
Ada Basic Types - Advanced

Ada Basic Types - Advanced

1 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Subtypes - Full Picture

2 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Implicit Subtype

The declaration

type Typ is range L .. R;

Is short-hand for

type <Anon> is new Predefined_Integer_Type;
subtype Typ is <Anon> range L .. R;

<Anon> is the Base type of Typ

Accessed with Typ'Base

3 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Implicit Subtype Explanation

type <Anon> is new Predefined_Integer_Type;
subtype Typ is <Anon> range L .. R;

Compiler choses a standard integer type that includes L .. R

Integer, Short_Integer, Long_Integer, etc.
Implementation-defined choice, non portable

New anonymous type <Anon> is derived from the predefined type

<Anon> inherits the type’s operations (+, - ...)

Typ, subtype of <Anon> is created with range L .. R

Typ'Base will return the type <Anon>

4 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Stand-Alone (Sub)Type Names

Denote all the values of the type or subtype
Unless explicitly constrained

subtype Constrained_Sub is Integer range 0 .. 10;
subtype Just_A_Rename is Integer;
X : Just_A_Rename;
...
for I in Constrained_Sub loop

X := I;
end loop;

5 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Subtypes Localize Dependencies

Single points of change
Relationships captured in code
No subtypes

type Vector is array (1 .. 12) of Some_Type;

K : Integer range 0 .. 12 := 0; -- anonymous subtype
Values : Vector;
...
if K in 1 .. 12 then ...
for J in Integer range 1 .. 12 loop ...

Subtypes

type Counter is range 0 .. 12;
subtype Index is Counter range 1 .. Counter'Last;
type Vector is array (Index) of Some_Type;

K : Counter := 0;
Values : Vector;
...
if K in Index then ...
for J in Index loop ...

6 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Subtypes May Enhance Performance

Provides compiler with more information
Redundant checks can more easily be identified

subtype Index is Integer range 1 .. Max;
type Vector is array (Index) of Float;
K : Index;
Values : Vector;
...
K := Some_Value; -- range checked here
Values (K) := 0.0; -- so no range check needed here

7 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Subtypes Don’t Cause Overloading

Illegal code: re-declaration of F

type A is new Integer;
subtype B is A;
function F return A is (0);
function F return B is (1);

8 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Subtypes and Default Initialization
Ada 2012

Not allowed: Defaults on new type only
subtype is still the same type

Note: Default value may violate subtype constraints
Compiler error for static definition
Constraint_Error otherwise

type Tertiary_Switch is (Off, On, Neither)
with Default_Value => Neither;

subtype Toggle_Switch is Tertiary_Switch
range Off .. On;

Safe : Toggle_Switch := Off;
Implicit : Toggle_Switch; -- compile error: out of range

9 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Attributes Reflect the Underlying Type

type Color is
(White, Red, Yellow, Green, Blue, Brown, Black);

subtype Rainbow is Color range Red .. Blue;

T'First and T'Last respect constraints
Rainbow'First → Red but Color'First → White
Rainbow'Last → Blue but Color'Last → Black

Other attributes reflect base type
Color'Succ (Blue) = Brown = Rainbow'Succ (Blue)
Color'Pos (Blue) = 4 = Rainbow'Pos (Blue)
Color'Val (0) = White = Rainbow'Val (0)

Assignment must still satisfy target constraints

Shade : Color range Red .. Blue := Brown; -- runtime error
Hue : Rainbow := Rainbow'Succ (Blue); -- runtime error

10 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

1 type T1 is range 0 .. 10;
2 function "-" (V : T1) return T1;
3 subtype T2 is T1 range 1 .. 9;
4 function "-" (V : T2) return T2;
5

6 Obj : T2 := -T2 (1);

Which function is executed at line 6?

A. The one at line 2
B. The one at line 4
C. A predefined "-" operator for integer types
D. None: The code is illegal

The type is used for the overload profile, and here both T1 and T2 are
of type T1, which means line 4 is actually a redeclaration, which is
forbidden.

11 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

1 type T1 is range 0 .. 10;
2 function "-" (V : T1) return T1;
3 subtype T2 is T1 range 1 .. 9;
4 function "-" (V : T2) return T2;
5

6 Obj : T2 := -T2 (1);

Which function is executed at line 6?

A. The one at line 2
B. The one at line 4
C. A predefined "-" operator for integer types
D. None: The code is illegal

The type is used for the overload profile, and here both T1 and T2 are
of type T1, which means line 4 is actually a redeclaration, which is
forbidden.

11 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

type T is range 0 .. 10;
subtype S is T range 1 .. 9;

What is the value of S'Succ (S (9))?

A. 9
B. 10
C. None, this fails at runtime
D. None, this does not compile

T'Succ and T'Pred are defined on the type, not the subtype.

12 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

type T is range 0 .. 10;
subtype S is T range 1 .. 9;

What is the value of S'Succ (S (9))?

A. 9
B. 10
C. None, this fails at runtime
D. None, this does not compile

T'Succ and T'Pred are defined on the type, not the subtype.

12 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

type T is new Integer range 0 .. Integer'Last;
subtype S is T range 0 .. 10;

Obj : S;

What is the result of Obj := S'Last + 1?

A. 0
B. 11
C. None, this fails at runtime
D. None, this does not compile

13 / 568

Ada Basic Types - Advanced
Subtypes - Full Picture

Quiz

type T is new Integer range 0 .. Integer'Last;
subtype S is T range 0 .. 10;

Obj : S;

What is the result of Obj := S'Last + 1?

A. 0
B. 11
C. None, this fails at runtime
D. None, this does not compile

13 / 568

Ada Basic Types - Advanced
Base Type

Base Type

14 / 568

Ada Basic Types - Advanced
Base Type

Base Ranges

Actual hardware-supported numeric type used
GNAT makes consistent and predictable choices on all major
platforms

Predefined operators
Work on full-range

No range checks on inputs or result
Best performance

Implementation may use wider registers

Intermediate values

Can be accessed with 'Base attribute

type Foo is range -30_000 .. 30_000;
function "+" (Left, Right : Foo'Base) return Foo'Base;

Base range
Signed
8 bits → -128 .. 127
16 bits → -32_768 .. 32767

15 / 568

Ada Basic Types - Advanced
Base Type

Compile-Time Constraint Violation

May produce warnings
And compile successfuly

May produce errors
And fail at compilation

Requirements for rejection
Static value
Value not in range of base type
Compilation is impossible

procedure Test is
type Some_Integer is range -200 .. 200;
Object : Some_Integer;

begin
Object := 50_000; -- probable error

end;
16 / 568

Ada Basic Types - Advanced
Base Type

Range Check Failure

Compile-time rejection
Depends on base type
Selected by the compiler
Depends on underlying hardware
Early error → "Best" case

Else run-time exception
Most cases
Be happy when compilation failed instead

17 / 568

Ada Basic Types - Advanced
Base Type

Real Base Decimal Precision

Real types precision may be better than requested

Example:
Available: 6, 12, or 24 digits of precision

Type with 8 digits of precision

type My_Type is digits 8;

My_Type will have 12 or 24 digits of precision

18 / 568

Ada Basic Types - Advanced
Base Type

Floating Point Division By Zero

Language-defined do as the machine does
If T'Machine_Overflows attribute is True raises
Constraint_Error

Else +∞ / −∞

Better performance

User-defined types always raise Constraint_Error

subtype MyFloat is Float range Float'First .. Float'Last;
type MyFloat is new Float range Float'First .. Float'Last;

19 / 568

Ada Basic Types - Advanced
Base Type

Using Equality for Floating Point Types

Questionable: representation issue
Equality → identical bits
Approximations → hard to analyze, and not portable
Related to floating-point, not Ada

Perhaps define your own function
Comparison within tolerance (+ε / −ε)

20 / 568

Ada Basic Types - Advanced
Modular Types

Modular Types

21 / 568

Ada Basic Types - Advanced
Modular Types

Bit Pattern Values and Range Constraints

Binary based assignments possible
No Constraint_Error when in range
Even if they would be <= 0 as a signed integer type

procedure Demo is
type Byte is mod 256; -- 0 .. 255
B : Byte;

begin
B := 2#1000_0000#; -- not a negative value

end Demo;

22 / 568

Ada Basic Types - Advanced
Modular Types

Modular Range Must Be Respected

procedure P_Unsigned is
type Byte is mod 2**8; -- 0 .. 255
B : Byte;
type Signed_Byte is range -128 .. 127;
SB : Signed_Byte;

begin
...
B := -256; -- compile error
SB := -1;
B := Byte (SB); -- runtime error
...

end P_Unsigned;

23 / 568

Ada Basic Types - Advanced
Modular Types

Safely Converting Signed To Unsigned

Conversion may raise Constraint_Error

Use T'Mod to return argument mod T'Modulus

Universal_Integer argument
So any integer type allowed

procedure Test is
type Byte is mod 2**8; -- 0 .. 255
B : Byte;
type Signed_Byte is range -128 .. 127;
SB : Signed_Byte;

begin
SB := -1;
B := Byte'Mod (SB); -- OK (255)

24 / 568

Ada Basic Types - Advanced
Modular Types

Package Interfaces

Standard package

Integer types with defined bit length

type My_Base_Integer is new Integer;
pragma Assert (My_Base_Integer'First = -2**31);
pragma Assert (My_Base_Integer'Last = 2**31-1);

- Dealing with hardware registers

Note: Shorter may not be faster for integer maths
Modern 64-bit machines are not efficient at 8-bit maths

type Integer_8 is range -2**7 .. 2**7-1;
for Integer_8'Size use 8;
-- and so on for 16, 32, 64 bit types...

