Ada Declarations

Barnes,chapter 5

Copyright © 2019 AdaCore Slide: 1

ldentifiers

Ada identifiers are case insensitive
— HELLO = hello = HellO

Start with a letter
Ends with a letter or a number
May contain non-consecutive underscores

@ Which of the following are legal?

— Something
- My _Id

— _Hello

— A 679

— _CONSTANT
— 09 A2

— YOP

Comments

 Ada provides end of line comments with --

—-— This 1is an Ada comment // This is a C++ comment

 Thereis no block comment (/* */)

« The underscore is allowed for numbers
— 1 000 _000 = 1000000

« Numbers can be expressed with an integer base (from
2 to 16)
— 10#255# = 2#1111 1111# = 8#377# = 16#FF#

« Numbers can be defined with an exponent part

— 2#1#E8 = 256
— 2E8 = 200000000

« Real literals must have a dot
— With a digit before and after the dot.

 All of this can be combined and works for real literals
as well

— 2#11.1#E2 = 14.0
« Exponent is always a base-10 integer

Variables declarations

Defined by one (or several) names, followed by :, followed by
type reference and possibly an initial value

A : Integer; int A;

B : Integer := 5; int B = 5;

C : constant Integer := 78; const int C = 78;

D, E : Integer := F (5); int d = F (5), e = F(5);

Elaboration is done sequentially

A : Integer := 5;
B : Integer := A;

@ C : Integer := D; -- COMPILATION ERROR
D : Integer := 0;

Initialization is called for each variable individually

A, B : Float := Compute New Random;
-— This is equivalent to:

A : Float := Compute New Random;

B : Float := Compute New Random;

“:=“ on a declaration is an initialization, not an assignment
(special properties, mentioned later)

Numeric values

 No need to give the size — deduced from the

context

A : Long Integer := 0;

* It’s possible to declare “named numbers” with

Infinite precision

NN : constant := 1.0 / 3.0;
X ¢ Float := NN;

X2 : Long Float := NN;

X3 : Long Long Float := NN;

-— equals 3.33333333333333333E-01

X4 : Long Long Float := X;
-- equals 3.33333343267440796E-01

long int A = 0L;

#define NN 1.0 / 3.
float X = NN;

long float X2 = NN;
long long float X3

long long float X4

0

NN ;

Declarative blocks

« Declarations can only occur in declarative parts

« Statements can only occur in the statement parts

 Sub-declaration blocks can be introduced with a
block statement

declare {

A : Integer := 0; int A = 0;
begin

A := A + 1; A++;
end; }

« Defines a declaration lifetime

« The scope from an object goes from its
declaration point to the corresponding “end”

declare {

A : Integer; int A;
begin

-- code // code
declare {

B : Integer; int B;
begin

-- code // code
end; }

(%] A := B; —-- COMPILATION ERROR A =B

end; }

Visibility

Nested scopes can “hide” declarations from outer scopes

declare {
A : Integer; int A;
begin
-—- references to the outer A // references to the outer A
declare {
A : Float; float A;
begin
-— references to the inner A // references to the inner A
end; }
end; A = B;

With named scopes, it’s still possible to have access to
outer entities

Outer : declare
A : Integer;
begin
declare
A : Float;
B : Integer;
begin
A := Outer.A;

Some Terminology...

In a block statement, or subprogram body:

declare
-—- “Declarative part”

subtype S is Integer range 0 .. 10;
A : S; —-— another declaration

—— a declaration

begin
-- “Statement Part”
S1; -- A statement
S2; ——- Another statement

A := X + Y; -- An assignment statement containing
-— a Name (left hand side) and
—-— an Expression (right hand side) .

end;

Some Terminology...

« Statements are executed.
 EXxpressions are evaluated.
e Declarations are elaborated.

« A Static Expressionis evaluated at compile-time.

A Dynamic Expressionis evaluated when the program is
running.

 Notefor C and C++ users: expressions and statements are
completely separatethingsin Ada, and are not
Interchangeable...

Copyright © 2019 AdaCore Slide: 12

Is there a compilation error? (1/10)

V : Natural := 7;
J : constant Natural := V + 4;

Is there a compilation error? (2/10)

V : Natural := 7;
V : Real := 5.5;

Is there a compilation error? (3/10)

V : Natural :
V : Natural :

[l
~J
Ne

vV + 5;

Is there a compilation error? (4/10)

V : Natural := V * 0;

Is there a compilation error? (5/10)

V : Natural := 5;
declare
V : Natural :=V * 2;

Is there a compilation error? (6/10)

V : Float := 5.0;

Is there a compilation error? (7/10)

V : Float := 5.;

Is there a compilation error? (8/10)

ClassRoom : constant Natural := 5;
Next ClassRoom : Natural := classroom + 1;

Is there a compilation error? (9/10)

Class Room : constant Natural := 5;

Is there a compilation error? (10/10)

_my value : constant Natural := 5;

Ada Basic Types

Barnes,chapter 6

Copyright © 2019 AdaCore Slide: 1

Ada Strong Typing

 Types are at the base of the Ada model
 Semantics # Representation
« All Adatypes are named

— (Well, almost all)

« Associated with properties (ranges, attributes...)
and operators

A : Integer := 10 * Integer (0.9); int A = 10 * 0.9
A : Integer := Integer
(Float (10) * 0.9);

The compiler will warn in case of inconsistencies

Types hierarchy

All Types

Elementary Types Composite Types

scalar array record protected task

access /

discrete real _
/ \ Numeric
. . : . . _ Types
enumeration integer floating-point fixed-point

signed modular ordinary decimal

Defining a Type

 New types can be created in declaration scopes

type <name> is <definition> [with predicate];
type <name> is new <definition> [with predicate];

* Discretetypes

type Score is range 0O .. 20;

type Color is (Red, Blue, Green);
type Oranges is new Positive;
type Apples is new Positive;
type Byte is mod 2**8;

* Floating point types

type Size is new Float;
type Low Precision is digits 4;

* Fixed point types

type Cm is delta 0.125 range 0.0 .. 240.0;
type Euro is delta 0.01 digits 15;

What’s an enumeration (for a C programmer)

 An enumerated type is a scalar type

— Finite set of values

— Ordered {Va'“es |
[Typename —

J type Color is (Red, Blue, Green);

e Each value has a name
— Either an identifier
— Or a character

* No relationship with integer

 Boolean is an enumerated type

type Boolean is (False, True);

Integer types

* Signed integer types are defined by a range

Values
[Type name [———

J type Columns is range 1 .. 80;

— No values outside the range

 Modular type are defined by a modulus

Modulus
[Type name | ———

J Type Byte is mod 256;

— Wrap-around semantic of operators

Floating point types

* Defined by relative precision

— Minimum number of significant decimal digits

precision

[Type name]\ }

type Real is digits §;

— May have a range

[Type name j\

type Real is digits 8 range 0.0 .. 1.0E10;

Type Attributes

 Accessed through'

T'First -— first value of the type

T'Last —-— last value of the type

T'Range -— equivalent to T'First .. T’Last

T'Succ (V) -—- return the next value in the order

T’ Pred (V) -— return the previous value in the order
T'Image (V) -—- return a string representation of the wvalue
T'Value (S) -— converts to a value representation

T'Pos (V) -—- Return a position based on a value

T'Val (I) -— Return a value based on a position

T'Min (V1, V2) -— Return the min between two values

T'Max (V1, V2) —-—- Return the max between two values

T'Ceiling (V) -— Returns the smallest integral value after V
T'Floor (V) -— Returns the largest integral value before V
T'Truncation (V) —-- Truncates the value towards 0

T'Size -— Return the size of the values of the type
T'Rounding (V) -- Rounds to the closest integer

 Example

V : Character := Character'Val (0);
S : String := Integer'Image (42);

Subtypes

 Subtypes add a constraint to atype

subtype D is Integer range 0 .. 9;

« Subtypes do not create new types, and do not
require type conversion

subtype D is Integer range 0 .. 9;
A : Integer := 0;
B : D :=1;
begin
A = A & Bj;

 The language offers some basic subtypes

subtype Positive is Integer range 1 .. Integer'Last;
subtype Natural is Integer range 0 .. Integer'Last;

Base Type

 T’Base is the type used by the compiler to
Implement the type according to the constraints

type Small Int is range 0 .. 10;

[Fits in a 8-bit5ﬁ

 Base types can be used for overflow checks (see
later)

« Base types can be used as aregular type

Put Line (Small Int'Base'Image (Small Int'Base'First);
-— => -128 (implementation-dependent)

Put Line (Small Int'Base'Image (Small Int'Base'Last);
-— => 127 (implementation-dependent)

Subtype checks / Overflow checks

« Typesandsubtypescan be associated with subtype checks
Valid values are between 0 and 10 }

type Small Int is range O .. 10;

 Subtypechecks are computedin well defined places
(assignment, parameter passing and conversions...)

V1l : Small Int := 11; -- Exception

* |In expressions,overflow checks are performed on
Intermediate values:

V1l : Small Int :
V2 : Small Int :
V3 : Small Int :

2; —— OK
vl + 10 - V1; -- OK, equals 10
(V1'Base'last + 1) / 100; -- NOK, overflow check

Dynamic Expression vs. Static Expression

« Ada differentiates static expressions and dynamic
expressions

« Static expressions are expressions including
— literals
— calls to static predefined functions and attributes
— constants initialized with static expressions

« Static expressions are evaluated at compile-time

« Static expressions are required by some
constructs

Constants and Named Numbers

It is possible to create a constant value

C : constant Integer := 0O;

A constant inherits from all properties of its types, except that it
can’t be written. In particular, it has to respect boundaries.

A constant can be initialized through a dynamic expression, butis
then read-only for its lifetime.

« A named number doesn’t have a type
It must be valuated by a static expression

* It can represent data out of bounds

N : constant := 2 ** 128;

 Exceptions can beraised at run-time when used

N -N+ 1; -- OK
N; —-— NOK

V1 : Integer :
V2 : Integer :

Conversion / Qualification

In certain cases, types can be converted from one to
the other

— They're of the same structure (e.g. Numeric)
— One is the derivation of the other
« Conversion needs to be explicit

V1 : Float := 0.0;
V2 : Integer := Integer (V1);

« A gualification can be used to specify the type or
subtype of an object - it doesn’t convert it

V1l : Integer := 0;
V2 : Integer := Natural’ (V1);

« Qualification is most useful when fixing ambiguities
(see later)

Copyright © 2019 AdaCore Slide: 16

Is there a compilation error? (1/10)

V : Float := 10;

What’s the output of this code? (2/10)

type Float 1 is digits 5;
type Float 2 is digits 7;

V.1 : Float 1 := 10.0E10;
W1l : Flocat 1 :=V 1 + 1.0;
V. 2 : Float 2 := 10.0E10;
W 2 : Float 2 :=V 2 + 1.0;

begin
Put Line (Boolean'Image (V.1 =W 1));
Put Line (Boolean'Image (V.2 =W 2));

Is there an error? (3/10)

type X is mod 10;

vVl : X :
V2 : X :

10;
9 + 1;

What’s the output of this code? (4/10)

F : Float = 7.6;
Div : Integer := 10;
begin
F := Float (Integer (F) / Div);

Put Line (Float'Image (F));

Is there an exception? (5/10)

type T is range 1 .. 10;
v T := 9;

W T := 2;

begin

Is there an exception? (6/10)

type T is range 1 .. 10;
v T := 9;

W T := 2;

begin

Is there a compilation or runtime error? (7/10) \\2

Cl : constant := 2 ** 1024;
C2 : econstant := 2 ** 1024 + 10;
C3 : constant := Cl1 - C2;

V : Integer := Cl - C2;

Is there a compilation error? (8/10)

type T is (A, B, C);

vl : T :
v2 T :

T'val ("A");
T'Value (2);

Is there a run-time error? (9/10)

type T is (A, B, C);

Vi : T := T'Value ("A");
V2 : T := T'Value ("a");
V3 : T := T'Value (" a ");

Is there a compilation error? (10/10)

type T is range 1 .. O;
v o T;

Slide: 27

What is a type ?

What is a type ?

* A (finite) set of values
e Operations on this set

* Physical representation

Ada vs. C typing

In Ada, you can create new types for every kind of
type

— Including integers, unsigned
« Strong typing
* (Almost) no built-intypes

— Except Boolean
— You don’t need to use predefined types

* YOou can create new operators

* You can specify physical representation

Statements

Barneschapter 7

Copyright © 2018 AdaCore Slide: 1

Simple statements

 The main Simple Statements
— Null
— Assignment

— Procedure Call and Return will be dealt with when we get to
Subprograms

— Raise Statement will be covered under Exceptions.
— Exit Statement will be covered with Loops.

