function without hitting a return
statement raises Program_Error
Compilers can issue warning if they suspect that a return
statement will not be hit

function Greater (X, Y : Integer) return Boolean is
begin

if X > Y then
return True;

end if;
end Greater; -- possible compile warning

404 / 1033

Fundamentals of Ada
Subprograms
Function Specifics

Multiple Return Statements

Allowed
Sometimes the most clear

function Truncated (R : Real) return Integer is
Converted : Integer := Integer (R);

begin
if R - Real (Converted) < 0.0 then -- rounded up

return Converted - 1;
else -- rounded down

return Converted;
end if;

end Truncated;

405 / 1033

Fundamentals of Ada
Subprograms
Function Specifics

Multiple Return Statements Versus One

Many can detract from readability
Can usually be avoided

function Truncated (R : Real) return Integer is
Result : Integer := Integer (R);

begin
if R - Real (Result) < 0.0 then -- rounded up

Result := Result - 1;
end if;
return Result;

end Truncated;

406 / 1033

Fundamentals of Ada
Subprograms
Function Specifics

Composite Result Types Allowed

function Identity (Order : Positive := 3) return Matrix is
Result : Matrix (1 .. Order, 1 .. Order);

begin
for K in 1 .. Order loop

for J in 1 .. Order loop
if K = J then

Result (K,J) := 1.0;
else

Result (K,J) := 0.0;
end if;

end loop;
end loop;
return Result;

end Identity;
407 / 1033

Fundamentals of Ada
Subprograms
Function Specifics

Function Dynamic-Size Results

is
function Char_Mult (C : Character; L : Natural)

return String is
R : String (1 .. L) := (others => C);

begin
return R;

end Char_Mult;

X : String := Char_Mult ('x', 4);
begin

-- OK
pragma Assert (X'Length = 4 and X = "xxxx");

408 / 1033

Fundamentals of Ada
Subprograms
Expression Functions

Expression Functions

409 / 1033

Fundamentals of Ada
Subprograms
Expression Functions

Examples

https://learn.adacore.com/training_examples/fundamentals_of_ada/070_subprograms.html#expression-functions

410 / 1033

Fundamentals of Ada
Subprograms
Expression Functions

Expression Functions
Ada 2012

Functions whose implementations are pure expressions
No other completion is allowed
No return keyword

May exist only for sake of pre/postconditions

function function_specification is (expression);

NB: Parentheses around expression are required

Can complete a prior declaration

function Squared (X : Integer) return Integer;
function Squared (X : Integer) return Integer is

(X ** 2);

411 / 1033

Fundamentals of Ada
Subprograms
Expression Functions

Expression Functions Example
Ada 2012

Expression function

function Square (X : Integer) return Integer is (X ** 2);

Is equivalent to

function Square (X : Integer) return Integer is
begin

return X ** 2;
end Square;

412 / 1033

Fundamentals of Ada
Subprograms
Expression Functions

Quiz

Which statement is True?

A. Expression functions cannot be nested functions.
B. Expression functions require a specification and a body.
C. Expression functions must have at least one "return" statement.
D. Expression functions can have "out" parameters.

Explanations

A. False, they can be declared just like regular function
B. False, an expression function cannot have a body
C. False, expression functions cannot contain a no return
D. Correct, but it can assign to out parameters only by calling

another function.

413 / 1033

Fundamentals of Ada
Subprograms
Expression Functions

Quiz

Which statement is True?

A. Expression functions cannot be nested functions.
B. Expression functions require a specification and a body.
C. Expression functions must have at least one "return" statement.
D. Expression functions can have "out" parameters.

Explanations

A. False, they can be declared just like regular function
B. False, an expression function cannot have a body
C. False, expression functions cannot contain a no return
D. Correct, but it can assign to out parameters only by calling

another function.

413 / 1033

Fundamentals of Ada
Subprograms
Potential Pitfalls

Potential Pitfalls

414 / 1033

Fundamentals of Ada
Subprograms
Potential Pitfalls

Mode out Risk for Scalars

Always assign value to out parameters

Else "By-copy" mechanism will copy something back
May be junk
Constraint_Error or unknown behaviour further down

procedure P
(A, B : in Some_Type; Result : out Scalar_Type) is

begin
if Some_Condition then

return; -- Result not set
end if;
...
Result := Some_Value;

end P;
415 / 1033

Fundamentals of Ada
Subprograms
Potential Pitfalls

"Side Effects"

Any effect upon external objects or external environment
Typically alteration of non-local variables or states
Can cause hard-to-debug errors
Not legal for function in SPARK

Can be there for historical reasons
Or some design patterns

Global : Integer := 0;

function F (X : Integer) return Integer is
begin

Global := Global + X;
return Global;

end P;
416 / 1033

Fundamentals of Ada
Subprograms
Potential Pitfalls

Order-Dependent Code And Side Effects

Global : Integer := 0;

function Inc return Integer is
begin

Global := Global + 1;
return Global;

end F;

procedure Assert_Equals (X, Y : in Integer);
...
Assert_Equals (Global, Inc);

Language does not specify parameters’ order of evaluation

Assert_Equals could get called with
X → 0, Y → 1 (if Global evaluated first)
X → 1, Y → 1 (if Inc evaluated first)

417 / 1033

Fundamentals of Ada
Subprograms
Potential Pitfalls

Parameter Aliasing

Aliasing : Multiple names for an actual parameter inside a
subprogram body

Possible causes:
Global object used is also passed as actual parameter
Same actual passed to more than one formal
Overlapping array slices
One actual is a component of another actual

Can lead to code dependent on parameter-passing mechanism

Ada detects some cases and raises Program_Error

procedure Update (Doubled, Tripled : in out Integer);
...
Update (Doubled => A,

Tripled => A); -- illegal in Ada 2012
418 / 1033

Fundamentals of Ada
Subprograms
Potential Pitfalls

Functions’ Parameter Modes
Ada 2012

Can be mode in out and out too

Note: operator functions can only have mode in

Including those you overload
Keeps readers sane

Justification for only mode in prior to Ada 2012
No side effects: should be like mathematical functions
But side effects are still possible via globals
So worst possible case: side effects are possible and necessarily
hidden!

419 / 1033

Fundamentals of Ada
Subprograms
Potential Pitfalls

Easy Cases Detected and Not Legal

procedure Example (A : in out Positive) is
function Increment (This : Integer) return Integer is
begin

A := A + This;
return A;

end Increment;
X : array (1 .. 10) of Integer;

begin
-- order of evaluating A not specified
X (A) := Increment (A);

end Example;

420 / 1033

Fundamentals of Ada
Subprograms
Extended Examples

Extended Examples

421 / 1033

Fundamentals of Ada
Subprograms
Extended Examples

Tic-Tac-Toe Winners Example (Spec)

package TicTacToe is
type Players is (Nobody, X, O);
type Move is range 1 .. 9;
type Game is array (Move) of

Players;
function Winner (This : Game)

return Players;
...

end TicTacToe;

1 N 2 N 3 N
4 N 5 N 6 N
7 N 8 N 9 N

422 / 1033

Fundamentals of Ada
Subprograms
Extended Examples

Tic-Tac-Toe Winners Example (Body)
function Winner (This : Game) return Players is

type Winning_Combinations is range 1 .. 8;
type Required_Positions is range 1 .. 3;
Winning : constant array

(Winning_Combinations, Required_Positions)
of Move := (-- rows

(1, 2, 3), (4, 5, 6), (7, 8, 9),
-- columns
(1, 4, 7), (2, 5, 8), (3, 6, 9),
-- diagonals
(1, 5, 9), (3, 5, 7));

begin
for K in Winning_Combinations loop

if This (Winning (K, 1)) /= Nobody and then
(This (Winning (K, 1)) = This (Winning (K, 2)) and
This (Winning (K, 2)) = This (Winning (K, 3)))

then
return This (Winning (K, 1));

end if;
end loop;
return Nobody;

end Winner;
423 / 1033

Fundamentals of Ada
Subprograms
Extended Examples

Set Example
-- some colors
type Color is (Red, Orange, Yellow, Green, Blue, Violet);
-- truth table for each color
type Set is array (Color) of Boolean;
-- unconstrained array of colors
type Set_Literal is array (Positive range <>) of Color;

-- Take an array of colors and set table value to True
-- for each color in the array
function Make (Values : Set_Literal) return Set;
-- Take a color and return table with color value set to true
function Make (Base : Color) return Set;
-- Return True if the color has the truth value set
function Is_Member (C : Color; Of_Set : Set) return Boolean;

Null_Set : constant Set := (Set'Range => False);
RGB : Set := Make (

Set_Literal'(Red, Blue, Green));
Domain : Set := Make (Green);

if Is_Member (Red, Of_Set => RGB) then ...

-- Type supports operations via Boolean operations,
-- as Set is a one-dimensional array of Boolean
S1, S2 : Set := Make (....);
Union : Set := S1 or S2;
Intersection : Set := S1 and S2;
Difference : Set := S1 xor S2;

424 / 1033

Fundamentals of Ada
Subprograms
Extended Examples

Set Example (Implementation)
function Make (Base : Color) return Set is

Result : Set := Null_Set;
begin

Result (Base) := True;
return Result;

end Make;

function Make (Values : Set_Literal) return Set is
Result : Set := Null_Set;

begin
for K in Values'Range loop

Result (Values (K)) := True;
end loop;
return Result;

end Make;

function Is_Member (C : Color;
Of_Set : Set)
return Boolean is

begin
return Of_Set(C);

end Is_Member;
425 / 1033

Fundamentals of Ada
Subprograms
Lab

Lab

426 / 1033

Fundamentals of Ada
Subprograms
Lab

Subprograms Lab

Requirements
Allow the user to fill a list with values and then check to see if a
value is in the list

Create at least two subprograms:

Sort a list of items
Search a list of items and return TRUE if found
You can create additional subprograms if desired

Hints
Subprograms can be nested inside other subprograms

Like inside main

Try a binary search algorithm if you want to use recursion

Unconstrained arrays may be needed
427 / 1033

Fundamentals of Ada
Subprograms
Lab

Subprograms Lab Solution - Search
function Is_Found (List : List_T;

Item : Integer)
return Boolean is

begin
if List'Length = 0 then

return False;
elsif List'Length = 1 then

return List (List'First) = Item;
else

declare
Midpoint : constant Integer := (List'First + List'Last) / 2;

begin
if List (Midpoint) = Item then

return True;
elsif List (Midpoint) > Item then

return Is_Found (List
(List'First .. Midpoint - 1), Item);

else -- List(Midpoint) < item
return Is_Found (List

(Midpoint + 1 .. List'Last), Item);
end if;

end;
end if;

end Is_Found;
428 / 1033

Fundamentals of Ada
Subprograms
Lab

Subprograms Lab Solution - Sort
procedure Sort (List : in out List_T) is

Swapped : Boolean;
procedure Swap (I, J : in Integer) is

Temp : constant Integer := List (I);
begin

List (I) := List (J);
List (J) := Temp;
Swapped := True;

end Swap;
begin

for I in List'First .. List'Last loop
Swapped := False;
for J in 1 .. List'Last - I loop

if List (J) > List (J + 1)
then

Swap (J, J + 1);
end if;

end loop;
if not Swapped then

return;
end if;

end loop;
end Sort;

429 / 1033

Fundamentals of Ada
Subprograms
Lab

Subprograms Lab Solution - Main
procedure Fill (List : out List_T) is
begin

Put_Line ("Enter values for list: ");
for I in List'First .. List'Last
loop

List (I) := Integer'Value (Get_Line);
end loop;

end Fill;

Number : Integer;

begin

Put ("Enter number of elements in list: ");
Number := Integer'Value (Get_Line);

declare
List : List_T (1 .. Number);

begin
Fill (List);
Sort (List);
loop

Put ("Enter number to look for: ");
Number := Integer'Value (Get_Line);
exit when Number < 0;
Put_Line (Boolean'Image (Is_Found (List, Number)));

end loop;
end;

end Main;

430 / 1033

Fundamentals of Ada
Subprograms
Summary

Summary

431 / 1033

Fundamentals of Ada
Subprograms
Summary

Summary

procedure is abstraction for actions

function is abstraction for value computations

A function may return values of variable size

Separate declarations are sometimes necessary
Mutual recursion
Visibility from packages (i.e., exporting)

Modes allow spec to define effects on actuals
Don’t have to see the implementation: abstraction maintained

Parameter-passing mechanism is based on the type

Watch those side effects!

432 / 1033

Fundamentals of Ada
Expressions

Expressions

433 / 1033

Fundamentals of Ada
Expressions
Introduction

Introduction

434 / 1033

Fundamentals of Ada
Expressions
Introduction

Advanced Expressions

Different categories of expressions above simple assignment and
conditional statements

Constraining types to sub-ranges to increase readability and
flexibility

Allows for simple membership checks of values

Embedded conditional assignments

Equivalent to C’s A ? B : C and even more elaborate

Universal / Existential checks

Ability to easily determine if one or all of a set match a condition

435 / 1033

Fundamentals of Ada
Expressions
Membership Tests

Membership Tests

436 / 1033

Fundamentals of Ada
Expressions
Membership Tests

"Membership" Operation

Syntax

simple_expression [not] in membership_choice_list
membership_choice_list ::= membership_choice

{ | membership_choice}
membership_choice ::= expression | range | subtype_mark

Acts like a boolean function

Usable anywhere a boolean value is allowed

X : Integer := ...
B : Boolean := X in 0..5;
C : Boolean := X not in 0..5; -- also "not (X in 0..5)"

437 / 1033

Fundamentals of Ada
Expressions
Membership Tests

Testing Constraints via Membership

type Calendar_Days is
(Mon, Tues, Wed, Thur, Fri, Sat, Sun);

subtype Weekdays is Calendar_Days range Mon .. Fri;
Day : Calendar_Days := Today;
...
if Day in Mon .. Fri then ...
if Day in Weekdays then ... - same as above

438 / 1033

Fundamentals of Ada
Expressions
Membership Tests

Testing Non-Contiguous Membership
Ada 2012

Uses vertical bar "choice" syntax

declare
M : Month_Number := Month (Clock);

begin
if M in 9 | 4 | 6 | 11 then

Put_Line ("31 days in this month");
elsif M = 2 then

Put_Line ("It's February, who knows?");
else

Put_Line ("30 days in this month");
end if;

439 / 1033

Fundamentals of Ada
Expressions
Membership Tests

Quiz

type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Weekdays_T is Days_T range Mon .. Fri;
Today : Days_T;

Which condition is illegal?

A. if Today = Mon or Wed or Fri then
B. if Today in Days_T then
C. if Today not in Weekdays_T then
D. if Today in Tue | Thu then

Explanations

A. To use or, both sides of the comparison must be duplicated (e.g.
Today = Mon or Today = Wed)

B. Legal - should always return True
C. Legal - returns True if Today is Sat or Sun
D. Legal - returns True if Today is Tue or Thu

440 / 1033

Fundamentals of Ada
Expressions
Membership Tests

Quiz

type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Weekdays_T is Days_T range Mon .. Fri;
Today : Days_T;

Which condition is illegal?

A. if Today = Mon or Wed or Fri then
B. if Today in Days_T then
C. if Today not in Weekdays_T then
D. if Today in Tue | Thu then

Explanations

A. To use or, both sides of the comparison must be duplicated (e.g.
Today = Mon or Today = Wed)

B. Legal - should always return True
C. Legal - returns True if Today is Sat or Sun
D. Legal - returns True if Today is Tue or Thu

440 / 1033

Fundamentals of Ada
Expressions
Qualified Names

Qualified Names

441 / 1033

Fundamentals of Ada
Expressions
Qualified Names

Qualification

Explicitly indicates the subtype of the value

Syntax

qualified_expression ::= subtype_mark'(expression) |
subtype_mark'aggregate

Similar to conversion syntax
Mnemonic - "qualification uses quote"

Various uses shown in course
Testing constraints
Removing ambiguity of overloading
Enhancing readability via explicitness

442 / 1033

Fundamentals of Ada
Expressions
Qualified Names

Testing Constraints via Qualification

Asserts value is compatible with subtype
Raises exception Constraint_Error if not true

subtype Weekdays is Days range Mon .. Fri;
This_Day : Days;
...
case Weekdays'(This_Day) is -- runtime error if out of range

when Mon =>
Arrive_Late;
Leave_Early;

when Tue .. Thur =>
Arrive_Early;
Leave_Late;

when Fri =>
Arrive_Early;
Leave_Early;

end case; -- no 'others' because all subtype values covered
443 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

Conditional Expressions

444 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

Conditional Expressions
Ada 2012

Ultimate value depends on a controlling condition

Allowed wherever an expression is allowed
Assignment RHS, formal parameters, aggregates, etc.

Similar intent as in other languages
Java, C/C++ ternary operation A ? B : C
Python conditional expressions
etc.

Two forms:
If expressions
Case expressions

445 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

If Expressions
Ada 2012

Syntax looks like an if-statement without end if

if_expression ::=
(if condition then dependent_expression
{elsif condition then dependent_expression}
[else dependent_expression])

condition ::= boolean_expression

The conditions are always Boolean values

(if Today > Wednesday then 1 else 0)

446 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

Result Must Be Compatible with Context

The dependent_expression parts, specifically

X : Integer :=
(if Day_Of_Week (Clock) > Wednesday then 1 else 0);

447 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

If Expression Example

declare
Remaining : Natural := 5; -- arbitrary

begin
while Remaining > 0 loop

Put_Line ("Warning! Self-destruct in" &
Remaining'Image &
(if Remaining = 1 then " second" else " seconds"));

delay 1.0;
Remaining := Remaining - 1;

end loop;
Put_Line ("Boom! (goodbye Nostromo)");

448 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

Boolean If-Expressions

Return a value of either True or False
(if P then Q) - assuming P and Q are Boolean
"If P is True then the result of the if-expression is the value of Q"

But what is the overall result if all conditions are False?

Answer: the default result value is True
Why?

Consistency with mathematical proving

449 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

The else Part When Result Is Boolean

Redundant because the default result is True
(if P then Q else True)

So for convenience and elegance it can be omitted

Good : Boolean := (if P1 > 0 then P2 > 0 else True);
Also_Ok : Boolean := (if P1 > 0 then P2 > 0);

Use else if you need to return False at the end

450 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

Rationale for Parentheses Requirement

Prevents ambiguity regarding any enclosing expression

Problem:

X : integer := if condition then A else B + 1;

Does that mean
If condition, then X := A + 1, else X := B + 1 OR
If condition, then X := A, else X := B + 1

But not required if parentheses already present
Because enclosing construct includes them

Subprogram_Call(if A then B else C);

451 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

When To Use If Expressions

When you need computation to be done prior to sequence of
statements

Allows constants that would otherwise have to be variables

When an enclosing function would be either heavy or redundant
with enclosing context

You’d already have written a function if you’d wanted one

Preconditions and postconditions
All the above reasons
Puts meaning close to use rather than in package body

Static named numbers
Can be much cleaner than using Boolean’Pos(condition)

452 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

If Expression Example for Constants

Starting from

End_of_Month : array (Months) of Days
:= (Sep | Apr | Jun | Nov => 30,

Feb => 28,
others => 31);

begin
if Leap (Today.Year) then -- adjust for leap year

End_of_Month (Feb) := 29;
end if;
if Today.Day = End_of_Month(Today.Month) then

...

Using if-expression to call Leap (Year) as needed

End_Of_Month : constant array (Months) of Days
:= (Sep | Apr | Jun | Nov => 30,

Feb => (if Leap (Today.Year)
then 29 else 28),

others => 31);
begin

if Today.Day /= End_of_Month(Today.Month) then
...

453 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

Case Expressions
Ada 2012

Syntax similar to case statements
Lighter: no closing end case
Commas between choices

Same general rules as if expressions
Parentheses required unless already present
Type of "result" must match context

Advantage over if expressions is completeness checked by compiler
Same as with case statements (unless others is used)

-- compile error if not all days covered
Hours : constant Integer :=

(case Day_of_Week is
when Mon .. Thurs => 9,
when Fri => 4,
when Sat | Sun => 0);

454 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

Case Expression Example

Leap : constant Boolean :=
(Today.Year mod 4 = 0 and Today.Year mod 100 /= 0)
or else
(Today.Year mod 400 = 0);

End_Of_Month : array (Months) of Days;
...
-- initialize array
for M in Months loop

End_Of_Month (M):=
(case M is
when Sep | Apr | Jun | Nov => 30,
when Feb => (if Leap then 29 else 28),
when others => 31);

end loop;
455 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

Quiz

function Sqrt (X : Float) return Float;
F : Float;
B : Boolean;

Which statement is illegal?

A. F := if X < 0.0 then Sqrt (-1.0 * X) else Sqrt (X);
B. F := Sqrt(if X < 0.0 then -1.0 * X else X);
C. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0 else

True);
D. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0);

Explanations

A. Missing parentheses around expression
B. Legal - Expression is already enclosed in parentheses so you don’t

need to add more
C. Legal - else True not needed but is allowed
D. Legal - B will be True if X >= 0.0

456 / 1033

Fundamentals of Ada
Expressions
Conditional Expressions

Quiz

function Sqrt (X : Float) return Float;
F : Float;
B : Boolean;

Which statement is illegal?

A. F := if X < 0.0 then Sqrt (-1.0 * X) else Sqrt (X);
B. F := Sqrt(if X < 0.0 then -1.0 * X else X);
C. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0 else

True);
D. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0);

Explanations

A. Missing parentheses around expression
B. Legal - Expression is already enclosed in parentheses so you don’t

need to add more
C. Legal - else True not needed but is allowed
D. Legal - B will be True if X >= 0.0

456 / 1033

Fundamentals of Ada
Expressions
Lab

Lab

457 / 1033

Fundamentals of Ada
Expressions
Lab

Expressions Lab

Requirements
Allow the user to fill a list with dates

After the list is created, create functions to print True/False if ...

Any date is not legal (taking into account leap years!)
All dates are in the same calendar year

Use expression functions for all validation routines

Hints
Use subtype membership for range validation

You will need conditional expressions in your functions

You can use component-based iterations for some checks

But you must use indexed-based iterations for others
458 / 1033

Fundamentals of Ada
Expressions
Lab

Expressions Lab Solution - Checks
subtype Year_T is Positive range 1_900 .. 2_099;
subtype Month_T is Positive range 1 .. 12;
subtype Day_T is Positive range 1 .. 31;

type Date_T is record
Year : Positive;
Month : Positive;
Day : Positive;

end record;

List : array (1 .. 5) of Date_T;
Item : Date_T;

function Is_Leap_Year (Year : Positive)
return Boolean is

(Year mod 400 = 0 or else (Year mod 4 = 0 and Year mod 100 /= 0));

function Days_In_Month (Month : Positive;
Year : Positive)
return Day_T is

(case Month is when 4 | 6 | 9 | 11 => 30,
when 2 => (if Is_Leap_Year (Year) then 29 else 28), when others => 31);

function Is_Valid (Date : Date_T)
return Boolean is

(Date.Year in Year_T and then Date.Month in Month_T
and then Date.Day <= Days_In_Month (Date.Month, Date.Year));

function Any_Invalid return Boolean is
begin

for Date of List loop
if not Is_Valid (Date) then

return True;
end if;

end loop;
return False;

end Any_Invalid;

function Same_Year return Boolean is
begin

for Index in List'range loop
if List (Index).Year /= List (List'first).Year then

return False;
end if;

end loop;
return True;

end Same_Year;

459 / 1033

Fundamentals of Ada
Expressions
Lab

Expressions Lab Solution - Main

function Number (Prompt : String)
return Positive is

begin
Put (Prompt & "> ");
return Positive'Value (Get_Line);

end Number;

begin

for I in List'Range loop
Item.Year := Number ("Year");
Item.Month := Number ("Month");
Item.Day := Number ("Day");
List (I) := Item;

end loop;

Put_Line ("Any invalid: " & Boolean'image (Any_Invalid));
Put_Line ("Same Year: " & Boolean'image (Same_Year));

end Main;
460 / 1033

Fundamentals of Ada
Expressions
Summary

Summary

461 / 1033

Fundamentals of Ada
Expressions
Summary

Summary

Conditional expressions are allowed wherever expressions are
allowed, but beware over-use

Especially useful when a constant is intended
Especially useful when a static expression is required

462 / 1033

Fundamentals of Ada
Overloading

Overloading

463 / 1033

Fundamentals of Ada
Overloading
Introduction

Introduction

464 / 1033

Fundamentals of Ada
Overloading
Introduction

Introduction

Overloading is the use of an already existing name to define a
new entity

Historically, only done as part of the language implementation
Eg. on operators
Float vs integer vs pointers arithmetic

Several languages allow user-defined overloading
C++
Python (limited to operators)
Haskell

465 / 1033

Fundamentals of Ada
Overloading
Introduction

Visibility and Scope

Overloading is not re-declaration

Both entities share the name
No hiding
Compiler performs name resolution

Allowed to be declared in the same scope
Remember this is forbidden for "usual" declarations

466 / 1033

Fundamentals of Ada
Overloading
Introduction

Overloadable Entities In Ada

Identifiers for subprograms
Both procedure and function names

Identifiers for enumeration values (enumerals)

Language-defined operators for functions

procedure Put (Str : in String);
procedure Put (C : in Complex);
function Max (Left, Right : Integer) return Integer;
function Max (Left, Right : Float) return Float;
function "+" (Left, Right : Rational) return Rational;
function "+" (Left, Right : Complex) return Complex;
function "*" (Left : Natural; Right : Character)

return String;

467 / 1033

Fundamentals of Ada
Overloading
Introduction

Function Operator Overloading Example

-- User-defined overloading
function "+" (L,R : Complex) return Complex is
begin

return (L.Real_Part + R.Real_Part,
L.Imaginary + R.Imaginary);

end "+";

A, B, C : Complex;
I, J, K : Integer;

I := J + K; -- overloaded operator (predefined)
A := B + C; -- overloaded operator (user-defined)

468 / 1033

Fundamentals of Ada
Overloading
Introduction

Benefits and Risk of Overloading

Management of the name space
Support for abstraction
Linker will not simply take the first match and apply it globally

Safe: compiler will reject ambiguous calls

Sensible names are the programmer’s job

function "+" (L, R : Integer) return String is
begin

return Integer'Image (L - R);
end "+";

469 / 1033

Fundamentals of Ada
Overloading
Enumerals and Operators

Enumerals and Operators

470 / 1033

Fundamentals of Ada
Overloading
Enumerals and Operators

Overloading Enumerals

Each is treated as if a function name (identifier)
Thus same rules as for function identifier overloading

type Stop_Light is (Red, Yellow, Green);
type Colors is (Red, Blue, Green);
Shade : Colors := Red;
Current_Value : Stop_Light := Red;

471 / 1033

Fundamentals of Ada
Overloading
Enumerals and Operators

Overloadable Operator Symbols

Only those defined by the language already
Users cannot introduce new operator symbols

Note that assignment (:=) is not an operator

Operators (in precedence order)

Logicals and, or, xor

Relationals <, <=, =, >=, >

Unary +, -

Binary +, -, &

Multiplying *, /, mod, rem

Highest precedence **, abs, not
472 / 1033

Fundamentals of Ada
Overloading
Enumerals and Operators

Parameters for Overloaded Operators

Must not change syntax of calls
Number of parameters must remain same (unary, binary...)
No default expressions allowed for operators

Infix calls use positional parameter associations
Left actual goes to first formal, right actual goes to second formal

Definition

function "*" (Left, Right : Integer) return Integer;

Usage

X := 2 * 3;

Named parameter associations allowed but ugly
Requires prefix notion for call

X := "*" (Left => 2, Right => 3);
473 / 1033

Fundamentals of Ada
Overloading
Call Resolution

Call Resolution

474 / 1033

Fundamentals of Ada
Overloading
Call Resolution

Call Resolution

Compilers must reject ambiguous calls

Resolution is based on the calling context
Compiler attempts to find a matching profile
Based on Parameter and Result Type

Overloading is not re-definition, or hiding
More than one matching profile is ambiguous

type Complex is ...
function "+" (L, R : Complex) return Complex;
A, B : Complex := some_value;
C : Complex := A + B;
D : Real := A + B; -- illegal!
E : Real := 1.0 + 2.0;

475 / 1033

Fundamentals of Ada
Overloading
Call Resolution

Profile Components Used

Significant components appear in the call itself
Number of parameters
Order of parameters
Base type of parameters
Result type (for functions)

Insignificant components might not appear at call
Formal parameter names are optional
Formal parameter modes never appear
Formal parameter subtypes never appear
Default expressions never appear

Display (X);
Display (Foo => X);
Display (Foo => X, Bar => Y);

476 / 1033

Fundamentals of Ada
Overloading
Call Resolution

Manually Disambiguating Calls

Qualification can be used

Named parameter association can be used
Unless name is ambiguous

type Stop_Light is (Red, Yellow, Green);
type Colors is (Red, Blue, Green);
procedure Put (Light : in Stop_Light);
procedure Put (Shade : in Colors);

Put (Red); -- ambiguous call
Put (Yellow); -- not ambiguous: only 1 Yellow
Put (Colors'(Red)); -- using type to distinguish
Put (Light => Green); -- using profile to distinguish

477 / 1033

Fundamentals of Ada
Overloading
Call Resolution

Overloading Example
type Position is

record
Row, Col : natural;

end record;

type Offset is
record

Row, Col : integer;
end record;

function "+" (Left : Position; Right : Offset)
return Position is

begin
return Position'(Left.Row + Right.Row, Left.Col + Right.Col);

end "+";

function Acceptable (P : Position) return Boolean;
type Positions is array (Moves range <>) of Position;

function Next (Current : Position) return Positions is
Result : Positions (Moves range 1 .. 4);
Count : Moves := 0;
Test : Position;

begin
for K in Offsets'Range loop

Test := Current + Offsets(K);
if Acceptable (Test) then

Count := Count + 1;
Result (Count) := Test;

end if;
end loop;
return Result (1 .. Count);

end Next;

478 / 1033

Fundamentals of Ada
Overloading
Call Resolution

Quiz

type Vertical_T is (Top, Middle, Bottom);
type Horizontal_T is (Left, Middle, Right);
function "*" (H : Horizontal_T; V : Vertical_T) return Positive;
function "*" (V : Vertical_T; H : Horizontal_T) return Positive;
P : Positive;

Which statement is not legal?

A. P := Horizontal_T'(Middle) * Middle;
B. P := Top * Right;
C. P := "*" (Middle, Top);
D. P := "*" (H => Middle, V => Top);

Explanations

A. Qualifying one parameter resolves ambiguity
B. No overloaded names
C. Use of Top resolves ambiguity
D. When overloading subprogram names, best to not just switch the

order of parameters

479 / 1033

Fundamentals of Ada
Overloading
Call Resolution

Quiz

type Vertical_T is (Top, Middle, Bottom);
type Horizontal_T is (Left, Middle, Right);
function "*" (H : Horizontal_T; V : Vertical_T) return Positive;
function "*" (V : Vertical_T; H : Horizontal_T) return Positive;
P : Positive;

Which statement is not legal?

A. P := Horizontal_T'(Middle) * Middle;
B. P := Top * Right;
C. P := "*" (Middle, Top);
D. P := "*" (H => Middle, V => Top);

Explanations

A. Qualifying one parameter resolves ambiguity
B. No overloaded names
C. Use of Top resolves ambiguity
D. When overloading subprogram names, best to not just switch the

order of parameters
479 / 1033

Fundamentals of Ada
Overloading
User-Defined Equality

User-Defined Equality

480 / 1033

Fundamentals of Ada
Overloading
User-Defined Equality

User-Defined Equality

Allowed like any other operator
Must remain a binary operator

Typically declared as return Boolean

Hard to do correctly for composed types
Especially user-defined types
Issue of Composition of equality

481 / 1033

Fundamentals of Ada
Overloading
Lab

Lab

482 / 1033

Fundamentals of Ada
Overloading
Lab

Overloading Lab

Requirements
Create multiple functions named "Convert" to convert between
digits and text representation

One routine should take a digit and return the text version (e.g. 3
would return three)
One routine should take text and return the digit (e.g. two would
return 2)

Query the user to enter text or a digit and print it’s equivalent

If the user enters consecutive entries that are equivalent, print a
message

e.g. 4 followed by four should get the message

Hints
You can use enumerals for the text representation

Then use ’image / ’value where needed

Use an equivalence function to compare different types
483 / 1033

Fundamentals of Ada
Overloading
Lab

Overloading Lab Solution - Conversion Functions
type Digit_T is range 0 .. 9;
type Digit_Name_T is

(Zero, One, Two, Three, Four, Five, Six, Seven, Eight, Nine);

function Convert (Value : Digit_T) return Digit_Name_T;
function Convert (Value : Digit_Name_T) return Digit_T;
function Convert (Value : Character) return Digit_Name_T;
function Convert (Value : String) return Digit_T;

function "=" (L : Digit_Name_T; R : Digit_T) return Boolean is (Convert (L) = R);

function Convert (Value : Digit_T) return Digit_Name_T is
(case Value is when 0 => Zero, when 1 => One,

when 2 => Two, when 3 => Three,
when 4 => Four, when 5 => Five,
when 6 => Six, when 7 => Seven,
when 8 => Eight, when 9 => Nine);

function Convert (Value : Digit_Name_T) return Digit_T is
(case Value is when Zero => 0, when One => 1,

when Two => 2, when Three => 3,
when Four => 4, when Five => 5,
when Six => 6, when Seven => 7,
when Eight => 8, when Nine => 9);

function Convert (Value : Character) return Digit_Name_T is
(case Value is when '0' => Zero, when '1' => One,

when '2' => Two, when '3' => Three,
when '4' => Four, when '5' => Five,
when '6' => Six, when '7' => Seven,
when '8' => Eight, when '9' => Nine,
when others => Zero);

function Convert (Value : String) return Digit_T is
(Convert (Digit_Name_T'Value (Value)));

484 / 1033

Fundamentals of Ada
Overloading
Lab

Overloading Lab Solution - Main
Last_Entry : Digit_T := 0;

begin
loop

Put ("Input: ");
declare

Str : constant String := Get_Line;
begin

exit when Str'Length = 0;
if Str (Str'First) in '0' .. '9' then

declare
Converted : constant Digit_Name_T := Convert (Str (Str'First));

begin
Put (Digit_Name_T'Image (Converted));
if Converted = Last_Entry then

Put_Line (" - same as previous");
else

Last_Entry := Convert (Converted);
New_Line;

end if;
end;

else
declare

Converted : constant Digit_T := Convert (Str);
begin

Put (Digit_T'Image (Converted));
if Converted = Last_Entry then

Put_Line (" - same as previous");
else

Last_Entry := Converted;
New_Line;

end if;
end;

end if;
end;

end loop;
end Main;

485 / 1033

Fundamentals of Ada
Overloading
Summary

Summary

486 / 1033

Fundamentals of Ada
Overloading
Summary

Summary

Ada allows user-defined overloading
Identifiers and operator symbols

Benefits easily outweigh danger of senseless names
Can have nonsensical names without overloading

Compiler rejects ambiguous calls

Resolution is based on the calling context
Parameter and Result Type Profile

Calling context is those items present at point of call
Thus modes etc. don’t affect overload resolution

User-defined equality is allowed
But is tricky

487 / 1033

Fundamentals of Ada
Library Units

Library Units

488 / 1033

Fundamentals of Ada
Library Units
Introduction

Introduction

489 / 1033

Fundamentals of Ada
Library Units
Introduction

Modularity

Ability to split large system into subsystems
Each subsystem can have its own components
And so on ...