25 / 568

Ada Basic Types - Advanced
Modular Types

Shift/Rotate Functions

In Interfaces package
Shift_Left
Shift_Right
Shift_Right_Arithmetic
Rotate_Left
etc.

See RM B.2 - The Package Interfaces

26 / 568

Ada Basic Types - Advanced
Modular Types

Bit-Oriented Operations Example

Assuming Unsigned_16 is used
16-bits modular

with Interfaces;
use Interfaces;
...
procedure Swap(X : in out Unsigned_16) is
begin

X := (Shift_Left(X,8) and 16#FF00#) or
(Shift_Right(X,8) and 16#00FF#);

end Swap;

27 / 568

Ada Basic Types - Advanced
Modular Types

Why No Implicit Shift and Rotate?

Arithmetic, logical operators available implicitly

Why not Shift, Rotate, etc. ?

By excluding other solutions
As functions in standard → May hide user-defined declarations
As new operators → New operators for a single type
As reserved words → Not upward compatible

28 / 568

Ada Basic Types - Advanced
Modular Types

Shift/Rotate for User-Defined Types

Must be modular types

Approach 1: use Interfaces’s types
Unsigned_8, Unsigned_16 ...

Approach 2: derive from Interfaces’s types
Operations are inherited
More on that later

type Byte is new Interfaces.Unsigned_8;

Approach 3: use GNAT’s intrinsic
Conditions on function name and type representation
See GNAT UG 8.11

function Shift_Left
(Value : T;
Amount : Natural) return T with Import, Convention => Intrinsic;

29 / 568

Ada Basic Types - Advanced
Modular Types

Quiz

type T is mod 256;
V : T := 255;

Which statement(s) is(are) legal?

A. V := V + 1
B. V := 16#ff#
C. V := 256
D. V := 255 + 1

30 / 568

Ada Basic Types - Advanced
Modular Types

Quiz

type T is mod 256;
V : T := 255;

Which statement(s) is(are) legal?

A. V := V + 1
B. V := 16#ff#
C. V := 256
D. V := 255 + 1

30 / 568

Ada Basic Types - Advanced
Modular Types

Quiz

with Interfaces; use Interfaces;

type T1 is new Unsigned_8;
V1 : T1 := 255;

type T2 is mod 256;
V2 : T2 := 255;

Which statement(s) is(are) legal?

A. V1 := Rotate_Left (V1, 1)
B. V1 := Positive'First
C. V2 := 1 and V2
D. V2 := Rotate_Left (V2, 1)
E. V2 := T2'Mod (2.0)

31 / 568

Ada Basic Types - Advanced
Modular Types

Quiz

with Interfaces; use Interfaces;

type T1 is new Unsigned_8;
V1 : T1 := 255;

type T2 is mod 256;
V2 : T2 := 255;

Which statement(s) is(are) legal?

A. V1 := Rotate_Left (V1, 1)
B. V1 := Positive'First
C. V2 := 1 and V2
D. V2 := Rotate_Left (V2, 1)
E. V2 := T2'Mod (2.0)

31 / 568

Ada Basic Types - Advanced
Representation Values

Representation Values

32 / 568

Ada Basic Types - Advanced
Representation Values

Enumeration Representation Values

Numeric representation of enumerals
Position, unless redefined

Redefinition syntax

type Enum_T is (Able, Baker, Charlie, Dog, Easy, Fox);
for Enum_T use (1, 2, 4, 8, Easy => 16, Fox => 32);

No manipulation in language standard
Standard is logical ordering
Ignores representation value

Still accessible
Unchecked conversion

Implementation-defined facility

Ada 2022 attributes T'Enum_Rep, T'Enum_Val
33 / 568

Ada Basic Types - Advanced
Representation Values

Order Attributes For All Discrete Types

All discrete types, mostly useful for enumerated types

T'Pos (Input)

"Logical position number" of Input

T'Val (Input)

Converts "logical position number" to T

type Days is (Sun, Mon, Tue, Wed, Thu, Fri, Sat); -- 0 .. 6
Today : Days := Some_Value;
Position : Integer;
...
Position := Days'Pos(Today);
...
Get(Position);
Today := Days'Val(Position);

34 / 568

Ada Basic Types - Advanced
Representation Values

Quiz

type T is (Left, Top, Right, Bottom);
V : T := Left;

Which of the following proposition(s) are true?

A. T'Value (V) = 1
B. T'Pos (V) = 0
C. T'Image (T'Pos (V)) = Left
D. T'Val (T'Pos (V) - 1) = Bottom

35 / 568

Ada Basic Types - Advanced
Representation Values

Quiz

type T is (Left, Top, Right, Bottom);
V : T := Left;

Which of the following proposition(s) are true?

A. T'Value (V) = 1
B. T'Pos (V) = 0
C. T'Image (T'Pos (V)) = Left
D. T'Val (T'Pos (V) - 1) = Bottom

35 / 568

Ada Basic Types - Advanced
Character Types

Character Types

36 / 568

Ada Basic Types - Advanced
Character Types

Language-Defined Character Types

Character

8-bit Latin-1
Base element of String
Uses attributes 'Image / 'Value

Wide_Character

16-bit Unicode
Base element of Wide_Strings
Uses attributes 'Wide_Image / 'Wide_Value

Wide_Wide_Character

32-bit Unicode
Base element of Wide_Wide_Strings
Uses attributes 'Wide_Wide_Image / 'Wide_Wide_Value

37 / 568

Ada Basic Types - Advanced
Character Types

Character Oriented Packages

Language-defined

Ada.Characters.Handling

Classification
Conversion

Ada.Characters.Latin_1

Characters as constants

See RM Annex A for details

38 / 568

Ada Basic Types - Advanced
Character Types

Ada.Characters.Latin_1 Sample Content

package Ada.Characters.Latin_1 is
NUL : constant Character := Character'Val (0);
...
LF : constant Character := Character'Val (10);
VT : constant Character := Character'Val (11);
FF : constant Character := Character'Val (12);
CR : constant Character := Character'Val (13);
...
Commercial_At : constant Character := '@'; -- Character'Val(64)
...
LC_A : constant Character := 'a'; -- Character'Val (97)
LC_B : constant Character := 'b'; -- Character'Val (98)
...
Inverted_Exclamation : constant Character := Character'Val (161);
Cent_Sign : constant Character := Character'Val (162);

...
LC_Y_Diaeresis : constant Character := Character'Val (255);

end Ada.Characters.Latin_1;
39 / 568

Ada Basic Types - Advanced
Character Types

Ada.Characters.Handling Sample Content

package Ada.Characters.Handling is
function Is_Control (Item : Character) return Boolean;
function Is_Graphic (Item : Character) return Boolean;
function Is_Letter (Item : Character) return Boolean;
function Is_Lower (Item : Character) return Boolean;
function Is_Upper (Item : Character) return Boolean;
function Is_Basic (Item : Character) return Boolean;
function Is_Digit (Item : Character) return Boolean;
function Is_Decimal_Digit (Item : Character) return Boolean renames Is_Digit;
function Is_Hexadecimal_Digit (Item : Character) return Boolean;
function Is_Alphanumeric (Item : Character) return Boolean;
function Is_Special (Item : Character) return Boolean;
function To_Lower (Item : Character) return Character;
function To_Upper (Item : Character) return Character;
function To_Basic (Item : Character) return Character;
function To_Lower (Item : String) return String;
function To_Upper (Item : String) return String;
function To_Basic (Item : String) return String;

...
end Ada.Characters.Handling;

40 / 568

Ada Basic Types - Advanced
Character Types

Quiz

type T1 is (NUL, A, B, 'C');
for T1 use (NUL => 0, A => 1, B => 2, 'C' => 3);
type T2 is array (Positive range <>) of T1;
Obj : T2 := "CC" & A & NUL;

Which of the following proposition(s) is(are) true

A. The code fails at runtime
B. Obj'Length = 3
C. Obj (1) = 'C'
D. Obj (3) = A

41 / 568

Ada Basic Types - Advanced
Character Types

Quiz

type T1 is (NUL, A, B, 'C');
for T1 use (NUL => 0, A => 1, B => 2, 'C' => 3);
type T2 is array (Positive range <>) of T1;
Obj : T2 := "CC" & A & NUL;

Which of the following proposition(s) is(are) true

A. The code fails at runtime
B. Obj'Length = 3
C. Obj (1) = 'C'
D. Obj (3) = A

41 / 568

Ada Basic Types - Advanced
Character Types

Quiz

with Ada.Characters.Latin_1;
use Ada.Characters.Latin_1;
with Ada.Characters.Handling;
use Ada.Characters.Handling;

Which of the following proposition(s) are true?

A. NUL = 0
B. NUL = '\0'
C. Character'Pos (NUL) = 0
D. Is_Control (NUL)

42 / 568

Ada Basic Types - Advanced
Character Types

Quiz

with Ada.Characters.Latin_1;
use Ada.Characters.Latin_1;
with Ada.Characters.Handling;
use Ada.Characters.Handling;

Which of the following proposition(s) are true?