— The rest are to do with Tasking.

Null statement

 The Null Statement in Ada is written explicitly:

null;

 Thiswas a deliberate design decision in Ada to

make it very hard to “accidentally” write a null
statement.

« Compare:

for T in 1 .. 10 loop for (1 = 1; 1 <= 10; 1++);
null;
end loop;

Assignment statement

* Very simple syntax:

variable name = expression

°
4

* A “name” in Ada can be “dotted” to include
package names and record components, and also
contain parentheses for array elements and so on.

 For example:

P.State (1) .F1 := 6;

Compound statements

 |n Ada, statements are terminated with a

semicolon *;’

« The main compound statements

If
Case
Loop
Block

The remainder are concerned with Tasking

If Statements

 |If statements

if A = 0 then if (A == 0) {

Put Line ("A 1is 0"); printf ("A is 0");
elsif B = 0 then } else if (B == 0) {

Put Line ("B 1is 0"); printf ("B is 0");
else } else {

Put Line ("Else..."); printf ("Else...");

end if; }

Condition symbols

Comparison

— /=

Boolean operators

and

or

XOr

and then
or else

not (unary)

Beware of the boolean operators

« “and”, “or” are not short-circuit, both operands
are always evaluated

if X /= 0and Y / X > 1 then -- MAY RAISE AN EXCEPTION

 The short-circuit operators are “and then” and
“or else”

if X /= 0 and then ¥ / X > 1 then -- OK

Case Statement

case A 1is switch (A) {
when 0 => case 0O:
Put Line ("zero"); printf ("0");
break;
[NOfa"ﬂWOUQh };- case -Y9:case -8:case -/:case —-6:
when -9 .. -1 | 1 .. 9 => case -5:case -4:case -3:case —-2:
Put Line ("digit"); case -l:case l:case 2Z:case 3:
when others => case 4:case 5S5:case 6G:case 7:
Put Line ("other") case 8:case 9:
end case; printf ("digit");
break;
default:

printf ("other");

Case statements rules

« All values covered by the type of the expression
should be covered

V : Integer;
begin
case V is
when 0 =>
Put Line (0);
Q end case; -- NOK!

« Values must be unique

V : Integer;
begin
case V is
when 0 =>
Put Line ("0");

‘!’ when Integer'First .. 0 => -- NOK!
Put Line ("Negative");
when others =>
null;

end case;

Writing ranges for case statements

* A case statement must contain static ranges only

— e.g. ranges computed out of static expressions

V : Integer;
W : constant Integer := 0;

subtype Il is Integer range 1 .. 10;
subtype I2 is Integer with Static Predicate => I2 >= 1000;
subtype I3 is Integer with Dynamic Predicate => I3 >= V;

X : Integer;

begin
case X is

(%) when Vv => -- NOK
when W => -- OK
when I1 => -- OK
when 12 => -- OK
when 20 | 30 | 40 => -— OK
when 50 + W => -- OK

(%] when I3 => -- NOK

when W + 1 .. Integer'Last => -- OK

Loop statement

« Simpleloop

loop No direct equivalent
<statements>
{exit [when <condition>];}
<statements>

end loop;

 Whileloop

while <condition> loop while (<condition>)
<statements> <statements>
{exit [when <condition>];}

end loop;

 No do-while/repeat-until loops, use simple loop
with exit instead

For-Loop statement

e |teration over indices
— range has to be growing

— var is constantin the loop

for <var> in <iterator> No direct equivalent
| [reverse] <range> loop
<statements>
{exit [when <condition>];}

end loop;

Evaluation of loop range

 Loop range is evaluated before the loop

A : Integer := 1;
begin
for J in A .. F (A) loop
A := 5, -—- We still iterate between 1

—-— and what F (1) returned
end loop;

 [terator is constant (can’t be modified directly)

for Jin 1 .. 10 loop for (int j = 1; j<=10; j++)
@ 7 :=5 --nok j = 5;
end loop;

Block statement

 The Block Statement introduces a nested
declarative part and sequence of statements:

[declare
declarative part]
begin
handled sequence of statements

end ;

 The declarative part is optional.

e Main uses:

— Introduction of local subtypes and arrays that depend on
previously computed dynamic values.

— Local exception handling.

Copyright © 2012 AdaCore Slide: 16

Is there an error? (1/10)

if A == 0 then
Put Line ("A 1s Q0");
end if;

Is there an error? (2/10)

if A := 0 then
Put Line ("A has been assigned to 0");
end if;

Is there an error? (3/10)

A : Integer := Integer'Value (Get Line);
begin
case A 1is
when 1 .. 9 =>
Put Line ("Simple digit");
when 10 .. Integer'lLast =>
Put Line ("Long positive");
when Integer'First .. -1 =>
Put Line ("Negative"):;

end case;

Is there an error? (4/10)

A : Integer := Integer'Value (Get Line);
begin
case A 1is
when Positive =>

Put Line ("Positive");
when Natural =>
Put Line ("Natural"):;

when others =>
Put Line ("Other");
end case;

Is there an error? (5/10)

A : Float := 10.0;
begin
case A is
when 1.0 .. Float'Last =>
Put Line ("Positive");
when Float'First .. -1.0 =>

Put Line ("Negative");
when others =>
Put Line ("Other");
end case;

Is there an error? (6/10)

for I in 0 .. 10 loop
I :=10;
end loop;

What is the output of this code? (7/10)

for I in 10 .. 0O loop
Put Line (Integer'Image (I));
end loop;

Is there an error? (8/10)

if A !'= 0 then
Put Line ("A 1is not 0");
end if;

Is there an error? (9/10)

I : Natural;
begin
for T in 0 .. 10 loop
null;
end loop;

What is the output of this code? (10/10)

X : Integer := 1;
begin
for T in 1 .. X loop
X = 10;

Put Line ('A'");
end loop;

Arrays

Barneschapter 8

Copyright © 2018 AdaCore Slide: 1

Arrays are first class citizens

« All arrays are (doubly) typed

type T is array (Integer range <>) int * A = new int [15];
of Integer;

A T (0 .. 14);

 Properties of array types are...
— The index type (can be any discrete type, with optional specific
boundaries)
— The component type (can be any definite type)

* Properties of array objects are...
— The array type
— Specific boundaries
— Specific values

Definite vs. Indefinite Types

* Definitetypes are types that can be used to create
objects without additional information
— Their size is known

— Their constraints are known

« Indefinite types need additional constraint

* Array types can be definite or indefinite

type Definite is array (Integer range 1 .. 10) of Integer;
type Indefinite is array (Integer range <>) of Integer;

Al : Definite;
A2 : Indefinite (1 .. 20);

« Components of array types must be definite

Array Indices

Array indices can be of any discrete type
— Integer (signed or modular)
— Enumeration

 Arrayindices can be defined on any continuous range

 Arrayindexrange may be empty

type Al is array
type A2 is array
type A3 is array
type A4 is array

Integer range <>) of Integer;

Character range 'a' .. 'z') of Integer;
Integer range 1 .. 0) of Integer;
Boolean) of Integer;

(

(

(

(

 Arrayindices arecomputed at the point of array type
declaration

X : Integer := 0;
type A is array (Integer range 1 .. X) of Integer;
—-— changes to X don't change A instances after this point

Accessing Array Components

 Array components can be directly accessed

type A is array (Integer range <>) of Integer;
vV : A (1 .. 10);

begin

« Array types and array objects offer ‘Length,
‘Range, ‘First and ‘Last attributes

 On access, bounds are dynamically checked and
raise Constraint_Error if overflowed or
underflowed

type A is array (Integer range <>);
vV : A (1 .. 10);

begin
vV (0) := 0; -- NOK

Array Copy

* Array operations are first class citizens

type T is array (Integer range <>) of Integer;

Al : T (1 .. 10);

A2 T (1 .. 10);
begin

Al := A2;

* In copy operations, lengths are checked, but not
actual indices

type T is array (Integer range <>) of Integer;

Al : T (1 .. 10);

A2 : T (11 .. 20);

A3 : T (1 .. 20);
begin

Al := A2; -- OK

Al := A3; -- NOK

Array Initialization

« Array copy can occur at initialization time

type T is array (Integer range <>) of Integer;

Al : T (1 .. 10);
A2 : T (11 .. 20) := Al;

« If the array type is of an indefinite type, then an
object of this type can deduce bounds from
Initialization

S T Ao o (Tebegee moTO ©5) oF Tniese;

Al : T (1 .. 10);
A2 : T := Al,;, -- A2 bounds are 1 .. 10

Array Slices

* It’s possibleto refer to only a part of the array
using a slice
— For array with only one dimension

« Slices can be used in any place that requires an
array object

type T is array (Integer range <>) of Integer;

Al : T (1 .. 10);

A2 T (1 .. 20);
begin

Al := A2 (1 .. 10);

Al (2 .. 4) := A2 (5 .. T7);

Array Literals (Aggregates)

Aggregates can be used to provide values to an array
as awhole

({[<position> =>] <expression>,} [others => <expression>])

(1, 2, 3) -— finite positional aggregate

(1L =1, 2 => 10, 3 => 30) -—- finite named aggregate

(1, others => 0) —-— indefinite positional aggregate
(1 => 1, others => 0) —-— indefinite named aggregate

They can be used wherever an array value is expected

Finite aggregate can initialize variable constraints,
lower bound will be equal to T’First

type T is array (Integer range <>) of Integer;

vi : T := (1, 2, 3);
V2 : T := (others => 0); —-- NOK (initialization)
begin

Vl := (others => 0); -- OK (assignment)

Array Concatenation

 Two arrays can be concatenated through the &

operators

— The resulting array’s lower bound is the lower bound of the

left operand

type T is

Al : T :
A2 : T :
A3 : T :

 An array can be concatenated with a value

type T is
Al : T :=
A2 : T :=

array (Integer range <>)

(1, 2, 3);
(4, 5, 6);
Al & A2;

array (Integer range <>)

(1, 2, 3):
Al & 4 & 5;

of Integer;

of Integer;

Array Equality

« Two arrays are equal if
— Their Length is equal
— Their components are equal one by one

type T is array (Integer range <>) of Integer;

AL : T (1 .. 10);
A2 : T (1 .. 20);
begin
if A1 = A2 then -- ALWAYS FALSE

« Actual indices do not matter in array equality

Arrays are first class citizens (2)

« All array types can be passed as formal
parameters to/from subprograms.

« Array types can be returned from a function.

— Functionreturn is by-copy, so can impose some performance
penalty.

— Alternative: use a procedure with an out parameter — almost
certainly passed by-reference, so efficient.

« A function can even return an unconstrained array
type, like String.

Loops over an array

 Through an index loop

type T is array (Integer range <>)
A : T (1L .. 10);
for T in A'Range loop

A (I) := 0;
end loop;

of Integer;

« Two dimensional arrays

type T is array (Integer range <>, Integer range <>) of Integer;

v:T (1 .. 10, 0 .. 2);
begin
v (1, 0) :=0

— Attributes are 'First (dimension), 'Last (dimension), 'Range
(dimension)

« Arrays of arrays

type Tl is array (Integer range <>) of Integer;

type T2 is array (Integer range <>) of Tl (0 .. 2);
V : T (1 .. 10);
begin

Strings are regular arrays. Type String is declared
In package Standard

type String is array (Positive range <>) of Character;

There is a special String literal

V : String := "This is it";
V2 : String := "Here come quotes ("")";

The package ASCII provides named Character
constants.

V. : String := "This is null terminated™ & ASCII.NUL;

In Ada95 onwards, you can also use
Ada.Characters.Latin_1and siblings.