490 / 1033

Fundamentals of Ada
Library Units
Library Units

Library Units

491 / 1033

Fundamentals of Ada
Library Units
Library Units

Library Units

Those not nested within another program unit

Candidates
Subprograms
Packages
Generic Units
Generic Instantiations
Renamings

Restrictions
No library level tasks

They are always nested within another unit

No overloading at library level

No library level functions named as operators
492 / 1033

Fundamentals of Ada
Library Units
Library Units

Library Units

package Operating_System is
procedure Foo(...);
procedure Bar(...);
package Process_Manipulation is

...
end Process_Manipulation;
package File_System is

...
end File_System;

end Operating_System;

Operating_System is library unit
Foo, Bar, etc - not library units

493 / 1033

Fundamentals of Ada
Library Units
Library Units

No ’Object’ Library Items

package Library_Package is
...

end Library_Package;

-- Illegal: no such thing as "file scope"
Library_Object : Integer;

procedure Library_Procedure;

function Library_Function (Formal : in out Integer) is
Local : Integer;

begin
...

end Library_Function;
494 / 1033

Fundamentals of Ada
Library Units
Library Units

Declared Object "Lifetimes"

Same as their enclosing declarative region
Objects are always declared within some declarative region

No static etc. directives as in C

Objects declared within any subprogram
Exist only while subprogram executes

procedure Library_Subprogram is
X : Integer;
Y : Float;

begin
...

end Library_Subprogram;

495 / 1033

Fundamentals of Ada
Library Units
Library Units

Objects In Library Packages

Exist as long as program executes (i.e., "forever")

package Named_Common is
X : Integer; -- valid object for life of application
Y : Float; -- valid object for life of application

end Named_Common;

496 / 1033

Fundamentals of Ada
Library Units
Library Units

Objects In Non-library Packages

Exist as long as region enclosing the package

procedure P is
X : Integer; -- available while in P and Inner
package Inner is

Z : Boolean; -- available while in Inner
end Inner;
Y : Real; -- available while in P

begin
...

end P;

497 / 1033

Fundamentals of Ada
Library Units
Library Units

Program "Lifetime"

Run-time library is initialized

All (any) library packages are elaborated
Declarations in package declarative part are elaborated
Declarations in package body declarative part are elaborated
Executable part of package body is executed (if present)

Main program’s declarative part is elaborated

Main program’s sequence of statements executes

Program executes until all threads terminate

All objects in library packages cease to exist

Run-time library shuts down

498 / 1033

Fundamentals of Ada
Library Units
Library Units

Library Unit Subprograms

Recall: separate declarations are optional
Body can act as declaration if no declaration provided

Separate declaration provides usual benefits
Changes/recompilation to body only require relinking clients

File 1 (p.ads for GNAT)

procedure P (F : in Integer);

File 2 (p.adb for GNAT)

procedure P (F : in Integer) is
begin

...
end P;

499 / 1033

Fundamentals of Ada
Library Units
Library Units

Library Unit Subprograms

Specifications in declaration and body must conform
Example

Spec for P

procedure P (F : in integer);

Body for P

procedure P (F : in float) is
begin
...
end P;

Declaration creates subprogram P in library

Declaration exists so body does not act as declaration

Compilation of file "p.adb" must fail

New declaration with same name replaces old one

Thus cannot overload library units
500 / 1033

Fundamentals of Ada
Library Units
Library Units

Main Subprograms

Must be library subprograms

No special program unit name required

Can be many per program library

Always can be procedures

Can be functions if implementation allows it
Execution environment must know how to handle result

with Ada.Text_IO;
procedure Hello is
begin

Ada.Text_IO.Put("Hello World");
end Hello;

501 / 1033

Fundamentals of Ada
Library Units
Dependencies

Dependencies

502 / 1033

Fundamentals of Ada
Library Units
Dependencies

with Clauses

Specify the library units that a compilation unit depends upon
The "context" in which the unit is compiled

Syntax (simplified)

context_clause ::= { context_item }
context_item ::= with_clause | use_clause
with_clause ::= with library_unit_name

{ , library_unit_name };

with Ada.Text_IO; -- dependency
procedure Hello is
begin

Ada.Text_IO.Put ("Hello World");
end Hello;

503 / 1033

Fundamentals of Ada
Library Units
Dependencies

with Clauses Syntax

Helps explain restrictions on library units
No overloaded library units

If overloading allowed, which P would with P; refer to?

No library unit functions names as operators

Mostly because of no overloading

504 / 1033

Fundamentals of Ada
Library Units
Dependencies

What To Import

Need only name direct dependencies
Those actually referenced in the corresponding unit

Will not cause compilation of referenced units
Unlike "include directives" of some languages

package A is
type Something is ...

end A;

with A;
package B is

type Something is record
Field : A.Something;

end record;
end B;

with B; -- no "with" of A
procedure Foo is

X : B.Something;
begin

X.Field := ...
505 / 1033

Fundamentals of Ada
Library Units
Summary

Summary

506 / 1033

Fundamentals of Ada
Library Units
Summary

Summary

Library Units are "standalone" entities
Can contain subunits with similar structure

with clauses interconnect library units
Express dependencies of the one being compiled
Not textual inclusion!

507 / 1033

Fundamentals of Ada
Packages

Packages

508 / 1033

Fundamentals of Ada
Packages
Introduction

Introduction

509 / 1033

Fundamentals of Ada
Packages
Introduction

Packages

Enforce separation of client from implementation
In terms of compile-time visibility

For data

For type representation, when combined with private types

Abstract Data Types

Provide basic namespace control

Directly support software engineering principles
Especially in combination with private types
Modularity
Information Hiding (Encapsulation)
Abstraction
Separation of Concerns

510 / 1033

Fundamentals of Ada
Packages
Introduction

Separating Interface and Implementation

Implementation and specification are textually distinct from
each other

Typically in separate files

Clients can compile their code before body exists
All they need is the package specification
Full client/interface consistency is guaranteed

package Float_Stack is
Max : constant := 100;
procedure Push (X : in Float);
procedure Pop (X : out Float);

end Float_Stack;

511 / 1033

Fundamentals of Ada
Packages
Introduction

Uncontrolled Visibility Problem

Clients have too much access to representation
Data
Type representation

Changes force clients to recode and retest

Manual enforcement is not sufficient

Why fixing bugs introduces new bugs!

512 / 1033

Fundamentals of Ada
Packages
Introduction

Basic Syntax and Nomenclature

package_declaration ::= package_specification;

Spec

package_specification ::=
package name is

{basic_declarative_item}
end [name];

Body

package_body ::=
package body name is

declarative_part
end [name];

513 / 1033

Fundamentals of Ada
Packages
Declarations

Declarations

514 / 1033

Fundamentals of Ada
Packages
Declarations

Package Declarations

Required in all cases
Cannot have a package without the declaration

Describe the client’s interface
Declarations are exported to clients
Effectively the "pin-outs" for the black-box

When changed, requires clients recompilation
The "pin-outs" have changed

package Float_Stack is
Max : constant := 100;
procedure Push (X : in Float);
procedure Pop (X : out Float);

end Float_Stack;

package Data is
Object : integer;

end Data;
515 / 1033

Fundamentals of Ada
Packages
Declarations

Compile-Time Visibility Control

Items in the declaration are visible to users

package name is
-- exported declarations of
-- types, variables, subprograms ...

end name;

Items in the body are never externally visible
Compiler prevents external references

package body name is
-- hidden declarations of
-- types, variables, subprograms ...
-- implementations of exported subprograms etc.

end name;

516 / 1033

Fundamentals of Ada
Packages
Declarations

Example of Exporting To Clients

Variables, types, exception, subprograms, etc.
The primary reason for separate subprogram declarations

package P is
procedure This_Is_Exported;

end P;

package body P is
procedure Not_Exported is

...
procedure This_Is_Exported is

...
end P;

517 / 1033

Fundamentals of Ada
Packages
Declarations

Referencing Exported Items

Achieved via "dot notation"

Package Specification

package Float_Stack is
Max : constant := 100;
procedure Push (X : in Float);
procedure Pop (X : out Float);

end Float_Stack;

Package Reference

with Float_Stack;
procedure Test is

X : Float;
begin

Float_Stack.Pop (X);
Float_Stack.Push (12.0);
if Count < Float_Stack.Max then ...

518 / 1033

Fundamentals of Ada
Packages
Bodies

Bodies

519 / 1033

Fundamentals of Ada
Packages
Bodies

Package Bodies

Dependent on corresponding package specification
Obsolete if specification changed

Clients need only to relink if body changed
Any code that would require editing would not have compiled in the
first place

Necessary for specifications that require a completion, for example:
Subprogram bodies
Task bodies
Incomplete types in private part
Others...

520 / 1033

Fundamentals of Ada
Packages
Bodies

Bodies Are Never Optional

Either required for a given spec or not allowed at all
Based on declarations in that spec

A change from Ada 83

A (nasty) justification example will be shown later

521 / 1033

Fundamentals of Ada
Packages
Bodies

Example Spec That Cannot Have A Body

package Graphics_Primitives is
type Real is digits 12;
type Device_Coordinates is record

X, Y : Integer;
end record;
type Normalized_Coordinates is record

X, Y : Real range 0.0 .. 1.0;
end record;
type Offset is record

X, Y : Real range -1.0 .. 1.0;
end record;
-- nothing to implement, so no body allowed

end Graphics_Primitives;

522 / 1033

Fundamentals of Ada
Packages
Bodies

Example Spec Requiring A Package Body

package VT100 is
subtype Rows is Integer range 1 .. 24;
subtype Columns is Integer range 1 .. 80;
type Position is record

Row : Rows := Rows'First;
Col : Columns := Columns'First;

end record;
-- The following need to be defined in the body

procedure Move_Cursor (To : in Position);
procedure Home;
procedure Clear_Screen;
procedure Cursor_Up (Count : in Positive := 1);

end VT100;

523 / 1033

Fundamentals of Ada
Packages
Bodies

Required Body Example

package body VT100 is
-- This function is not visible outside this package
function Unsigned (Input : Integer) return String is

Str : constant String := Integer'Image (Input);
begin

return Str (2 .. Str'length);
end Unsigned;
procedure Move_Cursor (To : in Position) is
begin

Text_IO.Put (ASCII.Esc & 'I' &
Unsigned(To.Row) & ';' &
Unsigned(To.Col) & 'H');

end Move_Cursor;
procedure Home is
begin

Text_IO.Put (ASCII.Esc & "iH");
end Home;
procedure Cursor_Up (Count : in Positive := 1) is ...

...
end VT100;

524 / 1033

Fundamentals of Ada
Packages
Bodies

Quiz
package P is

Object_One : Integer;
procedure One (P : out Integer);

end P;

Which completion(s) is(are) correct for package P?

A. No completion is needed

B. package body P is
procedure One (P : out Integer) is null;

end P;

C. package body P is
Object_One : Integer;
procedure One (P : out Integer) is
begin

P := Object_One;
end One;

end P;

D. package body P is
procedure One (P : out Integer) is
begin

P := Object_One;
end One;

end P;

A. Procedure One must have a body
B. Parameter P is out but not assigned
C. Redeclaration of Object_One

525 / 1033

Fundamentals of Ada
Packages
Bodies

Quiz
package P is

Object_One : Integer;
procedure One (P : out Integer);

end P;

Which completion(s) is(are) correct for package P?

A. No completion is needed

B. package body P is
procedure One (P : out Integer) is null;

end P;

C. package body P is
Object_One : Integer;
procedure One (P : out Integer) is
begin

P := Object_One;
end One;

end P;

D. package body P is
procedure One (P : out Integer) is
begin

P := Object_One;
end One;

end P;

A. Procedure One must have a body
B. Parameter P is out but not assigned
C. Redeclaration of Object_One

525 / 1033

Fundamentals of Ada
Packages
Executable Parts

Executable Parts

526 / 1033

Fundamentals of Ada
Packages
Executable Parts

Optional Executable Part

package_body ::=
package body name is

declarative_part
[begin

handled_sequence_of_statements]
end [name];

527 / 1033

Fundamentals of Ada
Packages
Executable Parts

Executable Part Semantics

Executed only once, when package is elaborated

Ideal when statements are required for initialization
Otherwise initial values in variable declarations would suffice

package body Random is
Seed1, Seed2 : Integer;
Call_Count : Natural := 0;
procedure Initialize (Seed1 : out Integer;

Seed2 : out Integer) is ...
function Number return Real is ...

begin -- Random
Initialize (Seed1, Seed2);

end Random;

528 / 1033

Fundamentals of Ada
Packages
Executable Parts

Requiring/Rejecting Bodies Justification

Consider the alternative: an
optional package body that
becomes obsolete prior to
building
Builder could silently choose
not to include the package in
executable

Package executable part
might do critical
initialization!

package P is
Data : array (L .. U) of

Integer;
end P;

package body P is
...

begin
for K in Data'Range loop

Data(K) := ...
end loop;

end P;

529 / 1033

Fundamentals of Ada
Packages
Executable Parts

Forcing A Package Body To be Required

Use
pragma Elaborate_Body

Says to elaborate body
immediately after spec
Hence there must be a
body!

Additional pragmas we will
examine later

package P is
pragma Elaborate_Body;
Data : array (L .. U) of

Integer;
end P;

package body P is
...

begin
for K in Data'Range loop

Data(K) := ...
end loop;

end P;

530 / 1033

Fundamentals of Ada
Packages
Idioms

Idioms

531 / 1033

Fundamentals of Ada
Packages
Idioms

Named Collection of Declarations (1/2)

Exports:
Objects (constants and variables)
Types
Exceptions

Does not export operations

package Physical_Constants is
Polar_Radius : constant := 20_856_010.51;
Equatorial_Radius : constant := 20_926_469.20;
Earth_Diameter : constant := 2.0 *

((Polar_Radius + Equatorial_Radius)/2.0);
Sea_Level_Air_Density : constant := 0.002378;
Altitude_Of_Tropopause : constant := 36089.0;
Tropopause_Temperature_in_celsius : constant := -56.5;

end Physical_Constants;
532 / 1033

Fundamentals of Ada
Packages
Idioms

Named Collection of Declarations (2/2)

Effectively application global data

package Equations_of_Motion is
Longitudinal_Velocity : Real := 0.0;
Longitudinal_Acceleration : Real := 0.0;
Lateral_Velocity : Real := 0.0;
Lateral_Acceleration : Real := 0.0;
Vertical_Velocity : Real:= 0.0;
Vertical_Acceleration : Real:= 0.0;
Pitch_Attitude : Real:= 0.0;
Pitch_Rate : Real:= 0.0;
Pitch_Acceleration : Real:= 0.0;

end Equations_of_Motion;

533 / 1033

Fundamentals of Ada
Packages
Idioms

Group of Related Program Units

Exports:
Objects
Types
Values
Operations

Users have full access to type representations
This visibility may be necessary

package Linear_Algebra is
type Vector is array (Positive range <>) of Real;
function "+" (L,R : Vector) return Vector;
function "*" (L,R : Vector) return Vector;
...

end Linear_Algebra;
534 / 1033

Fundamentals of Ada
Packages
Idioms

Uncontrolled Data Visibility Problem

Effects of changes are
potentially pervasive so one
must understand everything
before changing anything

535 / 1033

Fundamentals of Ada
Packages
Idioms

Controlling Data Visibility Using Packages

Divides global data into separate package bodies

Visible only to procedures and functions declared in those same
packages

Clients can only call these visible routines

Global change effects are much less likely
Direct breakage is impossible

536 / 1033

Fundamentals of Ada
Packages
Idioms

Abstract Data Machines

Exports:
Operations
State information queries (optional)

No direct user access to data

package Float_Stack is
Max : constant := 100;
procedure Push (X : in Float);
procedure Pop (X : out Float);

end Float_Stack;

package body Float_Stack is
type Contents is array (1 .. Max) of Float;
Values : Contents;
Top : Integer range 0 .. Max := 0;
procedure Push (X : in Float) is ...
procedure Pop (X : out Float) is ...

end Float_Stack;
537 / 1033

Fundamentals of Ada
Packages
Idioms

Controlling Type Representation Visibility

In other words, support for Abstract Data Types
No operations visible to clients based on representation

The fundamental concept for Ada

Requires private types discussed in coming section...

538 / 1033

Fundamentals of Ada
Packages
Lab

Lab

539 / 1033

Fundamentals of Ada
Packages
Lab

Packages Lab

Requirements
Create a program to add and remove integer values from a list

Program should allow user to do the following as many times as
desired

Add an integer in a pre-defined range to the list
Remove all occurrences of an integer from the list
Print the values in the list

Hints
Create (at least) three packages

1 minimum/maximum integer values and maximum number of items
in list

2 User input (ensure value is in range)
3 List ADT

Remember: with package_name; gives access to package_name
540 / 1033

Fundamentals of Ada
Packages
Lab

Creating Packages in GNAT Studio

Right-click on the source directory node
If you used a prompt, the directory is probably .
If you used the wizard, the directory is probably src

New → Ada Package

Fill in name of Ada package
Check the box if you want to create the package body in addition
to the package spec

541 / 1033

Fundamentals of Ada
Packages
Lab

Packages Lab Solution - Constants

package Constants is

Lowest_Value : constant := 100;
Highest_Value : constant := 999;
Maximum_Count : constant := 10;
subtype Integer_T is Integer

range Lowest_Value .. Highest_Value;

end Constants;

542 / 1033

Fundamentals of Ada
Packages
Lab

Packages Lab Solution - Input
with Constants;
package Input is

function Get_Value (Prompt : String) return Constants.Integer_T;
end Input;

with Ada.Text_IO; use Ada.Text_IO;
package body Input is

function Get_Value (Prompt : String) return Constants.Integer_T is
Ret_Val : Integer;

begin
Put (Prompt & "> ");
loop

Ret_Val := Integer'Value (Get_Line);
exit when Ret_Val >= Constants.Lowest_Value

and then Ret_Val <= Constants.Highest_Value;
Put ("Invalid. Try Again >");

end loop;
return Ret_Val;

end Get_Value;

end Input;
543 / 1033

Fundamentals of Ada
Packages
Lab

Packages Lab Solution - List
package List is

procedure Add (Value : Integer);
procedure Remove (Value : Integer);
function Length return Natural;
procedure Print;

end List;

with Ada.Text_IO; use Ada.Text_IO;
with Constants;
package body List is

Content : array (1 .. Constants.Maximum_Count) of Integer;
Last : Natural := 0;

procedure Add (Value : Integer) is
begin

if Last < Content'Last then
Last := Last + 1;
Content (Last) := Value;

else
Put_Line ("Full");

end if;
end Add;

procedure Remove (Value : Integer) is
I : Natural := 1;

begin
while I <= Last loop

if Content (I) = Value then
Content (I .. Last - 1) := Content (I + 1 .. Last);
Last := Last - 1;

else
I := I + 1;

end if;
end loop;

end Remove;

procedure Print is
begin

for I in 1 .. Last loop
Put_Line (Integer'Image (Content (I)));

end loop;
end Print;

function Length return Natural is (Last);
end List;

544 / 1033

Fundamentals of Ada
Packages
Lab

Packages Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Input;
with List;
procedure Main is

begin

loop
Put ("(A)dd | (R)emove | (P)rint | Q(uit) : ");
declare

Str : constant String := Get_Line;
begin

exit when Str'Length = 0;
case Str (Str'First) is

when 'A' =>
List.Add (Input.Get_Value ("Value to add"));

when 'R' =>
List.Remove (Input.Get_Value ("Value to remove"));

when 'P' =>
List.Print;

when 'Q' =>
exit;

when others =>
Put_Line ("Illegal entry");

end case;
end;

end loop;

end Main;

545 / 1033

Fundamentals of Ada
Packages
Summary

Summary

546 / 1033

Fundamentals of Ada
Packages
Summary

Summary

Emphasizes separations of concerns

Solves the global visibility problem
Only those items in the specification are exported

Enforces software engineering principles
Information hiding
Abstraction

Implementation can’t be corrupted by clients
Compiler won’t let clients compile references to internals

Bugs must be in the implementation, not clients
Only body implementation code has to be understood

547 / 1033

Fundamentals of Ada
Private Types

Private Types

548 / 1033

Fundamentals of Ada
Private Types
Introduction

Introduction

549 / 1033

Fundamentals of Ada
Private Types
Introduction

Introduction

Why does fixing bugs introduce new ones?

Control over visibility is a primary factor
Changes to an abstraction’s internals shouldn’t break users
Including type representation

Need tool-enforced rules to isolate dependencies
Between implementations of abstractions and their users
In other words, "information hiding"

550 / 1033

Fundamentals of Ada
Private Types
Introduction

Information Hiding

A design technique in which
implementation artifacts are
made inaccessible to users
Based on control of visibility
to those artifacts

A product of
"encapsulation"
Language support provides
rigor

Concept is "software
integrated circuits"

551 / 1033

Fundamentals of Ada
Private Types
Introduction

Views

Specify legal manipulation for objects of a type
Types are characterized by permitted values and operations

Some views are implicit in language
Mode in parameters have a view disallowing assignment

Views may be explicitly specified
Disallowing access to representation
Disallowing assignment

Purpose: control usage in accordance with design
Adherence to interface
Abstract Data Types

552 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Implementing Abstract Data Types via Views

553 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Implementing Abstract Data Types

A combination of constructs in Ada

Not based on single "class" construct, for example

Constituent parts
Packages, with "private part" of package spec
"Private types" declared in packages
Subprograms declared within those packages

554 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Package Visible and Private Parts for Views

Declarations in visible part are exported to users

Declarations in private part are hidden from users
No compilable references to type’s actual representation

package name is
... exported declarations of types, variables, subprograms ...
private
... hidden declarations of types, variables, subprograms ...
end name;

555 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Declaring Private Types for Views

Partial syntax

type defining_identifier is private;

Private type declaration must occur in visible part

Partial view
Only partial information on the type
Users can reference the type name

Full type declaration must appear in private part

Completion is the Full view
Never visible to users
Not visible to designer until reached

package Control is
type Valve is private;
procedure Open (V : in out Valve);
procedure Close (V : in out Valve);
...

private
type Valve is ...

end Control;
556 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Partial and Full Views of Types

Private type declaration defines a partial view

The type name is visible
Only designer’s operations and some predefined operations
No references to full type representation

Full type declaration defines the full view
Fully defined as a record type, scalar, imported type, etc...
Just an ordinary type within the package

Operations available depend upon one’s view

557 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Software Engineering Principles

Encapsulation and abstraction enforced by views
Compiler enforces view effects

Same protection as hiding in a package body
Recall "Abstract Data Machines" idiom

Additional flexibility of types
Unlimited number of objects possible
Passed as parameters
Components of array and record types
Dynamically allocated
et cetera

558 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Users Declare Objects of the Type

Unlike "abstract data machine" approach

Hence must specify which stack to manipulate
Via parameter

X, Y, Z : Stack;
...
Push (42, X);
...
if Empty (Y) then
...
Pop (Counter, Z);

559 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Compile-Time Visibility Protection

No type representation details available outside the package

Therefore users cannot compile code referencing representation

This does not compile

with Bounded_Stacks;
procedure User is

S : Bounded_Stacks.Stack;
begin

S.Top := 1; -- Top is not visible
end User;

560 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Benefits of Views

Users depend only on visible part of specification
Impossible for users to compile references to private part
Physically seeing private part in source code is irrelevant

Changes to implementation don’t affect users
No editing changes necessary for user code

Implementers can create bullet-proof abstractions
If a facility isn’t working, you know where to look

Fixing bugs is less likely to introduce new ones

561 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Quiz

package P is
type Private_T is private;

type Record_T is record

Which component is legal?

A. Field_A : integer := Private_T'Pos
(Private_T'First);

B. Field_B : Private_T := null;

C. Field_C : Private_T := 0;

D. Field_D : integer := Private_T’Size;

end record;

Explanations

A. Visible part does not know Private_T is discrete
B. Visible part does not know possible values for Private_T
C. Visible part does not know possible values for Private_T
D. Correct - type will have a known size at run-time

562 / 1033

Fundamentals of Ada
Private Types
Implementing Abstract Data Types via Views

Quiz

package P is
type Private_T is private;

type Record_T is record

Which component is legal?

A. Field_A : integer := Private_T'Pos
(Private_T'First);

B. Field_B : Private_T := null;

C. Field_C : Private_T := 0;

D. Field_D : integer := Private_T’Size;

end record;

Explanations

A. Visible part does not know Private_T is discrete
B. Visible part does not know possible values for Private_T
C. Visible part does not know possible values for Private_T
D. Correct - type will have a known size at run-time

562 / 1033

Fundamentals of Ada
Private Types
Private Part Construction

Private Part Construction

563 / 1033

Fundamentals of Ada
Private Types
Private Part Construction

Private Part Location

Must be in package specification, not body

Body usually compiled separately after declaration

Users can compile their code before the package body is compiled
or even written

Package definition

package Bounded_Stacks is
type Stack is private;
...

private
type Stack is ...

end Bounded_Stacks;

Package reference

with Bounded_Stacks;
procedure User is

S : Bounded_Stacks.Stack;
...
begin

...
end User;

564 / 1033

Fundamentals of Ada
Private Types
Private Part Construction

Private Part and Recompilation

Private part is part of the specification
Compiler needs info from private part for users’ code, e.g., storage
layouts for private-typed objects

Thus changes to private part require user recompilation

Some vendors avoid "unnecessary" recompilation
Comment additions or changes
Additions which nobody yet references

565 / 1033

Fundamentals of Ada
Private Types
Private Part Construction

Declarative Regions

Declarative region of the spec extends to the body
Anything declared there is visible from that point down
Thus anything declared in specification is visible in body

package Foo is
type Private_T is private;
procedure X (B : in out Private_T);

private
-- Y and Hidden_T are not visible to users
procedure Y (B : in out Private_T);
type Hidden_T is ...;
type Private_T is array (1 .. 3) of Hidden_T;

end Foo;

package body Foo is
-- Z is not visible to users
procedure Z (B : in out Private_T) is ...
procedure Y (B : in out Private_T) is ...
procedure X (B : in out Private_T) is ...

end Foo;
566 / 1033

Fundamentals of Ada
Private Types
Private Part Construction

Full Type Declaration

May be any type
Predefined or user-defined
Including references to
imported types

Contents of private part are
unrestricted

Anything a package
specification may contain
Types, subprograms,
variables, etc.

package P is
type T is private;
...

private
type List is array (1.. 10)

of Integer;
function Initial

return List;
type T is record

A, B : List := Initial;
end record;

end P;

567 / 1033

Fundamentals of Ada
Private Types
Private Part Construction

Deferred Constants

Visible constants of a hidden representation
Value is "deferred" to private part
Value must be provided in private part

Not just for private types, but usually so

package P is
type Set is private;
Null_Set : constant Set; -- exported name
...

private
type Index is range ...
type Set is array (Index) of Boolean;
Null_Set : constant Set := -- definition

(others => False);
end P;

568 / 1033

Fundamentals of Ada
Private Types
Private Part Construction

Quiz
package P is

type Private_T is private;
Object_A : Private_T;
procedure Proc (Param : in out Private_T);

private
type Private_T is new integer;
Object_B : Private_T;

end package P;

package body P is
Object_C : Private_T;
procedure Proc (Param : in out Private_T) is null;

end P;

Which object definition is illegal?

A. Object_A
B. Object_B
C. Object_C
D. None of the above

An object cannot be declared until its type is fully declared. Object_A
could be declared constant, but then it would have to be finalized in
the private section.

569 / 1033

Fundamentals of Ada
Private Types
Private Part Construction

Quiz
package P is

type Private_T is private;
Object_A : Private_T;
procedure Proc (Param : in out Private_T);

private
type Private_T is new integer;
Object_B : Private_T;

end package P;

package body P is
Object_C : Private_T;
procedure Proc (Param : in out Private_T) is null;

end P;

Which object definition is illegal?

A. Object_A
B. Object_B
C. Object_C
D. None of the above

An object cannot be declared until its type is fully declared. Object_A
could be declared constant, but then it would have to be finalized in
the private section.

569 / 1033

Fundamentals of Ada
Private Types
View Operations

View Operations

570 / 1033

Fundamentals of Ada
Private Types
View Operations

View Operations

A matter of inside versus outside the package
Inside the package the view is that of the designer
Outside the package the view is that of the user

User of package has Partial view
Operations exported by
package
Basic operations

Designer of package has Full view
Once completion is
reached
All operations based upon
full definition of type
Indexed components for
arrays
components for records
Type-specific attributes
Numeric manipulation for
numerics
et cetera

571 / 1033

Fundamentals of Ada
Private Types
View Operations

Designer View Sees Full Declaration

package Bounded_Stacks is
Capacity : constant := 100;
type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);
...

private
type Index is range 0 .. Capacity;
type List is array (Index range 1..Capacity) of Integer;
type Stack is record

Top : Integer;
...

end Bounded_Stacks;

572 / 1033

Fundamentals of Ada
Private Types
View Operations

Designer View Allows All Operations

package body Bounded_Stacks is
procedure Push (Item : in Integer;

Onto : in out Stack) is
begin

Onto.Top := Onto.Top + 1;
...

end Push;

procedure Pop (Item : out Integer;
From : in out Stack) is

begin
Onto.Top := Onto.Top - 1;
...

end Pop;
end Bounded_Stacks;

573 / 1033

Fundamentals of Ada
Private Types
View Operations

Users Have the Partial View

Since they are outside package
Basic operations
Exported subprograms

package Bounded_Stacks is
type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);
procedure Pop (Item : out Integer; From : in out Stack);
function Empty (S : Stack) return Boolean;
procedure Clear (S : in out Stack);
function Top (S : Stack) return Integer;

private
...

end Bounded_Stacks;

574 / 1033

Fundamentals of Ada
Private Types
View Operations

User View’s Activities

Declarations of objects
Constants and variables
Must call designer’s functions for values

C : Complex.Number := Complex.I;

Assignment, equality and inequality, conversions

Designer’s declared subprograms

User-declared subprograms
Using parameters of the exported private type
Dependent on designer’s operations

575 / 1033

Fundamentals of Ada
Private Types
View Operations

User View Formal Parameters

Dependent on designer’s operations for manipulation
Cannot reference type’s representation

Can have default expressions of private types

-- external implementation of "Top"
procedure Get_Top (

The_Stack : in out Bounded_Stacks.Stack;
Value : out Integer) is

Local : Integer;
begin

Bounded_Stacks.Pop (Local, The_Stack);
Value := Local;
Bounded_Stacks.Push (Local, The_Stack);

end Get_Top;
576 / 1033

Fundamentals of Ada
Private Types
View Operations

Private Limited

limited is itself a view
Cannot perform assignment, copy, or equality

private limited can restrain user’s operation
Actual type does not need to be limited

package UART is
type Instance is private limited;
function Get_Next_Available return Instance;

[...]

declare
A, B := UART.Get_Next_Available;

begin
if A = B -- Illegal
then

A := B; -- Illegal
end if;

577 / 1033

Fundamentals of Ada
Private Types
When To Use or Avoid Private Types

When To Use or Avoid Private Types

578 / 1033

Fundamentals of Ada
Private Types
When To Use or Avoid Private Types

When To Use Private Types

Implementation may change
Allows users to be unaffected by changes in representation

Normally available operations do not "make sense"
Normally available based upon type’s representation
Determined by intent of ADT

A : Valve;
B : Valve;
C : Valve;
...
C := A + B; -- addition not meaningful

Users have no "need to know"
Based upon expected usage

579 / 1033

Fundamentals of Ada
Private Types
When To Use or Avoid Private Types

When To Avoid Private Types

If the abstraction is too simple to justify the effort
But that’s the thinking that led to Y2K rework

If normal user interface requires representation-specific operations
that cannot be provided

Those that cannot be redefined by programmers

Would otherwise be hidden by a private type

If Vector is private, indexing of elements is annoying

type Vector is array (Positive range <>) of Real;
V : Vector (1 .. 3);
...
V (1) := Alpha;

580 / 1033

Fundamentals of Ada
Private Types
Idioms

Idioms

581 / 1033

Fundamentals of Ada
Private Types
Idioms

Effects of Hiding Type Representation

Makes users independent of representation
Changes cannot require users to alter their code
Software engineering is all about money...

Makes users dependent upon exported operations
Because operations requiring representation info are not available to
users

Expression of values (aggregates, etc.)
Assignment for limited types

Common idioms are a result
Constructor
Selector

582 / 1033

Fundamentals of Ada
Private Types
Idioms

Constructors

Create designer’s objects from user’s values
Usually functions

package Complex is
type Number is private;
function Make (Real_Part : Float; Imaginary : Float) return Number;

private
type Number is record ...

end Complex;

package body Complex is
function Make (Real_Part : Float; Imaginary_Part : Float)

return Number is ...
end Complex:
...
A : Complex.Number :=

Complex.Make (Real_Part => 2.5, Imaginary => 1.0);
583 / 1033

Fundamentals of Ada
Private Types
Idioms

Procedures As Constructors

Spec

package Complex is
type Number is private;
procedure Make (This : out Number; Real_Part, Imaginary : in Float) ;
...

private
type Number is record

Real_Part, Imaginary : Float;
end record;

end Complex;

Body (partial)

package body Complex is
procedure Make (This : out Number;

Real_Part, Imaginary : in Float) is
begin

This.Real_Part := Real_Part;
This.Imaginary := Imaginary;

end Make;
...