A. NUL = 0
B. NUL = '\0'
C. Character'Pos (NUL) = 0
D. Is_Control (NUL)

42 / 568

Record Types

Record Types

43 / 568

Record Types
Introduction

Introduction

44 / 568

Record Types
Introduction

Syntax and Examples

Syntax (simplified)

type T is record
Component_Name : Type [:= Default_Value];
...

end record;

type T_Empty is null record;

Example

type Record1_T is record
Field1 : Integer;
Field2 : Boolean;

end record;

Records can be discriminated as well

type T (Size : Natural := 0) is record
Text : String (1 .. Size);

end record;
45 / 568

Record Types
Components Rules

Components Rules

46 / 568

Record Types
Components Rules

Characteristics of Components
Heterogeneous types allowed

Referenced by name

May be no components, for empty records

No anonymous types (e.g., arrays) allowed

type Record_1 is record
This_Is_Not_Legal : array (1 .. 3) of Integer;

end record;

No constant components

type Record_2 is record
This_Is_Not_Legal : constant Integer := 123;

end record;

No recursive definitions

type Record_3 is record
This_Is_Not_Legal : Record_3;

end record;

No indefinite types

type Record_5 is record
This_Is_Not_Legal : String;
But_This_Is_Legal : String (1 .. 10);

end record;

47 / 568

Record Types
Components Rules

Multiple Declarations

Multiple declarations are allowed (like objects)

type Several is record
A, B, C : Integer := F;

end record;

Equivalent to

type Several is record
A : Integer := F;
B : Integer := F;
C : Integer := F;

end record;

48 / 568

Record Types
Components Rules

"Dot" Notation for Components Reference

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
Arrival : Date;
...
Arrival.Day := 27; -- components referenced by name
Arrival.Month := November;
Arrival.Year := 1990;

Can reference nested components

Employee
.Birth_Date

.Month := March;
49 / 568

Record Types
Components Rules

Quiz

type Record_T is record
-- Definition here

end record;

Which record definition is legal?

A. Component_1 : array (1 .. 3) of Boolean
B. Component_2, Component_3 : Integer
C. Component_1 : Record_T
D. Component_1 : constant Integer := 123

A. Anonymous types not allowed
B. Correct
C. No recursive definition
D. No constant component

50 / 568

Record Types
Components Rules

Quiz

type Record_T is record
-- Definition here

end record;

Which record definition is legal?

A. Component_1 : array (1 .. 3) of Boolean
B. Component_2, Component_3 : Integer
C. Component_1 : Record_T
D. Component_1 : constant Integer := 123

A. Anonymous types not allowed
B. Correct
C. No recursive definition
D. No constant component

50 / 568

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don’t specify its size.

51 / 568

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don’t specify its size.

51 / 568

Record Types
Operations

Operations

52 / 568

Record Types
Operations

Available Operations

Predefined
Equality (and thus inequality)

if A = B then

Assignment

A := B;

User-defined
Subprograms

53 / 568

Record Types
Operations

Assignment Examples

declare
type Complex is record

Real : Float;
Imaginary : Float;

end record;
...
Phase1 : Complex;
Phase2 : Complex;

begin
...

-- object reference
Phase1 := Phase2; -- entire object reference
-- component references
Phase1.Real := 2.5;
Phase1.Real := Phase2.Real;

end;
54 / 568

Record Types
Operations

Limited Types - Quick Intro

A record type can be limited
And some other types, described later

limited types cannot be copied or compared
As a result then cannot be assigned
May still be modified component-wise

type Lim is limited record
A, B : Integer;

end record;

L1, L2 : Lim := Create_Lim (1, 2); -- Initial value OK

L1 := L2; -- Illegal
if L1 /= L2 then -- Illegal
[...]

55 / 568

Record Types
Aggregates

Aggregates

56 / 568

Record Types
Aggregates

Aggregates

Literal values for composite types
As for arrays
Default value / selector: <>, others

Can use both named and positional
Unambiguous

Example:

(Pos_1_Value,
Pos_2_Value,
Component_3 => Pos_3_Value,
Component_4 => <>, -- Default value (Ada 2005)
others => Remaining_Value)

57 / 568

Record Types
Aggregates

Record Aggregate Examples

type Color_T is (Red);
type Car_T is record

Color : Color_T;
Plate_No : String (1 .. 6);
Year : Natural;

end record;
type Complex_T is record

Real : Float;
Imaginary : Float;

end record;

declare
Car : Car_T := (Red, "ABC123", Year => 2_022);
Phase : Complex_T := (1.2, 3.4);

begin
Phase := (Real => 5.6, Imaginary => 7.8);

end;
58 / 568

Record Types
Aggregates

Aggregate Completeness

All component values must
be accounted for

Including defaults via box
Allows compiler to check for
missed components
Type definition
type Struct is record

A : Integer;
B : Integer;
C : Integer;
D : Integer;

end record;
S : Struct;

Compiler will not catch the
missing component
S.A := 10;
S.B := 20;
S.C := 12;
Send (S);
Aggregate must be complete
- compiler error
S := (10, 20, 12);
Send (S);

59 / 568

Record Types
Aggregates

Named Associations

Any order of associations

Provides more information to the reader
Can mix with positional

Restriction
Must stick with named associations once started

type Complex is record
Real : Float;
Imaginary : Float;

end record;
Phase : Complex := (0.0, 0.0);
...
Phase := (10.0, Imaginary => 2.5);
Phase := (Imaginary => 12.5, Real => 0.212);
Phase := (Imaginary => 12.5, 0.212); -- illegal

60 / 568

Record Types
Aggregates

Nested Aggregates

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
type Person is record

Born : Date;
Hair : Color;

end record;
John : Person := ((21, November, 1990), Brown);
Julius : Person := ((2, August, 1995), Blond);
Heather : Person := ((2, March, 1989), Hair => Blond);
Megan : Person := (Hair => Blond,

Born => (16, December, 2001));
61 / 568

Record Types
Aggregates

Aggregates with Only One Component

Must use named form
Same reason as array aggregates

type Singular is record
A : Integer;

end record;

S : Singular := (3); -- illegal
S : Singular := (3 + 1); -- illegal
S : Singular := (A => 3 + 1); -- required

62 / 568

Record Types
Aggregates

Aggregates with others

Indicates all components not yet specified (like arrays)
All others get the same value

They must be the exact same type

type Poly is record
A : Float;
B, C, D : Integer;

end record;

P : Poly := (2.5, 3, others => 0);

type Homogeneous is record
A, B, C : Integer;

end record;

Q : Homogeneous := (others => 10);
63 / 568

Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type Record_T is record

A, B, C : Integer;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

The aggregate is incomplete. The aggregate must specify all
components. You could use box notation (A => 1, others => <>)

64 / 568

Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type Record_T is record

A, B, C : Integer;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

The aggregate is incomplete. The aggregate must specify all
components. You could use box notation (A => 1, others => <>)

64 / 568

Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer;
D : My_Integer;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

All components associated to a value using others must be of the
same type.

65 / 568

Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer;
D : My_Integer;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Runtime error

All components associated to a value using others must be of the
same type.

65 / 568

Record Types
Aggregates

Quiz

type Nested_T is record
Field : Integer;

end record;
type Record_T is record

One : Integer;
Two : Character;
Three : Integer;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment(s) is(are) not legal?

A. X := (1, '2', Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

66 / 568

Record Types
Aggregates

Quiz

type Nested_T is record
Field : Integer;

end record;
type Record_T is record

One : Integer;
Two : Character;
Three : Integer;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment(s) is(are) not legal?

A. X := (1, '2', Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

66 / 568

Record Types
Default Values

Default Values

67 / 568

Record Types
Default Values

Component Default Values

type Complex is
record

Real : Float := 0.0;
Imaginary : Float := 0.0;

end record;
-- all components use defaults
Phasor : Complex;
-- all components must be specified
I : constant Complex := (0.0, 1.0);

68 / 568

Record Types
Default Values

Default Component Value Evaluation

Occurs when object is elaborated
Not when the type is elaborated

Not evaluated if explicitly overridden

type Structure is
record

A : Integer;
R : Time := Clock;

end record;
-- Clock is called for S1
S1 : Structure;
-- Clock is not called for S2
S2 : Structure := (A => 0, R => Yesterday);

69 / 568

Record Types
Default Values

Defaults Within Record Aggregates
Ada 2005

Specified via the box notation

Value for the component is thus taken as for a stand-alone object
declaration

So there may or may not be a defined default!