Array Subtypes and Derived Types

 When subtyping an array, it’s possible to define a
constraint

type Any Bounds is array (Integer range <>) of Integer;

subtype One To Ten is Any Bounds (1 .. 10);

« Same with array derivation

type Any Bounds is array (Integer range <>) of Integer;

type One To Ten is new Any Bounds (1 .. 10);

 Once the array is definite, bounds cannot be
changed

Copyright © 2018 AdaCore Slide: 17

Is there an error? (1/10)

type My Int is new Integer range 1 .. 10;
type T is array (My Int) of Integer;

v : T;
begin

Is there an error? (2/10)

type T is array (Integer) of Integer;

v T,
begin

Is there an error? (3/10)

type Tl is array (Integer range <>) of Integer;
type T2 is array (Integer range <>) of Integer;

vli : T1 (1 .. 3) := (others => 0);
v2 : T2 := (1, 2, 3);
begin

V1l := V2;

Is there an error? (4/10)

type T is array (Integer range <>) of Integer;
v : T := (1, 2, 3);

V (0) =V (1) +V (2);

Is there an error? (5/10)

type T is array (Integer range <>) of Integer;

subtype TS is T (1 .. 2);

vi : T (10 .. 11);

V2 : TS := (others => 0);
begin

V1l := V2;

Is there an error? (6/10)

X : Integer := 10;
type T is array (Integer range 1 .. X) of Integer;
vl : T;
begin
X := 100;
declare
v2 : T;
begin
vVl := V2;

Is there an error? (7/10)

type T is array (Integer range <>) of Integer;

vi : T (1 .. 3) := (10, 20, 30);
v2 : T := (10, 20, 30):
begin
for I in V1'Range loop
vVl (I) := V1 (I) + V2 (I);

end loop;

Is there an error? (8/10)

type Any Bounds is array (Integer range <>) of Integer;
subtype TS is Any Bounds (1 .. 10);

type T2 is new TS (1 .. 9);

Is there an error? (9/10)

type String Array is array (Integer range <>) of String;

Is there an error? (10/10)

X : Integer := 0;

type T is array (Integer range <>) of Integer
with Default Component Value => X;

v : T (1 .. 10);

Record types

Barneschapter 8

Copyright © 2018 AdaCore Slide: 1

Record types

 Allow named heterogeneous data in a type

type Shape is record
Id : Integer;
X, Y : Float;

end record;

 Fields are accessed through dot notation

S : Shape;
begin
S.X := 0.0;

S.Id := 1;

Record types

 Any definite type can be used as a component type

type Position is record
X, Y : Integer;
end record;

type Shape is record
Name : String (1 .. 10);
P : Position;

end record;

« Size may not be known at compile time

Len : Natural := Compute Len;
type Name Type is String (1 .. Len);

type Shape is record
Name : Name Type;
P : Position;
end record;

— Has impact on code generated

Default Values

« Default values can be provided to record components:

type Position is record
X : Integer := 0;
Y : Integer := 0;
end record;

« Default values are dynamic expressions evaluated at

each object declaration

Cx, Cy : Integer := 0;

type Position is record
X ¢ Integer := Cx;

Y : Integer := Cy;
end record;
Pl : Position; -- = (0, O0);
begin

Cx := 1;

Cy := 1;

declare

P2 : Position; —-- =

(1,

1);

Aggregates (1/2)

« Likearrays, record values can be given through

aggregates

type Position is record
X, Y : Integer;
end record;

type Shape is record
Name : String (1 .. 10);
P : Position;

end record;

Center : Position := (0, 0);

Circle : Shape := ((others => "' '

« Named aggregates are possible (but cannot

switch back to positional)

Pl : Position := (0, Y => 0
Pl : Position := (X => 0, Y
P3 : Position := (Y => 0, X
€3 P4 : Position := (X => 0, 0

, Center);

Aggregates (2/2)

Named aggregateis required for one-elementrecords

type Singleton is record
V : Integer;
end record;

V1l : Singleton :
63 V2 : Singleton :

Default values can be referred as <> after a name or others

(V. => 0); -- OK
(0) ; -— NOK

type Rec is record
A, B, C, D : Integer;
end record;

V1l : Rec :
V2 : Rec :

(others => <>); -- QUIZ is this OK?
(A => 0, B => <>, others => <>);

If all remaining types are the same, others can use an
expression

type Rec is record
A, B : Integer;
C, D : Float;
end record;

Vl : Rec := (0, 0, others => 0.0);

Discriminant problematic

 Only asubset of the components are needed to
use this type, depending on the context

type Shape is record

X, Y : Float;
X2, Y2 : Float;
Radius : Float;

Outer Radius : Float;
end record;

« Why do we need to use the memory for Radius if
the shape is aline?

Use of a discriminant

« Types can be parameterized by a discrete type

type Shape Kind is (Circle, Line, Torus);

type Shape (Kind : Shape Kind) is record
X, Y : Float;
case Kind is

when Line =>
X2, Y2 : Float;
when Torus =>
Outer Radius, Inner Radius : Float;
when Circle =>
Radius : Float;
end case;

end record;

 Thistype is indefinite,so needs to be constrained
at object declaration

V : Shape (Circle);

General Syntax

type Id ([Discriminant : Discrete Type] {, Discriminant : Discrete Type}) is
record

[common part]

[variant part]
end record;

« Allidentifiers must be unique — even if declared in
distinct variant parts

 There can be a variant part within the variant part

« All values must have a branch in the case — use
others if needed

 The object will fit the size needed to work with the
given discriminant — unnecessary fields won’t get
allocated

Usage of a record with discriminant

« As for arrays — the unconstrained part has to be

specified
V1l : Shape (Circle);
V2 : Shape := V1; -- OK, constrained by initialization
begin
Vl.Radius := 0.0; -- OK, radius is in the Circle case
V2.X2 := 0.0; -— Raises constraint error

« Accessing a component not accessiblefor a given
constraint will raise Constraint_Error

« Same as record aggregates — but have to give a

value to the discriminant

* Only the values related to the constraint have to

be valuated
V1 Shape
V2 Shape

(Kind =>
X =>
Y =>
X2 =>
Y2 =>
(Circle,

Line,
0.0,
0.0,
10.0,
10.0) ;

0.0, 0.0,

5.

0)

Constraints on record components

 Record component types need to be definite

« If aconstraintis needed, it can be dependent on
the discriminant value

type String Container (Size : Positive) is record
S : String (1 .. Size);
end record;

V : String Container (20);

Mutable objects (1/2)

« We may want to change the constraint of an object
over time

« Such objects need to have an default initial value for
their discriminants —they are constrained

 The discriminant can’t be changed on its own — the
whole object has to be assigned to a new value

« The discriminant of an object with an explicit
constraint can’t be changed

type Shape (Kind : Shape Kind := Line) is record

end record;

V : Shape (Circle); -- Still Ok
V2 : Shape; -- Ok, of type line
begin
V2 = V; -— OK, since the object is mutable

v (Line, 0.0, 0.0, 0.0, 0.0);

-- Raises Constraint Error, V has been explicitly constrained

Mutable objects (2/2)

 The size of a mutable object is the maximal size
needed to represent all possible objects

 Be careful when used with array constraints !

type String Container (Size : Positive := 1) is record
S : String (1 .. Size);
end record;

V : String Container;

« The above might raise Storage Error, since the
maximal size is enough memory to store
Positive’Last characters.

Copyright © 2018 AdaCore Slide: 16

Is there an error? (1/10)

type R is record
A, B, C : Integer := 0;
end record;

Is there an error? (2/10)

type My Integer is new Integer;

type R is record
A, B, C : Integer := 0;
D : My Integer :=
end record;

0;

V : R := (others => 1);

Is there an error? (3/10)

type Cell is record
Val : Integer;
Next : Cell;

end record;

Is there an error? (4/10)

type My Integer is new Integer;

type R is record

A, B, C : Integer;

D : My Integer;
end record;

V : R := (others => <>);

Is there an error? (5/10)

type R is record
A : Integer := 0;
end record;

Is there an error? (6/10)

type R is record
V : String;
end record;

V : R := (V => "Hello");

Is there an error? (7/10)

type R (D : Integer) is record
null;
end record;

Vl : R := (D => 5);
V2 : R := (D => 06);
begin

V1 := V2;

Is there an error? (8/10)

type R (Size : Integer := 0) is record
S : String (1 .. Size);
end record;

V : R := (5, "Hello");

Is there an error? (9/10)

type Shape Kind is (Circle, Line);

type Shape (Kind : Shape Kind) is record
case Kind is
when Line =>
X, Y : Float;
X2, Y2 : Float;
when Circle =>
X, Y : Float;
Radius : Float;
end case;
end record;

Is there an error? (10/10)

type Shape Kind is (Circle, Line);

type Shape (Kind : Shape Kind) is record
X, Y : Float;
case Kind 1is
when Line =>
X2, Y2 : Float;
when Circle =>
Radius : Float;
end case;
end record;

V. : Shape := (Circle, others => <>);
V2 : Shape := (Line, others => <>);
begin

V := V2;

Subprograms

Barneschapter 10

Copyright © 2019 AdaCore Slide: 1

Subprograms in Ada: Specifications

Subprogram name Parameter name

Parameter type

Return type
function F (V : Integér) return Intedger; int F (int V);
procedure P (V : in out Integer); void P (int *V);

Parameter mode

« Ada differentiates functions (returning values) and
procedures (with no return values)

— A function call is an expression.

— A procedure call is a statement.

Subprograms in Ada: Declaration and Body

. function F (V : Integer) return Integer;
Declaration

function F (V : Integer) return Integer is
[Body }:>> R : Integer := V * 2;
begin
R := R * 2;
return R - 1;
end F;

« Declarationis optional, but must be given before
use

* Functions’ result cannot be ignored

« Completion / body is introduced by “is”

Parameter Modes

« Mode "in"
— Actual parameter is not altered
— Only reading of formals is allowed
— Default mode

 Mode "out"
— Actual is expected to be altered
— Writing is expected, but reading is also allowed
— Initial value is not defined
— Only for procedure

« Mode "in out"
— Actual is expected to be both read and altered

— Both reading & updating of formals is allowed
— Only for procedure

function F (V : in Integer) return Integer is
R : Integer :=V * 2;

begin
return R - 1;

end F;

procedure P (V : in out Integer) is
begin

vV := 0;
end P;

Parameter Passing Mechanisms

« Passed either “by-copy” or “by-reference”
 By-Copy
— The formal denotes a separate object from the actual

— A copy of the actual is placed into the formal before the call

— A copy of the formal is placed back into the actual after the
call

 By-Reference

— The formal denotes a view of the actual
— Reads and updates to the formal directly affect the actual

« Parameter types control mechanism selection

— Not the parameter modes

Standardized Parameter Passing Rules

« By-Copy types

— Scalar types

— Access types

— Private types that are fully defined as by-copy types
 By-Reference types

— Tagged types

— Task types and Protected types

— Limited types

— Composite types with by-reference component types

— Private types that are fully defined as by-reference types
 Implementation-defined types

— Array types containing only by-copy components

— Non-limited record types containing only by-copy components
— Implementation chooses most efficient method

Subprogram Calls

* If no parameter is given, no parenthesis is allowed

function F return Integer;

V : Integer := F;

 Named parameter association is possible

procedure P (A, B, C : Integer);

P (B=>0, C=>0, A= 1);

e out and in out modes require a variable object

procedure P (X : out Integer);

V : Integer;
VC : constant Integer := 1;

Default Values

* “In” parameters can be provided with a default
value

procedure P (A : Integer := 0; B : Integer := 0);

« Default values are dynamic expressions,
evaluated at the point of call if no explicit
expression is given

P; -—-A=20, B=20;
P (1) -— A =1, B = 0;
P (B=>2); ——A=20, B=2;
P (1, 2); --A=1, B = 2;

Indefinite Parameters and Return Types

« Subprograms can have indefinite parameters and
return types

function Comment (Stmt : String) return String is
begin

return "/*" & Stmt & "*/";
end Comment;

S : String := Comment ("a=0"); -- return /*a=0*/

« Constraints are computed at the point of call

* Don’t assume boundaries!

procedure Init (Stmt : in out String) is
begin

for J in 1 .. Stmt'Length loop

Stmt (J) := ' g

end loop;
end Init;
S : String := "ABCxxx";

begin

Init (S (4 .. 6));

Overloading (1/2)

 Ada allows overloading of subprograms

procedure Print (V : Integer);
procedure Print (V : Float);

 Overloading is allowed if specifications differ by

— Number of parameters
— Type of parameters

subtype Positive is Integer range 1 .. Integer'Last;
— Result type procedure Print (V : Integer);
Q procedure Print (W : out Positive); -- NOK

« Some aspects of the specification are not taken into
account
— Parameter names
— Parameter subtypes
— Parameter modes
— Parameter default expressions

time

Information

type Apples is new Integer;

type Oranges is new Integer;

procedure Print
procedure Print

N A :
begin

Print
Print
Print
Print

%)

(Nb Apples

Apples := 0;

(N_A); -=
(0) ; -
(Oranges' (0)); ==
(

Nb Oranges => 0); --

(Nb Oranges :

Overloading (2/2)

 QOverloading may introduce ambiguities at call

 Ambiguities can be solved with additional

: Apples) ;

Oranges) ;

OK
NOK
OK
OK

Operator Overloading

« Default operators (=, /=, %, /, +, -, >, <, >=, <=, and, or...)
can be overloaded, added or removed for types

type Distance is new Float;
type Surface is new Float;

function "*" (L, R : Distance) return Distance is abstract; -- removes "*"
function "*" (L, R : Surface) return Surface is abstract; —-— removes "*"
-- Add “*” for (Distance, Distance) -> Surface
function "*" (L, R : Distance) return Surface;

type R is record
Unimportant Field : Integer;
Important Field : Integer;
end record;

function "=" (Left, Right : R) return Boolean is
begin

return Left.Important Field = Right.Important Field;
end nzn;