584 / 1033

Fundamentals of Ada
Private Types
Idioms

Selectors
Decompose designer’s objects into user’s values
Usually functions

package Complex is
type Number is private;
function Real_Part (This: Number) return Float;
...

private
type Number is record

Real_Part, Imaginary : Float;
end record;

end Complex;

package body Complex is
function Real_Part (This : Number) return Float is
begin

return This.Real_Part;
end Real_Part;
...

end Complex;
...
Phase : Complex.Number := Complex.Make (10.0, 5.5);
Object : Float := Complex.Real_Part (Phase);

585 / 1033

Fundamentals of Ada
Private Types
Lab

Lab

586 / 1033

Fundamentals of Ada
Private Types
Lab

Private Types Lab

Requirements
Implement a program to create a map such that

Map key is a description of a flag
Map element content is the set of colors in the flag

Operations on the map should include: Add, Remove, Modify, Get,
Exists, Image

Main program should print out the entire map before exiting

Hints
Should implement a map ADT (to keep track of the flags)

This map will contain all the flags and their color descriptions

Should implement a set ADT (to keep track of the colors)

This set will be the description of the map element

Each ADT should be its own package

At a minimum, the map and set type should be private
587 / 1033

Fundamentals of Ada
Private Types
Lab

Private Types Lab Solution - Color Set
package Colors is

type Color_T is (Red, Yellow, Green, Blue, Black);
type Color_Set_T is private;

Empty_Set : constant Color_Set_T;

procedure Add (Set : in out Color_Set_T;
Color : Color_T);

procedure Remove (Set : in out Color_Set_T;
Color : Color_T);

function Image (Set : Color_Set_T) return String;
private

type Color_Set_Array_T is array (Color_T) of Boolean;
type Color_Set_T is record

Values : Color_Set_Array_T := (others => False);
end record;
Empty_Set : constant Color_Set_T := (Values => (others => False));

end Colors;

package body Colors is
procedure Add (Set : in out Color_Set_T;

Color : Color_T) is
begin

Set.Values (Color) := True;
end Add;
procedure Remove (Set : in out Color_Set_T;

Color : Color_T) is
begin

Set.Values (Color) := False;
end Remove;

function Image (Set : Color_Set_T;
First : Color_T;
Last : Color_T)
return String is

Str : constant String := (if Set.Values (First) then Color_T'Image (First) else "");
begin

if First = Last then
return Str;

else
return Str & " " & Image (Set, Color_T'Succ (First), Last);

end if;
end Image;
function Image (Set : Color_Set_T) return String is

(Image (Set, Color_T'First, Color_T'Last));
end Colors;

588 / 1033

Fundamentals of Ada
Private Types
Lab

Private Types Lab Solution - Flag Map (Spec)
with Colors;
package Flags is

type Key_T is (USA, England, France, Italy);
type Map_Element_T is private;
type Map_T is private;

procedure Add (Map : in out Map_T;
Key : Key_T;
Description : Colors.Color_Set_T;
Success : out Boolean);

procedure Remove (Map : in out Map_T;
Key : Key_T;
Success : out Boolean);

procedure Modify (Map : in out Map_T;
Key : Key_T;
Description : Colors.Color_Set_T;
Success : out Boolean);

function Exists (Map : Map_T; Key : Key_T) return Boolean;
function Get (Map : Map_T; Key : Key_T) return Map_Element_T;
function Image (Item : Map_Element_T) return String;
function Image (Flag : Map_T) return String;

private
type Map_Element_T is record

Key : Key_T := Key_T'First;
Description : Colors.Color_Set_T := Colors.Empty_Set;

end record;
type Map_Array_T is array (1 .. 100) of Map_Element_T;
type Map_T is record

Values : Map_Array_T;
Length : Natural := 0;

end record;
end Flags;

589 / 1033

Fundamentals of Ada
Private Types
Lab

Private Types Lab Solution - Flag Map (Body - 1 of 2)
procedure Add (Map : in out Map_T;

Key : Key_T;
Description : Colors.Color_Set_T;
Success : out Boolean) is

begin
Success := (for all Item of Map.Values

(1 .. Map.Length) => Item.Key /= Key);
if Success then

declare
New_Item : constant Map_Element_T :=

(Key => Key, Description => Description);
begin

Map.Length := Map.Length + 1;
Map.Values (Map.Length) := New_Item;

end;
end if;

end Add;
procedure Remove (Map : in out Map_T;

Key : Key_T;
Success : out Boolean) is

begin
Success := False;
for I in 1 .. Map.Length loop

if Map.Values (I).Key = Key then
Map.Values

(I .. Map.Length - 1) := Map.Values
(I + 1 .. Map.Length);

Map.Length := Map.Length - 1;
Success := True;
exit;

end if;
end loop;

end Remove;

590 / 1033

Fundamentals of Ada
Private Types
Lab

Private Types Lab Solution - Flag Map (Body - 2 of 2)
procedure Modify (Map : in out Map_T;

Key : Key_T;
Description : Colors.Color_Set_T;
Success : out Boolean) is

begin
Success := False;
for I in 1 .. Map.Length loop

if Map.Values (I).Key = Key then
Map.Values (I).Description := Description;
Success := True;
exit;

end if;
end loop;

end Modify;
function Exists (Map : Map_T; Key : Key_T) return Boolean is

(for some Item of Map.Values (1 .. Map.Length) => Item.Key = Key);
function Get (Map : Map_T; Key : Key_T) return Map_Element_T is

Ret_Val : Map_Element_T;
begin

for I in 1 .. Map.Length loop
if Map.Values (I).Key = Key then

Ret_Val := Map.Values (I);
exit;

end if;
end loop;
return Ret_Val;

end Get;
function Image (Item : Map_Element_T) return String is

(Key_T'Image (Item.Key) & " => " & Colors.Image (Item.Description));
function Image (Flag : Map_T) return String is

Ret_Val : String (1 .. 1_000);
Next : Integer := Ret_Val'First;

begin
for Item of Flag.Values (1 .. Flag.Length) loop

declare
Str : constant String := Image (Item);

begin
Ret_Val (Next .. Next + Str'Length) := Image (Item) & ASCII.LF;
Next := Next + Str'Length + 1;

end;
end loop;
return Ret_Val (1 .. Next - 1);

end Image;

591 / 1033

Fundamentals of Ada
Private Types
Lab

Private Types Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Colors;
with Flags;
with Input;
procedure Main is

Map : Flags.Map_T;
begin

loop
Put ("Enter country name (");
for Key in Flags.Key_T loop

Put (Flags.Key_T'Image (Key) & " ");
end loop;
Put ("): ");
declare

Str : constant String := Get_Line;
Key : Flags.Key_T;
Description : Colors.Color_Set_T;
Success : Boolean;

begin
exit when Str'Length = 0;
Key := Flags.Key_T'Value (Str);
Description := Input.Get;
if Flags.Exists (Map, Key) then

Flags.Modify (Map, Key, Description, Success);
else

Flags.Add (Map, Key, Description, Success);
end if;

end;
end loop;

Put_Line (Flags.Image (Map));
end Main;

592 / 1033

Fundamentals of Ada
Private Types
Summary

Summary

593 / 1033

Fundamentals of Ada
Private Types
Summary

Summary

Tool-enforced support for Abstract Data Types
Same protection as Abstract Data Machine idiom
Capabilities and flexibility of types

May also be limited

Thus additionally no assignment or predefined equality
More on this later

Common interface design idioms have arisen
Resulting from representation independence

Assume private types as initial design choice
Change is inevitable

594 / 1033

Fundamentals of Ada
Limited Types

Limited Types

595 / 1033

Fundamentals of Ada
Limited Types
Introduction

Introduction

596 / 1033

Fundamentals of Ada
Limited Types
Introduction

Views

Specify how values and objects may be manipulated

Are implicit in much of the language semantics
Constants are just variables without any assignment view
Task types, protected types implicitly disallow assignment
Mode in formal parameters disallow assignment

Variable : Integer := 0;
...
-- P's view of X prevents modification
procedure P(X : in Integer) is
begin

...
end P;
...
P(Variable);

597 / 1033

Fundamentals of Ada
Limited Types
Introduction

Limited Type Views’ Semantics

Prevents copying via predefined assignment
Disallows assignment between objects
Must make your own copy procedure if needed

type File is limited ...
...
F1, F2 : File;
...
F1 := F2; -- compile error

Prevents incorrect comparison semantics
Disallows predefined equality operator
Make your own equality function = if needed

598 / 1033

Fundamentals of Ada
Limited Types
Introduction

Inappropriate Copying Example

type File is ...
F1, F2 : File;
...
Open (F1);
Write (F1, "Hello");
-- What is this assignment really trying to do?
F2 := F1;

599 / 1033

Fundamentals of Ada
Limited Types
Introduction

Intended Effects of Copying

type File is ...
F1, F2 : File;
...
Open (F1);
Write (F1, "Hello");
Copy (Source => F1, Target => F2);

600 / 1033

Fundamentals of Ada
Limited Types
Declarations

Declarations

601 / 1033

Fundamentals of Ada
Limited Types
Declarations

Limited Type Declarations

Syntax
Additional keyword limited added to record type declaration

type defining_identifier is limited record
component_list

end record;

Are always record types unless also private
More in a moment...

602 / 1033

Fundamentals of Ada
Limited Types
Declarations

Approximate Analog In C++

class Stack {
public:

Stack();
void Push (int X);
void Pop (int& X);
...

private:
...
// assignment operator hidden
Stack& operator= (const Stack& other);

}; // Stack

603 / 1033

Fundamentals of Ada
Limited Types
Declarations

Spin Lock Example

with Interfaces;
package Multiprocessor_Mutex is

-- prevent copying of a lock
type Spin_Lock is limited record

Flag : Interfaces.Unsigned_8;
end record;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);
pragma Inline (Lock, Unlock);

end Multiprocessor_Mutex;

604 / 1033

Fundamentals of Ada
Limited Types
Declarations

Parameter Passing Mechanism

Always "by-reference" if explicitly limited
Necessary for various reasons (task and protected types, etc)
Advantageous when required for proper behavior

By definition, these subprograms would be called concurrently
Cannot operate on copies of parameters!

procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

605 / 1033

Fundamentals of Ada
Limited Types
Declarations

Composites with Limited Types

Composite containing a limited type becomes limited as well
Example: Array of limited elements

Array becomes a limited type

Prevents assignment and equality loop-holes

declare
-- if we can't copy component S, we can't copy User_Type
type User_Type is record -- limited because S is limited

S : File;
...

end record;
A, B : User_Type;

begin
A := B; -- not legal since limited
...

end;
606 / 1033

Fundamentals of Ada
Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

L1, L2 : T;
B : Boolean;

Which statement(s) is(are) legal?

A. L1.I := 1
B. L1 := L2
C. B := (L1 = L2)
D. B := (L1.I = L2.I)

607 / 1033

Fundamentals of Ada
Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

L1, L2 : T;
B : Boolean;

Which statement(s) is(are) legal?

A. L1.I := 1
B. L1 := L2
C. B := (L1 = L2)
D. B := (L1.I = L2.I)

607 / 1033

Fundamentals of Ada
Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

Which of the following declaration(s) is(are) legal?

A. function "+" (A : T) return T is (A)
B. function "-" (A : T) return T is (I => -A.I)
C. function "=" (A, B : T) return Boolean is (True)
D. function "=" (A, B : T) return Boolean is (A.I =

T’(I => B.I).I)

608 / 1033

Fundamentals of Ada
Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

Which of the following declaration(s) is(are) legal?

A. function "+" (A : T) return T is (A)
B. function "-" (A : T) return T is (I => -A.I)
C. function "=" (A, B : T) return Boolean is (True)
D. function "=" (A, B : T) return Boolean is (A.I =

T’(I => B.I).I)

608 / 1033

Fundamentals of Ada
Limited Types
Declarations

Quiz
package P is

type T is limited null record;
type R is record

F1 : Integer;
F2 : T;

end record;
end P;

with P;
procedure Main is

T1, T2 : P.T;
R1, R2 : P.R;

begin

Which assignment is legal?

A. T1 := T2;
B. R1 := R2;
C. R1.F1 := R2.F1;
D. R2.F2 := R2.F2;

Explanations

A. T1 and T2 are limited types
B. R1 and R2 contain limited types so they are also limited
C. Theses components are not limited types
D. These components are of a limited type

609 / 1033

Fundamentals of Ada
Limited Types
Declarations

Quiz
package P is

type T is limited null record;
type R is record

F1 : Integer;
F2 : T;

end record;
end P;

with P;
procedure Main is

T1, T2 : P.T;
R1, R2 : P.R;

begin

Which assignment is legal?

A. T1 := T2;
B. R1 := R2;
C. R1.F1 := R2.F1;
D. R2.F2 := R2.F2;

Explanations

A. T1 and T2 are limited types
B. R1 and R2 contain limited types so they are also limited
C. Theses components are not limited types
D. These components are of a limited type

609 / 1033

Fundamentals of Ada
Limited Types
Creating Values

Creating Values

610 / 1033

Fundamentals of Ada
Limited Types
Creating Values

Creating Values

Initialization is not assignment (but looks like it)!

Via limited constructor functions
Functions returning values of limited types

Via an aggregate

limited aggregate when used for a limited type

type Spin_Lock is limited record
Flag : Interfaces.Unsigned_8;

end record;
...
Mutex : Spin_Lock := (Flag => 0); -- limited aggregate

611 / 1033

Fundamentals of Ada
Limited Types
Creating Values

Limited Constructor Functions

Allowed wherever limited
aggregates are allowed
More capable (can perform
arbitrary computations)
Necessary when limited type
is also private

Users won’t have visibility
required to express
aggregate contents

function F return Spin_Lock
is
begin

...
return (Flag => 0);

end F;

612 / 1033

Fundamentals of Ada
Limited Types
Creating Values

Writing Limited Constructor Functions

Remember - copying is not allowed

function F return Spin_Lock is
Local_X : Spin_Lock;

begin
...
return Local_X; -- this is a copy - not legal
-- (also illegal because of pass-by-reference)

end F;

Global_X : Spin_Lock;
function F return Spin_Lock is
begin

...
-- This is not legal staring with Ada2005
return Global_X; -- this is a copy

end F;
613 / 1033

Fundamentals of Ada
Limited Types
Creating Values

"Built In-Place"

Limited aggregates and functions, specifically

No copying done by implementation
Values are constructed in situ

Mutex : Spin_Lock := (Flag => 0);

function F return Spin_Lock is
begin

return (Flag => 0);
end F;

614 / 1033

Fundamentals of Ada
Limited Types
Creating Values

Quiz
type T is limited record

I : Integer;
end record;

Which piece(s) of code is(are) a legal constructor for T?

A. function F return T is
begin

return T (I => 0);
end F;

B. function F return T is
Val : Integer := 0;

begin
return (I => Val);

end F;

C. function F return T is
Ret : T := (I => 0);

begin
return Ret;

end F;

D. function F return T is
begin

return (0);
end F;

615 / 1033

Fundamentals of Ada
Limited Types
Creating Values

Quiz
type T is limited record

I : Integer;
end record;

Which piece(s) of code is(are) a legal constructor for T?

A. function F return T is
begin

return T (I => 0);
end F;

B. function F return T is
Val : Integer := 0;

begin
return (I => Val);

end F;

C. function F return T is
Ret : T := (I => 0);

begin
return Ret;

end F;

D. function F return T is
begin

return (0);
end F;

615 / 1033

Fundamentals of Ada
Limited Types
Creating Values

Quiz

package P is
type T is limited record

F1 : Integer;
F2 : Character;

end record;
Zero : T := (0, ' ');
One : constant T := (1, 'a');
Two : T;
function F return T;

end P;

Which is a correct completion of F?

A. return (3, ’c’);

B. Two := (2, 'b');
return Two;

C. return One;

D. return Zero;

A contains an "in-place" return. The rest all rely on other objects,
which would require an (illegal) copy.

616 / 1033

Fundamentals of Ada
Limited Types
Creating Values

Quiz

package P is
type T is limited record

F1 : Integer;
F2 : Character;

end record;
Zero : T := (0, ' ');
One : constant T := (1, 'a');
Two : T;
function F return T;

end P;

Which is a correct completion of F?

A. return (3, ’c’);

B. Two := (2, 'b');
return Two;

C. return One;

D. return Zero;

A contains an "in-place" return. The rest all rely on other objects,
which would require an (illegal) copy.

616 / 1033

Fundamentals of Ada
Limited Types
Extended Return Statements

Extended Return Statements

617 / 1033

Fundamentals of Ada
Limited Types
Extended Return Statements

Function Extended Return Statements
Ada 2005

Extended return

Result is expressed as an object

More expressive than aggregates

Handling of unconstrained types

Syntax (simplified):

return identifier : subtype [:= expression];

return identifier : subtype
[do

sequence_of_statements ...
end return];

618 / 1033

Fundamentals of Ada
Limited Types
Extended Return Statements

Extended Return Statements Example

-- Implicitly limited array
type Spin_Lock_Array (Positive range <>) of Spin_Lock;

function F return Spin_Lock_Array is
begin

return Result : Spin_Lock_Array (1 .. 10) do
...

end return;
end F;

619 / 1033

Fundamentals of Ada
Limited Types
Extended Return Statements

Expression / Statements Are Optional
Ada 2005

Without sequence (returns default if any)

function F return Spin_Lock is
begin

return Result : Spin_Lock;
end F;

With sequence

function F return Spin_Lock is
X : Interfaces.Unsigned_8;

begin
-- compute X ...
return Result : Spin_Lock := (Flag => X);

end F;
620 / 1033

Fundamentals of Ada
Limited Types
Extended Return Statements

Statements Restrictions
Ada 2005

No nested extended return

Simple return statement allowed
Without expression
Returns the value of the declared object immediately

function F return Spin_Lock is
begin

return Result : Spin_Lock do
if Set_Flag then

Result.Flag := 1;
return; -- returns 'Result'

end if;
Result.Flag := 0;

end return; -- Implicit return
end F;

621 / 1033

Fundamentals of Ada
Limited Types
Extended Return Statements

Quiz
type T is limited record

I : Integer;
end record;

function F return T is
begin

-- F body...
end F;

O : T := F;

Which declaration(s) of F is(are) valid?

A. return Return : T := (I => 1)

B. return Result : T

C. return Value := (others => 1)

D. return R : T do
R.I := 1;

end return;

A. Using return reserved keyword
B. OK, default value
C. Extended return must specify type
D. OK

622 / 1033

Fundamentals of Ada
Limited Types
Extended Return Statements

Quiz
type T is limited record

I : Integer;
end record;

function F return T is
begin

-- F body...
end F;

O : T := F;

Which declaration(s) of F is(are) valid?

A. return Return : T := (I => 1)

B. return Result : T

C. return Value := (others => 1)

D. return R : T do
R.I := 1;

end return;

A. Using return reserved keyword
B. OK, default value
C. Extended return must specify type
D. OK

622 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Combining Limited and Private Views

623 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Limited Private Types

A combination of limited and private views
No client compile-time visibility to representation
No client assignment or predefined equality

The typical design idiom for limited types

Syntax
Additional reserved word limited added to private type
declaration

type defining_identifier is limited private;

624 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Limited Private Type Rationale (1/2)

package Multiprocessor_Mutex is
-- copying is prevented
type Spin_Lock is limited record

-- but users can see this!
Flag : Interfaces.Unsigned_8;

end record;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);
pragma Inline (Lock, Unlock);

end Multiprocessor_Mutex;

625 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Limited Private Type Rationale (2/2)

package MultiProcessor_Mutex is
-- copying is prevented AND users cannot see contents
type Spin_Lock is limited private;
procedure Lock (The_Lock : in out Spin_Lock);
procedure Unlock (The_Lock : in out Spin_Lock);
pragma Inline (Lock, Unlock);

private
type Spin_Lock is ...

end MultiProcessor_Mutex;

626 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Limited Private Type Completions

Clients have the partial view as limited and private
The full view completion can be any kind of type
Not required to be a record type just because the partial view is
limited

package P is
type Unique_ID_T is limited private;
...

private
type Unique_ID_T is range 1 .. 10;

end P;

627 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Write-Only Register Example

package Write_Only is
type Byte is limited private;
type Word is limited private;
type Longword is limited private;
procedure Assign (Input : in Unsigned_8;

To : in out Byte);
procedure Assign (Input : in Unsigned_16;

To : in out Word);
procedure Assign (Input : in Unsigned_32;

To : in out Longword);
private

type Byte is new Unsigned_8;
type Word is new Unsigned_16;
type Longword is new Unsigned_32;

end Write_Only;
628 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Explicitly Limited Completions

Completion in Full view includes word limited
Optional
Requires a record type as the completion

package MultiProcessor_Mutex is
type Spin_Lock is limited private;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

private
type Spin_Lock is limited -- full view is limited as well

record
Flag : Interfaces.Unsigned_8;

end record;
end MultiProcessor_Mutex;

629 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Effects of Explicitly Limited Completions

Allows no internal copying too
Forces parameters to be passed by-reference

package MultiProcessor_Mutex is
type Spin_Lock is limited private;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

private
type Spin_Lock is limited record

Flag : Interfaces.Unsigned_8;
end record;

end MultiProcessor_Mutex;

630 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Automatically Limited Full View

When other limited types are used in the representation
Recall composite types containing limited types are limited too

package Foo is
type Legal is limited private;
type Also_Legal is limited private;
type Not_Legal is private;
type Also_Not_Legal is private;

private
type Legal is record

S : A_Limited_Type;
end record;
type Also_Legal is limited record

S : A_Limited_Type;
end record;
type Not_Legal is limited record

S : A_Limited_Type;
end record;
type Also_Not_Legal is record

S : A_Limited_Type;
end record;

end Foo;
631 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Quiz
package P is

type Priv is private;
private

type Lim is limited null record;
-- Complete Here

end P;

Which of the following piece(s) of code is(are) legal?

A. type Priv is record
E : Lim;

end record;

B. type Priv is record
E : Float;

end record;

C. type A is array (1 .. 10) of Lim;
type Priv is record

F : A;
end record;

D. type Acc is access Lim;
type Priv is record

F : Acc;
end record;

A. E has limited type, partial view of Priv must be
private limited

B. F has limited type, partial view of Priv must be
private limited

632 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Quiz
package P is

type Priv is private;
private

type Lim is limited null record;
-- Complete Here

end P;

Which of the following piece(s) of code is(are) legal?

A. type Priv is record
E : Lim;

end record;

B. type Priv is record
E : Float;

end record;

C. type A is array (1 .. 10) of Lim;
type Priv is record

F : A;
end record;

D. type Acc is access Lim;
type Priv is record

F : Acc;
end record;

A. E has limited type, partial view of Priv must be
private limited

B. F has limited type, partial view of Priv must be
private limited

632 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Quiz

package P is
type L1_T is limited private;
type L2_T is limited private;
type P1_T is private;
type P2_T is private;

private
type L1_T is limited record

Field : Integer;
end record;
type L2_T is record

Field : Integer;
end record;
type P1_T is limited record

Field : L1_T;
end record;
type P2_T is record

Field : L2_T;
end record;

end P;

What will happen when the above code
is compiled?
A. Type P1_T will generate a

compile error
B. Type P2_T will generate a

compile error
C. Both type P1_T and type P2_T

will generate compile errors
D. The code will compile successfully

The full definition of type P1_T adds
additional restrictions, which is not
allowed. Although P2_T contains a
component whose visible view is
limited, the internal view is not
limited so P2_T is not limited.

633 / 1033

Fundamentals of Ada
Limited Types
Combining Limited and Private Views

Quiz

package P is
type L1_T is limited private;
type L2_T is limited private;
type P1_T is private;
type P2_T is private;

private
type L1_T is limited record

Field : Integer;
end record;
type L2_T is record

Field : Integer;
end record;
type P1_T is limited record

Field : L1_T;
end record;
type P2_T is record

Field : L2_T;
end record;

end P;

What will happen when the above code
is compiled?
A. Type P1_T will generate a

compile error
B. Type P2_T will generate a

compile error
C. Both type P1_T and type P2_T

will generate compile errors
D. The code will compile successfully

The full definition of type P1_T adds
additional restrictions, which is not
allowed. Although P2_T contains a
component whose visible view is
limited, the internal view is not
limited so P2_T is not limited.

633 / 1033

Fundamentals of Ada
Limited Types
Lab

Lab

634 / 1033

Fundamentals of Ada
Limited Types
Lab

Limited Types Lab

Requirements
Create an employee record data type consisting of a name, ID,
hourly pay rate

ID should be unique for every record

Create a timecard record data type consisting of an employee
record, hours worked, and total pay

Create a main program that generates timecards and prints their
contents

Hints
If the ID is unique, that means we cannot copy employee records

635 / 1033

Fundamentals of Ada
Limited Types
Lab

Limited Types Lab Solution - Employee Data (Spec)

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Employee_Data is

type Employee_T is limited private;
type Hourly_Rate_T is delta 0.01 digits 6 range 0.0 .. 999.99;
type Id_T is range 999 .. 9_999;

function Create (Name : String;
Rate : Hourly_Rate_T := 0.0)
return Employee_T;

function Id (Employee : Employee_T) return Id_T;
function Name (Employee : Employee_T) return String;
function Rate (Employee : Employee_T) return Hourly_Rate_T;

private
type Employee_T is limited record

Name : Unbounded_String := Null_Unbounded_String;
Rate : Hourly_Rate_T := 0.0;
Id : Id_T := Id_T'First;

end record;
end Employee_Data;

636 / 1033

Fundamentals of Ada
Limited Types
Lab

Limited Types Lab Solution - Timecards (Spec)
with Employee_Data;
package Timecards is

type Hours_Worked_T is digits 3 range 0.0 .. 24.0;
type Pay_T is digits 6;
type Timecard_T is limited private;

function Create (Name : String;
Rate : Employee_Data.Hourly_Rate_T;
Hours : Hours_Worked_T)
return Timecard_T;

function Id (Timecard : Timecard_T) return Employee_Data.Id_T;
function Name (Timecard : Timecard_T) return String;
function Rate (Timecard : Timecard_T) return Employee_Data.Hourly_Rate_T;
function Pay (Timecard : Timecard_T) return Pay_T;
function Image (Timecard : Timecard_T) return String;

private
type Timecard_T is limited record

Employee : Employee_Data.Employee_T;
Hours_Worked : Hours_Worked_T := 0.0;
Pay : Pay_T := 0.0;

end record;
end Timecards;

637 / 1033

Fundamentals of Ada
Limited Types
Lab

Limited Types Lab Solution - Employee Data (Body)

package body Employee_Data is

Last_Used_Id : Id_T := Id_T'First;

function Create (Name : String;
Rate : Hourly_Rate_T := 0.0)
return Employee_T is

begin
return Ret_Val : Employee_T do

Last_Used_Id := Id_T'Succ (Last_Used_Id);
Ret_Val.Name := To_Unbounded_String (Name);
Ret_Val.Rate := Rate;
Ret_Val.Id := Last_Used_Id;

end return;
end Create;

function Id (Employee : Employee_T) return Id_T is (Employee.Id);
function Name (Employee : Employee_T) return String is (To_String (Employee.Name));
function Rate (Employee : Employee_T) return Hourly_Rate_T is (Employee.Rate);

end Employee_Data;
638 / 1033

Fundamentals of Ada
Limited Types
Lab

Limited Types Lab Solution - Timecards (Body)
package body Timecards is

function Create (Name : String;
Rate : Employee_Data.Hourly_Rate_T;
Hours : Hours_Worked_T)
return Timecard_T is

begin
return (Employee => Employee_Data.Create (Name, Rate),

Hours_Worked => Hours,
Pay => Pay_T (Hours) * Pay_T (Rate));

end Create;

function Id (Timecard : Timecard_T) return Employee_Data.Id_T is
(Employee_Data.Id (Timecard.Employee));

function Name (Timecard : Timecard_T) return String is
(Employee_Data.Name (Timecard.Employee));

function Rate (Timecard : Timecard_T) return Employee_Data.Hourly_Rate_T is
(Employee_Data.Rate (Timecard.Employee));

function Pay (Timecard : Timecard_T) return Pay_T is
(Timecard.Pay);

function Image (Timecard : Timecard_T) return String is
Name_S : constant String := Name (Timecard);
Id_S : constant String := Employee_Data.Id_T'Image (Employee_Data.Id (Timecard.Employee));
Rate_S : constant String := Employee_Data.Hourly_Rate_T'Image

(Employee_Data.Rate (Timecard.Employee));
Hours_S : constant String := Hours_Worked_T'Image (Timecard.Hours_Worked);
Pay_S : constant String := Pay_T'Image (Timecard.Pay);

begin
return Name_S & " (" & Id_S & ") => " & Hours_S & " hours * " & Rate_S & "/hour = " & Pay_S;

end Image;
end Timecards;

639 / 1033

Fundamentals of Ada
Limited Types
Lab

Limited Types Lab Solution - Main

with Ada.Text_IO; use Ada.Text_IO;
with Timecards;
procedure Main is

One : constant Timecards.Timecard_T :=
Timecards.Create (Name => "Fred Flintstone",

Rate => 1.1,
Hours => 2.2);

Two : constant Timecards.Timecard_T :=
Timecards.Create (Name => "Barney Rubble",

Rate => 3.3,
Hours => 4.4);

begin
Put_Line (Timecards.Image (One));
Put_Line (timecards.Image (Two));

end Main;
640 / 1033

Fundamentals of Ada
Limited Types
Summary

Summary

641 / 1033

Fundamentals of Ada
Limited Types
Summary

Summary

Limited view protects against improper operations
Incorrect equality semantics
Copying via assignment

Enclosing composite types are limited too
Even if they don’t use keyword limited themselves

Limited types are always passed by-reference

Extended return statements work for any type
Ada 2005 and later

Don’t make types limited unless necessary
Users generally expect assignment to be available

642 / 1033

Fundamentals of Ada
Program Structure

Program Structure

643 / 1033

Fundamentals of Ada
Program Structure
Introduction

Introduction

644 / 1033

Fundamentals of Ada
Program Structure
Introduction

Introduction

Moving to "bigger" issues of overall program composition
How to compose programs out of program units
How to control object lifetimes
How to define subsystems

645 / 1033

Fundamentals of Ada
Program Structure
Building A System

Building A System

646 / 1033

Fundamentals of Ada
Program Structure
Building A System

What is a System?

Also called Application or Program or ...

Collection of library units

Which are a collection of packages, subprograms, objects

647 / 1033

Fundamentals of Ada
Program Structure
Building A System

Library Units Review

Those units not nested within another program unit

Candidates
Subprograms
Packages
Generic Units
Generic Instantiations
Renamings

Dependencies between library units via with clauses
What happens when two units need to depend on each other?

648 / 1033

Fundamentals of Ada
Program Structure
"limited with" Clauses

"limited with" Clauses

649 / 1033

Fundamentals of Ada
Program Structure
"limited with" Clauses

Handling Cyclic Dependencies

Elaboration must be linear

Package declarations cannot depend on each other
No linear order is possible

Which package elaborates first?

650 / 1033

Fundamentals of Ada
Program Structure
"limited with" Clauses

Body-Level Cross Dependencies Are OK

The bodies only depend on other packages’ declarations
The declarations are already elaborated by the time the bodies are
elaborated

651 / 1033

Fundamentals of Ada
Program Structure
"limited with" Clauses

Resulting Design Problem

Good design dictates that conceptually distinct types appear in
distinct package declarations

Separation of concerns
High level of cohesion

Not possible if they depend on each other

One solution is to combine them in one package, even though
conceptually distinct

Poor software engineering

652 / 1033

Fundamentals of Ada
Program Structure
"limited with" Clauses

Illegal Package Declaration Dependency

with Department;
package Personnel is

type Employee is private;
procedure Assign (This : in Employee;

To : in out Department.Section);
private

type Employee is record
Assigned_To : Department.Section;

end record;
end Personnel;

with Personnel;
package Department is

type Section is private;
procedure Choose_Manager (This : in out Section;

Who : in Personnel.Employee);
private

type Section is record
Manager : Personnel.Employee;

end record;
end Department;

653 / 1033

Fundamentals of Ada
Program Structure
"limited with" Clauses

limited with Clauses
Ada 2005

Solve the cyclic declaration dependency problem
Controlled cycles are now permitted

Provide a limited view of the specified package
Only type names are visible (including in nested packages)
Types are viewed as incomplete types

Normal view

package Personnel is
type Employee is private;
procedure Assign ...

private
type Employee is ...

end Personnel;

Implied limited view

package Personnel is
type Employee;

end Personnel;
654 / 1033

Fundamentals of Ada
Program Structure
"limited with" Clauses

Using Incomplete Types

Anywhere that the compiler doesn’t yet need to know how they
are really represented

Access types designating them

Access parameters designating them

Anonymous access components designating them

As formal parameters and function results

As long as compiler knows them at the point of the call

As generic formal type parameters

As introductions of private types

If tagged, may also use ’Class

Thus typically involves some advanced features
655 / 1033

Fundamentals of Ada
Program Structure
"limited with" Clauses

Legal Package Declaration Dependency
Ada 2005

limited with Department;
package Personnel is

type Employee is private;
procedure Assign (This : in Employee;

To : in out Department.Section);
private

type Employee is record
Assigned_To : access Department.Section;

end record;
end Personnel;

limited with Personnel;
package Department is

type Section is private;
procedure Choose_Manager (This : in out Section;

Who : in Personnel.Employee);
private

type Section is record
Manager : access Personnel.Employee;

end record;
end Department;

656 / 1033

Fundamentals of Ada
Program Structure
"limited with" Clauses

Full with Clause On the Package Body
Ada 2005

Even though declaration has a limited with clause

Typically necessary since body does the work
Dereferencing, etc.