Can only be used with "named association" form
But can mix forms, unlike array aggregates

type Complex is
record

Real : Float := 0.0;
Imaginary : Float := 0.0;

end record;
Phase := (42.0, Imaginary => <>);

70 / 568

Record Types
Default Values

Default Initialization Via Aspect Clause
Ada 2012

Not definable for entire record type
Components of scalar types take type’s default if no explicit
default value specified by record type

type Toggle_Switch is (Off, On)
with Default_Value => Off;

type Controller is record
-- Off unless specified during object initialization
Override : Toggle_Switch;
-- default for this component
Enable : Toggle_Switch := On;

end record;
C : Controller; -- Override => off, Enable => On
D : Controller := (On, Off); -- All defaults replaced

71 / 568

Record Types
Default Values

Quiz
Ada 2005

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

72 / 568

Record Types
Default Values

Quiz
Ada 2005

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

72 / 568

Record Types
Discriminated Records

Discriminated Records

73 / 568

Record Types
Discriminated Records

Discriminated Record Types

Discriminated record type
Different objects may have different components
All object still share the same type

Kind of storage overlay

Similar to union in C
But preserves type checking
And object size is related to discriminant

Aggregate assignment is allowed

74 / 568

Record Types
Discriminated Records

Discriminants
2 type Person_Group is (Student, Faculty);
3 type Person (Group : Person_Group) is record
4 Age : Positive;
5 case Group is
6 when Student => -- 1st variant
7 Gpa : Float range 0.0 .. 4.0;
8 when Faculty => -- 2nd variant
9 Pubs : Positive;

10 end case;
11 end record;

Group (on line 3) is the discriminant

Run-time check for component consistency
eg A_Person.Pubs := 1 checks A_Person.Group = Faculty
Constraint_Error if check fails

Discriminant is constant
Unless object is mutable

Discriminant can be used in variant part (line 5)

Similar to case statements (all values must be covered)
Fields listed will only be visible if choice matches discriminant
Field names need to be unique (even across discriminants)
Variant part must be end of record (hence only one variant part
allowed)

75 / 568

Record Types
Discriminated Records

Semantics

Person objects are constrained by their discriminant
They are indefinite
Unless mutable
Assignment from same variant only
Representation requirements

Pat : Person (Student); -- No Pat.Pubs
Prof : Person (Faculty); -- No Prof.GPA
Soph : Person := (Group => Student,

Age => 21,
GPA => 3.2);

X : Person; -- Illegal: must specify discriminant

Pat := Soph; -- OK
Soph := Prof; -- Constraint_Error at run time

76 / 568

Record Types
Discriminated Records

Mutable Discriminated Record

When discriminant has a default value
Objects instantiated using the default are mutable
Objects specifying an explicit value are not mutable
Type is now definite

Mutable records have variable discriminants

Use same storage for several variant

-- Potentially mutable
type Person (Group : Person_Group := Student) is record

-- Use default value: mutable
S : Person;
-- Explicit value: *not* mutable
-- even if Student is also the default
S2 : Person (Group => Student);
...
S := (Group => Student, Age => 22, Gpa => 0.0);
S := (Group => Faculty, Age => 35, Pubs => 10);

77 / 568

Record Types
Discriminated Records

Quiz

type T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

O : T (1);

Which component does O contain?

A. O.I, O.B
B. O.N
C. None: Compilation error
D. None: Runtime error

78 / 568

Record Types
Discriminated Records

Quiz

type T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

O : T (1);

Which component does O contain?

A. O.I, O.B
B. O.N
C. None: Compilation error
D. None: Runtime error

78 / 568

Record Types
Discriminated Records

Quiz

type T (Floating : Integer) is record
case Floating is

when 0 =>
I : Integer;

when 1 =>
F : Float;

end case;
end record;

O : T (1);

Which component does O contain?

A. O.F, O.I
B. O.F
C. None: Compilation error
D. None: Runtime error

The variant case must cover all the possible values of Integer.

79 / 568

Record Types
Discriminated Records

Quiz

type T (Floating : Integer) is record
case Floating is

when 0 =>
I : Integer;

when 1 =>
F : Float;

end case;
end record;

O : T (1);

Which component does O contain?

A. O.F, O.I
B. O.F
C. None: Compilation error
D. None: Runtime error

The variant case must cover all the possible values of Integer.
79 / 568

Record Types
Discriminated Records

Quiz

type T (Floating : Boolean) is record
case Floating is

when False =>
I : Integer;

when True =>
F : Float;

end case;
I2 : Integer;

end record;

O : T (True);

Which component does O contain?

A. O.F, O.I2
B. O.F
C. None: Compilation error
D. None: Runtime error

The variant part cannot be followed by a component declaration
(I2 : Integer there)

80 / 568

Record Types
Discriminated Records

Quiz

type T (Floating : Boolean) is record
case Floating is

when False =>
I : Integer;

when True =>
F : Float;

end case;
I2 : Integer;

end record;

O : T (True);

Which component does O contain?

A. O.F, O.I2
B. O.F
C. None: Compilation error
D. None: Runtime error

The variant part cannot be followed by a component declaration
(I2 : Integer there)

80 / 568

Record Types
Lab

Lab

81 / 568

Record Types
Lab

Record Types Lab

Requirements
Create a simple First-In/First-Out (FIFO) queue record type and
object

Allow the user to:

Add ("push") items to the queue
Remove ("pop") the next item to be serviced from the queue
(Print this item to ensure the order is correct)

When the user is done manipulating the queue, print out the
remaining items in the queue

Hints
Queue record should at least contain:

Array of items
Index into array where next item will be added

82 / 568

Record Types
Lab

Record Types Lab Solution - Declarations

1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Main is
3

4 type Name_T is array (1 .. 6) of Character;
5 type Index_T is range 0 .. 1_000;
6 type Queue_T is array (Index_T range 1 .. 1_000) of Name_T;
7

8 type Fifo_Queue_T is record
9 Next_Available : Index_T := 1;

10 Last_Served : Index_T := 0;
11 Queue : Queue_T := (others => (others => ' '));
12 end record;
13

14 Queue : Fifo_Queue_T;
15 Choice : Integer;

83 / 568

Record Types
Lab

Record Types Lab Solution - Implementation
17 begin
18

19 loop
20 Put ("1 = add to queue | 2 = remove from queue | others => done: ");
21 Choice := Integer'Value (Get_Line);
22 if Choice = 1 then
23 Put ("Enter name: ");
24 Queue.Queue (Queue.Next_Available) := Name_T (Get_Line);
25 Queue.Next_Available := Queue.Next_Available + 1;
26 elsif Choice = 2 then
27 if Queue.Next_Available = 1 then
28 Put_Line ("Nobody in line");
29 else
30 Queue.Last_Served := Queue.Last_Served + 1;
31 Put_Line ("Now serving: " & String (Queue.Queue (Queue.Last_Served)));
32 end if;
33 else
34 exit;
35 end if;
36 New_Line;
37 end loop;
38

39 Put_Line ("Remaining in line: ");
40 for Index in Queue.Last_Served + 1 .. Queue.Next_Available - 1 loop
41 Put_Line (" " & String (Queue.Queue (Index)));
42 end loop;
43

44 end Main;

84 / 568

Record Types
Summary

Summary

85 / 568

Record Types
Summary

Summary

Heterogeneous types allowed for components

Default initial values allowed for components
Evaluated when each object elaborated, not the type
Not evaluated if explicit initial value specified

Aggregates express literals for composite types
Can mix named and positional forms

86 / 568

Discriminated Record Types

Discriminated Record Types

87 / 568

Discriminated Record Types
Introduction

Introduction

88 / 568

Discriminated Record Types
Introduction

Discriminated Record Types

Discriminated record type
Different objects may have different components
All object still share the same type

Kind of storage overlay

Similar to union in C
But preserves type checking
And object size is related to discriminant

Aggregate assignment is allowed

89 / 568

Discriminated Record Types
Introduction

Example Discriminated Record Description

Record / structure type for a person
Person is either a student or a faculty member (discriminant)
Person has a name (string)
Each student has a GPA (floating point) and a graduation year
(non-negative Integer)
Each faculty has a count of publications (non-negative Integer)

90 / 568

Discriminated Record Types
Introduction

Example Defined in C

enum person_group {Student, Faculty};

struct Person {
enum person_group group;
char name [10];
union {

struct { float gpa; int year; } s;
int pubs;

};
};

Issue: maintaining consistency between group and union
components is responsibility of the programmer

Source of potential vulnerabilities

91 / 568

Discriminated Record Types
Introduction

Example Defined in Ada

type Person_Group is (Student, Faculty);
type Person (Group : Person_Group) is -- Group is the discriminant

record
Name : String(1..10); -- Always present
case Group is

when Student => -- 1st variant
GPA : Float range 0.0 .. 4.0;
Year : Integer range 1..4;

when Faculty => -- 2nd variant
Pubs : Integer;

end case;
end record;

Group value enforces component availability
Can only access GPA and Year when Group is Student
Can only access Pubs when Group is Faculty

92 / 568

Discriminated Record Types
Introduction

Variant Part of Record

Variant part of record specifies alternate list of componenents

type Variant_Record_T (Discriminant : Integer) is record
Common_Component : String (1 .. 10);
case Discriminant is

when Integer'First .. -1 =>
Negative_Component : Float;

when 1 .. Integer'Last =>
Positive_Component : Integer;

when others =>
Zero_Component : Boolean;

end case;
end record;

Choice is determined by discriminant value

Record can only contain one variant part

Variant must be last part of record definition
93 / 568

Discriminated Record Types
Discriminated Record Semantics

Discriminated Record Semantics

94 / 568

Discriminated Record Types
Discriminated Record Semantics

Discriminant in Ada Discriminated Records

Variant record type contains a special discriminant component

Value indicates which variant is present

When a component in a variant is selected, run-time check ensures
that discriminant value is consistent with the selection

If you could store into Pubs but read GPA, type safety would not be
guaranteed

Ada prevents this type of access
Discriminant (Group) established when object of type Person
created

Run-time check verifies that component selected from variant is
consistent with discriminant value

Constraint_Error raised if the check fails

Can only read discriminant (as any other component), not write
Aggregate assignment is allowed

95 / 568

Discriminated Record Types
Discriminated Record Semantics

Semantics

Variable of type Person is constrained by value of discriminant
supplied at object declaration

Determines minimal storage requirements
Limits object to corresponding variant

Pat : Person(Student); -- May select Pat.GPA, not Pat.Pubs
Prof : Person(Faculty); -- May select Prof.Pubs, not Prof.GPA
Soph : Person := (Group => Student,

Name => "John Jones",
GPA => 3.2,
Year => 2);

X : Person; -- Illegal; discriminant must be initialized

Assignment between Person objects requires same discriminant
values for LHS and RHS