« “=*overloading will automatically generate the
corresponding “/=*

It is possible to declare two subprograms of the exact
same profile but in different scope

Overloading rules don’t apply here - the nested
subprogram hides the one declared in the parent

scope

A : declare

procedure P (V : Integer);
begin

P (0); —-- calls A.P

B : declare

procedure P (V : Integer);
begin

P (0); -- calls B.P
A.P (0); -- calls A.P

This is considered bad practice

Nested Subprograms and Access to Globals

A subprogram can be nested in any scope

* A nested subprogram will have access to the

parent subprogram parameters, and variables
declared before

procedure P (V : Integer) is
W : Integer;

procedure Nested is
begin
W :=V + 1;
end Nested;
begin
W := 0;
Nested;

Copyright © 2019 AdaCore Slide: 15

Is there an error? (1/10)

function F (V : Integer) return Integer is
begin

Put Line (Integer'Image (V));

return vV + 1;
end F;

begin

F (999);

Is there an error? (2/10)

procedure P (V : Integer) is
begin
Vv :=V + 1;

end P;

Is there an error? (3/10)

function F () return Integer is
return O;
end F;

V : Integer := F ();

Is there an error? (4/10)

procedure P (V : Integer) is
procedure Nested is
begin
W :=V + 1;
end Nested;

W : Integer;
begin

W := 0;

Nested;

Is there an error? (5/10)

function F return String is
begin

return "A STRING";
end F;

V : String (1 .. 2) := F;

Is there an error? (6/10)

procedure P (V : Integer := 0);
procedure P (V : Float := 0.0);
begin

12g

Is there an error? (7/10)

procedure Pl (V : Integer := 0) is .. end;
procedure P2 (V : Integer := 0) is .. end;
begin
declare
procedure Pl (V : Integer := 0) is .. end;
procedure P2 (V : Float := 0.0) is .. end;
begin
P1;
P2;

end;

Is there an error? (8/10)

procedure Multiply (V : out Integer; Times : Integer) is
begin
for J in 1 .. Times loop
V :=V + V;
end loop;

end Multiply;

X : Integer := 10;
begin
Multiply (X, 50);

Is there an error? (9/10)

type My Int is new Integer;

function "=" (L, R : My Int) return Boolean;
function "=" (L, R : My Int) return Boolean is
begin

if L <= 0 or else R <= 0 then
return True;
else
return L = R;
end if;
end "=";

Il
=
~e

V, W : My Int :
begin
if Vv = W then

Is there an error? (10/10)

type My Int is new Integer;

function "=" (L, R : My Int) return Boolean;
function "=" (L, R : My Int) return Boolean is ...
A, B : My Int;

begin
if A /= B then

Packages

Barneschapters 12,13

Copyright © 2019 AdaCore Slide: 1

The Ada Package

A package is the base of software architecturein
Ada

* It’s a semantic entity checked by the compiler

« |t separates clearly a specification and an
Implementation

-— p.ads /* p.h */
package P is #ifndef P H
procedure Proc; #define P H
end P;
void Proc ()
-- p.adb
#endif
package body P is
procedure Proc is /% ee %/
begin
null; int V;
end Proc; void Proc () {

end P; }

General Structure of a Package

package P is
-— Public part of the specification.
-— Declaration of subprograms, variables exceptions, tasks.
-— Visible to the external user.
-— Used by the compiler for all dependencies.
end P;

package body P is
-— Body
-— Declaration of subprograms, variables exceptions, tasks.
-—- Implementation of subprograms.
-— Used by the compiler to generate code for P.
—-— In certain cases (e.g. Inlining and Generics), used by the
-—- compiler to compile clients of P.

end P;

« Entities should be put in the body except if they
have to be exported

« The body is easier to change than the
specification

Uses of a Package

Provideacommonnaming space for alogically related set

of entities

— The package acts as a name wrapper

— These kind of packages are typically stateless (i.e. there are no global
objects)

Group related types and objects

— A package of this sort provides a single place for inter-related types and
objects

— This type of package does not typically have a body
One-of-a-kind (aka “singleton”) objects

— One-of-a-kind objects are objects for which a single instance exists
— One-of-a-kind packages have the object state in their body

Create a datatype abstraction
— Also known as “Abstract Data Type” (ADT)

— An ADT is a data type T (or family thereof) together with the operations
that are allowed to manipulate objects of type T

Accessing components of a package

* Only entities declared in the public part are visible
« Entities are referenced through the dot notation

package Pl is package P2 is
procedure Pub Proc; procedure Proc;

end P1; end P2;

package body Pl is with P1;

procedure Priv Proc; package body P2 is

end P1; procedure Proc is
begin
P1.Pub Proc;
e’ Pl1.Priv Proc;

end Proc;

end P2;

Child units

A publicchild unitis an extension of a package

« Canbeusedtoorganizethe namespaceor break big
packages into pieces

 Child units have visibility over parents

-—- p.ads
package P is

end P;
-- p—chlld;ljads _ —— p-child 2.ads -= p—chlld;3jads _
package P.Child 1 is package P.Child 2 is package P.Child 3 is
end P.Child 1; end P.Child 2: end P.Child 3;

—-— p-child 2-grand child.ads
package P.Child 2.Grand Child is

end P.Child 2.Grand Child;

 Generally speaking,it’s a good habitto split functionality
Into packages as much as possible

Full dependencies (“with clause”)

« “With clause” defines a dependency between two packages
« Gives accessto allthe public declarations

« Can beappliedtothe spec orthe body

« A dependencyis normally doneto a specification

« “Specification with” appliesto the body

« “Specification with” applies to children package P3 is

7
/ end P3;
/
/
/
/
/
/
/
/

package Pl is with P3;
package P2 is
end P1;
end P2;
>< :
with P2; with P1; /
package body Pl is package body P2 is

end Pl; end P2;

Partial dependencies (“limited with”)

« Circular dependencies between units are forbidden (to
avolid illegal circular constructions)

with Medical; //”-\\\‘ with Person;

package Person is package Medical is
type Person R is record type Medical R is record
T Info : Medical.Medical R; T Info : Person.Person R;
end record; ‘___,// end record;
end Person; end Person;

« A partial dependency (“limited with”) allows such
circularity, but gives visibility of an incomplete view of
type declarations only (see later for more details)

limited with Medical; /s limited with Person;
package Person is package Medical is
type Person R is record type Medical R is record
T Info : access Medical.Medical R; T Info : access Person.Person R;
end record; ‘\\5__,// end record;
end Person; end Person;

 Regular “with clauses” can still be used in bodies

Dependency shortcut (“use clause”)

* Prefix may be overkill

 The “use clause” grants “direct visibility” so the
prefix can be omitted.

« Can introduce ambiguities

 Can be placed in any scope

with P1;
with P2; use P2;

package Pl is package body P3 is

procedure Procl; €3 X : T;
type T is null record;
procedure Proc is

end Pl; use P1;
X « T;
begin
package P2 is €3 Procl;
Pl.Procl;
procedure Procl; P2 .Procl;
end Proc;
end P2;

end P3;

A Package is a High Level Semantic Entity

« The compilerisresponsible for checking
structural and semantic consistency

-- p.ads /* p.h */
package P is #ifndef P H
V : Integer; #define P H
procedure Proc;
pragma Inline (Proc); extern int V;
end P; inline wvoid Proc ();
-- p.adb #include “p.hi”
fendif

package body P is

procedure Proc is /* p.hi */
begin
null; #ifndef P HI
end Proc; #define P HI
end P;

inline void Proc () {

}
#endif
/% @@ %Y

int V;

Compilation with GNAT (1/2)

 The compiler knows how to work just with the
specification

package Depl is package P is package Dep2 is

end Depl;

end P; end Dep?2;

package body Depl is

with Depl; Package body Dep2 is
with Dep2;

end Depl; end Dep?2;
package body P is

end P;

Compilation with GNAT (2/2)

« If information is needed from the body (generic,
Inline), the compiler works transparently

package Depl is
procedure Proc;

pragma Inline (Proc);
end Depl;

package P is package Dep2 is

end P; end Dep?2;

package body Depl is

with Depl;

package body Dep?2 is
with Dep2;

end Depl;

end Dep?2;
package body P is

end P;

Copyright © 2019 AdaCore Slide: 13

Is there a compilation error? (1/10)

package Pl is package P2 is
type T is null record; X : P1.T;

end Pl; end P2;

Is there a compilation error? (2/10)

package Pl is with P1l; use P1;
end P1; package P2 is
X T
end P2;

package body P1 is
type T is null record;

end P1l;

Is there a compilation error? (3/10)

with P2; with P1;

package Pl is package P2 is
type Tl is null record; type T2 is null record;
V : P2.T2; Vv : P1.T1;

end P1l; end P2;

Is there a compilation error? (4/10)

with P2; limited with P1;

package Pl is package P2 is
type Tl is null record; type T2 is null record;
V : P2.T2; V : access P1.T1;

end P1l; end P2;

Is there a compilation error? (5/10)

with P2; package P2 is
package Pl is type T2 is null record;
type Tl is null record; end P2;
V : P2.T2;
end P1;
with P1;

package body P2 is
X : P1.T1;

end P2;

Is there a compilation error? (6/10)

package Pl is
type T is null record;

end P1l;

package P1.Child is

end P1.Child;

package body P1.Child is
X « T;

end P1.Child;

Is there a compilation error? (7/10)

package P1.Child is
with P1.Child;

type T is null record;
package Pl is

end P1.Child;
X : P1.Child.T;

end P1l;

Is there a compilation error? (8/10)

package P1.Child is
package Pl is

type T is null record;
end P1l;

end P1.Child;

with P1.Child;
package body Pl is
X : P1.Child.T;

end P1l;

Is there a compilation error? (9/10)

limited with P2; limited with P1;

package Pl is package P2 is
type Tl is null record; type T2 is null record;
V : P2.T2; V : access P1.T1;

end P1l; end P2;

Is there a compilation error? (10/10)

package Dep is with Dep;
package P1.Child is
type T is null record; package P1 is
end P1.Child;
end Dep;
end P1;

package body P1.Child is
X : Dep.T;

end P1.Child;

Basic Privacy

Barneschapter 12

Copyright © 2018 AdaCore Slide: 1

Private types

Copyright © 2018 AdaCore Slide: 2

Typical problem

« Having the full implementation of the types accessible

IS error-prone

package Stacks is

type Stack Data is array (1 ..

type Stack Type is record
Max : Integer := 0;
Data : Stack Data;

end record; B

procedure Push

(Stack : in out Stack Type; Val :

procedure Pop

(Stack : in out Stack Type; Val :

end Stacks;

of Integer;

Integer) ;

out Integer) ;

procedure Main is
S : Stacks.Stack Type;
V : Integer;

begin
Push (S, 15);
S.Max := 10;

Pop (S, V);
end Main;

 But the compiler needs to have access to the
representation (needs to know how much memory is

to be used)

SO0 the representation has to stay in the specification

Private types

 Introduces a new section in the package specification : the private section
— Visible to the compiler
— Visible to the bodyand any child packages
— Not visibleto the user of the package

* In Ada, private applies to a type as a whole, not on afield by field basis

 In Ada, privacy is managed at package level, not at class level

package Stacks is namespace Stacks {
type Stack Type is private; class Stack Type ({
public:
procedure Push void Push (int wval);
(Stack : in out Stack Type;
Val : Integer); private:
int [] Data;
private int Max;
i
type Stack Data is array (1 .. 100)
of Integer; }

type Stack Type is record
Max : Integer := 0;
Data : Stack Data;

end record;

end Stacks;

Who has access to the private information?

* Body, and child units have access to the

Implementation

package Stacks is
type Stack Type is private;

procedure Push
(Stack : in out Stack Type;
Val : Integer);
private

type Stack Data is array (1 .. 100)

of Integer;

type Stack Type is record
Max : Integer := 0;
Data : Stack Data;
end record;
end Stacks;

package body Stacks is
procedure Push
(Stack : in out Stack Type;

Val : Integer)
is
begin
Stack.Data (Stack.Max + 1) :=
Stack.Max := Stack.Max + 1;
end Push;

end Stacks;

package Stacks.Utils is
procedure Empty
(Stack : in out Stack Type);
end Stacks.Utils;

package body Stack.Utils is
procedure Empty
(Stack : in out Stack Type) is
begin
Stack.Max := 0;
end Stack.Utils;
end Stack.Utils;

with Stacks; use Stacks;
with Stacks.Utils; use Stacks.Utils;

procedure Main is
S : Stack Type;

begin
Push (S, 10);
Empty (S);
S.Max := 0;
end Main;

What can you do with a private type?