Usual semantics from then on

limited with Personnel;
package Department is
...
end Department;

with Personnel; -- normal view in body
package body Department is
...
end Department;

657 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Hierarchical Library Units

658 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Problem: Packages Are Not Enough

Extensibility is a problem for private types
Provide excellent encapsulation and abstraction
But one has either complete visibility or essentially none
New functionality must be added to same package for sake of
compile-time visibility to representation
Thus enhancements require editing/recompilation/retesting

Should be something "bigger" than packages
Subsystems

Directly relating library items in one name-space

One big package has too many disadvantages

Avoiding name clashes among independently-developed code

659 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Solution: Hierarchical Library Units

Address extensibility issue
Can extend packages with
visibility to parent private
part
Extensions do not require
recompilation of parent
unit
Visibility of parent’s
private part is protected

Directly support subsystems
Extensions all have the
same ancestor root name

660 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Programming By Extension

Parent unit

package Complex is
type Number is private;
function "*" (Left, Right : Number) return Number;
function "/" (Left, Right : Number) return Number;
function "+" (Left, Right : Number) return Number;
function "-" (Left, Right : Number) return Number;

...
private

type Number is record
Real_Part, Imaginary_Part : Float;

end record;
end Complex;

Extension created to work with parent unit

package Complex.Utils is
procedure Put (C : in Number);
function As_String (C : Number) return String;
...

end Complex.Utils;
661 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Extension Can See Private Section

With certain limitations

with Ada.Text_IO;
package body Complex.Utils is

procedure Put(C : in Number) is
begin

Ada.Text_IO.Put(As_String(C));
end Put;
function As_String(C : Number) return String is
begin

-- Real_Part and Imaginary_Part are
-- visible to child's body
return "(" & Float'Image(C.Real_Part) & ", " &

Float'Image(C.Imaginary_Part) & ")";
end As_String;

...
end Complex.Utils;

662 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Subsystem Approach

with Interfaces.C;
package OS is -- Unix and/or POSIX
type File_Descriptor is new Interfaces.C.int;
...

end OS;

package OS.Mem_Mgmt is
...
procedure Dump (File : File_Descriptor;

Requested_Location : System.Address;
Requested_Size : Interfaces.C.Size_T);

...
end OS.Mem_Mgmt;

package OS.Files is
...
function Open (Device : Interfaces.C.char_array;

Permission : Permissions := S_IRWXO)
return File_Descriptor;

...
end OS.Files;

663 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Predefined Hierarchies

Standard library facilities are children of Ada
Ada.Text_IO
Ada.Calendar
Ada.Command_Line
Ada.Exceptions
et cetera

Other root packages are also predefined
Interfaces.C
Interfaces.Fortran
System.Storage_Pools
System.Storage_Elements
et cetera

664 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Hierarchical Visibility

Children can see ancestors’
visible and private parts

All the way up to the root
library unit

Siblings have no automatic
visibility to each other
Visibility same as nested

As if child library units are
nested within parents

All child units come
after the root parent’s
specification
Grandchildren within
children,
great-grandchildren
within ...

665 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Example of Visibility As If Nested

package Complex is
type Number is private;
function "*" (Left, Right : Number) return Number;
function "/" (Left, Right : Number) return Number;
function "+" (Left, Right : Number) return Number;
...

private
type Number is record

Real_Part : Float;
Imaginary : Float;

end record;
package Utils is

procedure Put (C : in Number);
function As_String (C : Number) return String;
...

end Utils;
end Complex;

666 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

with Clauses for Ancestors are Implicit

Because children can
reference ancestors’ private
parts

Code is not in executable
unless somewhere in the
with clauses

Explicit clauses for ancestors
are redundant but OK

package Parent is
...

private
A : Integer := 10;

end Parent;

-- no "with" of parent needed
package Parent.Child is

...
private

B : Integer := Parent.A;
-- no dot-notation needed
C : integer := A;

end Parent.Child;
667 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

with Clauses for Siblings are Required

If references are intended

with A.Foo; -- required
package body A.Bar is

...
-- 'Foo' is directly visible because of the
-- implied nesting rule
X : Foo.Typemark;

end A.Bar;

668 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Quiz
package Parent is

Parent_Object : Integer;
end Parent;

package Parent.Sibling is
Sibling_Object : Integer;

end Parent.Sibling;

package Parent.Child is
Child_Object : Integer := ? ;

end Parent.Child;

Which is not a legal initialization of Child_Object?

A. Parent.Parent_Object + Parent.Sibling.Sibling_Object
B. Parent_Object + Sibling.Sibling_Object
C. Parent_Object + Sibling_Object
D. All of the above

A, B, and C are illegal because there is no reference to package
Parent.Sibling (the reference to Parent is implied by the hierarchy).
If Parent.Child had "with Parent.Sibling;", then A and B
would be legal, but C would still be incorrect because there is no
implied reference to a sibling.

669 / 1033

Fundamentals of Ada
Program Structure
Hierarchical Library Units

Quiz
package Parent is

Parent_Object : Integer;
end Parent;

package Parent.Sibling is
Sibling_Object : Integer;

end Parent.Sibling;

package Parent.Child is
Child_Object : Integer := ? ;

end Parent.Child;

Which is not a legal initialization of Child_Object?

A. Parent.Parent_Object + Parent.Sibling.Sibling_Object
B. Parent_Object + Sibling.Sibling_Object
C. Parent_Object + Sibling_Object
D. All of the above

A, B, and C are illegal because there is no reference to package
Parent.Sibling (the reference to Parent is implied by the hierarchy).
If Parent.Child had "with Parent.Sibling;", then A and B
would be legal, but C would still be incorrect because there is no
implied reference to a sibling.

669 / 1033

Fundamentals of Ada
Program Structure
Visibility Limits

Visibility Limits

670 / 1033

Fundamentals of Ada
Program Structure
Visibility Limits

Parents Do Not Know Their Children!

Children grant themselves access to ancestors’ private parts
May be created well after parent
Parent doesn’t know if/when child packages will exist

Alternative is to grant access when declared
Like friend units in C++

But would have to be prescient!

Or else adding children requires modifying parent

Hence too restrictive

Note: Parent body can reference children
Typical method of parsing out complex processes

671 / 1033

Fundamentals of Ada
Program Structure
Visibility Limits

Correlation to C++ Class Visibility Controls

Ada private part is visible to
child units
package P is

A ...
private

B ...
end P;
package body P is

C ...
end P;

Thus private part is like the
protected part in C++
class C {
public:

A ...
protected:

B ...
private:

C ...
};

672 / 1033

Fundamentals of Ada
Program Structure
Visibility Limits

Visibility Limits

Visibility to parent’s private part is not open-ended
Only visible to private parts and bodies of children
As if only private part of child package is nested in parent

Recall users can only reference exported declarations
Child public spec only has access to parent public spec

package Parent is
...

private
type Parent_T is ...

end Parent;

package Parent.Child is
-- Parent_T is not visible here!

private
-- Parent_T is visible here

end Parent.Child;

package body Parent.Child is
-- Parent_T is visible here

end Parent.Child;
673 / 1033

Fundamentals of Ada
Program Structure
Visibility Limits

Children Can Break Abstraction

Could break a parent’s abstraction
Alter a parent package state
Alters an ADT object state

Useful for reset, testing: fault injections...

package Stack is
...

private
Values : array (1 .. N) of Foo;
Top : Natural range 0 .. N := 0

end Stack;

package body Stack.Reset is
procedure Reset is
begin

Top := 0;
end Reset;

end Stack.Tools;
674 / 1033

Fundamentals of Ada
Program Structure
Visibility Limits

Using Children for Debug

Provide accessors to parent’s private information
eg internal metrics...

package P is
...

private
Internal_Counter : Integer := 0;

end P;

package P.Child is
function Count return Integer;

end P.Child;

package body P.Child is
function Count return Integer is
begin

return Internal_Counter;
end Count;

end P.Child;
675 / 1033

Fundamentals of Ada
Program Structure
Visibility Limits

Quiz
package P is

procedure Initialize;
Object_A : Integer;

private
Object_B : Integer;

end P;

package body P is
Object_C : Integer;
procedure Initialize is null;

end P;

package P.Child is
function X return Integer;

end P.Child;

Which return statement would be illegal in
P.Child.X?
A. return Object_A;
B. return Object_B;
C. return Object_C;
D. None of the above

Explanations
A. Object_A is in the public part of P -

visible to any unit that with’s P
B. Object_B is in the private part of P -

visible in the private part or body of
any descendant of P

C. Object_C is in the body of P, so it is
only visible in the body of P

D. A and B are both valid completions

676 / 1033

Fundamentals of Ada
Program Structure
Visibility Limits

Quiz
package P is

procedure Initialize;
Object_A : Integer;

private
Object_B : Integer;

end P;

package body P is
Object_C : Integer;
procedure Initialize is null;

end P;

package P.Child is
function X return Integer;

end P.Child;

Which return statement would be illegal in
P.Child.X?
A. return Object_A;
B. return Object_B;
C. return Object_C;
D. None of the above

Explanations
A. Object_A is in the public part of P -

visible to any unit that with’s P
B. Object_B is in the private part of P -

visible in the private part or body of
any descendant of P

C. Object_C is in the body of P, so it is
only visible in the body of P

D. A and B are both valid completions

676 / 1033

Fundamentals of Ada
Program Structure
Private Children

Private Children

677 / 1033

Fundamentals of Ada
Program Structure
Private Children

Private Children

Intended as implementation artifacts

Only available within subsystem
Rules prevent with clauses by clients

Thus cannot export anything outside subsystem

Thus have no parent visibility restrictions

Public part of child also has visibility to ancestors’ private parts

private package Maze.Debug is
procedure Dump_State;
...

end Maze.Debug;

678 / 1033

Fundamentals of Ada
Program Structure
Private Children

Rules Preventing Private Child Visibility

Only available within immediate family
Rest of subsystem cannot import them

Public unit declarations have import restrictions
To prevent re-exporting private information

Public unit bodies have no import restrictions
Since can’t re-export any imported info

Private units can import anything
Declarations and bodies can import public and private units
Cannot be imported outside subsystem so no restrictions

679 / 1033

Fundamentals of Ada
Program Structure
Private Children

Import Rules

Only parent of private unit and its descendants can import a
private child

Public unit declarations import restrictions
Not allowed to have with clauses for private units

Exception explained in a moment

Precludes re-exporting private information

Private units can import anything
Declarations and bodies can import private children

680 / 1033

Fundamentals of Ada
Program Structure
Private Children

Some Public Children Are Trustworthy

Would only use a private sibling’s exports privately
But rules disallow with clause

private package OS.UART is
type Device is limited private;
procedure Open (This : out Device; ...);
...

end OS.UART;

-- illegal - private child
with OS.UART;
package OS.Serial is

type COM_Port is limited private;
...

private
type COM_Port is limited record

-- but I only need it here!
COM : OS.UART.Device;

...
end record;

end OS.Serial;
681 / 1033

Fundamentals of Ada
Program Structure
Private Children

Solution 1: Move Type To Parent Package

package OS is
...

private
-- no longer an ADT!
type Device is limited private;

...
end OS;
private package OS.UART is

procedure Open (This : out Device;
...);

...
end OS.UART;

package OS.Serial is
type COM_Port is limited private;
...

private
type COM_Port is limited record

COM : Device; -- now visible
...

end record;
end OS.Serial;

682 / 1033

Fundamentals of Ada
Program Structure
Private Children

Solution 2: Partially Import Private Unit
Ada 2005

Via private with clause

Syntax

private with package_name {, package_name} ;

Public declarations can then access private siblings
But only in their private part
Still prevents exporting contents of private unit

The specified package need not be a private unit
But why bother otherwise

683 / 1033

Fundamentals of Ada
Program Structure
Private Children

private with Example
Ada 2005

private package OS.UART is
type Device is limited private;
procedure Open (This : out Device;

...);
...

end OS.UART;

private with OS.UART;
package OS.Serial is

type COM_Port is limited private;
...

private
type COM_Port is limited record

COM : OS.UART.Device;
...

end record;
end OS.Serial;

684 / 1033

Fundamentals of Ada
Program Structure
Private Children

Combining Private and Limited Withs
Ada 2005

Cyclic declaration dependencies allowed
A public unit can with a private unit
With-ed unit only visible in the private part

limited with Parent.Public_Child;
private package Parent.Private_Child is

type T is ...
end Parent.Private_Child;

limited private with Parent.Private_Child;
package Parent.Public_Child is

...
private

X : access Parent.Private_Child.T;
end Parent.Public_Child;

685 / 1033

Fundamentals of Ada
Program Structure
Private Children

Completely Hidden Declarations

Anything in a package body is completely hidden
Children have no access to package bodies

Precludes extension using the entity
Must know that children will never need it

package body Skippy is
X : Integer := 0;
...

end Skippy;

686 / 1033

Fundamentals of Ada
Program Structure
Private Children

Child Subprograms

Child units can be subprograms
Recall syntax
Both public and private child subprograms

Separate declaration required if private
Syntax doesn’t allow private on subprogram bodies

Only library packages can be parents
Only they have necessary scoping

private procedure Parent.Child;

687 / 1033

Fundamentals of Ada
Program Structure
Lab

Lab

688 / 1033

Fundamentals of Ada
Program Structure
Lab

Program Structure Lab

Requirements
Create a simplistic messaging subsystem

Top-level should define a (private) message type and
constructor/accessor subprograms
Use private child function to calculate message CRC
Use child package to add/remove messages to some kind of list

Use child package for diagnostics

Inject bad CRC into a message
Print message contents

Main program should

Build a list of messages
Inject faults into list
Print messages in list and indicate if any are faulty

689 / 1033

Fundamentals of Ada
Program Structure
Lab

Program Structure Lab Solution - Messages
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Messages is

type Message_T is private;
type Kind_T is (Command, Query);
subtype Content_T is String;

function Create (Kind : Kind_T;
Content : Content_T)
return Message_T;

function Kind (Message : Message_T) return Kind_T;
function Content (Message : Message_T) return Content_T;

private
type Crc_T is mod Integer'Last;
type Message_T is record

Kind : Kind_T;
Content : Unbounded_String;
Crc : Crc_T;

end record;
end Messages;

with Messages.Crc;
package body Messages is

function Create (Kind : Kind_T;
Content : Content_T)
return Message_T is

begin
return (Kind => Kind,

Content => To_Unbounded_String (Content),
Crc => Crc (Content));

end Create;

function Kind (Message : Message_T) return Kind_T is (Message.Kind);
function Content (Message : Message_T) return Content_T is (To_String (Message.Content));

end Messages;

690 / 1033

Fundamentals of Ada
Program Structure
Lab

Program Structure Lab Solution - Message Queue
package Messages.Queue is

function Empty return Boolean;
function Full return Boolean;

procedure Push (Message : Message_T);
procedure Pop (Message : out Message_T;

Valid : out Boolean);
private

The_Queue : array (1 .. 10) of Message_T;
Top : Integer := 0;
function Empty return Boolean is (Top = 0);
function Full return Boolean is (Top = The_Queue'Last);

end Messages.Queue;

with Messages.Crc;
package body Messages.Queue is

procedure Push (Message : Message_T) is
begin

Top := Top + 1;
The_Queue (Top) := Message;

end Push;

procedure Pop (Message : out Message_T;
Valid : out Boolean) is

begin
Message := The_Queue (Top);
Top := Top - 1;
Valid := Message.Crc = Crc (To_String (Message.Content));

end Pop;
end Messages.Queue;

691 / 1033

Fundamentals of Ada
Program Structure
Lab

Program Structure Lab Solution - Diagnostics

package Messages.Queue.Debug is
function Queue_Length return Integer;
procedure Inject_Crc_Fault (Position : Integer);
function Text (Message : Message_T) return String;

end Messages.Queue.Debug;

package body Messages.Queue.Debug is
function Queue_Length return Integer is (Top);

procedure Inject_Crc_Fault (Position : Integer) is
begin

The_Queue (Position).Crc := The_Queue (Position).Crc + 1;
end Inject_Crc_Fault;

function Text (Message : Message_T) return String is
(Kind_T'Image (Message.Kind) & " => " & To_String (Message.Content) &
" (" & Crc_T'Image (Message.Crc) & ")");

end Messages.Queue.Debug;
692 / 1033

Fundamentals of Ada
Program Structure
Lab

Program Structure Lab Solution - CRC

private function Messages.Crc (Content : Content_T)
return Crc_T;

function Messages.Crc (Content : Content_T)
return Crc_T is

Ret_Val : Crc_T := 1;
begin

for C of Content
loop

Ret_Val := Ret_Val * Character'Pos (C);
end loop;
return Ret_Val;

end Messages.Crc;

693 / 1033

Fundamentals of Ada
Program Structure
Lab

Program Structure Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Messages;
with Messages.Queue;
with Messages.Queue.Debug;
procedure Main is

Char : Character := 'A';
Content : String (1 .. 10);
Message : Messages.Message_T;
Valid : Boolean;

begin
while not Messages.Queue.Full loop

Content := (others => Char);
Messages.Queue.Push (Messages.Create (Kind => Messages.Command,

Content => Content));
Char := Character'Succ (Char);

end loop;

-- inject some faults
Messages.Queue.Debug.Inject_Crc_Fault (3);
Messages.Queue.Debug.Inject_Crc_Fault (6);

while not Messages.Queue.Empty loop
Put (Integer'Image (Messages.Queue.Debug.Queue_Length) & ") ");
Messages.Queue.Pop (Message, Valid);
Put_Line (Boolean'Image (Valid) & " " & Messages.Queue.Debug.Text (Message));

end loop;

end Main;

694 / 1033

Fundamentals of Ada
Program Structure
Summary

Summary

695 / 1033

Fundamentals of Ada
Program Structure
Summary

Summary

Hierarchical library units address important issues
Direct support for subsystems
Extension without recompilation
Separation of concerns with controlled sharing of visibility (Ada
2012)

Parents should document assumptions for children
"These must always be in ascending order!"

Children cannot misbehave unless imported ("with’ed")

The writer of a child unit must be trusted
As much as if he or she were to modify the parent itself

696 / 1033

Fundamentals of Ada
Visibility

Visibility

697 / 1033

Fundamentals of Ada
Visibility
Introduction

Introduction

698 / 1033

Fundamentals of Ada
Visibility
Introduction

Improving Readability

Descriptive names plus hierarchical packages makes for very long
statements

Messages.Queue.Diagnostics.Inject_Fault (
Fault => Messages.Queue.Diagnostics.CRC_Failure,
Position => Messages.Queue.Front);

Operators treated as functions defeat the purpose of overloading

Complex1 := Complex_Types."+" (Complex2, Complex3);

Ada has mechanisms to simplify hierarchies

699 / 1033

Fundamentals of Ada
Visibility
Introduction

Operators and Primitives

Operators

Constructs which behave generally like functions but which differ
syntactically or semantically.
Typically arithmetic, comparison, and logical

Primitive operation
Predefined operations such as = and + etc.
Subprograms declared in the same package as the type and which
operate on the type
Inherited or overridden subprograms
For tagged types, class-wide subprograms
Enumeration literals

700 / 1033

Fundamentals of Ada
Visibility
"use" Clauses

"use" Clauses

701 / 1033

Fundamentals of Ada
Visibility
"use" Clauses

use Clauses

Provide direct visibility into packages’ exported items

Direct Visibility - as if object was referenced from within package
being used

May still use expanded name

package Ada.Text_IO is
procedure Put_Line(...);
procedure New_Line(...);
...

end Ada.Text_IO;

with Ada.Text_IO;
procedure Hello is

use Ada.Text_IO;
begin

Put_Line("Hello World");
New_Line(3);
Ada.Text_IO.Put_Line ("Good bye");

end Hello;
702 / 1033

Fundamentals of Ada
Visibility
"use" Clauses

use Clause Syntax

May have several, like with clauses

Can refer to any visible package (including nested packages)

Syntax

use_package_clause ::= use package_name {, package_name};

Can only use a package
Subprograms have no contents to use

703 / 1033

Fundamentals of Ada
Visibility
"use" Clauses

use Clause Scope
Applies to end of body, from first occurrence

package Pkg_A is
Constant_A : constant := 123;

end Pkg_A;

package Pkg_B is
Constant_B : constant := 987;

end Pkg_B;

with Pkg_A;
with Pkg_B;
use Pkg_A; -- everything in Pkg_A is now visible
package P is

A : Integer := Constant_A; -- legal
B1 : Integer := Constant_B; -- illegal
use Pkg_B; -- everything in Pkg_B is now visible
B2 : Integer := Constant_B; -- legal
function F return Integer;

end P;

package body P is
-- all of Pkg_A and Pkg_B is visible here
function F return Integer is (Constant_A + Constant_B);

end P;
704 / 1033

Fundamentals of Ada
Visibility
"use" Clauses

No Meaning Changes

A new use clause won’t change a program’s meaning!
Any directly visible names still refer to the original entities

package D is
T : Real;

end D;

with D;
procedure P is

procedure Q is
T, X : Real;

begin
...
declare

use D;
begin

-- With or without the clause, "T" means Q.T
X := T;

end;
...

end Q;
705 / 1033

Fundamentals of Ada
Visibility
"use" Clauses

No Ambiguity Introduction

package D is
V : Boolean;

end D;

package E is
V : Integer;

end E;
with D, E;

procedure P is
procedure Q is

use D, E;
begin

-- to use V here, must specify D.V or E.V
...

end Q;
begin
...

706 / 1033

Fundamentals of Ada
Visibility
"use" Clauses

use Clauses and Child Units

A clause for a child does not imply one for its parent

A clause for a parent makes the child directly visible
Since children are ’inside’ declarative region of parent

package Parent is
P1 : Integer;

end Parent;

package Parent.Child is
PC1 : Integer;

end Parent.Child;

with Parent.Child;
procedure Demo is

D1 : Integer := Parent.P1;
D2 : Integer := Parent.Child.PC1;
use Parent;
D3 : Integer := P1;
D4 : Integer := Child.PC1;
...

707 / 1033

Fundamentals of Ada
Visibility
"use" Clauses

use Clause and Implicit Declarations

Visibility rules apply to implicit declarations too

package P is
type Int is range Lower .. Upper;
-- implicit declarations
-- function "+"(Left, Right : Int) return Int;
-- function "="(Left, Right : Int) return Boolean;

end P;

with P;
procedure Test is

A, B, C : P.Int := some_value;
begin

C := A + B; -- illegal reference to operator
C:= P."+" (A,B);
declare

-- Provide visibility into operations from P
use P;

begin
C := A + B; -- now legal

end;
end Test;

708 / 1033

Fundamentals of Ada
Visibility
"use type" Clauses

"use type" Clauses

709 / 1033

Fundamentals of Ada
Visibility
"use type" Clauses

use type Clauses

Syntax

use_type_clause ::= use type subtype_mark
{, subtype_mark};

Makes operators directly visible for specified type
Implicit and explicit operator function declarations

Only those that mention the type in the profile

Parameters and/or result type

More specific alternative to use clauses
Especially useful when multiple use clauses introduce ambiguity

710 / 1033

Fundamentals of Ada
Visibility
"use type" Clauses

use type Clause Example

package P is
type Int is range Lower .. Upper;
-- implicit declarations
-- function "+"(Left, Right : Int) return Int;
-- function "="(Left, Right : Int) return Boolean;

end P;
with P;
procedure Test is

A, B, C : P.Int := some_value;
use type P.Int;
D : Int; -- not legal

begin
C := A + B; -- operator is visible

end Test;
711 / 1033

Fundamentals of Ada
Visibility
"use type" Clauses

use Type Clauses and Multiple Types

One clause can make ops for several types visible
When multiple types are in the profiles

No need for multiple clauses in that case

package P is
type Miles_T is digits 6;
type Hours_T is digits 6;
type Speed_T is digits 6;
-- "use type" on any of Miles_T, Hours_T, Speed_T
-- makes operator visible
function "/"(Left : Miles_T;

Right : Hours_T)
return Speed_T;

end P;
712 / 1033

Fundamentals of Ada
Visibility
"use type" Clauses

Multiple use type Clauses
May be necessary
Only those that mention the type in their profile are made visible

package P is
type T1 is range 1 .. 10;
type T2 is range 1 .. 10;
-- implicit
-- function "+"(Left : T2; Right : T2) return T2;
type T3 is range 1 .. 10;
-- explicit
function "+"(Left : T1; Right : T2) return T3;

end P;

with P;
procedure UseType is

X1 : P.T1;
X2 : P.T2;
X3 : P.T3;
use type P.T1;

begin
X3 := X1 + X2; -- operator visible because it uses T1
X2 := X2 + X2; -- operator not visible

end UseType;
713 / 1033

Fundamentals of Ada
Visibility
"use all type" Clauses

"use all type" Clauses

714 / 1033

Fundamentals of Ada
Visibility
"use all type" Clauses

use all type Clauses
Ada 2012

Makes all primitive operations for the type visible
Not just operators
Especially, subprograms that are not operators

Still need a use clause for other entities
Typically exceptions

715 / 1033

Fundamentals of Ada
Visibility
"use all type" Clauses

use all type Clause Example
Ada 2012

package Complex is
type Number is private;
function "+" (Left, Right : Number) return Number;
procedure Make (C : out Number;

From_Real, From_Imag : Float);
...

with Complex;
use all type Complex.Number;
procedure Demo is

A, B, C : Complex.Number;
procedure Non_Primitive (X : Complex.Number) is null;

begin
-- "use all type" makes these available
Make (A, From_Real => 1.0, From_Imag => 0.0);
Make (B, From_Real => 1.0, From_Imag => 0.0);
C := A + B;
-- The following isn't a call to a primitive, so
-- "use type" or "use all type" does not help.
Non_Primitive (0);

end Demo;
716 / 1033

Fundamentals of Ada
Visibility
"use all type" Clauses

use all type v. use type Example
Ada 2012

with Complex; use type Complex.Number;
procedure Demo is

A, B, C : Complex.Number;
Begin

-- these are always allowed
Complex.Make (A, From_Real => 1.0, From_Imag => 0.0);
Complex.Make (B, From_Real => 1.0, From_Imag => 0.0);
-- "use type" does not give access to these
Make (A, 1.0, 0.0); -- not visible
Make (B, 1.0, 0.0); -- not visible
-- but this is good
C := A + B;
Complex.Put (C);
-- this is not allowed
Put (C); -- not visible

end Demo;
717 / 1033

Fundamentals of Ada
Visibility
Renaming Entities

Renaming Entities

718 / 1033

Fundamentals of Ada
Visibility
Renaming Entities

Three Positives Make a Negative

Good Coding Practices ...
Descriptive names
Modularization
Subsystem hierarchies

Can result in cumbersome references

-- use cosine rule to determine distance between two points,
-- given angle and distances between observer and 2 points
-- A**2 = B**2 + C**2 - 2*B*C*cos(A)
Observation.Sides (Viewpoint_Types.Point1_Point2) :=

Math_Utilities.Square_Root
(Observation.Sides (Viewpoint_Types.Observer_Point1)**2 +
Observation.Sides (Viewpoint_Types.Observer_Point2)**2 +
2.0 * Observation.Sides (Viewpoint_Types.Observer_Point1) *

Observation.Sides (Viewpoint_Types.Observer_Point2) *
Math_Utilities.Trigonometry.Cosine

(Observation.Vertices (Viewpoint_Types.Observer)));
719 / 1033

Fundamentals of Ada
Visibility
Renaming Entities

Writing Readable Code - Part 1

We could use use on package names to remove some dot-notation

-- use cosine rule to determine distance between two points, given angle
-- and distances between observer and 2 points A**2 = B**2 + C**2 -
-- 2*B*C*cos(A)
Observation.Sides (Point1_Point2) :=

Square_Root
(Observation.Sides (Observer_Point1)**2 +
Observation.Sides (Observer_Point2)**2 +
2.0 * Observation.Sides (Observer_Point1) *

Observation.Sides (Observer_Point2) *
Cosine (Observation.Vertices (Observer)));

But that only shortens the problem, not simplifies it
If there are multiple "use" clauses in scope:

Reviewer may have hard time finding the correct definition
Homographs may cause ambiguous reference errors

We want the ability to refer to certain entities by another name
(like an alias) with full read/write access (unlike temporary
variables)

720 / 1033

Fundamentals of Ada
Visibility
Renaming Entities

The renames Keyword

Certain entities can be renamed within a declarative region
Packages

package Trig renames Math.Trigonometry

Objects (or elements of objects)

Angles : Viewpoint_Types.Vertices_Array_T
renames Observation.Vertices;

Required_Angle : Viewpoint_Types.Vertices_T
renames Viewpoint_Types.Observer;

Subprograms

function Sqrt (X : Base_Types.Float_T)
return Base_Types.Float_T
renames Math.Square_Root;

721 / 1033

Fundamentals of Ada
Visibility
Renaming Entities

Writing Readable Code - Part 2

With renames our complicated code example is easier to
understand

begin
package Math renames Math_Utilities;
package Trig renames Math.Trigonometry;

function Sqrt (X : Base_Types.Float_T) return Base_Types.Float_T
renames Math.Square_Root;

Side1 : Base_Types.Float_T
renames Observation.Sides (Viewpoint_Types.Observer_Point1);

-- Rename the others as Side2, Angles, Required_Angle, Desired_Side
begin

...
-- use cosine rule to determine distance between two points, given angle
-- and distances between observer and 2 points A**2 = B**2 + C**2 -
-- 2*B*C*cos(A)
Desired_Side :=

Sqrt (Side1**2 + Side2**2 +
2.0 * Side1 * Side2 * Trig.Cosine (Angles (Required_Angle)));

end;
722 / 1033

Fundamentals of Ada
Visibility
Lab

Lab

723 / 1033

Fundamentals of Ada
Visibility
Lab

Visibility Lab

Requirements
Create a types package for calculating speed in miles per hour

At least two different distance measurements (e.g. feet, kilometers)
At least two different time measurements (e.g. seconds, minutes)
Overloaded operators and/or primitives to handle calculations

Create a types child package for converting distance, time, and
mph into a string

Use Ada.Text_IO.Float_IO package to convert floating point to
string
Create visible global objects to set Exp and Aft parameters for Put

Create a main program to enter distance and time and then print
speed value

Hints
use to get full visibility to Ada.Text_IO

use type to get access to calculations

use all type if calculations are primitives

renames to make using Exp and Aft easier
724 / 1033

Fundamentals of Ada
Visibility
Lab

Visibility Lab Solution - Types
package Types is

type Mph_T is digits 6;
type Feet_T is digits 6;
type Miles_T is digits 6;
type Kilometers_T is digits 6;
type Seconds_T is digits 6;
type Minutes_T is digits 6;
type Hours_T is digits 6;

function "/" (Distance : Feet_T; Time : Seconds_T) return Mph_T;
function "/" (Distance : Kilometers_T; Time : Minutes_T) return Mph_T;
function "/" (Distance : Miles_T; Time : Hours_T) return Mph_T;

function Convert (Distance : Feet_T) return Miles_T;
function Convert (Distance : Kilometers_T) return Miles_T;
function Convert (Time : Seconds_T) return Hours_T;
function Convert (Time : Minutes_T) return Hours_T;

end Types;

package body Types is
function "/" (Distance : Feet_T; Time : Seconds_T) return Mph_T is (Convert (Distance) / Convert (Time));
function "/" (Distance : Kilometers_T; Time : Minutes_T) return Mph_T is (Convert (Distance) / Convert (Time));
function "/" (Distance : Miles_T; Time : Hours_T) return Mph_T is (Mph_T (Distance) / Mph_T (Time));

function Convert (Distance : Feet_T) return Miles_T is (Miles_T (Distance) / 5_280.0);
function Convert (Distance : Kilometers_T) return Miles_T is (Miles_T (Distance) / 1.6);

function Convert (Time : Seconds_T) return Hours_T is (Hours_T (Time) / (60.0 * 60.0));
function Convert (Time : Minutes_T) return Hours_T is (Hours_T (Time) / 60.0);

end Types;

725 / 1033

Fundamentals of Ada
Visibility
Lab

Visibility Lab Solution - Types.Strings
package Types.Strings is

Exponent_Digits : Natural := 2;
Digits_After_Decimal : Natural := 3;

function To_String (Value : Mph_T) return String;
function To_String (Value : Feet_T) return String;
function To_String (Value : Miles_T) return String;
function To_String (Value : Kilometers_T) return String;
function To_String (Value : Seconds_T) return String;
function To_String (Value : Minutes_T) return String;
function To_String (Value : Hours_T) return String;

end Types.Strings;

with Ada.Text_IO; use Ada.Text_IO;
package body Types.Strings is

package Io is new Ada.Text_IO.Float_IO (Float);
function To_String (Value : Float) return String is

Ret_Val : String (1 .. 30);
begin

Io.Put (To => Ret_Val,
Item => Value,
Aft => Digits_After_Decimal,
Exp => Exponent_Digits);

for I in reverse Ret_Val'Range loop
if Ret_Val (I) = ' ' then

return Ret_Val (I + 1 .. Ret_Val'Last);
end if;

end loop;
return Ret_Val;

end To_String;

function To_String (Value : Mph_T) return String is (To_String (Float (Value)));
function To_String (Value : Feet_T) return String is (To_String (Float (Value)));
function To_String (Value : Miles_T) return String is (To_String (Float (Value)));
function To_String (Value : Kilometers_T) return String is (To_String (Float (Value)));
function To_String (Value : Seconds_T) return String is (To_String (Float (Value)));
function To_String (Value : Minutes_T) return String is (To_String (Float (Value)));
function To_String (Value : Hours_T) return String is (To_String (Float (Value)));

end Types.Strings;

726 / 1033

Fundamentals of Ada
Visibility
Lab

Visibility Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Types; use Types;
with Types.Strings;
procedure Main is

Aft : Integer renames Types.Strings.Digits_After_Decimal;
Exp : Integer renames Types.Strings.Exponent_Digits;

Feet : Feet_T;
Miles : Miles_T;
Kilometers : Kilometers_T;
Seconds : Seconds_T;
Minutes : Minutes_T;
Hours : Hours_T;
Mph : Mph_T;

function Get (Prompt : String) return String is
begin

Put (Prompt & "> ");
return Get_Line;

end Get;

begin
Feet := Feet_T'Value (Get ("Feet"));
Miles := Miles_T'Value (Get ("Miles"));
Kilometers := Kilometers_T'Value (Get ("Kilometers"));

Seconds := Seconds_T'Value (Get ("Seconds"));
Minutes := Minutes_T'Value (Get ("Minutes"));
Hours := Hours_T'Value (Get ("Hours"));

Aft := 2;
Exp := 2;
Mph := Feet / Seconds;
Put_Line (Strings.To_String (Feet) & " feet / " & Strings.To_String (Seconds) &

" seconds = " & Strings.To_String (Mph) & " mph");
Aft := Aft + 1;
Exp := Exp + 1;
Mph := Miles / Hours;
Put_Line (Strings.To_String (Miles) & " miles / " & Strings.To_String (Hours) &

" hour = " & Strings.To_String (Mph) & " mph");
Aft := Aft + 1;
Exp := Exp + 1;
Mph := Kilometers / Minutes;
Put_Line (Strings.To_String (Kilometers) & " km / " & Strings.To_String (Minutes) &

" minute = " & Strings.To_String (Mph) & " mph");
end Main;