Pat := Soph; -- OK
Soph := Prof; -- Constraint_Error at run time

96 / 568

Discriminated Record Types
Discriminated Record Semantics

Implementation

Typically type and operations would be treated as an ADT
Implemented in its own package

package Person_Pkg is
type Person_Group is (Student, Faculty);
type Person (Group : Person_Group) is

record
Name : String(1..10);
case Group is

when Student =>
GPA : Float range 0.0 .. 4.0;
Year : Integer range 1..4;

when Faculty =>
Pubs : Integer;

end case;
end record;

-- parameters can be unconstrained (constraint comes from caller)
procedure Put (Item : in Person);
procedure Get (Item : in out Person);

end Person_Pkg;
97 / 568

Discriminated Record Types
Discriminated Record Semantics

Primitives
Output

procedure Put (Item : in Person) is
begin

Put_Line("Group:" & Person_Group'Image(Item.Group));
Put_Line("Name: " & Item.Name);
-- Group specified by caller
case Item.Group is

when Student =>
Put_Line("GPA:" & Float'Image(Item.GPA));
Put_Line("Year:" & Integer'Image(Item.Year));

when Faculty =>
Put_Line("Pubs:" & Integer'Image(Item.Pubs));

end case;
end Put;

Input

procedure Get (Item : in out Person) is
begin

-- Group specified by caller
case Item.Group is

when Student =>
Item.GPA := Get_GPA;
Item.Year := Get_Year;

when Faculty =>
Item.Pubs := Get_Pubs;

end case;
end Get;

98 / 568

Discriminated Record Types
Discriminated Record Semantics

Usage
with Person_Pkg; use Person_Pkg;
with Ada.Text_IO; use Ada.Text_IO;
procedure Person_Test is

Group : Person_Group;
Line : String(1..80);
Index : Natural;

begin
loop

Put("Group (Student or Faculty, empty line to quit): ");
Get_Line(Line, Index);
exit when Index=0;
Group := Person_Group'Value(Line(1..Index));
declare

Someone : Person(Group);
begin

Get(Someone);
case Someone.Group is

when Student => Student_Do_Something (Someone);
when Faculty => Faculty_Do_Something (Someone);

end case;
Put(Someone);

end;
end loop;

end Person_Test;
99 / 568

Discriminated Record Types
Unconstrained Discriminated Records

Unconstrained Discriminated Records

100 / 568

Discriminated Record Types
Unconstrained Discriminated Records

Adding Flexibility to Discriminated Records

Previously, declaration of Person implies that object, once
created, is always constrained by initial value of Group

Assigning Person (Faculty) to Person (Student) or vice
versa, raises Constraint_Error

Additional flexibility is sometimes desired
Allow declaration of unconstrained Person, to which either
Person (Faculty) or Person (Student) can be assigned
To do this, declare discriminant with default initialization

Type safety is not compromised
Modification of discriminant is only permitted when entire record is
assigned

Either through copying an object or aggregate assignment

101 / 568

Discriminated Record Types
Unconstrained Discriminated Records

Unconstrained Discriminated Record Example
declare

type Mutant(Group : Person_Group := Faculty) is
record

Name : String(1..10);
case Group is

when Student =>
GPA : Float range 0.0 .. 4.0;
Year : Integer range 1..4;

when Faculty =>
Pubs : Integer;

end case;
end record;

Pat : Mutant(Student); -- Constrained
Doc : Mutant(Faculty); -- Constrained
Zork : Mutant; -- Unconstrained (Zork.Group = Faculty)

begin
Zork := Pat; -- OK, Zork.Group was Faculty, is now Student
Zork.Group := Faculty; -- Illegal to assign to discriminant
Zork := Doc; -- OK, Zork.Group is now Faculty
Pat := Zork; -- Run-time error (Constraint_Error)

end;
102 / 568

Discriminated Record Types
Unconstrained Discriminated Records

Quiz
procedure Main is

type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

when Circle =>
Radius : Float;

end case;
end record;
-- V and V2 declaration...

begin
V := V2;

Which declaration(s) is(are) legal for this piece of code?

A. V : Shape := (Circle, others => 0.0)
V2 : Shape (Line);

B. V : Shape := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

C. V : Shape (Line) := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

D. V : Shape;
V2 : Shape (Circle);

A. Cannot assign with different discriminant
B. OK
C. V initial value has a different discriminant
D. Shape cannot be mutable: V must have a discriminant

103 / 568

Discriminated Record Types
Unconstrained Discriminated Records

Quiz
procedure Main is

type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

when Circle =>
Radius : Float;

end case;
end record;
-- V and V2 declaration...

begin
V := V2;

Which declaration(s) is(are) legal for this piece of code?

A. V : Shape := (Circle, others => 0.0)
V2 : Shape (Line);

B. V : Shape := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

C. V : Shape (Line) := (Kind => Circle, Radius => 0.0);
V2 : Shape (Circle);

D. V : Shape;
V2 : Shape (Circle);

A. Cannot assign with different discriminant
B. OK
C. V initial value has a different discriminant
D. Shape cannot be mutable: V must have a discriminant

103 / 568

Discriminated Record Types
Unconstrained Discriminated Records

Quiz
type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

Which declaration(s) is(are) legal?

A. when Circle =>
Cord : Shape (Line);

B. when Circle =>
Center : array (1 .. 2) of Float;
Radius : Float;

C. when Circle =>
Center_X, Center_Y : Float;
Radius : Float;

D. when Circle =>
X, Y, Radius : Float;

A. Referencing itself
B. anonymous array in record declaration
C. OK
D. X, Y are duplicated with the Line variant

104 / 568

Discriminated Record Types
Unconstrained Discriminated Records

Quiz
type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record
case Kind is

when Line =>
X, Y : Float;
X2, Y2 : Float;

Which declaration(s) is(are) legal?

A. when Circle =>
Cord : Shape (Line);

B. when Circle =>
Center : array (1 .. 2) of Float;
Radius : Float;

C. when Circle =>
Center_X, Center_Y : Float;
Radius : Float;

D. when Circle =>
X, Y, Radius : Float;

A. Referencing itself
B. anonymous array in record declaration
C. OK
D. X, Y are duplicated with the Line variant

104 / 568

Discriminated Record Types
Unconstrained Arrays

Unconstrained Arrays

105 / 568

Discriminated Record Types
Unconstrained Arrays

Varying Lengths of Array Objects

In Ada, array objects have to be fixed length

S : String(1..80);
A : array (M .. K*L) of Integer;

We would like an object with a maximum length, but current
length is variable

Need two pieces of data

Array contents
Location of last valid element

For common usage, we want this to be a type (probably a record)
Maximum size array for contents
Index for last valid element

106 / 568

Discriminated Record Types
Unconstrained Arrays

Simple Unconstrained Array
type Simple_VString is

record
Length : Natural range 0 .. Max_Length := 0;
Data : String (1 .. Max_Length) := (others => ' ');

end record;

function "&"(Left, Right : Simple_VString) return Simple_VString is
Result : Simple_VString;

begin
if Left.Length + Right.Length > Max_Length then

raise Constraint_Error;
else

Result.Length := Left.Length + Right.Length;
Result.Data (1 .. Result.Length) :=

Left.Data (1 .. Left.Length) & Right.Data (1 .. Right.Length);
return Result;

end if;
end "&";

Issues
Every object has same maximum length
Length needs to be maintained by program logic
Need to define "="

107 / 568

Discriminated Record Types
Unconstrained Arrays

Varying Length Array via Discriminated Records

Discriminant can serve as bound of array component

type VString (Max_Length : Natural := 0) is
record

Data : String(1..Max_Length) := (others => ' ');
end record;

Discriminant default value?
With default discriminant value, objects can be copied even if
lengths are different
With no default discriminant value, objects of different lengths
cannot be copied

108 / 568

Discriminated Record Types
Unconstrained Arrays

Varying Length Array via Discriminated Records and
Subtypes

Discriminant can serve as bound of array component
Subtype serves as upper bound for Size_T'Last

subtype VString_Size is Natural range 0 .. Max_Length;

type VString (Size : VString_Size := 0) is
record

Data : String (1 .. Size) := (others => ' ');
end record;

Empty_VString : constant VString := (0, "");

function Make (S : String) return VString is
((Size => S'Length, Data => S));

109 / 568

Discriminated Record Types
Unconstrained Arrays

Quiz

type R (Size : Integer := 0) is record
S : String (1 .. Size);

end record;

Which proposition(s) will compile and run without error?

A. V : R := (6, "Hello")
B. V : R := (5, "Hello")
C. V : R (5) := (5, S => "Hello")
D. V : R (6) := (6, S => "Hello")

When V is declared without specifying its size, it becomes mutable, at
this point the S'Length = Positive'Last, causing a Runtime_Error.
Furthermore the length of "Hello" is 5, it cannot be stored in a String
of Length 6.

110 / 568

Discriminated Record Types
Unconstrained Arrays

Quiz

type R (Size : Integer := 0) is record
S : String (1 .. Size);

end record;

Which proposition(s) will compile and run without error?

A. V : R := (6, "Hello")
B. V : R := (5, "Hello")
C. V : R (5) := (5, S => "Hello")
D. V : R (6) := (6, S => "Hello")

When V is declared without specifying its size, it becomes mutable, at
this point the S'Length = Positive'Last, causing a Runtime_Error.
Furthermore the length of "Hello" is 5, it cannot be stored in a String
of Length 6.