 From the user perspective, a private type is
equivalent to a null record

* |t can be used for
— Variables, parameters and components declarations
— Copies (“:="is predefined)

— Comparisons (“="and “/=")

procedure Main is

package Stacks is S1, S2 : Stacks.Stack Type;
begin a
type Stack Type is private; Push (81, 15);
procedure Push S2 := S1;
(Stack : in out Stack Type;
Val : Integer);

Push (S2, 0);
private Push (s1, 0);
[..] if S1 = S2 then
Push (S1, 1);
end Stacks; end if;
end Main;

How can a private type be implemented?

A “simple” privatetype can be implemented by any type
giving at least the same level of capabilities

— The type must allow variable declarations without the need of
constraints, it has to be definite (e.g. no unconstrained arrays)

— The type must allow copy and comparison (e.g. no limited types)

package Stacks is
type Stack Type is private;

private private private

type Stack Type is range 1 .. 10; type Stack Type is record
V : Integer;

end record;

type Stack Type is array
(Integer range 1 .. 10);
end Stacks; of Integer;

end Stacks; end Stacks;

8 private 0 private

type Stack Type (Size : Integer) is record
V : Integer;
end record;
end Stacks;

type Stack Type is array (Integer range <>)
of Integer;

end Stacks;

How can a private type be implemented?

 An “indefinite” privatetype can be implemented by any type
that can be implemented by privatetype as well as
Indefinites

— But the user needs to consider it as indefinite (no declaration without
initialization)

package Stacks is

type Stack Type (<>) is private;

private private private
type Stack Type is range 1 .. 10; type Stack Type is record type Stack Type is array
V : Integer; (Integer range 1 .. 10);
end Stacks; end record; of Integer;
end Stacks; end Stacks;
private private

type Stack Type (Size : Integer) is record
V : Integer;
end record;
end Stacks;

type Stack Type is array (Integer range <>)
of Integer;

end Stacks;

Public Discriminants on Private Types

* It’s possible to specify the discriminants of a
private type

package Stacks 1is
type Stack Type (Size : Integer) is private;
private
type Stack Type (Size : Integer) is record
V : Integer;

end record;
end Stacks;

Deferred private constants

 |t’s useful to declare constants visiblein the
public view

« Values can’t be given before the representation is
accessible — so constants of private types have a
public and a private view

package Stacks is
type Stack Type is private;

Empty Stack : constant Stack Type;
private

type Stack Data is array (1 .. 100)
of Integer;

type Stack Type is record
Max : Integer := 0;
Data : Stack Data;

end record;

Empty Stack : constant Stack Type :=
(0, (others => 0)):;
end Stacks;

Private part is not only for private types

* Any kind of declaration can be provided in the
private part of the package

« Entities declared only in the private part are not
visibleat all to a client

package P is
-— Public part of the specification.
-- Declaration of subprograms, variables exceptions, tasks.
-- Visible to the external user
-- Used by the compiler for all dependencies.
private
-— Private part of the specification.
-— Declaration of subprograms, variables exceptions, tasks.
-— Visible to the children and the implementation.

-— Used by the compiler for all dependencies.
end P;

package body P is
-— Body

-—- Declaration of subprograms, variables exceptions, tasks.
-— Implementation of subprograms
end P;

Copyright © 2018 AdaCore Slide: 12

Is there a compilation error? (1/7)

package P is

type T is private;
private

type T is range 0 .. 10;
end P;

with P; use P;

procedure P.Main is
v : T,

begin
vV := 0;

end P.Main;

with P; use P;

procedure Main
v : T
begin
vV = 0;

end Main;

is

Is there a compilation error? (2/7)

package
type
Zero

private
type

end P;

)

is
is private;
constant T

is range 0 ..

= 0

10;

with P; wuse P;
with P2; use P2;

procedure Main is
vV o T2;
begin
V.F := Zero;
end Main;

with P; use P;

package P2 is
type T2 is record
g g Wg
end record;
end P2;

Is there a compilation error? (3/7)

package P is
type T is private;

private
type T is range 0 .. 10;
Zero : constant T := 0;
end P;
with P; use P; with P; use P;
procedure P.Main is procedure Main is
vV o T; v o T;
begin begin
V := Zero; V := Zero;

end P.Main; end Main;

Is there a compilation error? (4/7)

package P is

type T is private;
private

type T is array (Integer range <>) of Integer;
end P;

procedure P.Main is
v : T (1 .. 10);
begin
Vv (1) := 0;
end P.Main;

Is there a compilation error? (5/7)

package P is

type T (<>) is private;
private

type T is array (Integer range 1 .. 10) of Integer;
end P;

with P; use P;

procedure Main is
v : T

begin
null;

end Main;

Is there a compilation error? (6/7)

package P is
type T is private;

One : constant T;

private
type T is range 0 .. 10;
One : constant T := 0;
end P;

with P; use P;

procedure Main is
val : T;
begin
Val := One + One;
end Main;

Is there a compilation error? (7/7)

package P is package P.Constants is
type T is private; Zero : constant T := 0;
private One : constant T := 1;
type T is range 0 .. 10; end P.Constants;
end P;
with P; use P;

with P.Constants; use P.Constants;

procedure Main is
V : T := One;
begin
null;
end Main;

Exceptions

Barneschapter 15

Copyright © 2018 AdaCore Slide: 1

Exception Declaration and Raise

« Adaexceptions are adedicated kind of entity
— associated with a scope and visibility
— declared like a variable

My Exception : exception;

« Theenvironment can raise predefined exceptions
— Constraint_Error
— Program_Error

— Storage Error

Manual Exception Raise

* An exceptioncan be raised manually,and associated with a
message

— As a raise statement

raise My Exception;
raise My Exception with "My message";

Exception Handling

 Exception can be caught at the end of any block
of statements

begin try {
-- some code // some code

exception } catch (My Exception e) ({
when My Exception => // some code

-— some code }
end;

« Several exceptions can be handled by the same
code

begin
-— some code
exception
when Constraint Error | Storage Error =>
-— some code
when others =>
-— code for all other exceptions
end;

Exceptions Occurences and Reraise

* In an exception block, the current exception can
be re-raised

exception
when others =>
raise;
end;

* Itis possibleto manipulate the current occurrence
by naming it, allowing its message to be extracted
or to re-raisean occurrence explicitly

with Ada.Exceptions; use Ada.Exceptions;

[...]

exception
when E : others =>
Put Line (Exception Message (E));
Reraise Occurrence (E);
end;

Class Exercise

* In the Ada RM, find and have alook at the
specification of the package

— Ada.Exceptions

* In the GNAT Runtime Sources, find and have a
look at the specification of the package

— System.Traceback.Symbolic

Copyright © 2018 AdaCore Slide: 7

What will be printed? (1/5)

with Text IO0; use Text IO;
procedure E is
begin
declare
A : Positive;
begin
A := -5;
exception
when Constraint Error =>
Put Line ("caught it");
end;
exception
when others =>
Put Line ("last chance handler");
end;

What will be printed? (2/5)

with Text IO0; use Text IO;
procedure E is
begin
declare
A : Positive;
begin
A := -5;
exception
when Constraint Error =>
Put Line ("caught it");
raise;
end;
exception
when others =>
Put Line ("last chance handler");
end;

What will be printed? (3/5)

with Text IO0; use Text IO;
procedure E is
begin
declare
A : Positive := -1;
begin
A := -5;
exception
when Constraint Error =>
Put Line ("caught it");
end;
exception
when others =>
Put Line ("last chance handler");
end;

What will be printed? (4/5)

with Text I0; use Text IO;
procedure E is

begin

declare

A, B, C : Positive;
begin

A := 10;

B := 9;

C := 2;

A :=B-A+C;
exception

when Constraint Error =>
Put Line ("caught it");
end;
exception
when others =>
Put Line ("last chance handler");

end;

What is the assignment result? (5/5)

A, B : Integer := 5;

B := (if A /= 0 or raise Division Error then B / A else 0);

Genericity

Barneschapter 19

Copyright © 2018 AdaCore Slide: 1

The notion of a pattern

« Sometimes, algorithms can be abstracted from
the types that they operate on

procedure Swap Int (Left, Right : in out Integer) is procedure Swap Bool (Left, Right : in out Boolean) is
V : Integer; V : Boolean;
begin begin
V := Left; V := Left;
Left := Right; Left := Right;
Right := V; Right := V;
end Swap_ Int; end Swap Bool;

« It would be nice to extract these propertiesin
some common pattern, and then just replace the
parts that need to be replaced

procedure Swap (Left, Right : in out (Integer | Boolean)) is
V : (Integer | Boolean);
begin

V := Left;
Left := Right;
Right := V;

end Swap;

Solution: generics

A genericunitis a unitthat doesn’t exist

« |tis apatternbased on properties
 Theinstantiation applies the pattern to certain parameters

generic
type T is private;
procedure Swap (L, R :

procedure Swap (L, R :
is

Tmp :
begin

L = Rg

R = Tmp;
end Swap;

T := L

procedure Swap I is new Swap
procedure Swap F is new Swap

11, I2
Fl, F2

: Integer;
: Float;

procedure Main is

begin
Swap_I (I1, IZ2);
Swap F (F1, F2);

end Main;

in out T)

in out T)

(Integer);

(Float) ;

template <class T>

void Swap (T & L, T & R);

template <class T>

void Swap (T & L,
T Tmp = L;

T & R) {

int I1, 1I2;
float F1l, F2;

void Main (woid) {
Swap <int> (I1, I2);
Swap <float> (Fl, F2);

What can be made generic?

Subprograms & packages can be made generic

Children of generic units haveto be generic themselves

generic

type
package

generic
package

package
package

T 1s private;
Parent is [..]
Parent.Child is [..]

I is new Parent (Integer);
I Child is new I.Child;

What can be made generic?

Generic instantiation creates a new set of data where a
generic package contains library-level variables:

generic

type T is private;
package P is

v ¢ T;
end P;

package Il is new P (Integer);
package I2 is new P (Integer);

begin
I1.V := 5;
I2.V := 06;
if I1.vVv /= I2.V then

-- will go there

Generic types parameters

« A genericparameteris atemplate
« Itspecifiesthe propertiesthe generic body canrely on

generic
type Tl is private; -- this should have the properties of a private type
-- (assignment, comparison, ability to declare variables on the stack..)
type T2 (<>) is private; -- this type can be unconstrained

package Parent is [..]

« Theactual parameter must provide at least as many
properties as the generic contract

« Theusageinthe generic hasto followthe contract

generic
type T (<>
procedure P (

) is private;
v : T);

procedure P (V : T)
is
X1l : T :=V; -- OK, we can constrain the object by initialization

‘!’ X2 : T; -—- Compilation error, there is no constraint for this object
begin [..]
procedure Pl is new P (String); -—- OK, unconstrained objects are accepted

procedure P2 is new P (Integer); -- OK, the object is already constrained

Properties that can be expressed on generic types

. — any definite (and non-limited) type

. — allowed to be indefinite

. — any discrete (integer or enumeration)

- — any signed integer

. — any modular integer

° — any float

. — array type (needs index and components)
. — access type (needs target)

generic
type T is (<>);
function Add One (V : T) return T is
begin
return T'Succ (V);
end Add One;

function Add One I is new Add One (Integer);
function Add One C is new Add One (Character);

Generic parameters can be built one on top of the other

« Consistency is checked at compile-time

generic

type T is private;

type Index is (<>);

type Arr is array (Index range <>) of T;
procedure P;

type Int Array is array (Character range <>) of Integer;

procedure P String is new P
(T => Integer,
Index => Character,
Arr => Int Array);

Generic constants & variables parameters

* Variables can be specified in the generic contract

 The mode specifies the way the variable can be
used:
— in ->read only

— Inout -> read write
« Generic variables can be defined after generic
types

generic
type T is private;
X1 : Integer;
X2 : in out T;
procedure P;

V : Float;

procedure P I is new P
(T => Float,
X1 => 42,
X2 => V);

Generic subprograms parameters

« Subprogramscan be definedin the generic contract
* Must be introduced by “with” to differ from the generic unit

generic
with procedure Callback;
procedure P;

procedure P is
begin

Callback;
end P;

procedure Something;

procedure P I is new P (Something);

« ” —matching subprogram is taken by default
o ”—null subprogram is taken by default

with procedure Callback 1 is <>;
with procedure Callback 2 is null;
procedure P;

procedure Callback 1;

procedure P I is new P; -- Will take Callback 1 and null

Generic Child Units

* A generic unit can only have generic children,
even if they don’t have any parameters

generic generic
type T is private;
package Lists is package Lists.Utils is

[...] [ocol

« To use ageneric child, the parent must be
Instantiated first

package L is new Lists (Integer);
package U is new L.Utils;