727 / 1033

Fundamentals of Ada
Visibility
Summary

Summary

728 / 1033

Fundamentals of Ada
Visibility
Summary

Summary
Ada 2012

use clauses are not evil but can be abused
Can make it difficult for others to understand code

use all type clauses are more likely in practice than use type
clauses

Only available in Ada 2012 and later

Renames allow us to alias entities to make code easier to read
Subprogram renaming has many other uses, such as adding /
removing default parameter values

729 / 1033

Fundamentals of Ada
Access Types

Access Types

730 / 1033

Fundamentals of Ada
Access Types
Introduction

Introduction

731 / 1033

Fundamentals of Ada
Access Types
Introduction

Access Types Design

Memory addresses objects are called access types
Objects are associated to pools of memory

With different allocation / deallocation policies
Access objects are guaranteed to always be meaningful

In the absence of Unchecked_Deallocation
And if pool-specific

Ada
type Integer_Pool_Access

is access Integer;
P_A : Integer_Pool_Access

:= new Integer;

type Integer_General_Access
is access all Integer;

G : aliased Integer
G_A : Integer_General_Access := G'access;

C++
int * P_C = malloc (sizeof (int));
int * P_CPP = new int;
int * G_C = &Some_Int;

.
732 / 1033

Fundamentals of Ada
Access Types
Introduction

Access Types Can Be Dangerous

Multiple memory issues
Leaks / corruptions

Introduces potential random failures complicated to analyze

Increase the complexity of the data structures

May decrease the performances of the application
Dereferences are slightly more expensive than direct access
Allocations are a lot more expensive than stacking objects

Ada avoids using accesses as much as possible
Arrays are not pointers
Parameters are implicitly passed by reference

Only use them when needed
733 / 1033

Fundamentals of Ada
Access Types
Introduction

Stack vs Heap

I : Integer := 0;
J : String := "Some Long String";

I : Access_Int:= new Integer'(0);
J : Access_Str := new String'("Some Long String");

734 / 1033

Fundamentals of Ada
Access Types
Access Types

Access Types

735 / 1033

Fundamentals of Ada
Access Types
Access Types

Declaration Location

Can be at library level

package P is
type String_Access is access String;

end P;

Can be nested in a procedure

package body P is
procedure Proc is

type String_Access is access String;
begin

...
end Proc;

end P;

Nesting adds non-trivial issues
Creates a nested pool with a nested accessibility
Don’t do that unless you know what you are doing! (see later)

736 / 1033

Fundamentals of Ada
Access Types
Access Types

Null Values

A pointer that does not point to any actual data has a null value
Without an initialization, a pointer is null by default
null can be used in assignments and comparisons

declare
type Acc is access all Integer;
V : Acc;

begin
if V = null then

-- will go here
end if
V := new Integer'(0);
V := null; -- semantically correct, but memory leak

737 / 1033

Fundamentals of Ada
Access Types
Access Types

Access Types and Primitives

Subprogram using an access type are primitive of the access type
Not the type of the accessed object

type A_T is access all T;
procedure Proc (V : A_T); -- Primitive of A_T, not T

Primitive of the type can be created with the access mode
Anonymous access type

procedure Proc (V : access T); -- Primitive of T

738 / 1033

Fundamentals of Ada
Access Types
Access Types

Dereferencing Pointers

.all does the access dereference
Lets you access the object pointed to by the pointer

.all is optional for
Access on a component of an array
Access on a component of a record

739 / 1033

Fundamentals of Ada
Access Types
Access Types

Dereference Examples

type R is record
F1, F2 : Integer;

end record;
type A_Int is access Integer;
type A_String is access all String;
type A_R is access R;
V_Int : A_Int := new Integer;
V_String : A_String := new String'("abc");
V_R : A_R := new R;

V_Int.all := 0;
V_String.all := "cde";
V_String (1) := 'z'; -- similar to V_String.all (1) := 'z';
V_R.all := (0, 0);
V_R.F1 := 1; -- similar to V_R.all.F1 := 1;

740 / 1033

Fundamentals of Ada
Access Types
Pool-Specific Access Types

Pool-Specific Access Types

741 / 1033

Fundamentals of Ada
Access Types
Pool-Specific Access Types

Pool-Specific Access Type

An access type is a type

type T is [...]
type T_Access is access T;
V : T_Access := new T;

Conversion is not possible between pool-specific access types

742 / 1033

Fundamentals of Ada
Access Types
Pool-Specific Access Types

Allocations

Objects are created with the new reserved word

The created object must be constrained
The constraint is given during the allocation

V : String_Access := new String (1 .. 10);

The object can be created by copying an existing object - using a
qualifier

V : String_Access := new String'("This is a String");

743 / 1033

Fundamentals of Ada
Access Types
Pool-Specific Access Types

Deallocations

Deallocations are unsafe
Multiple deallocations problems
Memory corruptions
Access to deallocated objects

As soon as you use them, you lose the safety of your pointers

But sometimes, you have to do what you have to do ...
There’s no simple way of doing it
Ada provides Ada.Unchecked_Deallocation
Has to be instantiated (it’s a generic)
Must work on an object, reset to null afterwards

744 / 1033

Fundamentals of Ada
Access Types
Pool-Specific Access Types

Deallocation Example

-- generic used to deallocate memory
with Ada.Unchecked_Deallocation;
procedure P is

type An_Access is access A_Type;
-- create instances of deallocation function
-- (object type, access type)
procedure Free is new Ada.Unchecked_Deallocation

(A_Type, An_Access);
V : An_Access := new A_Type;

begin
Free (V);
-- V is now null

end P;

745 / 1033

Fundamentals of Ada
Access Types
General Access Types

General Access Types

746 / 1033

Fundamentals of Ada
Access Types
General Access Types

General Access Types

Can point to any pool (including stack)

type T is [...]
type T_Access is access all T;
V : T_Access := new T;

Still distinct type

Conversions are possible

type T_Access_2 is access all T;
V2 : T_Access_2 := T_Access_2 (V); -- legal

747 / 1033

Fundamentals of Ada
Access Types
General Access Types

Referencing The Stack

By default, stack-allocated objects cannot be referenced - and can
even be optimized into a register by the compiler

aliased declares an object to be referenceable through an access
value

V : aliased Integer;

'Access attribute gives a reference to the object

A : Int_Access := V'Access;

'Unchecked_Access does it without checks

748 / 1033

Fundamentals of Ada
Access Types
General Access Types

Aliased Objects Examples

type Acc is access all Integer;
V, G : Acc;
I : aliased Integer;
...
V := I'Access;
V.all := 5; -- Same a I := 5
...
procedure P1 is

I : aliased Integer;
begin

G := I'Unchecked_Access;
P2;

end P1;

procedure P2 is
begin

-- OK when P2 called from P1.
-- What if P2 is called from elsewhere?
G.all := 5;

end P2;
749 / 1033

Fundamentals of Ada
Access Types
General Access Types

Quiz

type One_T is access all Integer;
type Two_T is access Integer;

A : aliased Integer;
B : Integer;

One : One_T;
Two : Two_T;

Which assignment is legal?

A. One := B'Access;
B. One := A’Access;
C. Two := B'Access;
D. Two := A'Access;

'Access is only allowed for general access types (One_T). To use
'Access on an object, the object must be aliased.

750 / 1033

Fundamentals of Ada
Access Types
General Access Types

Quiz

type One_T is access all Integer;
type Two_T is access Integer;

A : aliased Integer;
B : Integer;

One : One_T;
Two : Two_T;

Which assignment is legal?

A. One := B'Access;
B. One := A’Access;
C. Two := B'Access;
D. Two := A'Access;

'Access is only allowed for general access types (One_T). To use
'Access on an object, the object must be aliased.

750 / 1033

Fundamentals of Ada
Access Types
Accessibility Checks

Accessibility Checks

751 / 1033

Fundamentals of Ada
Access Types
Accessibility Checks

Introduction to Accessibility Checks (1/2)
The depth of an object depends on its nesting within declarative
scopes

package body P is
-- Library level, depth 0
O0 : aliased Integer;
procedure Proc is

-- Library level subprogram, depth 1
type Acc1 is access all Integer;
procedure Nested is

-- Nested subprogram, enclosing + 1, here 2
O2 : aliased Integer;

Objects can be referenced by access types that are at same
depth or deeper

An access scope must be ≤ the object scope

type Acc1 (depth 1) can access O0 (depth 0) but not O2 (depth
2)

The compiler checks it statically
Removing checks is a workaround!

Note: Subprogram library units are at depth 1 and not 0
752 / 1033

Fundamentals of Ada
Access Types
Accessibility Checks

Introduction to Accessibility Checks (2/2)

package body P is
type T0 is access all Integer;
A0 : T0;
V0 : aliased Integer;
procedure Proc is

type T1 is access all Integer;
A1 : T1;
V1 : aliased Integer;

Begin
A0 := V0'Access;
A0 := V1'Access; -- illegal
A0 := V1'Unchecked_Access;
A1 := V0'Access;
A1 := V1'Access;
A1 := T1 (A0);
A1 := new Integer;
A0 := T0 (A1); -- illegal

end Proc;
end P;

To avoid having to face these issues, avoid nested access types
753 / 1033

Fundamentals of Ada
Access Types
Accessibility Checks

Getting Around Accessibility Checks

Sometimes it is OK to use unsafe accesses to data

'Unchecked_Access allows access to a variable of an
incompatible accessibility level

Beware of potential problems!

type Acc is access all Integer;
G : Acc;
procedure P is

V : aliased Integer;
begin

G := V'Unchecked_Access;
...
Do_Something (G.all); -- This is "reasonable"

end P;
754 / 1033

Fundamentals of Ada
Access Types
Accessibility Checks

Using Pointers For Recursive Structures

It is not possible to declare recursive structure
But there can be an access to the enclosing type

type Cell; -- partial declaration
type Cell_Access is access all Cell;
type Cell is record -- full declaration

Next : Cell_Access;
Some_Value : Integer;

end record;

755 / 1033

Fundamentals of Ada
Access Types
Accessibility Checks

Quiz

type Global_Access_T is access all Integer;
Global_Pointer : Global_Access_T;
Global_Object : aliased Integer;
procedure Proc_Access is

type Local_Access_T is access all Integer;
Local_Pointer : Local_Access_T;
Local_Object : aliased Integer;

begin

Which assignment is illegal?

A. Global_Pointer := Global_Object'Access;
B. Global_Pointer := Local_Object’Access;
C. Local_Pointer := Global_Object'Access;
D. Local_Pointer := Local_Object'Access;

Explanations

A. Pointer type has same depth as object
B. Pointer type is not allowed to have higher level than pointed-to

object
C. Pointer type has lower depth than pointed-to object
D. Pointer type has same depth as object

756 / 1033

Fundamentals of Ada
Access Types
Accessibility Checks

Quiz

type Global_Access_T is access all Integer;
Global_Pointer : Global_Access_T;
Global_Object : aliased Integer;
procedure Proc_Access is

type Local_Access_T is access all Integer;
Local_Pointer : Local_Access_T;
Local_Object : aliased Integer;

begin

Which assignment is illegal?

A. Global_Pointer := Global_Object'Access;
B. Global_Pointer := Local_Object’Access;
C. Local_Pointer := Global_Object'Access;
D. Local_Pointer := Local_Object'Access;

Explanations

A. Pointer type has same depth as object
B. Pointer type is not allowed to have higher level than pointed-to

object
C. Pointer type has lower depth than pointed-to object
D. Pointer type has same depth as object

756 / 1033

Fundamentals of Ada
Access Types
Memory Management

Memory Management

757 / 1033

Fundamentals of Ada
Access Types
Memory Management

Common Memory Problems (1/3)
Uninitialized pointers

declare
type An_Access is access all Integer;
V : An_Access;

begin
V.all := 5; -- constraint error

Double deallocation

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
Free (V2);

May raise Storage_Error if memory is still protected
(unallocated)

May deallocate a different object if memory has been reallocated

Putting that object in an inconsistent state

758 / 1033

Fundamentals of Ada
Access Types
Memory Management

Common Memory Problems (2/3)

Accessing deallocated memory

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
V2.all := 5;

May raise Storage_Error if memory is still protected
(unallocated)
May modify a different object if memory has been reallocated
(putting that object in an inconsistent state)

759 / 1033

Fundamentals of Ada
Access Types
Memory Management

Common Memory Problems (3/3)

Memory leaks

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V : An_Access := new Integer;

begin
V := null;

Silent problem

Might raise Storage_Error if too many leaks
Might slow down the program if too many page faults

760 / 1033

Fundamentals of Ada
Access Types
Memory Management

How To Fix Memory Problems?

There is no language-defined solution

Use the debugger!

Use additional tools
gnatmem monitor memory leaks
valgrind monitor all the dynamic memory
GNAT.Debug_Pools gives a pool for an access type, raising
explicit exception in case of invalid access
Others...

761 / 1033

Fundamentals of Ada
Access Types
Anonymous Access Types

Anonymous Access Types

762 / 1033

Fundamentals of Ada
Access Types
Anonymous Access Types

Anonymous Access Parameters

Parameter modes are of 4 types: in, out, in out, access

The access mode is called anonymous access type

Anonymous access is implicitly general (no need for all)

When used:
Any named access can be passed as parameter
Any anonymous access can be passed as parameter

type Acc is access all Integer;
Aliased_Integer : aliased Integer;
Access_Object : Acc := Aliased_Integer'access;
procedure P1 (Anon_Access : access Integer) is null;
procedure P2 (Access_Parameter : access Integer) is
begin

P1 (Aliased_Integer'access);
P1 (Access_Object);
P1 (Access_Parameter);

end P2;
763 / 1033

Fundamentals of Ada
Access Types
Anonymous Access Types

Anonymous Access Types

Other places can declare an anonymous access

function F return access Integer;
V : access Integer;
type T (V : access Integer) is record

C : access Integer;
end record;
type A is array (Integer range <>) of access Integer;

Do not use them without a clear understanding of accessibility
check rules

764 / 1033

Fundamentals of Ada
Access Types
Anonymous Access Types

Anonymous Access Constants

constant (instead of all) denotes an access type through which
the referenced object cannot be modified

type CAcc is access constant Integer;
G1 : aliased Integer;
G2 : aliased constant Integer := 123;
V1 : CAcc := G1'Access;
V2 : CAcc := G2'Access;
V1.all := 0; -- illegal

not null denotes an access type for which null value cannot be
accepted

Available in Ada 2005 and later

type NAcc is not null access Integer;
V : NAcc := null; -- illegal

Also works for subprogram parameters

procedure Bar (V1 : access constant integer);
procedure Foo (V1 : not null access integer); -- Ada 2005

765 / 1033

Fundamentals of Ada
Access Types
Lab

Lab

766 / 1033

Fundamentals of Ada
Access Types
Lab

Access Types Lab

Requirements
Create a datastore containing an array of records

Each record contains an array to store strings
Interface to the array consists only of functions that return an
element of the array (Input parameter would be the array index)

Main program should allow the user to specify an index and a string

String gets appended to end of string pointer array
When data entry is complete, print only the elements of the array
that have data

Hints
Interface functions need to pass back pointer to array element

For safety, create a function to return a modifiable pointer and
another to return a read-only pointer

Cannot create array of variable length strings, so use pointers
767 / 1033

Fundamentals of Ada
Access Types
Lab

Access Types Lab Solution - Datastore
package Datastore is

type String_Ptr_T is access String;
type History_T is array (1 .. 10) of String_Ptr_T;
type Element_T is record

History : History_T;
end record;
type Reference_T is access all Element_T;
type Constant_Reference_T is access constant Element_T;

subtype Index_T is Integer range 1 .. 100;
function Object (Index : Index_T) return Reference_T;
function View (Index : Index_T) return Constant_Reference_T;

end Datastore;

package body Datastore is
type Array_T is array (Index_T) of aliased Element_T;
Global_Data : aliased Array_T;

function Object (Index : Index_T) return Reference_T is
(Global_Data (Index)'Access);

function View (Index : Index_T) return Constant_Reference_T is
(Global_Data (Index)'Access);

end Datastore;

768 / 1033

Fundamentals of Ada
Access Types
Lab

Access Types Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Datastore; use Datastore;
procedure Main is

function Get (Prompt : String) return String is
begin

Put (" " & Prompt & "> ");
return Get_Line;

end Get;

procedure Add (History : in out Datastore.History_T;
Text : in String) is

begin
for Event of History loop

if Event = null then
Event := new String'(Text);
exit;

end if;
end loop;

end Add;

Index : Integer;
Object : Datastore.Constant_Reference_T;

begin
loop

Index := Integer'Value (Get ("Enter index"));
exit when Index not in Datastore.Index_T'Range;
Add (Datastore.Object (Index).History, Get ("Text"));

end loop;

for I in Index_T'Range loop
Object := Datastore.View (I);
if Object.History (1) /= null then

Put_Line (Integer'Image (I) & ">");
for Item of Object.History loop

exit when Item = null;
Put_Line (" " & Item.all);

end loop;
end if;

end loop;
end Main;

769 / 1033

Fundamentals of Ada
Access Types
Summary

Summary

770 / 1033

Fundamentals of Ada
Access Types
Summary

Summary

Access types are the same as C/C++ pointers

There are usually better ways of memory management
Language has its own ways with dealing with large objects passed
as parameters
Language has libraries dedicated to memory allocation /
deallocation

At a minimum, create your own generics to do allocation /
deallocation

Minimize memory leakage and corruption

771 / 1033

Fundamentals of Ada
Genericity

Genericity

772 / 1033

Fundamentals of Ada
Genericity
Introduction

Introduction

773 / 1033

Fundamentals of Ada
Genericity
Introduction

The Notion of a Pattern
Sometimes algorithms can be abstracted from types and
subprograms

procedure Swap_Int (Left, Right : in out Integer) is
V : Integer;

begin
V := Left;
Left := Right;
Right := V;

end Swap_Int;

procedure Swap_Bool (Left, Right : in out Boolean) is
V : Boolean;

begin
V := Left;
Left := Right;
Right := V;

end Swap_Bool;

It would be nice to extract these properties in some common
pattern, and then just replace the parts that need to be replaced

procedure Swap (Left, Right : in out (Integer | Boolean)) is
V : (Integer | Boolean);

begin
V := Left;
Left := Right;
Right := V;

end Swap;

774 / 1033

Fundamentals of Ada
Genericity
Introduction

Solution: Generics

A generic unit is a unit that does not exist
It is a pattern based on properties
The instantiation applies the pattern to certain parameters

775 / 1033

Fundamentals of Ada
Genericity
Introduction

Ada Generic Compared to C++ Template
Ada Generic

-- specification
generic

type T is private;
procedure Swap

(L, R : in out T);
-- implementation
procedure Swap

(L, R : in out T) is
Tmp : T := L

begin
L := R;
R := Tmp;

end Swap;
-- instance
procedure Swap_F is new Swap (Float);

C++ Template
template <class T>
void Swap (T & L, T & R);
template <class T>
void Swap (T & L, T & R) {

T Tmp = L;
L = R;
R = Tmp;

}

.
776 / 1033

Fundamentals of Ada
Genericity
Creating Generics

Creating Generics

777 / 1033

Fundamentals of Ada
Genericity
Creating Generics

What Can Be Made Generic?

Subprograms and packages can be made generic

generic
type T is private;

procedure Swap (L, R : in out T)
generic

type T is private;
package Stack is

procedure Push (Item : T);
...

Children of generic units have to be generic themselves

generic
package Stack.Utilities is

procedure Print is
778 / 1033

Fundamentals of Ada
Genericity
Creating Generics

How Do You Use A Generic?

Generic instantiation is creating new set of data where a generic
package contains library-level variables:

package Integer_stack is new Stack (Integer);
package Integer_Stack_Utils is

new Integer_Stack.Utilities;
...
Integer_Stack.Push (1);
Integer_Stack_Utils.Print;

779 / 1033

Fundamentals of Ada
Genericity
Generic Data

Generic Data

780 / 1033

Fundamentals of Ada
Genericity
Generic Data

Generic Types Parameters (1/2)

A generic parameter is a template

It specifies the properties the generic body can rely on

generic
type T1 is private; -- should have properties

-- of private type (assignment,
-- comparison, able to declare
-- variables on the stack...)

type T2 (<>) is private; -- can be unconstrained
type T3 is limited private; -- can be limited

package Parent is [...]

The actual parameter must provide at least as many properties as
the generic contract

781 / 1033

Fundamentals of Ada
Genericity
Generic Data

Generic Types Parameters (2/2)

The usage in the generic has to follow the contract

generic
type T (<>) is private;

procedure P (V : T);
procedure P (V : T) is

X1 : T := V; -- OK, can constrain by initialization
X2 : T; -- Compilation error, no constraint to this

begin
...
type L_T is limited null record;
...
-- unconstrained types are accepted
procedure P1 is new P (String);
-- type is already constrained
procedure P2 is new P (Integer);
-- Illegal: the type can't be limited because the generic
-- is allowed to make copies
procedure P3 is new P (L_T);

782 / 1033

Fundamentals of Ada
Genericity
Generic Data

Possible Properties for Generic Types

type T1 is (<>); -- discrete
type T2 is range <>; -- integer
type T3 is digits <>; -- float
type T4 (<>); -- indefinite
type T5 is tagged;
type T6 is array (Boolean) of Integer;
type T7 is access integer;
type T8 (<>) is [limited] private;

783 / 1033

Fundamentals of Ada
Genericity
Generic Data

Generic Parameters Can Be Combined

Consistency is checked at compile-time

generic
type T (<>) is limited private;
type Acc is access all T;
type Index is (<>);
type Arr is array (Index range <>) of Acc;

procedure P;

type String_Ptr is access all String;
type String_Array is array (Integer range <>)

of String_Ptr;

procedure P_String is new P
(T => String,
Acc => String_Ptr,
Index => Integer,
Arr => String_Array);

784 / 1033

Fundamentals of Ada
Genericity
Generic Data

Quiz

generic
type T is tagged;
type T2;

procedure G_P;

type Tag is tagged null record;
type Arr is array (Positive range <>) of Tag;

Which declaration(s) is(are) legal?

A. procedure P is new G_P (Tag, Arr)
B. procedure P is new G_P (Arr, Tag)
C. procedure P is new G_P (Tag, Tag)
D. procedure P is new G_P (Arr, Arr)

785 / 1033

Fundamentals of Ada
Genericity
Generic Data

Quiz

generic
type T is tagged;
type T2;

procedure G_P;

type Tag is tagged null record;
type Arr is array (Positive range <>) of Tag;

Which declaration(s) is(are) legal?

A. procedure P is new G_P (Tag, Arr)
B. procedure P is new G_P (Arr, Tag)
C. procedure P is new G_P (Tag, Tag)
D. procedure P is new G_P (Arr, Arr)

785 / 1033

Fundamentals of Ada
Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is an illegal instantiation?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

786 / 1033

Fundamentals of Ada
Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is an illegal instantiation?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

786 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Generic Formal Data

787 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Generic Constants and Variables Parameters

Variables can be specified on
the generic contract
The mode specifies the way
the variable can be used:

in → read only
in out → read write

Generic variables can be
defined after generic types

generic
type T is private;
X1 : Integer; -- constant
X2 : in out T; -- variable

procedure P;

V : Float;

procedure P_I is new P
(T => Float,
X1 => 42,
X2 => V);

788 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Generic Subprogram Parameters

Subprograms can be defined in the generic contract

Must be introduced by with to differ from the generic unit

generic
with procedure Callback;

procedure P;
procedure P is
begin

Callback;
end P;
procedure Something;
procedure P_I is new P (Something);

789 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Generic Subprogram Parameters Defaults
Ada 2005

is <> - matching subprogram is taken by default

is null - null subprogram is taken by default
Only available in Ada 2005 and later

generic
with procedure Callback1 is <>;
with procedure Callback2 is null;

procedure P;
procedure Callback1;
procedure P_I is new P;
-- takes Callback1 and null

790 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Generic Package Parameters

A generic unit can depend on the instance of another generic unit
Parameters of the instantiation can be constrained partially or
completely

generic
type T1 is private;
type T2 is private;

package Base is [...]

generic
with package B is new Base (Integer, <>);
V : B.T2;

package Other [...]

package Base_I is new Base (Integer, Float);

package Other_I is new Other (Base_I, 56.7);
791 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Quiz

generic
type T is (<>);
G_A : in out T;

procedure G_P;

type I is new Integer;
type E is (OK, NOK);
type F is new Float;
X : I;
Y : E;
Z : F;

Which of the following piece(s) of code is(are) legal?

A. procedure P is new G_P (I, X)
B. procedure P is new G_P (E, Y)
C. procedure P is new G_P (I, E'Pos (Y))
D. procedure P is new G_P (F, Z)

792 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Quiz

generic
type T is (<>);
G_A : in out T;

procedure G_P;

type I is new Integer;
type E is (OK, NOK);
type F is new Float;
X : I;
Y : E;
Z : F;

Which of the following piece(s) of code is(are) legal?

A. procedure P is new G_P (I, X)
B. procedure P is new G_P (E, Y)
C. procedure P is new G_P (I, E'Pos (Y))
D. procedure P is new G_P (F, Z)

792 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Quiz

generic
type L is limited private;
type P is private;

procedure G_P;

type Lim is limited null record;
type Int is new Integer;

type Rec is record
L : Lim;
I : Int;

end record;

Which declaration(s) is(are) legal?

A. procedure P is new G_P (Lim, Int)
B. procedure P is new G_P (Int, Rec)
C. procedure P is new G_P (Rec, Rec)
D. procedure P is new G_P (Int, Int)

793 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Quiz

generic
type L is limited private;
type P is private;

procedure G_P;

type Lim is limited null record;
type Int is new Integer;

type Rec is record
L : Lim;
I : Int;

end record;

Which declaration(s) is(are) legal?

A. procedure P is new G_P (Lim, Int)
B. procedure P is new G_P (Int, Rec)
C. procedure P is new G_P (Rec, Rec)
D. procedure P is new G_P (Int, Int)

793 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Quiz
Ada 2005

1 procedure P1 (X : in out Integer); -- add 100 to X
2 procedure P2 (X : in out Integer); -- add 20 to X
3 procedure P3 (X : in out Integer); -- add 3 to X
4 generic
5 with procedure P1 (X : in out Integer) is <>;
6 with procedure P2 (X : in out Integer) is null;
7 procedure G (P : integer);
8 procedure G (P : integer) is
9 X : integer := P;

10 begin
11 P1(X);
12 P2(X);
13 Ada.Text_IO.Put_Line (X'Image);
14 end G;
15 procedure Instance is new G (P1 => P3);

What is printed when Instance
is called?
A. 100
B. 120
C. 3
D. 103

Explanations

A. Wrong - result for
procedure Instance is new G;

B. Wrong - result for
procedure Instance is new G(P1,P2);

C. P1 at line 12 is mapped to P3 at line 3, and P2 at line 14 wasn’t
specified so it defaults to null

D. Wrong - result for
procedure Instance is new G(P2=>P3);

794 / 1033

Fundamentals of Ada
Genericity
Generic Formal Data

Quiz
Ada 2005

1 procedure P1 (X : in out Integer); -- add 100 to X
2 procedure P2 (X : in out Integer); -- add 20 to X
3 procedure P3 (X : in out Integer); -- add 3 to X
4 generic
5 with procedure P1 (X : in out Integer) is <>;
6 with procedure P2 (X : in out Integer) is null;
7 procedure G (P : integer);
8 procedure G (P : integer) is
9 X : integer := P;

10 begin
11 P1(X);
12 P2(X);
13 Ada.Text_IO.Put_Line (X'Image);
14 end G;
15 procedure Instance is new G (P1 => P3);

What is printed when Instance
is called?
A. 100
B. 120
C. 3
D. 103

Explanations

A. Wrong - result for
procedure Instance is new G;

B. Wrong - result for
procedure Instance is new G(P1,P2);

C. P1 at line 12 is mapped to P3 at line 3, and P2 at line 14 wasn’t
specified so it defaults to null

D. Wrong - result for
procedure Instance is new G(P2=>P3);

794 / 1033

Fundamentals of Ada
Genericity
Generic Completion

Generic Completion

795 / 1033

Fundamentals of Ada
Genericity
Generic Completion

Implications at Compile-Time

The body needs to be visible when compiling the user code
Therefore, when distributing a component with generics to be
instantiated, the code of the generic must come along

796 / 1033

Fundamentals of Ada
Genericity
Generic Completion

Generic and Freezing Points

A generic type freezes the type and needs the full view
May force separation between its declaration (in spec) and
instantiations (in private or body)

generic
type X is private;

package Base is
V : access X;

end Base;

package P is
type X is private;
-- illegal
package B is new Base (X);

private
type X is null record;

end P;
797 / 1033

Fundamentals of Ada
Genericity
Generic Completion

Generic Incomplete Parameters

A generic type can be incomplete
Allows generic instantiations before full type definition
Restricts the possible usages (only access)

generic
type X; -- incomplete

package Base is
V : access X;

end Base;

package P is
type X is private;
-- legal
package B is new Base (X);

private
type X is null record;

end P;
798 / 1033

Fundamentals of Ada
Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is(are) valid for G_P’s body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

799 / 1033

Fundamentals of Ada
Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is(are) valid for G_P’s body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

799 / 1033

Fundamentals of Ada
Genericity
Lab

Lab

800 / 1033

Fundamentals of Ada
Genericity
Lab

Genericity Lab

Requirements
Create a list ADT to hold any type of data

Operations should include adding to the list and sorting the list

Create a record structure containing multiple fields

The main program should:

Allow the addition of multiple records into the list
Sort the list
Print the list

Hints
Sort routine will need to know how to compare elements

801 / 1033

Fundamentals of Ada
Genericity
Lab

Genericity Lab Solution - Generic (Spec)

generic
type Element_T is private;
Max_Size : Natural;
with function "<" (L, R : Element_T) return Boolean is <>;

package Generic_List is

type List_T is tagged private;

procedure Add (This : in out List_T;
Item : in Element_T);

procedure Sort (This : in out List_T);

private
subtype Index_T is Natural range 0 .. Max_Size;
type List_Array_T is array (1 .. Index_T'Last) of Element_T;

type List_T is tagged record
Values : List_Array_T;
Length : Index_T := 0;

end record;
end Generic_List;

802 / 1033

Fundamentals of Ada
Genericity
Lab

Genericity Lab Solution - Generic (Body)
package body Generic_List is

procedure Add (This : in out List_T;
Item : in Element_T) is

begin
This.Length := This.Length + 1;
This.Values (This.Length) := Item;

end Add;

procedure Sort (This : in out List_T) is
Temp : Element_T;

begin
for I in 1 .. This.Length loop

for J in I + 1 .. This.Length loop
if This.Values (J) < This.Values (J - 1) then

Temp := This.Values (J);
This.Values (J) := This.Values (J - 1);
This.Values (J - 1) := Temp;

end if;
end loop;

end loop;
end Sort;

end Generic_List;
803 / 1033

Fundamentals of Ada
Genericity
Lab

Genericity Lab Solution - Generic Output

generic
with function Image (Element : Element_T) return String;

package Generic_List.Output is
procedure Print (List : List_T);

end Generic_List.Output;

with Ada.Text_IO; use Ada.Text_IO;
package body Generic_List.Output is

procedure Print (List : List_T) is
begin

for I in 1 .. List.Length loop
Put_Line (Integer'Image (I) & ") " &

Image (List.Values (I)));
end loop;

end Print;
end Generic_List.Output;

804 / 1033

Fundamentals of Ada
Genericity
Lab

Genericity Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Data_Type;
with Generic_List;
with Generic_List.Output;
use type Data_Type.Record_T;
procedure Main is

package List is new Generic_List (Data_Type.Record_T, 10);
package Output is new List.Output (Data_Type.Image);

My_List : List.List_T;
Element : Data_Type.Record_T;

begin
loop

Put ("Enter character: ");
declare

Str : constant String := Get_Line;
begin

exit when Str'Length = 0;
Element.Field2 := Str (1);

end;
Put ("Enter number: ");
declare

Str : constant String := Get_Line;
begin

exit when Str'Length = 0;
Element.Field1 := Integer'Value (Str);

end;
My_List.Add (Element);

end loop;

My_List.Sort;
Output.Print (My_List);

end Main;

805 / 1033

Fundamentals of Ada
Genericity
Summary

Summary

806 / 1033

Fundamentals of Ada
Genericity
Summary

Generic Routines vs Common Routines

package Helper is
type Float_T is digits 6;
generic

type Type_T is digits <>;
Min : Type_T;
Max : Type_T;

function In_Range_Generic (X : Type_T) return Boolean;
function In_Range_Common (X : Float_T;

Min : Float_T;
Max : Float_T)
return Boolean;

end Helper;

procedure User is
type Speed_T is new Float_T range 0.0 .. 100.0;
B : Boolean;
function Valid_Speed is new In_Range_Generic

(Speed_T, Speed_T'First, Speed_T'Last);
begin

B := Valid_Speed (12.3);
B := In_Range_Common (12.3, Speed_T'First, Speed_T'Last);

807 / 1033

Fundamentals of Ada
Genericity
Summary

Summary

Generics are useful for copying code that works the same just for
different types

Sorting, containers, etc

Properly written generics only need to be tested once
But testing / debugging can be more difficult

Generic instantiations are best done at compile time
At the package level
Can be run-time expensive when done in subprogram scope

808 / 1033

Fundamentals of Ada
Tagged Derivation

Tagged Derivation

809 / 1033

Fundamentals of Ada
Tagged Derivation
Introduction

Introduction

810 / 1033

Fundamentals of Ada
Tagged Derivation
Introduction

Object-Oriented Programming With Tagged Types

For record types

type T is tagged record
...