110 / 568

Discriminated Record Types
Discriminated Record Details

Discriminated Record Details

111 / 568

Discriminated Record Types
Discriminated Record Details

Semantics of Discriminated Records

A discriminant is a parameter to a record type
The value of a discriminant affects the presence, constraints, or
initialization of other components

A type may have more than one discriminant
Either all have default initializations, or none do

Ada restricts the kinds of types that may be used to declare a
discriminant

Discrete types (i.e., enumeration or integer type)
Access types (not covered here)

112 / 568

Discriminated Record Types
Discriminated Record Details

Use of Discriminants in Record Definition

Within the record type definition, a discriminant may only be
referenced in the following contexts

In "case" of variant part
As a bound of a record component that is an unconstrained array
As an initialization expression for a component
As the value of a discriminant for a component that itself a variant
record

A discriminant is not allowed as the bound of a range constraint

113 / 568

Discriminated Record Types
Lab

Lab

114 / 568

Discriminated Record Types
Lab

Discriminated Record Types Lab

Requirements for a simplistic employee database
Create a package to handle varying length strings using variant
records

The string type must be private!
The variant can appear on the partial definition or the full

Create a package to create employee data in a variant record

Store first name, last name, and hourly pay rate for all employees
Supervisors must also include the project they are supervising
Managers must also include the number of employees they are
managing and the department name

Main program should read employee information from the console

Any number of any type of employees can be entered in any order
When data entry is done, print out all appropriate information for
each employee

Hints
Create concatenation functions for your varying length string type
Is it easier to create an input function for each employee category,
or a common one?

115 / 568

Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Vstring
1 package Vstring is
2 Max_String_Length : constant := 1_000;
3 type Vstring_T is private;
4 function To_Vstring (Str : String) return Vstring_T;
5 function To_String (Vstr : Vstring_T) return String;
6 function "&" (L, R : Vstring_T) return Vstring_T;
7 function "&" (L : String; R : Vstring_T) return Vstring_T;
8 function "&" (L : Vstring_T; R : String) return Vstring_T;
9 private

10 subtype Index_T is Integer range 0 .. Max_String_Length;
11 type Vstring_T (Length : Index_T := 0) is record
12 Text : String (1 .. Length);
13 end record;
14 end Vstring;
15

16 package body Vstring is
17 function To_Vstring (Str : String) return Vstring_T is
18 ((Length => Str'Length, Text => Str));
19 function To_String (Vstr : Vstring_T) return String is
20 (Vstr.Text);
21 function "&" (L, R : Vstring_T) return Vstring_T is
22 Ret_Val : constant String := L.Text & R.Text;
23 begin
24 return (Length => Ret_Val'Length, Text => Ret_Val);
25 end "&";
26

27 function "&" (L : String; R : Vstring_T) return Vstring_T is
28 Ret_Val : constant String := L & R.Text;
29 begin
30 return (Length => Ret_Val'Length, Text => Ret_Val);
31 end "&";
32

33 function "&" (L : Vstring_T; R : String) return Vstring_T is
34 Ret_Val : constant String := L.Text & R;
35 begin
36 return (Length => Ret_Val'Length, Text => Ret_Val);
37 end "&";
38 end Vstring;

116 / 568

Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Employee
(Spec)

1 with Vstring; use Vstring;
2 package Employee is
3

4 type Category_T is (Staff, Supervisor, Manager);
5 type Pay_T is delta 0.01 range 0.0 .. 1_000.00;
6

7 type Employee_T (Category : Category_T := Staff) is record
8 Last_Name : Vstring.Vstring_T;
9 First_Name : Vstring.Vstring_T;

10 Hourly_Rate : Pay_T;
11 case Category is
12 when Staff =>
13 null;
14 when Supervisor =>
15 Project : Vstring.Vstring_T;
16 when Manager =>
17 Department : Vstring.Vstring_T;
18 Staff_Count : Natural;
19 end case;
20 end record;
21

22 function Get_Staff return Employee_T;
23 function Get_Supervisor return Employee_T;
24 function Get_Manager return Employee_T;
25

26 end Employee;

117 / 568

Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Employee
(Body)

1 with Ada.Text_IO; use Ada.Text_IO;
2 package body Employee is
3 function Read (Prompt : String) return String is
4 begin
5 Put (Prompt & " > ");
6 return Get_Line;
7 end Read;
8

9 function Get_Staff return Employee_T is
10 Ret_Val : Employee_T (Staff);
11 begin
12 Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
13 Ret_Val.First_Name := To_Vstring (Read ("First name"));
14 Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
15 return Ret_Val;
16 end Get_Staff;
17

18 function Get_Supervisor return Employee_T is
19 Ret_Val : Employee_T (Supervisor);
20 begin
21 Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
22 Ret_Val.First_Name := To_Vstring (Read ("First name"));
23 Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
24 Ret_Val.Project := To_Vstring (Read ("Project"));
25 return Ret_Val;
26 end Get_Supervisor;
27

28 function Get_Manager return Employee_T is
29 Ret_Val : Employee_T (Manager);
30 begin
31 Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
32 Ret_Val.First_Name := To_Vstring (Read ("First name"));
33 Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
34 Ret_Val.Department := To_Vstring (Read ("Department"));
35 Ret_Val.Staff_Count := Integer'Value (Read ("Staff count"));
36 return Ret_Val;
37 end Get_Manager;
38 end Employee;

118 / 568

Discriminated Record Types
Lab

Discriminated Record Types Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Employee;
3 with Vstring; use Vstring;
4 procedure Main is
5 procedure Print (Member : Employee.Employee_T) is
6 First_Line : constant Vstring.Vstring_T :=
7 Member.First_Name & " " & Member.Last_Name & " " &
8 Member.Hourly_Rate'Image;
9 begin

10 Put_Line (Vstring.To_String (First_Line));
11 case Member.Category is
12 when Employee.Supervisor =>
13 Put_Line (" Project: " & Vstring.To_String (Member.Project));
14 when Employee.Manager =>
15 Put_Line (" Overseeing " & Member.Staff_Count'Image & " in " &
16 Vstring.To_String (Member.Department));
17 when others => null;
18 end case;
19 end Print;
20

21 List : array (1 .. 1_000) of Employee.Employee_T;
22 Count : Natural := 0;
23 begin
24 loop
25 Put_Line ("E => Employee");
26 Put_Line ("S => Supervisor");
27 Put_Line ("M => Manager");
28 Put ("E/S/M (any other to stop): ");
29 declare
30 Choice : constant String := Get_Line;
31 begin
32 case Choice (1) is
33 when 'E' | 'e' =>
34 Count := Count + 1;
35 List (Count) := Employee.Get_Staff;
36 when 'S' | 's' =>
37 Count := Count + 1;
38 List (Count) := Employee.Get_Supervisor;
39 when 'M' | 'm' =>
40 Count := Count + 1;
41 List (Count) := Employee.Get_Manager;
42 when others =>
43 exit;
44 end case;
45 end;
46 end loop;
47

48 for Item of List (1 .. Count) loop
49 Print (Item);
50 end loop;
51 end Main;

119 / 568

Discriminated Record Types
Summary

Summary

120 / 568

Discriminated Record Types
Summary

Properties of Discriminated Record Types

Rules
Case choices for variants must partition possible values for
discriminant
Field names must be unique across all variants

Style
Typical processing is via a case statement that "dispatches" based
on discriminant
This centralized functional processing is in contrast to decentralized
object-oriented approach

Flexibility
Variant parts may be nested, if some components common to a set
of variants

121 / 568

Type Derivation

Type Derivation

122 / 568

Type Derivation
Introduction

Introduction

123 / 568

Type Derivation
Introduction

Type Derivation

Type derivation allows for reusing code

Type can be derived from a base type

Base type can be substituted by the derived type

Subprograms defined on the base type are inherited on derived
type

This is not OOP in Ada
Tagged derivation is OOP in Ada

124 / 568

Type Derivation
Introduction

Ada Mechanisms for Type Inheritance

Primitive operations on types
Standard operations like + and -
Any operation that acts on the type

Type derivation
Define types from other types that can add limitations
Can add operations to the type

Tagged derivation
This is OOP in Ada
Seen in other chapter

125 / 568

Type Derivation
Primitives

Primitives

126 / 568

Type Derivation
Primitives

Primitive Operations

A type is characterized by two elements
Its data structure
The set of operations that applies to it

The operations are called primitive operations in Ada

type T is new Integer;
procedure Attrib_Function(Value : T);

127 / 568

Type Derivation
Primitives

General Rule For a Primitive

Primitives are subprograms

S is a primitive of type T iff
S is declared in the scope of T

S "uses" type T

As a parameter
As its return type (for function)

S is above freeze-point

Rule of thumb
Primitives must be declared right after the type itself

In a scope, declare at most a single type with primitives

package P is
type T is range 1 .. 10;
procedure P1 (V : T);
procedure P2 (V1 : Integer; V2 : T);
function F return T;

end P;
128 / 568

Type Derivation
Simple Derivation

Simple Derivation

129 / 568

Type Derivation
Simple Derivation

Simple Type Derivation

Any type (except tagged) can be derived

type Child is new Parent;

Child inherits from:
The data representation of the parent
The primitives of the parent

Conversions are possible from child to parent

type Parent is range 1 .. 10;
procedure Prim (V : Parent);
type Child is new Parent; -- Freeze Parent
procedure Not_A_Primitive (V : Parent);
C : Child;
...
Prim (C); -- Implicitly declared
Not_A_Primitive (Parent (C));