Copyright © 2018 AdaCore Slide: 12

Is there a compilation error? (1/8)

generic

type T is private;
package G 1is

v o Ty
end G;

with G; use G;

procedure P is

package I 1s new G (Integer);
begin

vV := 0;
end P;

Is there a compilation error? (2/8)

generic

type T is private;
package G 1is

vV ¢ Ty
end G;

with G;

procedure P is
type My Integer is new Integer;

package Il is new G (Integer);
package I2 is new G (My Integer);

use I1, I2;
begin

V = 0;
end P;

Is there a compilation error? (3/8)

generic

type T is private;
package G 1is

vV : Ty
end G;

with G;

procedure P 1is
type My Integer 1s new Integer;

package Il is new G (Integer);
package I2 is new G (My Integer);

use I11;
begin
V := 0;

end P;

Is there a compilation error? (4/8)

generic
type T is private;
package G is

end G;

generic
package G.Child 1s
Vo Ty with G;
end G.Child;
procedure P is
package Il is new G (Integer);
begin
I1.Ch1ild.V := 0;
end P;

Is there a compilation error? (5/8)

generic

type T (<>) is private;
package G 1is

v o T;
end G;

with G;

procedure P 1is

package Il is new G (Integer);
begin

I1.v = 0;
end P;

Is there a compilation error? (6/8)

generic

type T is private;
package G is

v o T
end G;

with G;

package P 1is
type My Type is private;

package I1 is new G (My Type);
private

type My Type is null record;
end P;

Is there a compilation error? (7/8)

generic
type T is private;
procedure P;

type R is record
null;

end record;

type A 1s access all R;

procedure I1 is new P (Integer);
procedure I2 is new P (Float);
procedure I3 i1s new P (Character);
procedure I4 is new P (String);
procedure I5 is new P (R);
procedure 16 is new P (A);

Is there a compilation error? (8/8)

generic
type T (<>) is private;
procedure P;

type R is record
null;

end record;

type A 1s access all R;

procedure I1 is new P (Integer);
procedure 12 is new P (Float);
procedure I3 is new P (Character);
procedure I4 is new P (String);
procedure I5 is new P (R);
procedure I6 is new P (A);

Access Types

Barneschapter 11

Copyright © 2012 AdaCore Slide: 1

Access types design

« Javareferences, or C/C++ pointers are called access type in
Ada

« An objectis associated to a pool of memory

« Differentpools may have different allocation/ deallocation
policies
 Withoutdoingunchecked deallocations,and by using pool-

specific access types, access values are guaranteed to be
always meaningful

 In Ada, accesstypes are typed

type Integer Access is access Integer; int * V = malloc (sizeof (int)):;
V : Integer Access := new Integer; /* or in C++ */

int * V = new int;

Access types are dangerous

Multiple memory issues
— Leaks/ corruptions

Introduces potential random failures complicated
to analyze
Increase the complexity of the data structures

May decrease the performances of the application

— Dereferences are slightly more expensive than direct access
— Allocations are a lot more expensive than stacking objects

Ada avoids to use accesses as much as possible

— Arrays are not pointers
— Parameters are implicitly passed by reference

Only use them when needed

Stack vs Heap

Stack
I : Integer := 0;
J : String := "Some Long String";
I : Access Integer := new Integer' (0);
J : Access_String := new String' ("Some Long String");

Stack

Pool specific access type

e An access type is atype

type T is [..]
type T Access is access T;
V. : T Access := new T;

« Conversion is needed to move an object pointed
by one type to another (pools may differ)

* You can not do this kind of conversion with a
pool-specific access type:

type T Access 2 is access T;
@ V2 : T Access 2 := T Access 2 (V);

General access types

« Can point to any pool (including stack)

type T is [..]
type T Access is access all T;
V : T Access := new T;

« Still distinct type

« Conversions are possible

type T Access 2 is access all T;
V2 : T Access 2 := T Access 2 (V);

Declaration location

 Can be at library level

package P is
type String Access is access all String;
end P;

 Can be nested in a procedure

package body P is
procedure Proc is
type String Access is access all String;
begin

end Proc;
end P;

* Nesting adds non-trivial issues

— Creates a nested pool with a nested accessibility

— Don’t do that unless you know what you are doing !
(see later)

Null values

« A pointer that does not point to any actual data
has a null value

« Without an initialization, a pointer is null by
default

 null can be used in assignments and comparisons

type Acc is access all Integer;

V : Acc;
begin
if V = null then
-—- will go here
end if

V := new Integer' (0);
V := null; -- semantically correct, but introduces a leak

Allocations

- Objects are created with the “new” reserved word

 The created object must be constrained;
the constraintis given during the allocation

V : String Access := new String (1 .. 10);

 The object can be created by copying an existing
object — using a qualifier

V : String Access := new String' ("This is a String");

Deallocations

 Deallocations are unsafe
— Multiple deallocations problems
— Memory corruptions

— Accessto deallocated objects

« As soon as you use them:
you |ose the safety of your pointers

 But sometimes, you have to do what you have to
do ...
— There’'s no simple way of doing it
— Ada provides Ada.Unchecked_Deallocation
— Has to be instantiated (it's a generic)

— Mustwork on an object, reset to null afterwards

Deallocation example

dependency on the

<3§§§£}§%{:§nchecked_De%EEEE%EEEEZ)

procedure P is
type An Access is access all A Type;

<:§£§§§§EE§:EEee is new Ada.Unchecked Deallocation (A Type,:§gzgggg£55:2>

: An Access := new A Type;
begln
F'ree

end P;
creation of the deallocation
function (instance of the

V is null after the call generic subprogram)

mention first the type and then
the access.

Dereferencing pointers

 .all does the access dereference

— Lets you access the object pointed to by the pointer

« .all is optional for

— Access on a component of an array
— Access on a component of a record

Dereference examples

type R is record
Fl, F2 : Integer:
end record;

type A Int is access all Integer;
type A String is access all String;
type A R is access all R;

V_Int : A Int := new Integer;

V_String : A String := new String' ("abc");

V. R : AR = new R;

[...]

V Int.all := 0;

V_String.all := "cde";

V _String (1) := 'z'; -- similar to V String.all (1) := 'z';
V_R.all := (0, 0);

V R.F1 := 1; —- similar to V R.all.F1 := 1;

Pointing on objects declared on the stack

* By default:
you cannot point to objects from the stack
— Whatif the compiler has optimized the object to a register ?

« Stack Objects on which an access can be created:
— Must be declared aliased
— Accesses are then obtained through the ‘Access attribute

— Only general pointers (declared with all) can point to such
objects

— Should not be deallocated

— You should not keep references outside the scope of an
object

Aliased objects example (1/2)

type Acc is access all Integer;

V : Acc;

I : aliased Integer;
begin

V := I Access;

V.all := 5; —- Same a I := 5

Aliased objects example (2/2)

type Acc is access all Integer;
G : Accy;

procedure Pl is

I : aliased Integer;
begin

G := I'Unchecked Access; -- Same as 'Access (see after)
end P1;

procedure P2 is
begin

G.all := 5; -- What if P2 is called after P1 2?7
end P2;

Introduction to accessibility checks (1/2)

« The depth of an object depends on its nesting within
declarative scopes

package body P is
-—- Library level, depth 0
procedure Proc is

-—- Library level subprogram, depth 1
procedure Nested is
-—- Nested subprogram, enclosing + 1, here 2
begin
null;
end Nested;
begin
null;
end Proc;
end P;

 Access types can access to objects at most of the
same depth

« The compiler checks it statically
(Removing checks is a workaround!)

Introduction to accessibility checks (2/2)

package body P is
type TO is access all Integer;
AQ : TO;
VO : aliased Integer;

procedure Proc is
type Tl is access all Integer;

Al : T1;
V1l : aliased Integer;
begin
AQ := V0O'Access;
Q AQ := V1'Access;
AQ := V1'Unchecked Access;
Al := VO'Access;
Al := V1'Access;
Al := T1 (AO0);
Q AO := TO (Al);
Al := new Integer;
(%) A0 := TO (Al);
end Proc;
end P;

 To avoid having to face these issues, avoid
nested access types

Using pointers to create recursive structures

* It is not possibleto declare recursive structure

 But there can be an access to the enclosing type

Partial declaration

type Cell Access is access all Cell;

type Cell is record
Next : Cell;;;;;;;?\\\““-~\\,

Some Value : Integer;
end record;

Full declaration

Common memory problems —uninitialized pointers

type An Access 1is access all Integer;
V : An Access;

begin
V.all := 5;

Will raise Constraint_Error

Common memory problems — double deallocation

type An Access
procedure Free

V1l : An Access :
VZ2 : An Access :

begin
Free (V1) ;

Free (V2);

is access all Integer;
is new Ada.Unchecked Deallocation (Integer, An Access);

new Integer;
V1;

May raise Storage Error if the memory is still protected
(deallocated)

May deallocate an other object if the memory has been
reallocated — putting an object in an inconsistent state

Common memory problems — accessing deallocated memory

type An Access is access all Integer;
procedure Free is new Ada.Unchecked Deallocation (Integer, An Access);

V1l : An Access := new Integer;

V2 : An Access := VI;
begin

Free (V1) ;

VZ2.all := 5;

May raise Storage Error if the memory is still protected
(deallocated)

May change an other object if the memory has been
reallocated — putting an object in an inconsistent state

Common memory problems — memory leaks

type An Access 1is access all Integer;
procedure Free is new Ada.Unchecked Deallocation (Integer, An Access);

V : An Access := new Integer;
begin
V := null;

Silent problem
Might raise Storage Error if too many leaks
Might slow down the program if too many page faults

How to fix memory problems ?

 Thereis no language-defined solution
 Use the debugger!

« Use additional tools

— gnatmem — monitor memory leaks
— valgrind — monitor all the dynamic memory
— GNAT.Debug Pools — gives a pool for an access type,

raising explicit exception in case
of invalid access

— Others...

Copyright © 2012 AdaCore Slide: 25

Is there an error? (1/10)

type An Access is access all Integer;

W : Integer;
V : An Access := W'Access;

Is there an error? (2/10)

type An Access 1is access Integer;

W : aliased Integer;
V : An Access := W'Access;

Is there an error? (3/10)

type An Access is access all Integer;

procedure Proc is

W : aliased Integer;

X : An Access := W'Access;
begin

null;
end Proc;

Is there an error? (4/10)

type R is record
F1, F2 : Integer;
end record;

type R Access is access all R;

procedure Proc is

V : R Access := new R;
begin

V.F1 := 0;

V.all.F2 := 0;
end Proc;

Is there an error? (5/10)

G : aliased Integer;

procedure Proc 1is
type A Access is access all Integer;
V : A Access;

begin
V = G'Access;

end Proc;

Is there an error? (6/10)

type R is record
Fl, F2, F3 : Integer;
end record;

type R Access is access all R;
type R Access Access is access all R Access;

V : R Access Access;

begin
V := new R Access;
V.all := new R;
V.F1 := 0;
V.all.F2 := 0;
V.all.all.F3 := 0;

Is there an error? (7/10)

type A Access is access all Integer;

procedure Free is new Ada.Unchecked Deallocation
(Integer, A Access);

V1l : A Access := new Integer;
V2 : A Access := V1;

begin
Free (V1);

Free (V2);

Is there an error? (8/10)

type A Access is access all Integer;

procedure Free is new Ada.Unchecked Deallocation
(Integer, A Access);

V : A Access;

begin
Free (V);
V := new Integer;
Free (V);

Free (V);

Is there an error? (9/10)

type A Access is access all Integer;

procedure Free is new Ada.Unchecked Deallocation
(Integer, A Access);

V : A Access;

W : aliased Integer;
begin

V := W'Access;

Free (V);

Is there an error? (10/10)

type A Access is access all Integer;
type R is record

V : A Access;

W : aliased Integer;
end record;

G : R;

procedure P is

L : R;

begin
G.V := G.W'Access;
L.V := L.W'Access;

end P;

Inheritance

Barneschapter 14

Copyright © 2018 AdaCore Slide: 1

Primitives

Copyright © 2018 AdaCore Slide: 2

The notion of a primitive

 Atype is characterized by two sets of properties

— lIts data structure

— The set of operations that applies to it

 These operations are called “methods” in C++, or

“Primitive Operations” in Ada
* In Ada
— the primitive relationship is implicit

— The "hidden” parameter “this” is explicit
(and can have any name)

type T is record class T {
Attribute Data : Integer; public:
end record; int Attribute Data;

void Attribute Function
procedure Attribute Function (This : T); }i

(void) ;

General rule for a primitive

A subprogram Sis a primitive of type T if
— Sis declaredin the scopeof T

— S has at least one parameter of type T (of any mode,
iIncluding access) or returns a value of type T

package P is
type T is range 1 .. 10;
procedure P1 (V : T);

procedure P2 (V1 : Integer; V2 : T);
function F return T;

end P;

A subprogram can be a primitive of several types

package P is

type Tl is range 1 .. 10;
type T2 is (A, B, C);

procedure Proc (V1 : T1l; V2 : T2);

end P;

Beware of access types !