Child types can add new components (attributes)

Object of a child type can be substituted for base type

Primitive (method) can dispatch at runtime depending on the
type at call-site

Types can be extended by other packages
Casting and qualification to base type is allowed

Private data is encapsulated through privacy

811 / 1033

Fundamentals of Ada
Tagged Derivation
Introduction

Tagged Derivation Ada vs C++

type T1 is tagged record
Member1 : Integer;

end record;

procedure Attr_F (This : T1);

type T2 is new T1 with record
Member2 : Integer;

end record;

overriding procedure Attr_F (
This : T2);

procedure Attr_F2 (This : T2);

class T1 {
public:

int Member1;
virtual void Attr_F(void);

};

class T2 : public T1 {
public:

int Member2;
virtual void Attr_F(void);
virtual void Attr_F2(void);

};

812 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Tagged Derivation

813 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Difference with Simple Derivation

Tagged derivation can change the structure of a type
Keywords tagged record and with record

type Root is tagged record
F1 : Integer;

end record;

type Child is new Root with record
F2 : Integer;

end record;

814 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Type Extension

A tagged derivation has to be a type extension
Use with null record if there are no additional components

type Child is new Root with null record;
type Child is new Root; -- illegal

Conversions is only allowed from child to parent

V1 : Root;
V2 : Child;
...
V1 := Root (V2);
V2 := Child (V1); -- illegal

815 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Primitives

Child cannot remove a primitive

Child can add new primitives

Controlling parameter

Parameters the subprogram is a primitive of
For tagged types, all should have the same type

type Root1 is tagged null record;
type Root2 is tagged null record;

procedure P1 (V1 : Root1;
V2 : Root1);

procedure P2 (V1 : Root1;
V2 : Root2); -- illegal

816 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Freeze Point For Tagged Types

Freeze point definition does not change
A variable of the type is declared
The type is derived
The end of the scope is reached

Declaring tagged type primitives past freeze point is forbidden

type Root is tagged null record;

procedure Prim (V : Root);

type Child is new Root with null record; -- freeze root

procedure Prim2 (V : Root); -- illegal

V : Child; -- freeze child

procedure Prim3 (V : Child); -- illegal
817 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Tagged Aggregate

At initialization, all fields (including inherited) must have a value

type Root is tagged record
F1 : Integer;

end record;

type Child is new Root with record
F2 : Integer;

end record;

V : Child := (F1 => 0, F2 => 0);

For private types use aggregate extension

Copy of a parent instance
Use with null record absent new fields

V2 : Child := (Parent_Instance with F2 => 0);
V3 : Empty_Child := (Parent_Instance with null record);

818 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Overriding Indicators
Ada 2005

Optional overriding and not overriding indicators

type Shape_T is tagged record
Name : String(1..10);

end record;

-- primitives of "Shape_T"
procedure Set_Name (S : in out Shape_T);
function Name (S : Shape_T) return string;

-- Derive "Point" from Shape_T
type Point is new Shape_T with record

Origin : Coord_T;
end Point;

-- We want to _change_ the behavior of Set_Name
overriding procedure Set_Name (P : in out Point_T);
-- We want to _add_ a new primitive
not overriding Origin (P : Point_T) return Point_T;
-- We get "Name" for free

819 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Prefix Notation
Ada 2012

Tagged types primitives can be called as usual

The call can use prefixed notation
If the first argument is a controlling parameter
No need for use or use type for visibility

-- Prim1 visible even without *use Pkg*
X.Prim1;

declare
use Pkg;

begin
Prim1 (X);

end;
820 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Quiz
Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
generic

type T is tagged private;
package G_Pkg is

type T2 is new T with null record;
end G_Pkg;
package Pkg is new G_Pkg (T1);
procedure P (O : T1) is null;

D. type T1 is tagged null record;
generic

type T;
procedure G_P (O : T);
procedure G_P (O : T) is null;
procedure P is new G_P (T1);

821 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Quiz
Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
generic

type T is tagged private;
package G_Pkg is

type T2 is new T with null record;
end G_Pkg;
package Pkg is new G_Pkg (T1);
procedure P (O : T1) is null;

D. type T1 is tagged null record;
generic

type T;
procedure G_P (O : T);
procedure G_P (O : T) is null;
procedure P is new G_P (T1);

821 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Quiz

-- Defines tagged type Shape, with primitive P
with Shapes;
-- Defines tagged type Color, with primitive P
with Colors; use Colors;
-- Defines tagged type Weight, with primitive P
with Weights;
use type Weights.Weight;

procedure Main is
O1 : Shapes.Shape;
O2 : Colors.Color;
O3 : Weights.Weight;

Which statement(s) is(are) valid?

A. O1.P
B. P (O1)
C. P (O2)
D. P (O3)

D. "use" only gives visibility to operators; needs to be "use all"

822 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Quiz

-- Defines tagged type Shape, with primitive P
with Shapes;
-- Defines tagged type Color, with primitive P
with Colors; use Colors;
-- Defines tagged type Weight, with primitive P
with Weights;
use type Weights.Weight;

procedure Main is
O1 : Shapes.Shape;
O2 : Colors.Color;
O3 : Weights.Weight;

Which statement(s) is(are) valid?

A. O1.P
B. P (O1)
C. P (O2)
D. P (O3)

D. "use" only gives visibility to operators; needs to be "use all"
822 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Quiz

Which code block is legal?
A. type A1 is record

Field1 : Integer;
end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Field2 : Integer;
end record;
type B2 is new B1 with
record

Field2b : Integer;
end record;

C. type C1 is tagged
record

Field3 : Integer;
end record;
type C2 is new C1 with
record

Field3 : Integer;
end record;

D. type D1 is tagged
record

Field1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

823 / 1033

Fundamentals of Ada
Tagged Derivation
Tagged Derivation

Quiz

Which code block is legal?
A. type A1 is record

Field1 : Integer;
end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Field2 : Integer;
end record;
type B2 is new B1 with
record

Field2b : Integer;
end record;

C. type C1 is tagged
record

Field3 : Integer;
end record;
type C2 is new C1 with
record

Field3 : Integer;
end record;

D. type D1 is tagged
record

Field1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

823 / 1033

Fundamentals of Ada
Tagged Derivation
Lab

Lab

824 / 1033

Fundamentals of Ada
Tagged Derivation
Lab

Tagged Derivation Lab

Requirements
Create a type structure that could be used in a business

A person has some defining characteristics
An employee is a person with some employment information
A staff member is an employee with specific job information

Create primitive operations to read and print the objects

Create a main program to test the objects and operations

Hints
Use overriding and not overriding as appropriate

825 / 1033

Fundamentals of Ada
Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Spec)
with Ada.Calendar;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Employee is

type Person_T is tagged private;
procedure Set_Name (O : in out Person_T;

Value : String);
function Name (O : Person_T) return String;
procedure Set_Birth_Date (O : in out Person_T;

Value : String);
function Birth_Date (O : Person_T) return String;
procedure Print (O : Person_T);

type Employee_T is new Person_T with private;
not overriding procedure Set_Start_Date (O : in out Employee_T;

Value : String);
not overriding function Start_Date (O : Employee_T) return String;
overriding procedure Print (O : Employee_T);

type Position_T is new Employee_T with private;
not overriding procedure Set_Job (O : in out Position_T;

Value : String);
not overriding function Job (O : Position_T) return String;
overriding procedure Print (O : Position_T);

private
type Person_T is tagged record

Name : Unbounded_String;
Birth_Date : Ada.Calendar.Time;

end record;

type Employee_T is new Person_T with record
Employee_Id : Positive;
Start_Date : Ada.Calendar.Time;

end record;

type Position_T is new Employee_T with record
Job : Unbounded_String;

end record;
end Employee;

826 / 1033

Fundamentals of Ada
Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Body -
Incomplete)

function To_String (T : Ada.Calendar.Time) return String is
begin

return Month_Name (Ada.Calendar.Month (T)) &
Integer'Image (Ada.Calendar.Day (T)) & "," &
Integer'Image (Ada.Calendar.Year (T));

end To_String;

function From_String (S : String) return Ada.Calendar.Time is
Date : constant String := S & " 12:00:00";

begin
return Ada.Calendar.Formatting.Value (Date);

end From_String;

procedure Set_Name (O : in out Person_T;
Value : String) is

begin
O.Name := To_Unbounded_String (Value);

end Set_Name;
function Name (O : Person_T) return String is (To_String (O.Name));

procedure Set_Birth_Date (O : in out Person_T;
Value : String) is

begin
O.Birth_Date := From_String (Value);

end Set_Birth_Date;
function Birth_Date (O : Person_T) return String is (To_String (O.Birth_Date));
procedure Print (O : Person_T) is
begin

Put_Line ("Name: " & Name (O));
Put_Line ("Birthdate: " & Birth_Date (O));

end Print;

not overriding procedure Set_Start_Date (O : in out Employee_T;
Value : String) is

begin
O.Start_Date := From_String (Value);

end Set_Start_Date;
not overriding function Start_Date (O : Employee_T) return String is (To_String (O.Start_Date));
overriding procedure Print (O : Employee_T) is
begin

Put_Line ("Name: " & Name (O));
Put_Line ("Birthdate: " & Birth_Date (O));
Put_Line ("Startdate: " & Start_Date (O));

end Print;

827 / 1033

Fundamentals of Ada
Tagged Derivation
Lab

Tagged Derivation Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Employee;
procedure Main is

function Read (Prompt : String) return String is
begin

Put (Prompt & "> ");
return Get_Line;

end Read;
function Read_Date (Prompt : String) return String is (Read (Prompt & " (YYYY-MM-DD)"));

Applicant : Employee.Person_T;
Employ : Employee.Employee_T;
Staff : Employee.Position_T;

begin
Applicant.Set_Name (Read ("Applicant name"));
Applicant.Set_Birth_Date (Read_Date (" Birth Date"));

Employ.Set_Name (Read ("Employee name"));
Employ.Set_Birth_Date (Read_Date (" Birth Date"));
Employ.Set_Start_Date (Read_Date (" Start Date"));

Staff.Set_Name (Read ("Staff name"));
Staff.Set_Birth_Date (Read_Date (" Birth Date"));
Staff.Set_Start_Date (Read_Date (" Start Date"));
Staff.Set_Job (Read (" Job"));

Applicant.Print;
Employ.Print;
Staff.Print;

end Main;

828 / 1033

Fundamentals of Ada
Tagged Derivation
Summary

Summary

829 / 1033

Fundamentals of Ada
Tagged Derivation
Summary

Summary

Tagged derivation
Building block for OOP types in Ada

Primitives rules for tagged types are trickier
Primitives forbidden below freeze point
Unique controlling parameter
Tip: Keep the number of tagged type per package low

830 / 1033

Fundamentals of Ada
Polymorphism

Polymorphism

831 / 1033

Fundamentals of Ada
Polymorphism
Introduction

Introduction

832 / 1033

Fundamentals of Ada
Polymorphism
Introduction

Introduction

'Class operator to categorize classes of types

Type classes allow dispatching calls
Abstract types
Abstract subprograms

Run-time call dispatch vs compile-time call dispatching

833 / 1033

Fundamentals of Ada
Polymorphism
Classes of Types

Classes of Types

834 / 1033

Fundamentals of Ada
Polymorphism
Classes of Types

Classes

In Ada, a Class denotes an inheritance subtree

Class of T is the class of T and all its children

Type T'Class can designate any object typed after type of class
of T

type Root is tagged null record;
type Child1 is new Root with null record;
type Child2 is new Root with null record;
type Grand_Child1 is new Child1 with null record;
-- Root'Class = {Root, Child1, Child2, Grand_Child1}
-- Child1'Class = {Child1, Grand_Child1}
-- Child2'Class = {Child2}
-- Grand_Child1'Class = {Grand_Child1}

Objects of type T'Class have at least the properties of T
Fields of T
Primitives of T

835 / 1033

Fundamentals of Ada
Polymorphism
Classes of Types

Indefinite type

A class wide type is an indefinite type
Just like an unconstrained array or a record with a discriminant

Properties and constraints of indefinite types apply
Can be used for parameter declarations
Can be used for variable declaration with initialization

procedure Main is
type T is tagged null record;
type D is new T with null record;
procedure P (X : in out T'Class) is null;
Obj : D;
Dc : D'Class := Obj;
Tc1 : T'Class := Dc;
Tc2 : T'Class := Obj;
-- initialization required in class-wide declaration
Tc3 : T'Class; -- compile error
Dc2 : D'Class; -- compile error

begin
P (Dc);
P (Obj);

end Main;
836 / 1033

Fundamentals of Ada
Polymorphism
Classes of Types

Testing the type of an object

The tag of an object denotes its type
It can be accessed through the ’Tag attribute
Applies to both objects and types
Membership operator is available to check the type against a
hierarchy

type Parent is tagged null record;
type Child is new Parent with null record;
Parent_Obj : Parent; -- Parent_Obj'Tag = Parent'Tag
Child_Obj : Child; -- Child_Obj'Tag = Child'Tag
Parent_Class_1 : Parent'Class := Parent_Obj;

-- Parent_Class_1'Tag = Parent'Tag
Parent_Class_2 : Parent'Class := Child_Obj;

-- Parent_Class_2'Tag = Child'Tag
Child_Class : Child'Class := Child(Parent_Class_2);

-- Child_Class'Tag = Child'Tag

B1 : Boolean := Parent_Class_1 in Parent'Class; -- True
B2 : Boolean := Parent_Class_1'Tag = Child'Tag; -- False
B3 : Boolean := Child_Class'Tag = Parent'Tag; -- False
B4 : Boolean := Child_Class in Child'Class; -- True

837 / 1033

Fundamentals of Ada
Polymorphism
Classes of Types

Abstract Types

A tagged type can be declared abstract

Then, abstract tagged types:
cannot be instantiated
can have abstract subprograms (with no implementation)
Non-abstract derivation of an abstract type must override and
implement abstract subprograms

838 / 1033

Fundamentals of Ada
Polymorphism
Classes of Types

Abstract Types Ada vs C++
Ada

type Root is abstract tagged record
F : Integer;

end record;
procedure P1 (V : Root) is abstract;
procedure P2 (V : Root);
type Child is abstract new Root with null record;
type Grand_Child is new Child with null record;

overriding -- Ada 2005 and later
procedure P1 (V : Grand_Child);

C++

class Root {
public:

int F;
virtual void P1 (void) = 0;
virtual void P2 (void);

};
class Child : public Root {
};
class Grand_Child {

public:
virtual void P1 (void);

};

839 / 1033

Fundamentals of Ada
Polymorphism
Classes of Types

Relation to Primitives
Ada 2012

Warning: Subprograms with parameter of type T’Class are not
primitives of T

type Root is tagged null record;
procedure P (V : Root'Class);
type Child is new Root with null record;
-- This does not override P!
overriding procedure P (V : Child'Class);

Prefix notation rules apply when the first parameter is of a class
wide type

V1 : Root;
V2 : Root'Class := Root'(others => <>);
...
P (V1);
P (V2);
V1.P;
V2.P;

840 / 1033

Fundamentals of Ada
Polymorphism
Dispatching and Redispatching

Dispatching and Redispatching

841 / 1033

Fundamentals of Ada
Polymorphism
Dispatching and Redispatching

Calls on class-wide types (1/3)

Any subprogram expecting a T object can be called with a
T'Class object

type Shape is tagged
record

Name : string(1..10);
end record;

procedure Describe (V : Shape);

type Circle is new Shape with
record

Radius : float;
end record;

procedure Describe (V : Circle);

Sh : Shape'Class := [...]
Ci : Circle'Class := [...]

begin
Describe (Sh);
Describe (Ci);

842 / 1033

Fundamentals of Ada
Polymorphism
Dispatching and Redispatching

Calls on class-wide types (2/3)

The actual type of the object is not known at compile time
The right type will be selected at runtime

Ada
declare

Sh : Shape'Class :=
Shape'(others => <>);

Ci : Shape'Class :=
Circle'(others => <>);

begin
Sh.Describe; -- calls Describe of Shape
Ci.Describe; -- calls Describe of Circle

C++
Shape * Sh = new Shape ();
Shape * Ci = new Circle ();
Sh->Describe ();
Ci->Describe ();

843 / 1033

Fundamentals of Ada
Polymorphism
Dispatching and Redispatching

Calls on class-wide types (3/3)

It is still possible to force a call to be static using a conversion of
view

Ada
declare

Sh : Shape'Class :=
Shape'(others => <>);

Ci : Shape'Class :=
Circle'(others => <>);

begin
Shape (Sh).Describe; -- calls Describe of Shape
Shape (Ci).Describe; -- calls Describe of Shape

C++
Shape * Sh = new Shape ();
Shape * Ci = new Circle ();
((Shape) *Sh).Describe ();
((Shape) *Ci).Describe ();

844 / 1033

Fundamentals of Ada
Polymorphism
Dispatching and Redispatching

Definite and class wide views

In C++, dispatching occurs only on pointers
In Ada, dispatching occurs only on class wide views

type Root is tagged null record;
procedure P1 (V : Root);
procedure P2 (V : Root);
type Child is new Root with null record;
overriding procedure P2 (V : Child);
procedure P1 (V : Root) is
begin

P2 (V); -- always calls P2 from Root
end P1;
procedure Main is

V1 : Root'Class :=
Child'(others => <>);

begin
-- Calls P1 from the implicitly overridden subprogram
-- Calls P2 from Root!
V1.P1;

845 / 1033

Fundamentals of Ada
Polymorphism
Dispatching and Redispatching

Redispatching

tagged types are always passed by reference
The original object is not copied

Therefore, it is possible to convert them to different views

type Root is tagged null record;
procedure P1 (V : Root);
procedure P2 (V : Root);
type Child is new Root with null record;
overriding procedure P2 (V : Child);

846 / 1033

Fundamentals of Ada
Polymorphism
Dispatching and Redispatching

Redispatching Example

procedure P1 (V : Root) is
V_Class : Root'Class renames

Root'Class (V); -- naming of a view
begin

P2 (V); -- static: uses the definite view
P2 (Root'Class (V)); -- dynamic: (redispatching)
P2 (V_Class); -- dynamic: (redispatching)

-- Ada 2005 "distinguished receiver" syntax
V.P2; -- static: uses the definite view
Root'Class (V).P2; -- dynamic: (redispatching)
V_Class.P2; -- dynamic: (redispatching)

end P1;

847 / 1033

Fundamentals of Ada
Polymorphism
Dispatching and Redispatching

Quiz
package P is

type Root is tagged null record;
function F1 (V : Root) return Integer is (101);
type Child is new Root with null record;
function F1 (V : Child) return Integer is (201);
type Grandchild is new Child with null record;
function F1 (V : Grandchild) return Integer is (301);

end P;

with P1; use P1;
procedure Main is

Z : Root'Class := Grandchild'(others => <>);

What is the value returned by F1 (Child'Class (Z));?

A. 301
B. 201
C. 101
D. Compilation error

Explanations

A. Correct
B. Would be correct if the cast was Child - Child'Class leaves the

object as Grandchild
C. Object is initialized to something in Root'class, but it doesn’t

have to be Root
D. Would be correct if function parameter types were 'Class

848 / 1033

Fundamentals of Ada
Polymorphism
Dispatching and Redispatching

Quiz
package P is

type Root is tagged null record;
function F1 (V : Root) return Integer is (101);
type Child is new Root with null record;
function F1 (V : Child) return Integer is (201);
type Grandchild is new Child with null record;
function F1 (V : Grandchild) return Integer is (301);

end P;

with P1; use P1;
procedure Main is

Z : Root'Class := Grandchild'(others => <>);

What is the value returned by F1 (Child'Class (Z));?

A. 301
B. 201
C. 101
D. Compilation error

Explanations

A. Correct
B. Would be correct if the cast was Child - Child'Class leaves the

object as Grandchild
C. Object is initialized to something in Root'class, but it doesn’t

have to be Root
D. Would be correct if function parameter types were 'Class

848 / 1033

Fundamentals of Ada
Polymorphism
Exotic Dispatching Operations

Exotic Dispatching Operations

849 / 1033

Fundamentals of Ada
Polymorphism
Exotic Dispatching Operations

Multiple dispatching operands

Primitives with multiple dispatching operands are allowed if all
operands are of the same type

type Root is tagged null record;
procedure P (Left : Root; Right : Root);
type Child is new Root with null record;
overriding procedure P (Left : Child; Right : Child);

At call time, all actual parameters’ tags have to match, either
statically or dynamically

R1, R2 : Root;
C1, C2 : Child;
Cl1 : Root'Class := R1;
Cl2 : Root'Class := R2;
Cl3 : Root'Class := C1;
...
P (R1, R2); -- static: ok
P (R1, C1); -- static: error
P (Cl1, Cl2); -- dynamic: ok
P (Cl1, Cl3); -- dynamic: error
P (R1, Cl1); -- static: error
P (Root'Class (R1), Cl1); -- dynamic: ok

850 / 1033

Fundamentals of Ada
Polymorphism
Exotic Dispatching Operations

Special case for equality

Overriding the default equality for a tagged type involves the use
of a function with multiple controlling operands
As in general case, static types of operands have to be the same
If dynamic types differ, equality returns false instead of raising
exception

type Root is tagged null record;
function "=" (L : Root; R : Root) return Boolean;
type Child is new Root with null record;
overriding function "=" (L : Child; R : Child) return Boolean;
R1, R2 : Root;
C1, C2 : Child;
Cl1 : Root'Class := R1;
Cl2 : Root'Class := R2;
Cl3 : Root'Class := C1;
...
-- overridden "=" called via dispatching
if Cl1 = Cl2 then [...]
if Cl1 = Cl3 then [...] -- returns false

851 / 1033

Fundamentals of Ada
Polymorphism
Exotic Dispatching Operations

Controlling result (1/2)

The controlling operand may be the return type
This is known as the constructor pattern

type Root is tagged null record;
function F (V : Integer) return Root;

If the child adds fields, all such subprograms have to be overridden

type Root is tagged null record;
function F (V : Integer) return Root;

type Child is new Root with null record;
-- OK, F is implicitly inherited

type Child1 is new Root with record
X : Integer;

end record;
-- ERROR no implicitly inherited function F

Primitives returning abstract types have to be abstract

type Root is abstract tagged null record;
function F (V : Integer) return Root is abstract;

852 / 1033

Fundamentals of Ada
Polymorphism
Exotic Dispatching Operations

Controlling result (2/2)

Primitives returning tagged types can be used in a static context

type Root is tagged null record;
function F return Root;
type Child is new Root with null record;
function F return Child;
V : Root := F;

In a dynamic context, the type has to be known to correctly
dispatch

V1 : Root'Class := Root'(F); -- Static call to Root primitive
V2 : Root'Class := V1;
V3 : Root'Class := Child'(F); -- Static call to Child primitive
V4 : Root'Class := F; -- What is the tag of V4?
...
V1 := F; -- Dispatching call to Root primitive
V2 := F; -- Dispatching call to Root primitive
V3 := F; -- Dispatching call to Child primitive

No dispatching is possible when returning access types
853 / 1033

Fundamentals of Ada
Polymorphism
Lab

Lab

854 / 1033

Fundamentals of Ada
Polymorphism
Lab

Polymorphism Lab

Requirements
Create a multi-level types hierarchy of shapes

Level 1: Shape → Quadrilateral | Triangle
Level 2: Quadrilateral → Square

Types should have the following primitive operations

Description
Number of sides
Perimeter

Create a main program to print information about multiple shapes

Create a nested subprogram that takes a shape and prints all
relevant information

Hints
Top-level type should be abstract

But can have concrete operations

Nested subprogram in main should take a shape class parameter
855 / 1033

Fundamentals of Ada
Polymorphism
Lab

Polymorphism Lab Solution - Shapes (Spec)
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Shapes is

type Float_T is digits 6;
type Vertex_T is record

X : Float_T;
Y : Float_T;

end record;
type Vertices_T is array (Positive range <>) of Vertex_T;

type Shape_T is abstract tagged record
Description : Unbounded_String;

end record;
function Get_Description (Shape : Shape_T'Class) return String;
function Number_Of_Sides (Shape : Shape_T) return Natural is abstract;
function Perimeter (Shape : Shape_T) return Float_T is abstract;

type Quadrilateral_T is new Shape_T with record
Sides : Vertices_T (1 .. 4);

end record;
function Number_Of_Sides (Shape : Quadrilateral_T) return Natural;
function Perimeter (Shape : Quadrilateral_T) return Float_T;

type Square_T is new Quadrilateral_T with null record;
function Perimeter (Shape : Square_T) return Float_T;

type Triangle_T is new Shape_T with record
Sides : Vertices_T (1 .. 3);

end record;
function Number_Of_Sides (Shape : Triangle_T) return Natural;
function Perimeter (Shape : Triangle_T) return Float_T;

end Shapes;

856 / 1033

Fundamentals of Ada
Polymorphism
Lab

Polymorphism Lab Solution - Shapes (Body)
with Ada.Numerics.Generic_Elementary_Functions;
package body Shapes is

package Math is new Ada.Numerics.Generic_Elementary_Functions (Float_T);

function Distance (Vertex1 : Vertex_T;
Vertex2 : Vertex_T)
return Float_T is

(Math.Sqrt ((Vertex1.X - Vertex2.X)**2 + (Vertex1.Y - Vertex2.Y)**2));

function Perimeter (Vertices : Vertices_T) return Float_T is
Ret_Val : Float_T := 0.0;

begin
for I in Vertices'First .. Vertices'Last - 1 loop

Ret_Val := Ret_Val + Distance (Vertices (I), Vertices (I + 1));
end loop;
Ret_Val := Ret_Val + Distance (Vertices (Vertices'Last), Vertices (Vertices'First));
return Ret_Val;

end Perimeter;

function Get_Description (Shape : Shape_T'Class) return String is (To_String (Shape.Description));

function Number_Of_Sides (Shape : Quadrilateral_T) return Natural is (4);
function Perimeter (Shape : Quadrilateral_T) return Float_T is (Perimeter (Shape.Sides));

function Perimeter (Shape : Square_T) return Float_T is (4.0 * Distance (Shape.Sides (1), Shape.Sides (2)));

function Number_Of_Sides (Shape : Triangle_T) return Natural is (3);
function Perimeter (Shape : Triangle_T) return Float_T is (Perimeter (Shape.Sides));

end Shapes;

857 / 1033

Fundamentals of Ada
Polymorphism
Lab

Polymorphism Lab Solution - Main
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_IO; use Ada.Text_IO;
with Shapes; use Shapes;
procedure Main is

Rectangle : constant Shapes.Quadrilateral_T :=
(Description => To_Unbounded_String ("rectangle"),
Sides => ((0.0, 10.0), (0.0, 20.0), (1.0, 20.0), (1.0, 10.0)));

Triangle : constant Shapes.Triangle_T :=
(Description => To_Unbounded_String ("triangle"),
Sides => ((0.0, 0.0), (0.0, 3.0), (4.0, 0.0)));

Square : constant Shapes.Square_T :=
(Description => To_Unbounded_String ("square"),
Sides => ((0.0, 1.0), (0.0, 2.0), (1.0, 2.0), (1.0, 1.0)));

procedure Describe (Shape : Shapes.Shape_T'Class) is
begin

Put_Line (Shape.Get_Description);
if Shape not in Shapes.Shape_T then

Put_Line (" Number of sides:" & Integer'Image (Shape.Number_Of_Sides));
Put_Line (" Perimeter:" & Shapes.Float_T'Image (Shape.Perimeter));

end if;
end Describe;

begin

Describe (Rectangle);
Describe (Triangle);
Describe (Square);

end Main;

858 / 1033

Fundamentals of Ada
Polymorphism
Summary

Summary

859 / 1033

Fundamentals of Ada
Polymorphism
Summary

Summary

'Class operator
Allows subprograms to be used for multiple versions of a type

Dispatching
Abstract types require concrete versions

Abstract subprograms allow template definitions

Need an implementation for each abstract type referenced

Run-time call dispatch vs compile-time call dispatching
Compiler resolves appropriate call where it can
Run-time resolves appropriate call where it can
If not resolved, exception

860 / 1033

Fundamentals of Ada
Exceptions

Exceptions

861 / 1033

Fundamentals of Ada
Exceptions
Introduction

Introduction

862 / 1033

Fundamentals of Ada
Exceptions
Introduction

Rationale for Exceptions

Textual separation from normal processing

Rigorous Error Management
Cannot be ignored, unlike status codes from routines
Example: running out of gasoline in an automobile

package Automotive is
type Vehicle is record

Fuel_Quantity, Fuel_Minimum : Float;
Oil_Temperature : Float;
...

end record;
Fuel_Exhausted : exception;
procedure Consume_Fuel (Car : in out Vehicle);
...

end Automotive;
863 / 1033

Fundamentals of Ada
Exceptions
Introduction

Semantics Overview

Exceptions become active by being raised
Failure of implicit language-defined checks
Explicitly by application

Exceptions occur at run-time
A program has no effect until executed

May be several occurrences active at same time
One per thread of control

Normal execution abandoned when they occur
Error processing takes over in response
Response specified by exception handlers
Handling the exception means taking action in response
Other threads need not be affected

864 / 1033

Fundamentals of Ada
Exceptions
Introduction

Semantics Example: Raising

package body Automotive is
function Current_Consumption return Float is

...
end Current_Consumption;
procedure Consume_Fuel (Car : in out Vehicle) is
begin

if Car.Fuel_Quantity <= Car.Fuel_Minimum then
raise Fuel_Exhausted;

else -- decrement quantity
Car.Fuel_Quantity := Car.Fuel_Quantity -

Current_Consumption;
end if;

end Consume_Fuel;
...

end Automotive;
865 / 1033

Fundamentals of Ada
Exceptions
Introduction

Semantics Example: Handling

procedure Joy_Ride is
Hot_Rod : Automotive.Vehicle;
Bored : Boolean := False;
use Automotive;

begin
while not Bored loop

Steer_Aimlessly (Bored);
-- error situation cannot be ignored
Consume_Fuel (Hot_Rod);

end loop;
Drive_Home;

exception
when Fuel_Exhausted =>

Push_Home;
end Joy_Ride;

866 / 1033

Fundamentals of Ada
Exceptions
Introduction

Handler Part Is Skipped Automatically

If no exceptions are active, returns normally

begin
...

-- if we get here, skip to end
exception

when Name1 =>
...
when Name2 | Name3 =>
...
when Name4 =>
...

end;

867 / 1033

Fundamentals of Ada
Exceptions
Handlers

Handlers

868 / 1033

Fundamentals of Ada
Exceptions
Handlers

Exception Handler Part

Contains the exception handlers within a frame
Within block statements, subprograms, tasks, etc.

Separates normal processing code from abnormal

Starts with the reserved word exception

Optional

begin
sequence_of_statements

[exception
exception_handler
{ exception_handler }]

end

869 / 1033

Fundamentals of Ada
Exceptions
Handlers

Exception Handlers Syntax

Associates exception names with statements to execute in response

If used, others must appear at the end, by itself
Associates statements with all other exceptions

Syntax

exception_handler ::=
when exception_choice { | exception_choice } =>

sequence_of_statements
exception_choice ::= exception_name | others

870 / 1033

Fundamentals of Ada
Exceptions
Handlers

Similarity To Case Statements

Both structure and meaning

Exception handler

...
exception

when Constraint_Error | Storage_Error | Program_Error =>
...
when others =>
...

end;

Case statement

case exception_name is
when Constraint_Error | Storage_Error | Program_Error =>
...
when others =>
...

end case;
871 / 1033

Fundamentals of Ada
Exceptions
Handlers

Handlers Don’t "Fall Through"

begin
...
raise Name3;
-- code here is not executed
...

exception
when Name1 =>

-- not executed
...

when Name2 | Name3 =>
-- executed
...

when Name4 =>
-- not executed
...

end;
872 / 1033

Fundamentals of Ada
Exceptions
Handlers

When An Exception Is Raised

Normal processing is
abandoned
Handler for active exception
is executed, if any
Control then goes to the
caller
If handled, caller continues
normally, otherwise repeats
the above

Caller
...
Joy_Ride;
Do_Something_At_Home;
...
Callee
procedure Joy_Ride is

...
begin

...
Drive_Home;

exception
when Fuel_Exhausted =>

Push_Home;
end Joy_Ride;

873 / 1033

Fundamentals of Ada
Exceptions
Handlers

Handling Specific Statements’ Exceptions

begin
-- Loop until file is open
loop

-- Read until something entered for filename
Prompting : loop

Put (Prompt);
Get_Line (Filename, Last);
exit when Last > Filename'First - 1;

end loop Prompting;
-- Try to open file
begin

Open (F, In_File, Filename (1..Last));
-- Exit loop if file is opened
exit;

exception
when Name_Error =>

Put_Line ("File '" & Filename (1..Last) &
"' was not found.");

end;
end loop;

874 / 1033

Fundamentals of Ada
Exceptions
Handlers

Exception Handler Content

No restrictions
Block statements,
subprogram calls, etc.

Do whatever makes sense

begin
...

exception
when Some_Error =>

declare
New_Data : Some_Type;

begin
P (New_Data);
...

end;
end;

875 / 1033

Fundamentals of Ada
Exceptions
Implicitly and Explicitly Raised Exceptions

Implicitly and Explicitly Raised Exceptions

876 / 1033

Fundamentals of Ada
Exceptions
Implicitly and Explicitly Raised Exceptions

Implicitly-Raised Exceptions

Correspond to language-defined checks

Can happen by statement execution

K := -10; -- where K must be greater than zero

Can happen by declaration elaboration

Doomed : array (Positive) of Big_Type;

877 / 1033

Fundamentals of Ada
Exceptions
Implicitly and Explicitly Raised Exceptions

Some Language-Defined Exceptions

Constraint_Error

Violations of constraints on range, index, etc.

Program_Error

Runtime control structure violated (function with no return ...)