130 / 568

Type Derivation
Simple Derivation

Simple Derivation and Type Structure

The type "structure" can not change
array cannot become record
Integers cannot become floats

But can be constrained further

Scalar ranges can be reduced

type Tiny_Int is range -100 .. 100;
type Tiny_Positive is new Tiny_Int range 1 .. 100;

Unconstrained types can be constrained

type Arr is array (Integer range <>) of Integer;
type Ten_Elem_Arr is new Arr (1 .. 10);
type Rec (Size : Integer) is record

Elem : Arr (1 .. Size);
end record;
type Ten_Elem_Rec is new Rec (10);

131 / 568

Type Derivation
Simple Derivation

Overriding Indications
Ada 2005

Optional indications

Checked by compiler

type Root is range 1 .. 100;
procedure Prim (V : Root);
type Child is new Root;

Replacing a primitive: overriding indication

overriding procedure Prim (V : Child);

Adding a primitive: not overriding indication

not overriding procedure Prim2 (V : Child);

Removing a primitive: overriding as abstract

overriding procedure Prim (V : Child) is abstract;
132 / 568

Type Derivation
Simple Derivation

Quiz

type T1 is range 1 .. 100;
procedure Proc_A (X : in out T1);

type T2 is new T1 range 2 .. 99;
procedure Proc_B (X : in out T1);
procedure Proc_B (X : in out T2);

-- Other scope
procedure Proc_C (X : in out T2);

type T3 is new T2 range 3 .. 98;

procedure Proc_C (X : in out T3);
Which are T1’s primitives

A. Proc_A
B. Proc_B
C. Proc_C
D. No primitives of T1

Explanations
A. Correct
B. Freeze: T1 has been derived
C. Freeze: scope change
D. Incorrect

.
133 / 568

Type Derivation
Simple Derivation

Quiz

type T1 is range 1 .. 100;
procedure Proc_A (X : in out T1);

type T2 is new T1 range 2 .. 99;
procedure Proc_B (X : in out T1);
procedure Proc_B (X : in out T2);

-- Other scope
procedure Proc_C (X : in out T2);

type T3 is new T2 range 3 .. 98;

procedure Proc_C (X : in out T3);
Which are T1’s primitives

A. Proc_A
B. Proc_B
C. Proc_C
D. No primitives of T1

Explanations
A. Correct
B. Freeze: T1 has been derived
C. Freeze: scope change
D. Incorrect

.
133 / 568

Type Derivation
Summary

Summary

134 / 568

Type Derivation
Summary

Summary

Primitive of a type
Subprogram above freeze-point that takes or return the type
Can be a primitive for multiple types

Freeze point rules can be tricky

Simple type derivation
Types derived from other types can only add limitations

Constraints, ranges
Cannot change underlying structure

135 / 568

Quantified Expressions

Quantified Expressions

136 / 568

Quantified Expressions
Quantified Expressions

Quantified Expressions

137 / 568

Quantified Expressions
Quantified Expressions

Introduction
Ada 2012

Expressions that have a Boolean value

The value indicates something about a set of objects
In particular, whether something is True about that set

That "something" is expressed as an arbitrary boolean expression
A so-called "predicate"

"Universal" quantified expressions
Indicate whether predicate holds for all components

"Existential" quantified expressions
Indicate whether predicate holds for at least one component

138 / 568

Quantified Expressions
Quantified Expressions

Examples
with GNAT.Random_Numbers; use GNAT.Random_Numbers;
with Ada.Text_IO; use Ada.Text_IO;
procedure Quantified_Expressions is

Gen : Generator;
Values : constant array (1 .. 10) of Integer := (others => Random (Gen));

Any_Even : constant Boolean := (for some N of Values => N mod 2 = 0);
All_Odd : constant Boolean := (for all N of reverse Values => N mod 2 = 1);

function Is_Sorted return Boolean is
(for all K in Values'Range =>

K = Values'First or else Values (K - 1) <= Values (K));

function Duplicate return Boolean is
(for some I in Values'Range =>

(for some J in I + 1 .. Values'Last => Values (I) = Values (J)));

begin
Put_Line ("Any Even: " & Boolean'Image (Any_Even));
Put_Line ("All Odd: " & Boolean'Image (All_Odd));
Put_Line ("Is_Sorted " & Boolean'Image (Is_Sorted));
Put_Line ("Duplicate " & Boolean'Image (Duplicate));

end Quantified_Expressions;
139 / 568

Quantified Expressions
Quantified Expressions

Semantics Are As If You Wrote This Code
Ada 2012

function Universal (Set : Components) return Boolean is
begin

for C of Set loop
if not Predicate (C) then

return False; -- Predicate must be true for all
end if;

end loop;
return True;

end Universal;

function Existential (Set : Components) return Boolean is
begin

for C of Set loop
if Predicate (C) then

return True; -- Predicate need only be true for one
end if;

end loop;
return False;

end Existential;
140 / 568

Quantified Expressions
Quantified Expressions

Quantified Expressions Syntax
Ada 2012

Four for variants
Index-based in or component-based of
Existential some or universal all

Using arrow => to indicate predicate expression

(for some Index in Subtype_T => Predicate (Index))
(for all Index in Subtype_T => Predicate (Index))
(for some Value of Container_Obj => Predicate (Value))
(for all Value of Container_Obj => Predicate (Value))

141 / 568

Quantified Expressions
Quantified Expressions

Simple Examples
Ada 2012

Values : constant array (1 .. 10) of Integer := (...);
Is_Any_Even : constant Boolean :=

(for some V of Values => V mod 2 = 0);
Are_All_Even : constant Boolean :=

(for all V of Values => V mod 2 = 0);

142 / 568

Quantified Expressions
Quantified Expressions

Universal Quantifier
Ada 2012

In logic, denoted by ∀ (inverted ’A’, for "all")

"There is no member of the set for which the predicate does not
hold"

If predicate is False for any member, the whole is False

Functional equivalent

function Universal (Set : Components) return Boolean is
begin

for C of Set loop
if not Predicate (C) then

return False; -- Predicate must be true for all
end if;

end loop;
return True;

end Universal;
143 / 568

Quantified Expressions
Quantified Expressions

Universal Quantifier Illustration
Ada 2012

"There is no member of the set for which the predicate does not
hold"
Given a set of integer answers to a quiz, there are no answers that
are not 42 (i.e., all are 42)

Ultimate_Answer : constant := 42; -- to everything...
Answers : constant array (1 .. 10)

of Integer := (...);
All_Correct_1 : constant Boolean :=

(for all Component of Answers =>
Component = Ultimate_Answer);

All_Correct_2 : constant Boolean :=
(for all K in Answers'range =>

Answers(K) = Ultimate_Answer);
144 / 568

Quantified Expressions
Quantified Expressions

Universal Quantifier Real-World Example
Ada 2012

type DMA_Status_Flag is (...);
function Status_Indicated (

Flag : DMA_Status_Flag)
return Boolean;

None_Set : constant Boolean := (
for all Flag in DMA_Status_Flag =>

not Status_Indicated (Flag));

145 / 568

Quantified Expressions
Quantified Expressions

Existential Quantifier
Ada 2012

In logic, denoted by ∃ (rotated ’E’, for "exists")

"There is at least one member of the set for which the predicate
holds"

If predicate is True for any member, the whole is True

Functional equivalent

function Existential (Set : Components) return Boolean is
begin

for C of Set loop
if Predicate (C) then

return True; -- Need only be true for at least one
end if;

end loop;
return False;

end Existential;
146 / 568

Quantified Expressions
Quantified Expressions

Existential Quantifier Illustration
Ada 2012

"There is at least one member of the set for which the predicate
holds"
Given set of Integer answers to a quiz, there is at least one answer
that is 42

Ultimate_Answer : constant := 42; -- to everything...
Answers : constant array (1 .. 10)

of Integer := (...);
Any_Correct_1 : constant Boolean :=

(for some Component of Answers =>
Component = Ultimate_Answer);

Any_Correct_2 : constant Boolean :=
(for some K in Answers'range =>

Answers(K) = Ultimate_Answer);
147 / 568

Quantified Expressions
Quantified Expressions

Index-Based vs Component-Based Indexing
Ada 2012

Given an array of Integers

Values : constant array (1 .. 10) of Integer := (...);

Component-based indexing is useful for checking individual values

Contains_Negative_Number : constant Boolean :=
(for some N of Values => N < 0);

Index-based indexing is useful for comparing across values

Is_Sorted : constant Boolean :=
(for all I in Values'Range =>

I = Values'first or else Values(I) >= Values(I-1));

148 / 568

Quantified Expressions
Quantified Expressions

"Pop Quiz" for Quantified Expressions
Ada 2012

What will be the value of Ascending_Order?
Table : constant array (1 .. 10) of Integer :=

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
Ascending_Order : constant Boolean := (

for all K in Table'Range =>
K > Table'First and then Table (K - 1) <= Table (K));
Answer: False. Predicate fails when K = Table’First

First subcondition is False!
Condition should be
Ascending_Order : constant Boolean := (

for all K in Table'Range =>
K = Table'first or else Table (K - 1) <= Table (K));

149 / 568

Quantified Expressions
Quantified Expressions

When The Set Is Empty...
Ada 2012

Universally quantified expressions are True
Definition: there is no member of the set for which the predicate
does not hold
If the set is empty, there is no such member, so True
"All people 12-feet tall will be given free chocolate."