 Using anamed access type in a subprogram
creates a primitive of the access type,
NOT the type of the accessed object!

package P is

type T is range 1 .. 10;
type A T is access all T;

procedure Proc (V : A T); —-- Primitive of A T

end P;

« In order to create a primitive using an access
type, the access mode should be used

package P is

type T is range 1 .. 10;
procedure Proc (V : access T); -- Primitive of T

end P;

Implicit primitive operations

« At type declaration, primitives are implicitly
created if not explicitly given by the developer,
depending on the kind of the type

package P is

type Tl is range 1 .. 10;

-- Implicitly declares function "“+” (Left, Right : Tl1) return TI1;
-- Implicitly declares function "“-” (Left, Right : Tl) return TI1;

type T2 is null record;
-— implicitly declares function "“="” (Left, Right : T2) return TZ2;

end P;

 These primitives can be used just as any others

procedure Main is

vl, V2 : P.T1;
begin

V1 := P."+" (V1, V2);
end Main;

Use clauses

Often, to avoid ambiguity and confusing overloading,
“use packageclauses” are forbidden by a coding standard.
This means that all operations have to be prefixed, thus:

package A.B.C is

type Tl is range 1 .. 10;
procedure Print (V : T1);
end A.B.C;
with A.B.C;

procedure Main is
vli, V2 : A.B.C.T1;

begin
Vvl := A.B.C."+" (V1, V2);
A.B.C.Print (V1);

end Main;

Thisis very annoying, though. |l would prefer to write
“V1:=V1 + V2” in the natural way...

Simple derivation

Copyright © 2018 AdaCore Slide: 8

Simple type derivation

In Ada, any (non-tagged) type can be derived

Type Child is new Parent;

A child is a distinct type inheriting from:
— The data representation of the parent
— The primitives of the parent

type Parent is range 1 .

. 10;
procedure Prim (V

: Parent) ;

type Child is new Parent;

-- Implicit procedure Prim (V

: Child) ;
V : Child;
begin
vV :=5;
Prim (V)

Conversions are possible for non-primitive operations

package P is

procedure Main is
type Parent is range 1

.. 10; procedure Not A Primitive (V : Parent);
type Child is new Parent;
end P; V1 : Parent;
V2 : Child;
begin

Not A Primitive (V1);
Not A Primitive

(Parent (V2));
end Main;

What can simple derivation do to the structure?

 The structure of the type has to be kept
— An array stays an array
— A scalar stays a scalar

« Scalar ranges can be reduced

type Int is range -100 .. 100;
type Nat is new Int range 0 .. 100;
type Pos is new Nat range 1 .. 100;

« Constraints on unconstrained types can be
specified

type Arr is array (Integer range <>) of Integer;
type Ten Elem Arr is new Arr (1 .. 10);
type Rec (Size : Integer) is record

Elem : Arr (1 .. Size);

end record;

type Ten Elem Rec is new Rec (10);

Signed Integer Types
(revisited...)

Copyright © 2018 AdaCore Slide: 11

Signed Integer Types (revisited)

« The “Basic Types” lecture introduced Ada’s signed integer types,
and the predefined Integer types in package Standard.

 But...we missed one important detail.

« A declaration like this:

type T is range L .. R;

* Is actually a short-hand for:

type <Anon> is new Predefined-Integer-Type;
subtype T is <Anon> range L .. R;

Signed Integer Types (revisited)

What’s going on?

type <Anon> is new Predefined-Integer-Type;
subtype T is <Anon> range L .. R;

The compiler looks at L and R (which must be static) and chooses
a predefined signed Integer type from Standard (e.g. Integer,
Short_Integer, Long_Integer etc.) which at least includes
therangelL .. R.

2. This choiceis implementation-defined.

An anonymous type <Anon> is created, derived from that
predefined type. <Anon> inherits all of the predefined type’s
primitive operations, like “+”, “-”, “*” and so on.

A subtype T of <Anon> is created with range L .. R

<Anon> can be referred to as T’'Base in your program.

Signed Integer Types (revisited)

 What’s going on?

type <Anon> is new Predefined-Integer-Type;
subtype T is <Anon> range L .. R;

« Warning! The choice of T’'Base affects whether runtime
computations will overflow.

— Example: on one machine, the compiler chooses Integer, which is 32-bit, and your code
runs fine with no overflows.

— On another machine, a compiler might choose Short_Integer, which is 16-bit, and your
code will fail an Overflow_Check.

— Extra care is needed if you have two compilers —e.g. for Host (like Windows or Linux)
and Crosstargets...

« Good news! GNAT makes consistent and predictable choices on
all major platforms.

Signed Integer Types (revisited)

« Guidance

 You can avoid the implementation-defined choice by deriving your
own Base Types explicitly, and using Assert to enforce the
expected range

 Something like

type My Base Integer is new Integer;
pragma Assert (My Base Integer’First = -2**31);
pragma Assert (My Base Integer’Last = 2**31-1);

« Then derive further types and subtypes from My _Base Integer

 Don’t assume that “Shorter = Faster” for integer maths. On some
machines, 32-bit is more efficient than 8- or 16-bit maths!

Signed Integer Types (revisited)

e Guidance 2

 If you want to derive from a base type that has a well-defined bit
length (for example when dealing with hardware registers that
must be a particular bit length), then package Interfaces declares
types such as:

type Integer 8 is range -2**7 .. 2**7-1;
for Integer 8’'Size use 8;
-- and so on for 16, 32, 64 bit types...

& Quiz

Copyright © 2018 AdaCore Slide: 17

Is there a compilation error? (1/10)

with P1l; use Pl; with P1l; use Pl;
package Pl is
package P2 is package P3 is
type Tl is range 1 .. 10;
type T2 is new T1; procedure Proc (V : T1);
end P1;
end P2; end P3;

with P1l; use Pl;
with P2; use P2;
with P3; use P3;

procedure Main is
vV : T2;

begin
Proc (V) ;

end Main;

Is there a compilation error? (2/10)

x e with P1l; use P1;
package Pl 1s

package P2 is
type Tl is range 1 .. 10;

procedure Proc (V : T1); type T2 is new T1;

end P1; end P2;

with P1l; use Pl;
with P2; use P2;

procedure Main is

VvV : T2;
begin
Proc (V) ;

end Main;

What’s the result of this call? (3/10)

package P is

type Tl is range 1 .. 10;
procedure Proc (V : T1);

type T2 is range 1 .. 10;
procedure Proc (V : T2);

end P;

with Ada.Text IO; use Ada.Text IO;
package body P is

procedure Proc (V : T1l) is
begin

Put Line (“17);
end Proc;

procedure Proc (V : T2) is
begin

Put Line (“27);
end Proc;

end P;

with P; use P;

procedure Main is
vl : T1;
V2 : T2;

begin
Proc (
Proc (
Proc (
Proc (

end Main;

Elaboration

Barneschapter 13

Copyright © 2018 AdaCore Slide: 1

Why elaboration is needed

Ada has some powerful features that require initialization:

with Depl; Value is not known by the compiler]
package Pl is

Val : constant Integer := Depl.Call;
end P1l;

May also involve dynamic allocation:

p— Size is not known by the compiler]
package P2 is
Buffer : (1 P1l.val)

: String .. 5
end P1;

Or explicituser code to initialize a package

package body P3 is

begin
Put Line ("Starting P3");
end P3;

Requires initialization code at startup

Implies ordering

Elaboration

* Process where entities are created
« TheRule: “an entity has to be elaborated before use”

— Subprograms have to be elaborated before being called

— Variables have to be elaborated before being referenced
« Such elaborationissuestypically ariseon

— Global variable initialization

— Package seguence of statements

with Depl;
package Pl is
V_Spec : Integer := Depl.Call;
—-— Depl body has to be elaborated before this point
end P1;
with Dep2;

package body Pl is

V_Body : Integer;
begin

V_Body := Dep2.Call;

—-— DepZ2 body has to be elaborated before this point
end P1;

Elaboration order

 The elaboration order is the order in which the
packages are created

* It may or may not be deterministic

package Pl is package P2 is

V_Spec : Integer := Call; V_Spec : Integer := Call;
end P1l; end Pl;
package body Pl is package body P2 is

V _Body : Integer := Call; V_Body : Integer := Call;
end P1; end P1;

 The binder (GNAT: gnatbind) is responsible for
finding an elaboration order
— Computes the possible ones
— Reports an error when no order is possible

Circular elaboration dependencies

Although not explicitly specified by the with clauses,
elaboration dependencies may exhibit circularities

Sometimes, they are static

package Pl is
function Call return Integer;
end P1;

with P2;
package body Pl is

V _Body : Integer := P2.Call;
end P1l;

Sometimes they are dynamic

with P2;
package body Pl is
V_Body : Integer;

begin
if Day mod 2 = 1 then
V_Body := P2.Call;
end if;
end P1l;

package P2 is
function Call return Integer;
end P2;

with P1;
package body P2 is
V _Body : Integer := Pl.Call;
end P2;
with P1;

package body P2 is
V_Body : Integer;

begin
if Day mod 2 = 0 then
V_Body := Pl.Call;
end if;

end P2;

GNAT Static Elaboration Model

By default, GNAT ensures elaboration safety

— It adds elaboration control pragma to statically ensure that

elaborationis possible

— Very safe, but...

— Not fully Ada compliant (may reject some valid programs)

Highly recommended however (least surprising effect)

 Performed by gnatbind

— Automatically called by a builder (gnatmake or gprbuild)

Reads ALl files from the closure
Generates b~xxx.ad[sb] or b xxx.ad[sb] files
Contains elaboration and finalization procedures

Defines the entry point procedure, main().

Pragma Preelaborate

 Adds restrictions on a unit to ease elaboration
« Elaboration without explicit execution of code

— No user initialization code

— No calls to subprograms

— Static values

— Dependencies only on Preelaborate packages

package Pl is
pragma Preelaborate;
Var : Integer := 7;
end P1;

 But compiler may generate elaboration code

package Pl is

pragma Preelaborate;

type ptr is access String;

v : ptr := new String' ("hello");
end P1l;

 Adds restrictions on a unit to ease elaboration
 Preelaborate +

— No variable declaration

— No allocators

— No access type declaration

— Dependencies only on Pure packages

package Ada.Numerics is
pPragma Pure;
Argument Error : exception;
Pi : constant := 3.14.;
end Ada.Numerics;

 But compiler may generate elaboration code

package P2 is

pragma Pure;

Var : constant Array (1 .. 10 * 1024) of Integer := (others => 118);
end P2;

Pragma Elaborate Body

Forces the elaboration of a body just after a
specification

Forces a body to be present even if none Is

required

Problem: it may introduce extra circularities

package Pl is package P2 is

pragma Elaborate Body; pragma Elaborate Body;
function Call return Integer; function Call return Integer;
end P1; end P2;
with P2; with P1;
package body Pl is package body P2 is
end P1; end P2;

Useful in the case where a variable declared in the
specification is initialized in the body

Pragma Elaborate

 Pragma Elaborate forces the elaboration of a
dependency body

|t does not force the elaboration of transitive
dependencies

package Pl is package P2 is
function Call return Integer; function Call return Integer;
end P1; end P1;
with P1;

package body P2 is
function Call return Integer
begin
Pl.Call;
end Call;
end P2;
with P2;
pragma Elaborate (P2);

package body P3 is
V : Integer;
begin
V := P2.Call;
end P3;

Pragma Elaborate All

 Pragma Elaborate forces the elaboration of a
dependency body and all transitive dependencies

 May introduce unwanted cycles

Safer than Elaborate

package Pl is
function Call return Integer;

end P1l;

with P2;
pragma Elaborate All

package body P3 is
V : Integer;
begin
V := P2.Call;
end P3;

(P2);

package P2 is
function Call return Integer;
end P2;

with P1;
package body P2 is
function Call return Integer
begin
Pl.Call;
end Call;
end P2;

Bottom line

« Elaboration is a difficult problem to deal with
 The binder tries to resolve itin a “safe way”

« Ifit can’t, it’s possible to manually place
elaboration pragmas

 Better to avoid elaboration constraints as much
as possible

« Use dynamic elaboration (gnat binder switch -E)
as last resort

« See ‘Elaboration Order Handling in GNAT’ annex
In GNAT Pro User’s Guide.