Storage_Error

Insufficient storage is available

For a complete list see RM Q-4

878 / 1033

Fundamentals of Ada
Exceptions
Implicitly and Explicitly Raised Exceptions

Explicitly-Raised Exceptions

Raised by application via raise statements
Named exception becomes active

Syntax

raise_statement ::= raise; |
raise exception_name [with string_expression];

with string_expression only available in Ada 2005 and later

A raise by itself is only allowed in handlers

if Unknown (User_ID) then
raise Invalid_User;

end if;

if Unknown (User_ID) then
raise Invalid_User with "Attempt by " & Image (User_ID);

end if;
879 / 1033

Fundamentals of Ada
Exceptions
Implicitly and Explicitly Raised Exceptions

Quiz
1 procedure Main is
2 A, B, C, D : Integer range 0 .. 100;
3 begin
4 A := 1; B := 2; C := 3; D := 4;
5 begin
6 D := A - C + B;
7 exception
8 when others => Put_Line ("One");
9 D := 1;

10 end;
11 D := D + 1;
12 begin
13 D := D / (A - C + B);
14 exception
15 when others => Put_Line ("Two");
16 D := -1;
17 end;
18 exception
19 when others =>
20 Put_Line ("Three");
21 end Main;

What will get printed?
A. One, Two, Three
B. Two, Three
C. Two
D. Three

Explanations
A. Although (A - C) is not in the range

of natural, the range is only checked
on assignment, which is after the
addition of B, so One is never printed

B. Correct
C. If we reach Two, the assignment on

line 10 will cause Three to be reached
D. Divide by 0 on line 14 causes an

exception, so Two must be called

880 / 1033

Fundamentals of Ada
Exceptions
Implicitly and Explicitly Raised Exceptions

Quiz
1 procedure Main is
2 A, B, C, D : Integer range 0 .. 100;
3 begin
4 A := 1; B := 2; C := 3; D := 4;
5 begin
6 D := A - C + B;
7 exception
8 when others => Put_Line ("One");
9 D := 1;

10 end;
11 D := D + 1;
12 begin
13 D := D / (A - C + B);
14 exception
15 when others => Put_Line ("Two");
16 D := -1;
17 end;
18 exception
19 when others =>
20 Put_Line ("Three");
21 end Main;

What will get printed?
A. One, Two, Three
B. Two, Three
C. Two
D. Three

Explanations
A. Although (A - C) is not in the range

of natural, the range is only checked
on assignment, which is after the
addition of B, so One is never printed

B. Correct
C. If we reach Two, the assignment on

line 10 will cause Three to be reached
D. Divide by 0 on line 14 causes an

exception, so Two must be called

880 / 1033

Fundamentals of Ada
Exceptions
User-Defined Exceptions

User-Defined Exceptions

881 / 1033

Fundamentals of Ada
Exceptions
User-Defined Exceptions

User-Defined Exceptions

Syntax

defining_identifier_list : exception;

Behave like predefined exceptions
Scope and visibility rules apply
Referencing as usual
Some minor differences

Exception identifiers’ use is restricted
raise statements
Handlers
Renaming declarations

882 / 1033

Fundamentals of Ada
Exceptions
User-Defined Exceptions

User-Defined Exceptions Example

An important part of the abstraction
Designer specifies how component can be used

package Stack is
Underflow, Overflow : exception;
procedure Push (Item : in Integer);
...

end Stack;

package body Stack is
procedure Push (Item : in Integer) is
begin

if Top = Index'Last then
raise Overflow;

end if;
Top := Top + 1;
Values (Top) := Item;

end Push;
...

883 / 1033

Fundamentals of Ada
Exceptions
Propagation

Propagation

884 / 1033

Fundamentals of Ada
Exceptions
Propagation

Propagation

Control does not return to point of raising
Termination Model

When a handler is not found in a block statement
Re-raised immediately after the block

When a handler is not found in a subprogram
Propagated to caller at the point of call

Propagation is dynamic, back up the call chain
Not based on textual layout or order of declarations

Propagation stops at the main subprogram
Main completes abnormally unless handled

885 / 1033

Fundamentals of Ada
Exceptions
Propagation

Propagation Demo

1 procedure Do_Something is
2 Error : exception;
3 procedure Unhandled is
4 begin
5 Maybe_Raise(1);
6 end Unhandled;
7 procedure Handled is
8 begin
9 Unhandled;

10 Maybe_Raise(2);
11 exception
12 when Error =>
13 Print("Handle 1 or 2");
14 end Handled;

16 begin -- Do_Something
17 Maybe_Raise(3);
18 Handled;
19 exception
20 when Error =>
21 Print("Handle 3");
22 end Do_Something;

886 / 1033

Fundamentals of Ada
Exceptions
Propagation

Termination Model

When control goes to handler, it continues from here

procedure Joy_Ride is
begin

loop
Steer_Aimlessly;

-- If next line raises Fuel_Exhausted, go to handler
Consume_Fuel;

end loop;
exception

when Fuel_Exhausted => -- Handler
Push_Home;
-- Resume from here: loop has been exited

end Joy_Ride;
887 / 1033

Fundamentals of Ada
Exceptions
Propagation

Quiz
2 Main_Problem : exception;
3 I : Integer;
4 function F (P : Integer) return Integer is
5 begin
6 if P > 0 then
7 return P + 1;
8 elsif P = 0 then
9 raise Main_Problem;

10 end if;
11 end F;
12 begin
13 I := F(Input_Value);
14 Put_Line ("Success");
15 exception
16 when Constraint_Error =>
17 Put_Line ("Constraint Error");
18 when Program_Error =>
19 Put_Line ("Program Error");
20 when others =>
21 Put_Line ("Unknown problem");

What will get printed if
Input_Value on line 13 is
Integer'Last?
A. Unknown Problem
B. Success
C. Constraint Error
D. Program Error

Explanations

A. "Unknown problem" is printed by the when others due to the
raise on line 9 when P is 0

B. "Success" is printed when 0 < P < Integer'Last
C. Trying to add 1 to P on line 7 generates a Constraint_Error
D. Program_Error will be raised by F if P < 0 (no return

statement found)

888 / 1033

Fundamentals of Ada
Exceptions
Propagation

Quiz
2 Main_Problem : exception;
3 I : Integer;
4 function F (P : Integer) return Integer is
5 begin
6 if P > 0 then
7 return P + 1;
8 elsif P = 0 then
9 raise Main_Problem;

10 end if;
11 end F;
12 begin
13 I := F(Input_Value);
14 Put_Line ("Success");
15 exception
16 when Constraint_Error =>
17 Put_Line ("Constraint Error");
18 when Program_Error =>
19 Put_Line ("Program Error");
20 when others =>
21 Put_Line ("Unknown problem");

What will get printed if
Input_Value on line 13 is
Integer'Last?
A. Unknown Problem
B. Success
C. Constraint Error
D. Program Error

Explanations

A. "Unknown problem" is printed by the when others due to the
raise on line 9 when P is 0

B. "Success" is printed when 0 < P < Integer'Last
C. Trying to add 1 to P on line 7 generates a Constraint_Error
D. Program_Error will be raised by F if P < 0 (no return

statement found)
888 / 1033

Fundamentals of Ada
Exceptions
Exceptions as Objects

Exceptions as Objects

889 / 1033

Fundamentals of Ada
Exceptions
Exceptions as Objects

Exceptions Are Not Objects

May not be manipulated
May not be components of composite types
May not be passed as parameters

Some differences for scope and visibility
May be propagated out of scope

890 / 1033

Fundamentals of Ada
Exceptions
Exceptions as Objects

But You Can Treat Them As Objects

For raising and handling, and more
Standard Library

package Ada.Exceptions is
type Exception_Id is private;
procedure Raise_Exception (E : Exception_Id;

Message : String := "");
...
type Exception_Occurrence is limited private;
function Exception_Name (X : Exception_Occurrence)

return String;
function Exception_Message (X : Exception_Occurrence)

return String;
function Exception_Information (X : Exception_Occurrence)

return String;
procedure Reraise_Occurrence (X : Exception_Occurrence);
procedure Save_Occurrence (

Target : out Exception_Occurrence;
Source : Exception_Occurrence);

...
end Ada.Exceptions;

891 / 1033

Fundamentals of Ada
Exceptions
Exceptions as Objects

Exception Occurrence

Syntax associates an object with active exception

when defining_identifier : exception_name ... =>

A constant view representing active exception

Used with operations defined for the type

exception
when Catched_Exception : others =>

Put (Exception_Name (Catched_Exception));

892 / 1033

Fundamentals of Ada
Exceptions
Exceptions as Objects

Exception_Occurrence Query Functions

Exception_Name
Returns full expanded name of the exception in string form

Simple short name if space-constrained

Predefined exceptions appear as just simple short name

Exception_Message
Returns string value specified when raised, if any

Exception_Information
Returns implementation-defined string content

Should include both exception name and message content

Presumably includes debugging information

Location where exception occurred
Language-defined check that failed (if such)

893 / 1033

Fundamentals of Ada
Exceptions
Exceptions as Objects

Exception ID

For an exception identifier, the identity of the exception is
<name>'Identity

Mine : exception
use Ada.Exceptions;
...
exception

when Occurrence : others =>
if Exception_Identity(Occurrence) = Mine'Identity
then

...

894 / 1033

Fundamentals of Ada
Exceptions
Raise Expressions

Raise Expressions

895 / 1033

Fundamentals of Ada
Exceptions
Raise Expressions

Raise Expressions
Ada 2012

Expression raising specified exception at run-time

Foo : constant Integer := (case X is
when 1 => 10,
when 2 => 20,
when others => raise Error);

896 / 1033

Fundamentals of Ada
Exceptions
In Practice

In Practice

897 / 1033

Fundamentals of Ada
Exceptions
In Practice

Exceptions Are Not Always Appropriate

What does it mean to have
an unexpected error in a
safety-critical application?

Maybe there’s no
reasonable response

898 / 1033

Fundamentals of Ada
Exceptions
In Practice

Relying On Exception Raising Is Risky

They may be suppressed

Not recommended

function Tomorrow (Today : Days) return Days is
begin

return Days'Succ (Today);
exception

when Constraint_Error =>
return Days'First;

end Tomorrow;

Recommended

function Tomorrow (Today : Days) return Days is
begin

if Today = Days'Last then
return Days'First;

else
return Days'Succ (Today);

end if;
end Tomorrow;

899 / 1033

Fundamentals of Ada
Exceptions
Lab

Lab

900 / 1033

Fundamentals of Ada
Exceptions
Lab

Exceptions Lab

(Simple) Input Verifier

Overview
Create an application that allows users to enter integer values

Goal
Application should read data from a string and return the numeric
value (or raise an exception)

901 / 1033

Fundamentals of Ada
Exceptions
Lab

Project Requirements

Exception Tracking
Non-numeric data should raise a different exception than
out-of-range data
Exceptions should not stop the application

Extra Credit
Handle values with exponents (e.g 123E4)

902 / 1033

Fundamentals of Ada
Exceptions
Lab

Exceptions Lab Solution - Types

package Types is

Max_Int : constant := 2**15;
type Integer_T is range -(Max_Int) .. Max_Int - 1;

end Types;

903 / 1033

Fundamentals of Ada
Exceptions
Lab

Exceptions Lab Solution - Converter
with Types;
package Converter is

Illegal_String : exception;
Out_Of_Range : exception;
function Convert (Str : String) return Types.Integer_T;

end Converter;

package body Converter is

function Legal (C : Character) return Boolean is
begin

return
C in '0' .. '9' or C = '+' or C = '-' or C = '+' or C = '_' or
C = 'e' or C = 'E';

end Legal;

function Convert (Str : String) return Types.Integer_T is
begin

for I in Str'range loop
if not Legal (Str (I)) then

raise Illegal_String;
end if;

end loop;
return Types.Integer_T'value (Str);

exception
when Constraint_Error =>

raise Out_Of_Range;
end Convert;

end Converter;

904 / 1033

Fundamentals of Ada
Exceptions
Lab

Exceptions Lab Solution - Main
with Ada.Text_IO;
with Converter;
with Types;
procedure Main is

procedure Print_Value (Str : String) is
Value : Types.Integer_T;

begin
Ada.Text_IO.Put (Str & " => ");
Value := Converter.Convert (Str);
Ada.Text_IO.Put_Line (Types.Integer_T'image (Value));

exception
when Converter.Out_Of_Range =>

Ada.Text_IO.Put_Line ("Out of range");
when Converter.Illegal_String =>

Ada.Text_IO.Put_Line ("Illegal entry");
end Print_Value;

begin
Print_Value ("123");
Print_Value ("2_3_4");
Print_Value ("-345");
Print_Value ("+456");
Print_Value ("1234567890");
Print_Value ("123abc");
Print_Value ("12e3");

end Main;

905 / 1033

Fundamentals of Ada
Exceptions
Summary

Summary

906 / 1033

Fundamentals of Ada
Exceptions
Summary

Summary

Should be for unexpected errors

Give clients the ability to avoid them

If handled, caller should see normal effect
Mode out parameters assigned
Function return values provided

Package Ada.Exceptions provides views as objects
For both raising and special handling
Especially useful for debugging

Checks may be suppressed

907 / 1033

Fundamentals of Ada
Interfacing with C

Interfacing with C

908 / 1033

Fundamentals of Ada
Interfacing with C
Introduction

Introduction

909 / 1033

Fundamentals of Ada
Interfacing with C
Introduction

Introduction

Lots of C code out there already
Maybe even a lot of reusable code in your own repositories

Need a way to interface Ada code with existing C libraries
Built-in mechanism to define ability to import objects from C or
export Ada objects

Passing data between languages can cause issues
Sizing requirements
Passing mechanisms (by reference, by copy)

910 / 1033

Fundamentals of Ada
Interfacing with C
Import / Export

Import / Export

911 / 1033

Fundamentals of Ada
Interfacing with C
Import / Export

Pragma Import / Export (1/2)
Pragma Import allows a C implementation to complete an Ada
specification

Ada view

procedure C_Proc;
pragma Import (C, C_Proc, "SomeProcedure");

C implementation

void SomeProcedure (void) {
// some code

}

Pragma Export allows an Ada implementation to complete a C
specification

Ada implementation

procedure Some_Procedure;
pragma Export (C, SomeProcedure, "ada_some_procedure");
procedure Some_Procedure is
begin
-- some code

end Some_Procedure;

C view

extern void ada_some_procedure (void);

912 / 1033

Fundamentals of Ada
Interfacing with C
Import / Export

Pragma Import / Export (2/2)

You can also import/export variables
Variables imported won’t be initialized

Ada view

My_Var : integer_type;
Pragma Import (C, My_Var, "my_var");

C implementation

int my_var;

913 / 1033

Fundamentals of Ada
Interfacing with C
Import / Export

Import / Export in Ada 2012
Ada 2012

In Ada 2012, Import and Export can also be done using aspects:

procedure C_Proc
with Import,

Convention => C,
External_Name => "c_proc";

914 / 1033

Fundamentals of Ada
Interfacing with C
Parameter Passing

Parameter Passing

915 / 1033

Fundamentals of Ada
Interfacing with C
Parameter Passing

Parameter Passing to/from C

The mechanism used to pass formal subprogram parameters and
function results depends on:

The type of the parameter
The mode of the parameter
The Convention applied on the Ada side of the subprogram
declaration.

The exact meaning of Convention C, for example, is documented
in LRM B.1 - B.3, and in the GNAT User’s Guide section 3.11.

916 / 1033

Fundamentals of Ada
Interfacing with C
Parameter Passing

Passing Scalar Data as Parameters

C types are defined by the Standard

Ada types are implementation-defined

GNAT standard types are compatible with C types
Implementation choice, use carefully

At the interface level, scalar types must be either constrained with
representation clauses, or coming from Interfaces.C

Ada view

with Interfaces.C;
function C_Proc (I : Interfaces.C.Int)

return Interfaces.C.Int;
pragma Import (C, C_Proc, "c_proc");

C view

int c_proc (int i) {
/* some code */

}
917 / 1033

Fundamentals of Ada
Interfacing with C
Parameter Passing

Passing Structures as Parameters
An Ada record that is mapping on a C struct must:

Be marked as convention C to enforce a C-like memory layout
Contain only C-compatible types

C View

enum Enum {E1, E2, E3};
struct Rec {

int A, B;
Enum C;

};

Ada View

type Enum is (E1, E2, E3);
Pragma Convention (C, Enum);
type Rec is record

A, B : int;
C : Enum;

end record;
Pragma Convention (C, Rec);

Using Ada 2012 aspects

type Enum is (E1, E2, E3) with Convention => C;
type Rec is record

A, B : int;
C : Enum;

end record with Convention => C;

918 / 1033

Fundamentals of Ada
Interfacing with C
Parameter Passing

Parameter modes
in scalar parameters passed by copy

out and in out scalars passed using temporary pointer on C side

By default, composite types passed by reference on all modes
except when the type is marked C_Pass_By_Copy

Be very careful with records - some C ABI pass small structures by
copy!

Ada View

Type R1 is record
V : int;

end record
with Convention => C;

type R2 is record
V : int;

end record
with Convention => C_Pass_By_Copy;

C View

struct R1{
int V;

};
struct R2 {

int V;
};
void f1 (R1 p);
void f2 (R2 p);

919 / 1033

Fundamentals of Ada
Interfacing with C
Complex Data Types

Complex Data Types

920 / 1033

Fundamentals of Ada
Interfacing with C
Complex Data Types

Unions
C union

union Rec {
int A;
float B;

};

C unions can be bound using the Unchecked_Union aspect

These types must have a mutable discriminant for convention
purpose, which doesn’t exist at run-time

All checks based on its value are removed - safety loss
It cannot be manually accessed

Ada implementation of a C union

type Rec (Flag : Boolean := False) is
record

case Flag is
when True =>

A : int;
when False =>

B : float;
end case;

end record
with Unchecked_Union,

Convention => C;

921 / 1033

Fundamentals of Ada
Interfacing with C
Complex Data Types

Arrays Interfacing

In Ada, arrays are of two kinds:
Constrained arrays
Unconstrained arrays

Unconstrained arrays are associated with
Components
Bounds

In C, an array is just a memory location pointing (hopefully) to a
structured memory location

C does not have the notion of unconstrained arrays

Bounds must be managed manually
By convention (null at the end of string)
By storing them on the side

Only Ada constrained arrays can be interfaced with C
922 / 1033

Fundamentals of Ada
Interfacing with C
Complex Data Types

Arrays from Ada to C

An Ada array is a composite data structure containing 2 elements:
Bounds and Elements

Fat pointers

When arrays can be sent from Ada to C, C will only receive an
access to the elements of the array

Ada View

type Arr is array (Integer range <>) of int;
procedure P (V : Arr; Size : int);
pragma Import (C, P, "p");

C View

void p (int * v, int size) {
}

923 / 1033

Fundamentals of Ada
Interfacing with C
Complex Data Types

Arrays from C to Ada
There are no boundaries to C types, the only Ada arrays that can
be bound must have static bounds

Additional information will probably need to be passed

Ada View

-- DO NOT DECLARE OBJECTS OF THIS TYPE
type Arr is array (0 .. Integer'Last) of int;

procedure P (V : Arr; Size : int);
pragma Export (C, P, "p");

procedure P (V : Arr; Size : int) is
begin

for J in 0 .. Size - 1 loop
-- code;

end loop;
end P;

C View

extern void p (int * v, int size);
int x [100];
p (x, 100);

924 / 1033

Fundamentals of Ada
Interfacing with C
Complex Data Types

Strings

Importing a String from C is like importing an array - has to be
done through a constrained array

Interfaces.C.Strings gives a standard way of doing that

Unfortunately, C strings have to end by a null character

Exporting an Ada string to C needs a copy!

Ada_Str : String := "Hello World";
C_Str : chars_ptr := New_String (Ada_Str);

Alternatively, a knowledgeable Ada programmer can manually
create Ada strings with correct ending and manage them directly

Ada_Str : String := "Hello World" & ASCII.NUL;

Back to the unsafe world - it really has to be worth it speed-wise!
925 / 1033

Fundamentals of Ada
Interfacing with C
Interfaces.C

Interfaces.C

926 / 1033

Fundamentals of Ada
Interfacing with C
Interfaces.C

Interfaces.C Hierarchy

Ada supplies a subsystem to deal with Ada/C interactions

Interfaces.C - contains typical C types and constants, plus some
simple Ada string to/from C character array conversion routines

Interfaces.C.Extensions - some additonal C/C++ types
Interfaces.C.Pointers - generic package to simulate C pointers
(pointer as an unconstrained array, pointer arithmetic, etc)
Interfaces.C.Strings - types / functions to deal with C "char
*"

927 / 1033

Fundamentals of Ada
Interfacing with C
Interfaces.C

Interfaces.C
package Interfaces.C is

-- Declaration's based on C's <limits.h>
CHAR_BIT : constant := 8;
SCHAR_MIN : constant := -128;
SCHAR_MAX : constant := 127;
UCHAR_MAX : constant := 255;

type int is new Integer;
type short is new Short_Integer;
type long is range -(2 ** (System.Parameters.long_bits - Integer'(1)))

.. +(2 ** (System.Parameters.long_bits - Integer'(1))) - 1;

type signed_char is range SCHAR_MIN .. SCHAR_MAX;
for signed_char'Size use CHAR_BIT;

type unsigned is mod 2 ** int'Size;
type unsigned_short is mod 2 ** short'Size;
type unsigned_long is mod 2 ** long'Size;

type unsigned_char is mod (UCHAR_MAX + 1);
for unsigned_char'Size use CHAR_BIT;

type ptrdiff_t is range -(2 ** (System.Parameters.ptr_bits - Integer'(1))) ..
+(2 ** (System.Parameters.ptr_bits - Integer'(1)) - 1);

type size_t is mod 2 ** System.Parameters.ptr_bits;

-- Floating-Point
type C_float is new Float;
type double is new Standard.Long_Float;
type long_double is new Standard.Long_Long_Float;

type char is new Character;
nul : constant char := char'First;

function To_C (Item : Character) return char;
function To_Ada (Item : char) return Character;

type char_array is array (size_t range <>) of aliased char;
for char_array'Component_Size use CHAR_BIT;

function Is_Nul_Terminated (Item : char_array) return Boolean;

-- (more not specified here)

end Interfaces.C;

928 / 1033

Fundamentals of Ada
Interfacing with C
Interfaces.C

Interfaces.C.Extensions
package Interfaces.C.Extensions is

-- Definitions for C "void" and "void *" types
subtype void is System.Address;
subtype void_ptr is System.Address;

-- Definitions for C incomplete/unknown structs
subtype opaque_structure_def is System.Address;
type opaque_structure_def_ptr is access opaque_structure_def;

-- Definitions for C++ incomplete/unknown classes
subtype incomplete_class_def is System.Address;
type incomplete_class_def_ptr is access incomplete_class_def;

-- C bool
type bool is new Boolean;
pragma Convention (C, bool);

-- 64-bit integer types
subtype long_long is Long_Long_Integer;
type unsigned_long_long is mod 2 ** 64;

-- (more not specified here)

end Interfaces.C.Extensions;

929 / 1033

Fundamentals of Ada
Interfacing with C
Interfaces.C

Interfaces.C.Pointers
generic

type Index is (<>);
type Element is private;
type Element_Array is array (Index range <>) of aliased Element;
Default_Terminator : Element;

package Interfaces.C.Pointers is

type Pointer is access all Element;
for Pointer'Size use System.Parameters.ptr_bits;

function Value (Ref : Pointer;
Terminator : Element := Default_Terminator)
return Element_Array;

function Value (Ref : Pointer;
Length : ptrdiff_t)
return Element_Array;

Pointer_Error : exception;

function "+" (Left : Pointer; Right : ptrdiff_t) return Pointer;
function "+" (Left : ptrdiff_t; Right : Pointer) return Pointer;
function "-" (Left : Pointer; Right : ptrdiff_t) return Pointer;
function "-" (Left : Pointer; Right : Pointer) return ptrdiff_t;

procedure Increment (Ref : in out Pointer);
procedure Decrement (Ref : in out Pointer);

-- (more not specified here)

end Interfaces.C.Pointers;

930 / 1033

Fundamentals of Ada
Interfacing with C
Interfaces.C

Interfaces.C.Strings
package Interfaces.C.Strings is

type char_array_access is access all char_array;
for char_array_access'Size use System.Parameters.ptr_bits;

type chars_ptr is private;

type chars_ptr_array is array (size_t range <>) of aliased chars_ptr;

Null_Ptr : constant chars_ptr;

function To_Chars_Ptr (Item : char_array_access;
Nul_Check : Boolean := False) return chars_ptr;

function New_Char_Array (Chars : char_array) return chars_ptr;

function New_String (Str : String) return chars_ptr;

procedure Free (Item : in out chars_ptr);

function Value (Item : chars_ptr) return char_array;
function Value (Item : chars_ptr;

Length : size_t)
return char_array;

function Value (Item : chars_ptr) return String;
function Value (Item : chars_ptr;

Length : size_t)
return String;

function Strlen (Item : chars_ptr) return size_t;

-- (more not specified here)

end Interfaces.C.Strings;

931 / 1033

Fundamentals of Ada
Interfacing with C
Lab

Lab

932 / 1033

Fundamentals of Ada
Interfacing with C
Lab

Interfacing with C Lab

Requirements
Given a C function that calculates speed in MPH from some
information, your application should

Ask user for distance and time
Populate the structure appropriately
Call C function to return speed
Print speed to console

Hints
Structure contains the following fields

Distance (floating point)
Distance Type (enumeral)
Seconds (floating point)

933 / 1033

Fundamentals of Ada
Interfacing with C
Lab

Interfacing with C Lab - GNAT Studio

To compile/link the C file into the Ada executable:

1 Make sure the C file is in the same directory as the Ada source files
2 Edit → Project Properties
3 Sources → Languages → Check the "C" box
4 Build and execute as normal

934 / 1033

Fundamentals of Ada
Interfacing with C
Lab

Interfacing with C Lab Solution - Ada
with Ada.Text_IO; use Ada.Text_IO;
with Interfaces.C;
procedure Main is

package Float_Io is new Ada.Text_IO.Float_IO (Interfaces.C.C_float);

One_Minute_In_Seconds : constant := 60.0;
One_Hour_In_Seconds : constant := 60.0 * One_Minute_In_Seconds;

type Distance_T is (Feet, Meters, Miles) with Convention => C;
type Data_T is record

Distance : Interfaces.C.C_float;
Distance_Type : Distance_T;
Seconds : Interfaces.C.C_float;

end record with Convention => C;
function C_Miles_Per_Hour (Data : Data_T) return Interfaces.C.C_float

with Import, Convention => C, External_Name => "miles_per_hour";

Object_Feet : constant Data_T :=
(Distance => 6_000.0,
Distance_Type => Feet,
Seconds => One_Minute_In_Seconds);

Object_Meters : constant Data_T :=
(Distance => 3_000.0,
Distance_Type => Meters,
Seconds => One_Hour_In_Seconds);

Object_Miles : constant Data_T :=
(Distance => 1.0,
Distance_Type =>
Miles, Seconds => 1.0);

procedure Run (Object : Data_T) is
begin

Float_Io.Put (Object.Distance);
Put (" " & Distance_T'Image (Object.Distance_Type) & " in ");
Float_Io.Put (Object.Seconds);
Put (" seconds = ");
Float_Io.Put (C_Miles_Per_Hour (Object));
Put_Line (" mph");

end Run;

begin
Run (Object_Feet);
Run (Object_Meters);
Run (Object_Miles);

end Main;

935 / 1033

Fundamentals of Ada
Interfacing with C
Lab

Interfacing with C Lab Solution - C

enum DistanceT { FEET, METERS, MILES };
struct DataT {

float distance;
enum DistanceT distanceType;
float seconds;
};

float miles_per_hour (struct DataT data) {
float miles = data.distance;
switch (data.distanceType) {

case METERS:
miles = data.distance / 1609.344;
break;

case FEET:
miles = data.distance / 5280.0;
break;

};
return miles / (data.seconds / (60.0 * 60.0));

}
936 / 1033

Fundamentals of Ada
Interfacing with C
Summary

Summary

937 / 1033

Fundamentals of Ada
Interfacing with C
Summary

Summary

Possible to interface with other languages (typically C)

Ada provides some built-in support to make interfacing simpler

Crossing languages can be made safer
But it still increases complexity of design / implementation

938 / 1033

Fundamentals of Ada
Tasking

Tasking

939 / 1033

Fundamentals of Ada
Tasking
Introduction

Introduction

940 / 1033

Fundamentals of Ada
Tasking
Introduction

A Simple Task

Parallel code execution via task

limited types (No copies allowed)

procedure Main is
task type Put_T;
task body Put_T is
begin

loop
delay 1.0;
Put_Line ("T");

end loop;
end Put_T;

T : Put_T;
begin -- Main task body

loop
delay 1.0;
Put_Line ("Main");

end loop;
end;

941 / 1033

Fundamentals of Ada
Tasking
Introduction

Two Synchronization Models

Active
Rendezvous
Client / Server model
Server entries
Client entry calls

Passive
Protected objects model
Concurrency-safe semantics

942 / 1033

Fundamentals of Ada
Tasking
Tasks

Tasks

943 / 1033

Fundamentals of Ada
Tasking
Tasks

Rendezvous Definitions
Server declares several entry

Client calls entries like subprograms

Server accept the client calls

At each standalone accept, server task blocks
Until a client calls the related entry

task type Msg_Box_T is
entry Start;
entry Receive_Message (S : String);

end Msg_Box_T;

task body Msg_Box_T is
begin

loop
accept Start;
Put_Line ("start");

accept Receive_Message (S : String) do
Put_Line (S);

end Receive_Message;
end loop;

end Msg_Box_T;
944 / 1033

Fundamentals of Ada
Tasking
Tasks

Rendezvous Entry Calls

Upon calling an entry, client blocks
Until server reaches end of its accept block

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
T.Receive_Message ("2");

May be executed as follows:

calling start
start -- May switch place with line below
calling receive 1 -- May switch place with line above
Receive 1
calling receive 2
-- Blocked until another task calls Start

945 / 1033

Fundamentals of Ada
Tasking
Tasks

Accepting a Rendezvous

accept statement
Wait on single entry
If entry call waiting: Server handles it
Else: Server waits for an entry call

select statement
Several entries accepted at the same time
Can time-out on the wait
Can be not blocking if no entry call waiting
Can terminate if no clients can possibly make entry call
Can conditionally accept a rendezvous based on a guard
expression

946 / 1033

Fundamentals of Ada
Tasking
Protected Objects

Protected Objects

947 / 1033

Fundamentals of Ada
Tasking
Protected Objects

Protected Objects

Multitask-safe accessors to get and set state
No direct state manipulation
No concurrent modifications
limited types (No copies allowed)

protected type
Protected_Value is
procedure Set (V : Integer);
function Get return Integer;

private
Value : Integer;

end Protected_Value;

protected body Protected_Value is
procedure Set (V : Integer) is
begin

Value := V;
end Set;

function Get return Integer is
begin

return Value;
end Get;

end Protected_Value;
.