Copyright © 2018 AdaCore Slide: 14

Is there a compilation error? (1/2)

package P 1s
function F return Integer;

A : Integer := Ey;
end P;

Is there a compilation error? (2/2)

with P2;
pragma Elaborate All (P2);
package P2 1is
package Pl is
end P2;
end PI1;

with P1;
package body P2 1is

end P2;

Tasking

Copyright © 2013 AdaCore Slide: 1

Overview

Copyright © 2013 AdaCore Slide: 2

A simple task

« Adaimplementsthenotion of a “thread” viathe task entity

procedure Main is
task T;

task body T is
begin
loop
delay 1.0;
Put Line ("T");
end loop;
end T;
begin
loop
delay 1.0;
Put Line ("Main");
end loop;
end;

« Ataskis started when its declaration scopeis elaborated

* Its enclosing scope exits when all tasks have finished

Interacting with tasks

« Active synchronization
— Client/server model of interaction (“asymmetric rendezvous’)

— Server task declares “entries” for interacting
— Services it offers to other tasks

— Can wait for a client task to request its service

— Client task makes an “entry call”
— Request for a service offered by another task

— Will wait for the server task to “accept” and handle entry call

« Passive synchronization
— Uses data objects with concurrency-safe access semantics

— “Protected objects”in Ada — more about them later

Rendezvous (1/2)

« A task can declare “entries” for interacting and wait for an “entry
call” to arrive

task T is

entry Start;

entry Receive Message (V : String);
end T;

task body T is
begin
loop
accept Start;
accept Receive Message (V : String);
end loop;
end T;

« When reaching an accept statement, the task will wait until its
entry is called

 When calling an entry, the caller waits until the task is ready to be
called

-- OK
T.Start;
T.Receive Message ("");

-— Locks until somebody calls Start
T.Receive Message ("");

Rendezvous (2/2)

 The task can perform operations while the caller
and the callee are in the entry / accept statement

task T is

entry Start;

entry Receive Message (V : String);
end T;

task body T is
begin
loop
accept Start do
Put Line ("Start");
end Start;

accept Receive Message (V : String) do

Put Line ("Message : " & V);
end Receive Message;
end loop;
end T;

e The callerwill be released once the end of the
accept block isreached

Accepting a rendezvous

« Simple accept statement

— Used by a server task to indicate a willingness to provide the
service at a given point

« Selective accept statement
— Waitfor more than one rendezvous at any time
— Time-out if no rendezvous within a period of time
— Withdraw its offer if no rendezvous is immediately available
— Terminate if no clients can possibly call its entries

— Conditionally accept a rendezvous based on a guard
expression

Protected objects

 Tasks are “active” objects

« Synchronization can be achieved through
“passive” objects that hold and manage values

A protected object is an object with an interface

— No concurrent modifications are allowed

« Itis anatural replacement for a lot of cases where
a semaphore is needed

protected body O is

protected O is procedure Set (V : Integer) is
-—- Only subprograms are allowed here begin
procedure Set (V : Integer); Local := V;
function Get return Integer; end Set;
private
-— Data declaration function Get return Integer is
Local : Integer; begin
end O; return Local;
end Get;

end O;

Protected functions vs. protected procedures

 Procedures can modify the state of the protected
data
— No concurrent access to procedures can be done
— No procedure can be called when functions are called

 Functions are just ways to retrieve values, the
protected data is read-only
— Concurrent accessto functions can be done

— No function can be called when a procedure is called

Task types

It is possibleto create task types
— Objects can be instantiated on the stack or on the heap

Tasks instantiated on the stack are activated at the end of
the elaboration of their enclosing declarative part
— As if they were declared there

Tasks instantiated on the heap are activated right away

task type T is

entry Start; vVl : T;
end T; V2 : T;
V3 : A T;
type T A is access all begin N
T; V1.Start;
V2.Start;
task body T is V3 := new T;
begin V3.all.Start;
accept Start;
end T;

Tasks arelimited objects (no copies allowed)

Protected object types

« Liketasks, protected objects can be defined through types
« Instantiation can then bedoneon the heap or the stack

* Protected objecttypes are limited types

protected type O is protected body O is

entry Push (V : Integer); entry Push (V : Integer)

entry Pop (V : out Integer):; when Size < Buffer'Length
private is

Buffer : Integer Array (1 .. 10); begin

Size : Integer := 0; Buffer (Size + 1) :=V;
end O; Size := Size + 1;

end Push;

type O Access is access all O;
entry Pop (V : out Integer)
when Size > 0

is
begin
V := Buffer (Size):;
vl, V2 : O; Size := Size - 1;
V3 : O Access := new O; end Pop;

end O;

Scope of atask

« Tasks can be nested in any declarative block

« When nested in e.g. a subprogram, the task and the
subprogram body have to finish before the
subprogram ends

« Tasks declared at library level all have to finish before
the program terminates

package P is
task T;
end P;

package body P is
task body T is
loop
delay 1.0;
Put Line ("tick");
end loop;
end T;
end P;

Some Advanced Concepts...

Copyright © 2013 AdaCore Slide: 13

Waiting on different entries

 Itisconvenientto be ableto accept several entries

« Theselect statements can wait simultaneously on a list of
entries, and accept the firstone that is requested

task T is
entry Start;
entry Receive Message (V : String);
entry Stop;

end T;

task body T is
begin
accept Start;
loop
select
accept Receive Message (V : String) do
Put Line ("Message : " & String);
end Receive Message;
or
accept Stop;
exit;
end select;
end loop;
end T;

.Start;
.Receive Message ("A")
.Receive Message ("B")
.Stop;

’
’

M Aa a3

Waiting with a delay

A select statement can wait for only a given amountof time,
and then do somethingwhen that delay is exceeded

task T is
entry Receive Message (V : String);
end T;

task body T is
begin

loop
select
accept Receive Message (V : String) do
Put Line ("Message : " & String);
end Receive Message;
or
delay 50.0;
Put Line ("Don't wait any longer");
exit;
end select;
end loop;
end T;

the “delay until” statement can be used as well

there can be multiple delay statements
(useful when the value is not hard-coded)

Calling an entry with a delay protection

A callto an entry normally blocks the thread until
the entry can be accepted by the task

* Itis possibleto wait for a given amount of time
using a select... delay statement

task T is
entry Receive Message (V : String);
end T;

procedure Main is
begin
select
T.Receive Message ("A");
or
delay 50.0;
end select;
end Main;

 Only one entry call is allowed

 No “accept statement” is allowed

Avoid waiting if no entry or accept can be taken

« The*else” partallows to avoid waiting if the accept
statements or entries are not ready to be entered

 No delay statementis allowed in this case
task T is
entry Receive Message (V : String);

end T;

task body T is

begin
select
accept Receive Message (V : String) do
Put Line ("Received : " & V);
end Receive Message;
else

Put Line ("Nothing to receive");
end select;
end T;

procedure Main is
begin
select
T.Receive Message ("A");
else
Put Line ("Receive message not called");
end select;
end Main;

Terminate alternative

When waiting for an entry, if all other task dependenton the
same master task (including the master task) are terminated,
the entry can’t be called anymore

This can be detected by the “or terminate” alternative, which
terminates thetasks if all other tasks are terminated

— Or themselves waiting on “or terminate” select statements

Oncereached, thetask is terminated right away, no
additional codeis called

select
accept E;
or
terminate;
end select;

Guard expressions

 The accept statement can be activated according to
a guard condition

 This condition is evaluated when entering select

task T is
entry Put (V : Integer);
entry Get (V : out Integer);
end T;

task body T is

Val : Integer;

Initialized : Boolean := False;
begin

loop
select
accept Put (V : Integer) do
Val := V;
Initialized := True;
end Put;
or
when Initialized =>
accept Get (V : out Integer) do
V := Val;
end Get;
end select;

end loop;
end T;

Protected object entries (1/2)

 Protected entries are a special kind of protected procedures

« Theycan bedefined using abarrier,aconditional
expression allowing the entry to be called or not

 The barriers are evaluated...
— Every time a task request to call an entry

— Every time a protected entry or procedure is exited

protected body O is
entry Push (V : Integer)
when Size < Buffer'Length
is

protected O is begin
entry Push (V : Integer); Buffer (Size + 1) := V;
entry Pop (V : out Integer); Size := Size + 1;
private end Push;
Buffer : Integer Array (1 .. 10);
Size : Integer := 0; entry Pop (V : out Integer)
end O; when Size > 0
is
begin
V := Buffer (Size);
Size := Size - 1;
end Pop;

end O;

Protected object entries (2/2)

« Several tasks can be waiting on entries

 Only one task is reactivated when the barrier is
relieved, depending on the activation policy

task body T1 is
V : Integer;
begin
O.Pop (V);
end T1;

task body T2 is
V : Integer;
begin
O.Pop (V)
end T2;

task body T3 is
begin
delay 1.0;
O.Push (42);
end T3;

Select on protected objects entries

 Works the same way as select on task entries
— With a delay part

select

O.Push (5);
or

delay 10.0;

Put Line ("Delayed overflow");
end select;

— With an else part

select

O.Push (5);
else

Put Line ("Overflow");
end select;

Notion of a Queue

* Protected entries, protected procedures and task
entries can only be activated by one task at a time

« If several tasks are trying to enter a mutually
exclusion section, they are put in a queue

By default, task are entering the queue in FIFO

« If several tasks are in a queue when the server
task is terminated, TASKING_ERROR is sent to
the waiting tasks

Requeue instruction

The “requeue” instruction can be called in an
entry (task or protected)

It places the queued task back to another entry
with the same profile

— Or the same entry...

Useful if the treatment couldn’t be done and need
to be re-considered later

entry Extract (Qty : Integer) when True is
begin
if not Try Extract (Qty) then
requeue Extract;
end if;
end Extract;

Same parameter values will be used on the queue

Abort Statements

« All tasks can be abruptly aborted

procedure Main is
task T;

task T is
begin
loop
delay 1.0;
Put Line ("A");
end loop;
end T;
begin
delay 10.0;
abort T;
end;

« ADbortion may stop the task almost anywhere in
the assembly code

 Highly unsafe — should be used only as last resort

Copyright © 2013 AdaCore Slide: 26

Does this code compile? (1/8)

protected O is
function Get return Integer;

procedure Set (V : Integer);

private

Val : Integer;

Access Count : Integer := 0;
end O;

protected body O is
function Get return Integer is
begin
Access Count := Access Count + 1;
return Val;
end Get;

procedure Set (V : Integer) is
begin
Val := V;
end Set;
end O;

What is the output of this code? (2/8)

procedure Main is
task T is
entry A;
end T;

task body T is
begin
select
accept A;
or
terminate;
end select;

Put Line ("Terminated");
end T;
begin
null;
end Main;

What is the output of this code? (3/8)

procedure Main is
begin
select
delay 2.0;
then abort
loop
delay 1.5;
Put Line ("A");
end loop;
end select;
Put Line ("B");
end Main;

Does this code compile? (4/8)

task T is
entry Remove Items (Nb : Integer);

entry Replenish;
end T;

task body T is

Nb Items : Integer := 100;
begin
loop
select
accept Remove Items (Nb : Integer) do

if Nb Items < Nb then
requeue Replenish;

else
Nb Items := Nb Items - Nb;
end if;
end Remove Items;
or
accept Replenish do
Nb Items := Nb Items + 100;

end Replenish;
end select;
end loop;
end T;

What’s the output of this code? (5/8)

task body T1 is

begin task body T2
loop begin
select loop
accept A; select
Put Line ("SELECT TASK"); T1.A;
else else
delay 1.0; eedEy Lolr
Put Line ("ELSE TASK"); end select;
end select; end loop;
end loop; end T2;

end T1;

Does this code compile? (6/8)

task Tl is
entry EI;
entry E2;
end T1;

task body T2
begin
select
T1.E1;
or
T1.E2;
end select;
end T2;

Does this code terminate? (7/8)

procedure Main is
Ok : Boolean := False;

protected O is
entry P;
end O;

protected body O is
begin
entry P when Ok is
Put Line ("OK");
end P;
end O;

task T;

task body T is

begin
delay 1.0;
Ok := True;
end T;
begin
0.P;

end;

Does this code terminate? (8/8)

procedure Main is
Ok : Boolean := False;

protected O is
entry P;
procedure P2;
end O;

protected body O is
entry P when Ok is
begin
Put Line ("OK");
end P;

procedure P2 is
begin
null;
end P2;
end O;

task T;

task body T is

begin
delay 1.0;
Ok := True;
0.P2;
end T;
begin
O0.P;

end;