948 / 1033

Fundamentals of Ada
Tasking
Protected Objects

Protected: Functions and Procedures

A function can get the state
Protected data is read-only
Concurrent call to function is allowed
No concurrent call to procedure

A procedure can set the state
No concurrent call to either procedure or function

In case of concurrency, other callers get blocked
Until call finishes

949 / 1033

Fundamentals of Ada
Tasking
Delays

Delays

950 / 1033

Fundamentals of Ada
Tasking
Delays

Delay keyword

delay keyword part of tasking
Blocks for a time
Relative: Blocks for at least Duration
Absolute: Blocks until a given Calendar.Time or
Real_Time.Time

with Calendar;

procedure Main is
Relative : Duration := 1.0;
Absolute : Calendar.Time

:= Calendar.Time_Of (2030, 10, 01);
begin

delay Relative;
delay until Absolute;

end Main;
951 / 1033

Fundamentals of Ada
Tasking
Task and Protected Types

Task and Protected Types

952 / 1033

Fundamentals of Ada
Tasking
Task and Protected Types

Task Activation

Instantiated tasks start running when activated

On the stack
When enclosing declarative part finishes elaborating

On the heap
Immediately at instantiation

task type First_T is ...
type First_T_A is access all First_T;

task body First_T is ...
...
declare

V1 : First_T;
V2 : First_T_A;

begin -- V1 is activated
V2 := new First_T; -- V2 is activated immediately

953 / 1033

Fundamentals of Ada
Tasking
Task and Protected Types

Single Declaration

Instantiate an anonymous task (or protected) type

Declares an object of that type
Body declaration is then using the object name

task Msg_Box is
-- Msg_Box task is declared *and* instantiated

entry Receive_Message (S : String);
end Msg_Box;

task body Msg_Box is
begin

loop
accept Receive_Message (S : String) do

Put_Line (S);
end Receive_Message;

end loop;
end Msg_Box;

954 / 1033

Fundamentals of Ada
Tasking
Task and Protected Types

Task Scope

Nesting is possible in any declarative block

Scope has to wait for tasks to finish before ending

At library level: program ends only when all tasks finish

package P is
task type T;

end P;

package body P is
task body T is

loop
delay 1.0;
Put_Line ("tick");

end loop;
end T;

Task_Instance : T;
end P;

955 / 1033

Fundamentals of Ada
Tasking
Some Advanced Concepts

Some Advanced Concepts

956 / 1033

Fundamentals of Ada
Tasking
Some Advanced Concepts

Waiting On Multiple Entries

select can wait on multiple entries
With equal priority, regardless of declaration order

loop
select

accept Receive_Message (V : String)
do

Put_Line ("Message : " & String);
end Receive_Message;

or
accept Stop;
exit;

end select;
end loop;
...
T.Receive_Message ("A");
T.Receive_Message ("B");
T.Stop;

957 / 1033

Fundamentals of Ada
Tasking
Some Advanced Concepts

Waiting With a Delay

A select statement may time-out using delay or delay until

Resume execution at next statement

Multiple delay allowed
Useful when the value is not hard-coded

loop
select

accept Receive_Message (V : String) do
Put_Line ("Message : " & String);

end Receive_Message;
or

delay 50.0;
Put_Line ("Don't wait any longer");
exit;

end select;
end loop;

958 / 1033

Fundamentals of Ada
Tasking
Some Advanced Concepts

Calling an Entry With a Delay Protection

A call to entry blocks the task until the entry is accept ’ed
Wait for a given amount of time with select ... delay
Only one entry call is allowed
No accept statement is allowed

task Msg_Box is
entry Receive_Message (V : String);

end Msg_Box;

procedure Main is
begin

select
Msg_Box.Receive_Message ("A");

or
delay 50.0;

end select;
end Main;

959 / 1033

Fundamentals of Ada
Tasking
Some Advanced Concepts

Non-blocking Accept or Entry

Using else

Task skips the accept or entry call if they are not ready to be
entered

delay is not allowed in this case

select
accept Receive_Message (V : String) do

Put_Line ("Received : " & V);
end Receive_Message;

else
Put_Line ("Nothing to receive");

end select;

[...]

select
T.Receive_Message ("A");

else
Put_Line ("Receive message not called");

end select;
960 / 1033

Fundamentals of Ada
Tasking
Some Advanced Concepts

Queue

Protected entry or procedure and tasks entry are activated by
one task at a time

Mutual exclusion section

Other tasks trying to enter are queued
In First-In First-Out (FIFO) by default

When the server task terminates, tasks still queued receive
Tasking_Error

961 / 1033

Fundamentals of Ada
Tasking
Some Advanced Concepts

Advanced Tasking

Other constructions are available

Guard condition on accept
requeue to defer handling of an entry call
terminate the task when no entry call can happen anymore
abort to stop a task immediately
select ... then abort some other task

962 / 1033

Fundamentals of Ada
Tasking
Lab

Lab

963 / 1033

Fundamentals of Ada
Tasking
Lab

Tasking Lab

Requirements
Create multiple tasks with the following attributes

Startup entry receives some identifying information and a delay
length
Stop entry will end the task
Until stopped, the task will send it’s identifying information to a
monitor periodically based on the delay length

Create a protected object that stores the identifying information of
task that called it

Main program should periodically check the protected object, and
print when it detects a task switch

I.e. If the current task is different than the last printed task, print
the identifying information for the current task

964 / 1033

Fundamentals of Ada
Tasking
Lab

Tasking Lab Solution - Protected Object

with Task_Type;
package Protected_Object is

protected Monitor is
procedure Set (Id : Task_Type.Task_Id_T);
function Get return Task_Type.Task_Id_T;

private
Value : Task_Type.Task_Id_T;

end Monitor;
end Protected_Object;

package body Protected_Object is
protected body Monitor is

procedure Set (Id : Task_Type.Task_Id_T) is
begin

Value := Id;
end Set;
function Get return Task_Type.Task_Id_T is (Value);

end Monitor;
end Protected_Object;

965 / 1033

Fundamentals of Ada
Tasking
Lab

Tasking Lab Solution - Task Type
package Task_Type is

type Task_Id_T is range 1_000 .. 9_999;
task type Task_T is

entry Start_Task (Task_Id : Task_Id_T;
Delay_Duration : Duration);

entry Stop_Task;
end Task_T;

end Task_Type;

with Protected_Object;
package body Task_Type is

task body Task_T is
Wait_Time : Duration;
Id : Task_Id_T;

begin
accept Start_Task (Task_Id : Task_Id_T;

Delay_Duration : Duration) do
Wait_Time := Delay_Duration;
Id := Task_Id;

end Start_Task;
loop

select
accept Stop_Task;
exit;

or
delay Wait_Time;
Protected_Object.Monitor.Set (Id);

end select;
end loop;

end Task_T;
end Task_Type;

966 / 1033

Fundamentals of Ada
Tasking
Lab

Tasking Lab Solution - Main
with Ada.Text_IO; use Ada.Text_IO;
with Protected_Object;
with Task_Type;
procedure Main is

T1, T2, T3 : Task_Type.Task_T;
Last_Id, This_Id : Task_Type.Task_Id_T := Task_Type.Task_Id_T'last;
use type Task_Type.Task_Id_T;

begin

T1.Start_Task (1_111, 0.3);
T2.Start_Task (2_222, 0.5);
T3.Start_Task (3_333, 0.7);

for Count in 1 .. 20 loop
This_Id := Protected_Object.Monitor.Get;
if Last_Id /= This_Id then

Last_Id := This_Id;
Put_Line (Count'image & "> " & Last_Id'image);

end if;
delay 0.2;

end loop;

T1.Stop_Task;
T2.Stop_Task;
T3.Stop_Task;

end Main;

967 / 1033

Fundamentals of Ada
Tasking
Summary

Summary

968 / 1033

Fundamentals of Ada
Tasking
Summary

Summary

Tasks are language-based multi-threading mechanisms
Not necessarily for truly parallel operations
Originally for task-switching / time-slicing

Multiple mechanisms to synchronize tasks
Delay
Rendezvous
Queues
Protected Objects

969 / 1033

Fundamentals of Ada
Low Level Programming

Low Level Programming

970 / 1033

Fundamentals of Ada
Low Level Programming
Introduction

Introduction

971 / 1033

Fundamentals of Ada
Low Level Programming
Introduction

Introduction

Sometimes you need to get your hands dirty

Hardware Issues
Register or memory access
Assembler code for speed or size issues

Interfacing with other software
Object sizes
Endianness
Data conversion

972 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Data Representation

973 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Data Representation vs Requirements

Developer usually defines requirements on a type

type My_Int is range 1 .. 10;

The compiler then generates a representation for this type that
can accommodate requirements

In GNAT, can be consulted using -gnatR2 switch

type My_Int is range 1 .. 10;
for My_Int'Object_Size use 8;
for My_Int'Value_Size use 4;
for My_Int'Alignment use 1;

-- using Ada 2012 aspects
type Ada2012_Int is range 1 .. 10

with Object_Size => 8,
Value_Size => 4,
Alignment => 1;

These values can be explicitly set, the compiler will check their
consistency

They can be queried as attributes if needed

X : Integer := My_Int'Alignment;
974 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Value_Size / Size

Value_Size (or Size in the Ada Reference Manual) is the minimal
number of bits required to represent data

For example, Boolean'Size = 1

The compiler is allowed to use larger size to represent an actual
object, but will check that the minimal size is enough

type T1 is range 1 .. 4;
for T1'Size use 3;

-- using Ada 2012 aspects
type T2 is range 1 .. 4

with Size => 3;

975 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Object Size (GNAT-Specific)

Object_Size represents the size of the object in memory

It must be a multiple of Alignment * Storage_Unit (8), and at
least equal to Size

type T1 is range 1 .. 4;
for T1'Value_Size use 3;
for T1'Object_Size use 8;

-- using Ada 2012 aspects
type T2 is range 1 .. 4

with Value_Size => 3,
Object_Size => 8;

Object size is the default size of an object, can be changed if
specific representations are given

976 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Alignment

Number of bytes on which the type has to be aligned

Some alignment may be more efficient than others in terms of
speed (e.g. boundaries of words (4, 8))

Some alignment may be more efficient than others in terms of
memory usage

type T1 is range 1 .. 4;
for T1'Size use 4;
for T1'Alignment use 8;

-- using Ada 2012 aspects
type T2 is range 1 .. 4

with Size => 4,
Alignment => 8;

977 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Record Types

Ada doesn’t force any
particular memory layout
Depending on optimization
of constraints, layout can be
optimized for speed, size, or
not optimized

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record;

978 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Pack Aspect
pack aspect (or pragma) applies to composite types (record and
array)

Compiler optimizes data for size no matter performance impact

Unpacked

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record;
type Ar is array (1 .. 1000) of Boolean;
-- Rec'Size is 56, Ar'Size is 8000

Packed

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record with Pack;
type Ar is array (1 .. 1000) of Boolean;
pragma Pack (Ar);
-- Rec'Size is 36, Ar'Size is 1000

979 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Record Representation Clauses

Exact mapping between a
record and its binary
representation
Optimization purposes, or
hardware requirements

Driver mapped on the
address space,
communication protocol...

Fields represented as
<name> at <byte> range

<starting-bit> ..
<ending-bit>

type Rec1 is record
A : Integer range 0 .. 4;
B : Boolean;
C : Integer;
D : Enum;

end record;
for Rec1 use record

A at 0 range 0 .. 2;
B at 0 range 3 .. 3;
C at 0 range 4 .. 35;
-- unused space here
D at 5 range 0 .. 2;

end record;

980 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Array Representation Clauses

Component_Size for array’s component’s size

type Ar1 is array (1 .. 1000) of Boolean;
for Ar1'Component_Size use 2;

-- using Ada 2012 aspects
type Ar2 is array (1 .. 1000) of Boolean

with Component_Size => 2;

981 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Endianness Specification
Bit_Order for a type’s endianness

Scalar_Storage_Order for composite types
Endianess of components’ ordering
GNAT-specific
Must be consistent with Bit_Order

Compiler will peform needed bitwise transformations when
performing operations

type Rec is record
A : Integer;
B : Boolean;

end record;
for Rec use record

A at 0 range 0 .. 31;
B at 0 range 32 .. 33;

end record;
for Rec'Bit_Order use System.High_Order_First;
for Rec'Scalar_Storage_Order use System.High_Order_First;

-- using Ada 2012 aspects
type Ar is array (1 .. 1000) of Boolean with

Scalar_Storage_Order => System.Low_Order_First;
982 / 1033

Fundamentals of Ada
Low Level Programming
Data Representation

Change of Representation

Explicit new type can be used to set representation
Very useful to unpack data from file/hardware to speed up
references

type Rec_T is record
Field1 : Unsigned_8;
Field2 : Unsigned_16;
Field3 : Unsigned_8;

end record;
type Packed_Rec_T is new Rec_T;
for Packed_Rec_T use record

Field1 at 0 range 0 .. 7;
Field2 at 0 range 8 .. 23;
Field3 at 0 range 24 .. 31;

end record;
R : Rec_T;
P : Packed_Rec_T;
...
R := Rec_T (P);
P := Packed_Rec_T (R);

983 / 1033

Fundamentals of Ada
Low Level Programming
Address Clauses and Overlays

Address Clauses and Overlays

984 / 1033

Fundamentals of Ada
Low Level Programming
Address Clauses and Overlays

Address

Ada distinguishes the notions of
A reference to an object
An abstract notion of address (System.Address)
The integer representation of an address

Safety is preserved by letting the developer manipulate the right
level of abstraction

Conversion between pointers, integers and addresses are possible

The address of an object can be specified through the Address
aspect

985 / 1033

Fundamentals of Ada
Low Level Programming
Address Clauses and Overlays

Address Clauses

Ada allows specifying the address of an entity

Var : Unsigned_32;
for Var'Address use ... ;

Very useful to declare I/O registers
For that purpose, the object should be declared volatile:

pragma Volatile (Var);

Useful to read a value anywhere

function Get_Byte (Addr : Address) return Unsigned_8 is
V : Unsigned_8;
for V'Address use Addr;
pragma Import (Ada, V);

begin
return V;

end;

In particular the address doesn’t need to be constant
But must match alignment

986 / 1033

Fundamentals of Ada
Low Level Programming
Address Clauses and Overlays

Address Values

The type Address is declared in System
But this is a private type
You cannot use a number

Ada standard way to set constant addresses:
Use System.Storage_Elements which allows arithmetic on
address

for V'Address use
System.Storage_Elements.To_Address (16#120#);

GNAT specific attribute ’To_Address
Handy but not portable

for V'Address use System'To_Address (16#120#);
987 / 1033

Fundamentals of Ada
Low Level Programming
Address Clauses and Overlays

Volatile

The Volatile property can be set using an aspect (in Ada2012
only) or a pragma

Ada also allows volatile types as well as objects.

type Volatile_U16 is mod 2**16;
pragma Volatile(Volatile_U16);
type Volatile_U32 is mod 2**32 with Volatile; -- Ada 2012

The exact sequence of reads and writes from the source code must
appear in the generated code.

No optimization of reads and writes

Volatile types are passed by-reference.

988 / 1033

Fundamentals of Ada
Low Level Programming
Address Clauses and Overlays

Ada Address Example

type Bitfield is array (Integer range <>) of Boolean;
pragma Component_Size (1);

V : aliased Integer; -- object can be referenced elsewhere
pragma Volatile (V); -- may be updated at any time

V2 : aliased Integer;
pragma Volatile (V2);

V_A : System.Address := V'Address;
V_I : Integer_Address := To_Integer (V_A);

-- This maps directly on to the bits of V
V3 : aliased Bitfield (1 .. V'Size);
for V3'Address use V_A; -- overlay

V4 : aliased Integer;
-- Trust me, I know what I'm doing, this is V2
for V4'Address use To_Address (V_I - 4);

989 / 1033

Fundamentals of Ada
Low Level Programming
Address Clauses and Overlays

Aliasing Detection

Aliasing : multiple objects are accessing the same address

Types can be different
Two pointers pointing to the same address
Two references onto the same address
Two objects at the same address

Var1'Has_Same_Storage (Var2) checks if two objects occupy
exactly the same space

Var'Overlaps_Storage (Var2) checks if two object are
partially or fully overlapping

990 / 1033

Fundamentals of Ada
Low Level Programming
Address Clauses and Overlays

Unchecked Conversion

Unchecked_Conversion allows an unchecked bitwise conversion
of data between two types.

Needs to be explicitly instantiated

type Bitfield is array (1 .. Integer'Size) of Boolean;
function To_Bitfield is new

Ada.Unchecked_Conversion (Integer, Bitfield);
V : Integer;
V2 : Bitfield := To_Bitfield (V);

Avoid conversion if the sizes don’t match
Not defined by the standard

991 / 1033

Fundamentals of Ada
Low Level Programming
Inline Assembly

Inline Assembly

992 / 1033

Fundamentals of Ada
Low Level Programming
Inline Assembly

Calling Assembly Code

Calling assembly code is a vendor-specific extension

GNAT allows passing assembly with
System.Machine_Code.ASM

Handled by the linker directly

The developer is responsible for mapping variables on temporaries
or registers

See documentation
GNAT RM 13.1 Machine Code Insertion
GCC UG 6.39 Assembler Instructions with C Expression Operands

993 / 1033

Fundamentals of Ada
Low Level Programming
Inline Assembly

Simple Statement

Instruction without inputs/outputs

Asm ("halt", Volatile => True);

You may specify Volatile to avoid compiler optimizations
In general, keep it False unless it created issues

You can group several instructions

Asm ("nop" & ASCII.LF & ASCII.HT
& "nop", Volatile => True);

Asm ("nop; nop", Volatile => True);

The compiler doesn’t check the assembly, only the assembler will
Error message might be difficult to read

994 / 1033

Fundamentals of Ada
Low Level Programming
Inline Assembly

Operands

It is often useful to have inputs or outputs...
Asm_Input and Asm_Output attributes on types

995 / 1033

Fundamentals of Ada
Low Level Programming
Inline Assembly

Mapping Inputs / Outputs on Temporaries

Asm (<script referencing $<input> >,
Inputs => ({<type>'Asm_Input (<constraint>,

<variable>)}),
Outputs => ({<type>'Asm_Output (<constraint>,

<variable>)});

assembly script containing assembly instructions + references to
registers and temporaries
constraint specifies how variable can be mapped on memory (see
documentation for full details)

Constraint Meaning

R General purpose register
M Memory
F Floating-point register
I A constant
g global (on x86)
a eax (on x86)

996 / 1033

Fundamentals of Ada
Low Level Programming
Inline Assembly

Main Rules

No control flow between assembler statements
Use Ada control flow statement
Or use control flow within one statement

Avoid using fixed registers
Makes compiler’s life more difficult
Let the compiler choose registers
You should correctly describe register constraints

On x86, the assembler uses AT&T convention
First operand is source, second is destination

See your toolchain’s as assembler manual for syntax

997 / 1033

Fundamentals of Ada
Low Level Programming
Inline Assembly

Volatile and Clobber ASM Parameters

Volatile → True deactivates optimizations with regards to
suppressed instructions

Clobber → "reg1, reg2, ..." contains the list of registers
considered to be "destroyed" by the use of the ASM call

memory if the memory is accessed

Compiler won’t use memory cache in registers across the
instruction.

cc if flags might have changed

998 / 1033

Fundamentals of Ada
Low Level Programming
Inline Assembly

Instruction Counter Example (x86)

with System.Machine_Code; use System.Machine_Code;
with Ada.Text_IO; use Ada.Text_IO;
with Interfaces; use Interfaces;
procedure Main is

Low : Unsigned_32;
High : Unsigned_32;
Value : Unsigned_64;
use ASCII;

begin
Asm ("rdtsc" & LF,

Outputs =>
(Unsigned_32'Asm_Output ("=g", Low),
Unsigned_32'Asm_Output ("=a", High)),

Volatile => True);
Values := Unsigned_64 (Low) +

Unsigned_64 (High) * 2 ** 32;
Put_Line (Values'Image);

end Main;
999 / 1033

Fundamentals of Ada
Low Level Programming
Inline Assembly

Reading a Machine Register (ppc)

function Get_MSR return MSR_Type is
Res : MSR_Type;

begin
Asm ("mfmsr %0",

Outputs => MSR_Type'Asm_Output ("=r", Res),
Volatile => True);

return Res;
end Get_MSR;
generic

Spr : Natural;
function Get_Spr return Unsigned_32;
function Get_Spr return Unsigned_32 is

Res : Unsigned_32;
begin

Asm ("mfspr %0,%1",
Inputs => Natural'Asm_Input ("K", Spr),
Outputs => Unsigned_32'Asm_Output ("=r", Res),
Volatile => True);

return Res;
end Get_Spr;
function Get_Pir is new Get_Spr (286);

1000 / 1033

Fundamentals of Ada
Low Level Programming
Inline Assembly

Writing a Machine Register (ppc)

generic
Spr : Natural;

procedure Set_Spr (V : Unsigned_32);
procedure Set_Spr (V : Unsigned_32) is
begin

Asm ("mtspr %0,%1",
Inputs => (Natural'Asm_Input ("K", Spr),

Unsigned_32'Asm_Input ("r", V)));
end Set_Spr;

1001 / 1033

Fundamentals of Ada
Low Level Programming
Tricks

Tricks

1002 / 1033

Fundamentals of Ada
Low Level Programming
Tricks

Package Interfaces

Package Interfaces provide integer and unsigned types for many
sizes

Integer_8, Integer_16, Integer_32, Integer_64
Unsigned_8, Unsigned_16, Unsigned_32, Unsigned_64

With shift/rotation functions for unsigned types

1003 / 1033

Fundamentals of Ada
Low Level Programming
Tricks

Fat/Thin pointers for Arrays

Unconstrained array access is a fat pointer

type String_Acc is access String;
Msg : String_Acc;
-- array bounds stored outside array pointer

Use a size representation clause for a thin pointer

type String_Acc is access String;
for String_Acc'size use 32;
-- array bounds stored as part of array pointer

1004 / 1033

Fundamentals of Ada
Low Level Programming
Tricks

Flat Arrays

A constrained array access is a thin pointer
No need to store bounds

type Line_Acc is access String (1 .. 80);

You can use big flat array to index memory
See GNAT.Table
Not portable

type Char_array is array (natural) of Character;
type C_String_Acc is access Char_Array;

1005 / 1033

Fundamentals of Ada
Low Level Programming
Lab

Lab

1006 / 1033

Fundamentals of Ada
Low Level Programming
Lab

Low Level Programming Lab

(Simplified) Message generation / propagation

Overview
Populate a message structure with data and a CRC (cyclic
redundancy check)
"Send" and "Receive" messages and verify data is valid

Goal
You should be able to create, "send", "receive", and print messages
Creation should include generation of a CRC to ensure data security
Receiving should include validation of CRC

1007 / 1033

Fundamentals of Ada
Low Level Programming
Lab

Project Requirements

Message Generation
Message should at least contain:

Unique Identifier
(Constrained) string field
Two other fields
CRC value

"Send" / "Receive"
To simulate send/receive:

"Send" should do a byte-by-byte write to a text file
"Receive" should do a byte-by-byte read from that same text file

Receiver should validate received CRC is valid
You can edit the text file to corrupt data

1008 / 1033

Fundamentals of Ada
Low Level Programming
Lab

Hints

Use a representation clause to specify size of record
To get a valid size, individual components may need new types with
their own rep spec

CRC generation and file read/write should be similar processes
Need to convert a message into an array of "something"

1009 / 1033

Fundamentals of Ada
Low Level Programming
Lab

Low Level Programming Lab Solution - CRC
with System;
package Crc is

type Crc_T is mod 2**32;
for Crc_T'size use 32;
function Generate

(Address : System.Address;
Size : Natural)
return Crc_T;

end Crc;

package body Crc is
type Array_T is array (Positive range <>) of Crc_T;
function Generate

(Address : System.Address;
Size : Natural)
return Crc_T is
Word_Count : Natural;
Retval : Crc_T := 0;

begin
if Size > 0
then

Word_Count := Size / 32;
if Word_Count * 32 /= Size
then

Word_Count := Word_Count + 1;
end if;
declare

Overlay : Array_T (1 .. Word_Count);
for Overlay'address use Address;

begin
for I in Overlay'range
loop

Retval := Retval + Overlay (I);
end loop;

end;
end if;
return Retval;

end Generate;
end Crc;

1010 / 1033

Fundamentals of Ada
Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Spec)
with Crc; use Crc;
package Messages is

type Message_T is private;
type Command_T is (Noop, Direction, Ascend, Descend, Speed);
for Command_T use

(Noop => 0, Direction => 1, Ascend => 2, Descend => 4, Speed => 8);
for Command_T'size use 8;
function Create (Command : Command_T;

Value : Positive;
Text : String := "")
return Message_T;

function Get_Crc (Message : Message_T) return Crc_T;
procedure Write (Message : Message_T);
procedure Read (Message : out Message_T;

valid : out boolean);
procedure Print (Message : Message_T);

private
type U32_T is mod 2**32;
for U32_T'size use 32;
Max_Text_Length : constant := 20;
type Text_Index_T is new Integer range 0 .. Max_Text_Length;
for Text_Index_T'size use 8;
type Text_T is record

Text : String (1 .. Max_Text_Length);
Last : Text_Index_T;

end record;
for Text_T'size use Max_Text_Length * 8 + Text_Index_T'size;
type Message_T is record

Unique_Id : U32_T;
Command : Command_T;
Value : U32_T;
Text : Text_T;
Crc : Crc_T;

end record;
end Messages;

1011 / 1033

Fundamentals of Ada
Low Level Programming
Lab

Low Level Programming Lab Solution - Main (Helpers)
with Ada.Text_IO; use Ada.Text_IO;
with Messages;
procedure Main is

Message : Messages.Message_T;
function Command return Messages.Command_T is
begin

loop
Put ("Command (");
for E in Messages.Command_T
loop

Put (Messages.Command_T'image (E) & " ");
end loop;
Put ("): ");
begin

return Messages.Command_T'value (Get_Line);
exception

when others =>
Put_Line ("Illegal");

end;
end loop;

end Command;
function Value return Positive is
begin

loop
Put ("Value: ");
begin

return Positive'value (Get_Line);
exception

when others =>
Put_Line ("Illegal");

end;
end loop;

end Value;
function Text return String is
begin

Put ("Text: ");
return Get_Line;

end Text;

1012 / 1033

Fundamentals of Ada
Low Level Programming
Lab

Low Level Programming Lab Solution - Main
procedure Create is

C : constant Messages.Command_T := Command;
V : constant Positive := Value;
T : constant String := Text;

begin
Message := Messages.Create

(Command => C,
Value => V,
Text => T);

end Create;
procedure Read is

Valid : Boolean;
begin

Messages.Read (Message, Valid);
Ada.Text_IO.Put_Line("Message valid: " & Boolean'Image (Valid));

end read;
begin

loop
Put ("Create Write Read Print: ");
declare

Command : constant String := Get_Line;
begin

exit when Command'length = 0;
case Command (Command'first) is

when 'c' | 'C' =>
Create;

when 'w' | 'W' =>
Messages.Write (Message);

when 'r' | 'R' =>
read;

when 'p' | 'P' =>
Messages.Print (Message);

when others =>
null;

end case;
end;

end loop;
end Main;

1013 / 1033

Fundamentals of Ada
Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Helpers)
with Ada.Text_IO;
with Unchecked_Conversion;
package body Messages is

Global_Unique_Id : U32_T := 0;
function To_Text (Str : String) return Text_T is

Length : Integer := Str'length;
Retval : Text_T := (Text => (others => ' '), Last => 0);

begin
if Str'length > Retval.Text'length then

Length := Retval.Text'length;
end if;
Retval.Text (1 .. Length) := Str (Str'first .. Str'first + Length - 1);
Retval.Last := Text_Index_T (Length);
return Retval;

end To_Text;
function From_Text (Text : Text_T) return String is

Last : constant Integer := Integer (Text.Last);
begin

return Text.Text (1 .. Last);
end From_Text;
function Get_Crc (Message : Message_T) return Crc_T is
begin

return Message.Crc;
end Get_Crc;
function Validate (Original : Message_T) return Boolean is

Clean : Message_T := Original;
begin

Clean.Crc := 0;
return Crc.Generate (Clean'address, Clean'size) = Original.Crc;

end Validate;

1014 / 1033

Fundamentals of Ada
Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Body)
function Create (Command : Command_T;

Value : Positive;
Text : String := "")
return Message_T is

Retval : Message_T;
begin

Global_Unique_Id := Global_Unique_Id + 1;
Retval :=

(Unique_Id => Global_Unique_Id, Command => Command,
Value => U32_T (Value), Text => To_Text (Text), Crc => 0);

Retval.Crc := Crc.Generate (Retval'address, Retval'size);
return Retval;

end Create;
type Char is new Character;
for Char'size use 8;
type Overlay_T is array (1 .. Message_T'size / 8) of Char;
function Convert is new Unchecked_Conversion (Message_T, Overlay_T);
function Convert is new Unchecked_Conversion (Overlay_T, Message_T);
Const_Filename : constant String := "message.txt";
procedure Write (Message : Message_T) is

Overlay : constant Overlay_T := Convert (Message);
File : Ada.Text_IO.File_Type;

begin
Ada.Text_IO.Create (File, Ada.Text_IO.Out_File, Const_Filename);
for I in Overlay'range loop

Ada.Text_IO.Put (File, Character (Overlay (I)));
end loop;
Ada.Text_IO.New_Line (File);
Ada.Text_IO.Close (File);

end Write;
procedure Read (Message : out Message_T;

Valid : out Boolean) is
Overlay : Overlay_T;
File : Ada.Text_IO.File_Type;

begin
Valid := False;
Ada.Text_IO.Open (File, Ada.Text_IO.In_File, Const_Filename);
declare

Str : constant String := Ada.Text_IO.Get_Line (File);
begin

Ada.Text_IO.Close (File);
for I in Str'range loop

Overlay (I) := Char (Str (I));
end loop;
Message := Convert (Overlay);
Valid := Validate (Message);

end;
end Read;
procedure Print (Message : Message_T) is
begin

Ada.Text_IO.Put_Line ("Message" & U32_T'image (Message.Unique_Id));
Ada.Text_IO.Put_Line (" " & Command_T'image (Message.Command) & " =>" &

U32_T'image (Message.Value));
Ada.Text_IO.Put_Line (" Additional Info: " & From_Text (Message.Text));

end Print;
end Messages;

1015 / 1033

Fundamentals of Ada
Low Level Programming
Summary

Summary

1016 / 1033

Fundamentals of Ada
Low Level Programming
Summary

Summary

Like C, Ada allows access to assembly-level programming
Unlike C, Ada imposes some more restrictions to maintain some
level of safety
Ada also supplies language constructs and libraries to make low
level programming easier

1017 / 1033

Fundamentals of Ada
Annex - Ada Version Comparison

Annex - Ada Version Comparison

1018 / 1033

Fundamentals of Ada
Annex - Ada Version Comparison

Ada Evolution

Ada 83
Development late 70s
Adopted ANSI-MIL-STD-1815 Dec 10, 1980
Adopted ISO/8652-1987 Mar 12, 1987

Ada 95
Early 90s
First ISO-standard OO language

Ada 2005
Minor revision (amendment)

Ada 2012
The new ISO standard of Ada

1019 / 1033

Fundamentals of Ada
Annex - Ada Version Comparison

Programming Structure, Modularity

Ada
83

Ada
95

Ada
2005

Ada
2012

Packages X X X X
Child units X X X
Limited with and mutually dependent
specs

X X

Generic units X X X X
Formal packages X X X
Partial parameterization X X
Conditional/Case expressions X
Quantified expressions X
In-out parameters for functions X
Iterators X
Expression functions X

1020 / 1033

Fundamentals of Ada
Annex - Ada Version Comparison

Object-Oriented Programming

Ada
83

Ada
95

Ada
2005

Ada
2012

Derived types X X X X
Tagged types X X X
Multiple inheritance of interfaces X X
Named access types X X X X
Access parameters, Access to
subprograms

X X X

Enhanced anonymous access types X X
Aggregates X X X X
Extension aggregates X X X
Aggregates of limited type X X
Unchecked deallocation X X X X
Controlled types, Accessibility rules X X X
Accessibility rules for anonymous types X X
Contract programming X

1021 / 1033

Fundamentals of Ada
Annex - Ada Version Comparison

Concurrency

Ada
83

Ada
95

Ada
2005

Ada
2012

Tasks X X X X
Protected types, Distributed annex X X X
Synchronized interfaces X X
Delays, Timed calls X X X X
Real-time annex X X X
Ravenscar profile, Scheduling policies X X
Multiprocessor affinity, barriers X
Re-queue on synchronized interfaces X
Ravenscar for multiprocessor systems X

1022 / 1033

Fundamentals of Ada
Annex - Ada Version Comparison

Standard Libraries

Ada
83

Ada
95

Ada
2005

Ada
2012

Numeric types X X X X
Complex types X X X
Vector/matrix libraries X X
Input/output X X X X
Elementary functions X X X
Containers X X
Bounded Containers, holder containers,
multiway trees

X

Task-safe queues X
7-bit ASCII X X X X
8/16 bit X X X
8/16/32 bit (full Unicode) X X
String encoding package X

1023 / 1033

Fundamentals of Ada
Annex - Reference Materials

Annex - Reference Materials

1024 / 1033

Fundamentals of Ada
Annex - Reference Materials
General Ada Information

General Ada Information

1025 / 1033

Fundamentals of Ada
Annex - Reference Materials
General Ada Information

Learning the Ada Language

Written as a tutorial for those new to Ada

1026 / 1033

Fundamentals of Ada
Annex - Reference Materials
General Ada Information

Reference Manual

LRM - Language Reference Manual (or just RM)
Always on-line (including all previous versions) at www.adaic.org

Finding stuff in the RM
You will often see the RM cited like this RM 4.5.3(10)

This means Section 4.5.3, paragraph 10

Have a look at the table of contents

Knowing that chapter 5 is Statements is useful

Index is very long, but very good!

1027 / 1033

www.adaic.org

Fundamentals of Ada
Annex - Reference Materials
General Ada Information

Current Ada Standard

"ISO/IEC 8652(E) with Technical Corrigendum 1"
Useful as a Reference Text but not intended to be read from
beginning to end

1028 / 1033

Fundamentals of Ada
Annex - Reference Materials
GNAT-Specific Help

GNAT-Specific Help

1029 / 1033

Fundamentals of Ada
Annex - Reference Materials
GNAT-Specific Help

Reference Manual

Reference Manual(s) available from GNAT Studio Help

1030 / 1033

Fundamentals of Ada
Annex - Reference Materials
GNAT-Specific Help

GNAT Tools

GNAT User’s Guide
LOTS of info about the main tools: the GNAT compiler, binder,
linker etc.

GNAT Reference Manual
How GNAT implements Ada, pragmas, aspects, attributes etc. etc.

GNAT Studio (the IDE)
Tutorial
User’s Guide
Release notes

Many other tools

1031 / 1033

Fundamentals of Ada
Annex - Reference Materials
AdaCore Support

AdaCore Support

1032 / 1033

Fundamentals of Ada
Annex - Reference Materials
AdaCore Support

Need More Help?

If you have an AdaCore subscription:
Find out your customer number #XXXX

Open a case via email:
Send to: support@adacore.com

Subject should read: #XXXX - (descriptive text)

Where XXXX is your customer number
And (descriptive text) becomes the title of your case

Or login to support.adacore.com and select Create A New Case

Not just for "bug reports"
Ask questions, make suggestions etc. etc.

1033 / 1033

mailto:support@adacore.com
support.adacore.com

	Overview
	About This Course
	A Little History
	Big Picture
	Setup

	Declarations
	Introduction
	Identifiers, Comments, and Pragmas
	Numeric Literals
	Object Declarations
	Universal Types
	Named Numbers
	Scope and Visibility
	Aspect Clauses
	Summary

	Basic Types
	Introduction
	Discrete Numeric Types
	Enumeration Types
	Real Types
	Miscellaneous
	Subtypes
	Lab
	Summary

	Statements
	Introduction
	Block Statements
	Null Statements
	Assignment Statements
	Conditional Statements
	Loop Statements
	GOTO Statements
	Lab
	Summary

	Array Types
	Introduction
	Constrained Array Types
	Unconstrained Array Types
	Attributes
	Operations
	Operations Added for Ada2012
	Aggregates
	Anonymous Array Types
	Lab
	Summary

	Record Types
	Introduction
	Components Rules
	Operations
	Aggregates
	Default Values
	Discriminated Records
	Lab
	Summary

	Discriminated Record Types
	Introduction
	Discriminated Record Semantics
	Unconstrained Discriminated Records
	Unconstrained Arrays
	Discriminated Record Details
	Lab
	Summary

	Type Derivation
	Introduction
	Primitives
	Simple Derivation
	Summary

	Subprograms
	Introduction
	Syntax
	Parameters
	Null Procedures
	Nested Subprograms
	Procedure Specifics
	Function Specifics
	Expression Functions
	Potential Pitfalls
	Extended Examples
	Lab
	Summary

	Expressions
	Introduction
	Membership Tests
	Qualified Names
	Conditional Expressions
	Lab
	Summary

	Overloading
	Introduction
	Enumerals and Operators
	Call Resolution
	User-Defined Equality
	Lab
	Summary

	Library Units
	Introduction
	Library Units
	Dependencies
	Summary

	Packages
	Introduction
	Declarations
	Bodies
	Executable Parts
	Idioms
	Lab
	Summary

	Private Types
	Introduction
	Implementing Abstract Data Types via Views
	Private Part Construction
	View Operations
	When To Use or Avoid Private Types
	Idioms
	Lab
	Summary

	Limited Types
	Introduction
	Declarations
	Creating Values
	Extended Return Statements
	Combining Limited and Private Views
	Lab
	Summary

	Program Structure
	Introduction
	Building A System
	"limited with" Clauses
	Hierarchical Library Units
	Visibility Limits
	Private Children
	Lab
	Summary

	Visibility
	Introduction
	"use" Clauses
	"use type" Clauses
	"use all type" Clauses
	Renaming Entities
	Lab
	Summary

	Access Types
	Introduction
	Access Types
	Pool-Specific Access Types
	General Access Types
	Accessibility Checks
	Memory Management
	Anonymous Access Types
	Lab
	Summary

	Genericity
	Introduction
	Creating Generics
	Generic Data
	Generic Formal Data
	Generic Completion
	Lab
	Summary

	Tagged Derivation
	Introduction
	Tagged Derivation
	Lab
	Summary

	Polymorphism
	Introduction
	Classes of Types
	Dispatching and Redispatching
	Exotic Dispatching Operations
	Lab
	Summary

	Exceptions
	Introduction
	Handlers
	Implicitly and Explicitly Raised Exceptions
	User-Defined Exceptions
	Propagation
	Exceptions as Objects
	Raise Expressions
	In Practice
	Lab
	Summary

	Interfacing with C
	Introduction
	Import / Export
	Parameter Passing
	Complex Data Types
	Interfaces.C
	Lab
	Summary

	Tasking
	Introduction
	Tasks
	Protected Objects
	Delays
	Task and Protected Types
	Some Advanced Concepts
	Lab
	Summary

	Low Level Programming
	Introduction
	Data Representation
	Address Clauses and Overlays
	Inline Assembly
	Tricks
	Lab
	Summary

	Annex - Ada Version Comparison
	Annex - Reference Materials
	General Ada Information
	GNAT-Specific Help
	AdaCore Support