Existentially quantified expressions are False
Definition: there is at least one member of the set for which the
predicate holds

If the set is empty, there is no such member, so False

Common convention in set theory, arbitrary but settled

150 / 568

Quantified Expressions
Quantified Expressions

Not Just Arrays: Any "Iterable" Objects
Ada 2012

Those that can be iterated over
Language-defined, such as the containers
User-defined too

package Characters is new
Ada.Containers.Vectors (Positive, Character);

use Characters;
Alphabet : constant Vector := To_Vector('A',1) & 'B' & 'C';
Any_Zed : constant Boolean :=

(for some C of Alphabet => C = 'Z');
All_Lower : constant Boolean :=

(for all C of Alphabet => Is_Lower (C));

151 / 568

Quantified Expressions
Quantified Expressions

Conditional / Quantified Expression Usage
Ada 2012

Use them when a function would be too heavy

Don’t over-use them!

if (for some Component of Answers =>
Component = Ultimate_Answer)

then

Function names enhance readability
So put the quantified expression in a function

if At_Least_One_Answered (Answers) then

Even in pre/postconditions, use functions containing quantified
expressions for abstraction

152 / 568

Quantified Expressions
Quantified Expressions

Quiz

Which declaration(s) is(are) legal?

A. function F (S : String) return Boolean is
(for all C of S => C /= ' ');

B. function F (S : String) return Boolean is
(not for some C of S => C = ' ');

C. function F (S : String) return String is
(for all C of S => C);

D. function F (S : String) return String is
(if (for all C of S => C /= ' ') then "OK"
else "NOK");

B. Parentheses required around the quantified expression
C. Must return a Boolean

153 / 568

Quantified Expressions
Quantified Expressions

Quiz

Which declaration(s) is(are) legal?

A. function F (S : String) return Boolean is
(for all C of S => C /= ' ');

B. function F (S : String) return Boolean is
(not for some C of S => C = ' ');

C. function F (S : String) return String is
(for all C of S => C);

D. function F (S : String) return String is
(if (for all C of S => C /= ' ') then "OK"
else "NOK");

B. Parentheses required around the quantified expression
C. Must return a Boolean

153 / 568

Quantified Expressions
Quantified Expressions

Quiz

type T1 is array (1 .. 3) of Integer;
type T2 is array (1 .. 3) of Integer;

Which piece(s) of code correctly perform(s) equality check on A and B?

A. function "=" (A : T1; B : T2) return Boolean is
(A = T1 (B));

B. function "=" (A : T1; B : T2) return Boolean is
(for all E1 of A => (for all E2 of B => E1 = E2));

C. function "=" (A : T1; B : T2) return Boolean is
(for some E1 of A => (for some E2 of B => E1 =

E2));

D. function "=" (A : T1; B : T2) return Boolean is
(for all J in A'Range => A (J) = B (J));

B. Counterexample: A = B = (0, 1, 0) returns False
C. Counterexample: A = (0, 0, 1) and B = (0, 1, 1) returns

True

154 / 568

Quantified Expressions
Quantified Expressions

Quiz

type T1 is array (1 .. 3) of Integer;
type T2 is array (1 .. 3) of Integer;

Which piece(s) of code correctly perform(s) equality check on A and B?

A. function "=" (A : T1; B : T2) return Boolean is
(A = T1 (B));

B. function "=" (A : T1; B : T2) return Boolean is
(for all E1 of A => (for all E2 of B => E1 = E2));

C. function "=" (A : T1; B : T2) return Boolean is
(for some E1 of A => (for some E2 of B => E1 =

E2));

D. function "=" (A : T1; B : T2) return Boolean is
(for all J in A'Range => A (J) = B (J));

B. Counterexample: A = B = (0, 1, 0) returns False
C. Counterexample: A = (0, 0, 1) and B = (0, 1, 1) returns

True
154 / 568

Quantified Expressions
Quantified Expressions

Quiz
type Array1_T is array (1 .. 3) of Integer;
type Array2_T is array (1 .. 3) of Array1_T;
A : Array2_T;

The above describes an array A whose elements are arrays of three
elements. Which expression would one use to determine if at least one
of A’s elements are sorted?

A. (for some El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

B. (for all El of A => for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

C. (for some El of A => (for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

D. (for all El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

A. Will be True if any element has two consecutive increasing values
B. Will be True if every element is sorted
C. Correct
D. Will be True if every element has two consecutive increasing

values

155 / 568

Quantified Expressions
Quantified Expressions

Quiz
type Array1_T is array (1 .. 3) of Integer;
type Array2_T is array (1 .. 3) of Array1_T;
A : Array2_T;

The above describes an array A whose elements are arrays of three
elements. Which expression would one use to determine if at least one
of A’s elements are sorted?

A. (for some El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

B. (for all El of A => for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

C. (for some El of A => (for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

D. (for all El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

A. Will be True if any element has two consecutive increasing values
B. Will be True if every element is sorted
C. Correct
D. Will be True if every element has two consecutive increasing

values
155 / 568

Quantified Expressions
Lab

Lab

156 / 568

Quantified Expressions
Lab

Advanced Expressions Lab

Requirements
Allow the user to fill a list with dates

After the list is created, use quantified expressions to print
True/False

If any date is not legal (taking into account leap years!)
If all dates are in the same calendar year

Use expression functions for all validation routines

Hints
Use subtype membership for range validation

You will need conditional expressions in your functions

You can use component-based iterations for some checks

But you must use indexed-based iterations for others

This is the same lab as the Expressions lab, we’re just replacing the
validation functions with quantified expressions!

So you can just copy that project and update the code!
157 / 568

Quantified Expressions
Lab

Advanced Expressions Lab Solution - Checks
4 subtype Year_T is Positive range 1_900 .. 2_099;
5 subtype Month_T is Positive range 1 .. 12;
6 subtype Day_T is Positive range 1 .. 31;
7

8 type Date_T is record
9 Year : Positive;

10 Month : Positive;
11 Day : Positive;
12 end record;
13

14 List : array (1 .. 5) of Date_T;
15 Item : Date_T;
16

17 function Is_Leap_Year (Year : Positive)
18 return Boolean is
19 (Year mod 400 = 0 or else (Year mod 4 = 0 and Year mod 100 /= 0));
20

21 function Days_In_Month (Month : Positive;
22 Year : Positive)
23 return Day_T is
24 (case Month is when 4 | 6 | 9 | 11 => 30,
25 when 2 => (if Is_Leap_Year (Year) then 29 else 28), when others => 31);
26

27 function Is_Valid (Date : Date_T)
28 return Boolean is
29 (Date.Year in Year_T and then Date.Month in Month_T
30 and then Date.Day <= Days_In_Month (Date.Month, Date.Year));
31

32 function Any_Invalid return Boolean is
33 (for some Date of List => not Is_Valid (Date));
34

35 function Same_Year return Boolean is
36 (for all I in List'range => List (I).Year = List (List'first).Year);

158 / 568

Quantified Expressions
Lab

Advanced Expressions Lab Solution - Main

37 function Number (Prompt : String)
38 return Positive is
39 begin
40 Put (Prompt & "> ");
41 return Positive'Value (Get_Line);
42 end Number;
43

44 begin
45

46 for I in List'Range loop
47 Item.Year := Number ("Year");
48 Item.Month := Number ("Month");
49 Item.Day := Number ("Day");
50 List (I) := Item;
51 end loop;
52

53 Put_Line ("Any invalid: " & Boolean'image (Any_Invalid));
54 Put_Line ("Same Year: " & Boolean'image (Same_Year));
55

56 end Main;
159 / 568

Quantified Expressions
Summary

Summary

160 / 568

Quantified Expressions
Summary

Summary

Quantified expressions are general purpose but especially useful
with pre/postconditions

Consider hiding them behind expressive function names

161 / 568

Limited Types

Limited Types

162 / 568

Limited Types
Introduction

Introduction

163 / 568

Limited Types
Introduction

Views

Specify how values and objects may be manipulated

Are implicit in much of the language semantics
Constants are just variables without any assignment view
Task types, protected types implicitly disallow assignment
Mode in formal parameters disallow assignment

Variable : Integer := 0;
...
-- P's view of X prevents modification
procedure P(X : in Integer) is
begin

...
end P;
...
P(Variable);

164 / 568

Limited Types
Introduction

Limited Type Views’ Semantics

Prevents copying via predefined assignment
Disallows assignment between objects
Must make your own copy procedure if needed

type File is limited ...
...
F1, F2 : File;
...
F1 := F2; -- compile error

Prevents incorrect comparison semantics
Disallows predefined equality operator
Make your own equality function = if needed

165 / 568

Limited Types
Introduction

Inappropriate Copying Example

type File is ...
F1, F2 : File;
...
Open (F1);
Write (F1, "Hello");
-- What is this assignment really trying to do?
F2 := F1;

166 / 568

Limited Types
Introduction

Intended Effects of Copying

type File is ...
F1, F2 : File;
...
Open (F1);
Write (F1, "Hello");
Copy (Source => F1, Target => F2);

167 / 568

Limited Types
Declarations

Declarations

168 / 568

Limited Types
Declarations

Limited Type Declarations

Syntax
Additional keyword limited added to record type declaration

type defining_identifier is limited record
component_list

end record;

Are always record types unless also private
More in a moment...

169 / 568

Limited Types
Declarations

Approximate Analog In C++

class Stack {
public:

Stack();
void Push (int X);
void Pop (int& X);
...

private:
...
// assignment operator hidden
Stack& operator= (const Stack& other);

}; // Stack

170 / 568

Limited Types
Declarations

Spin Lock Example

with Interfaces;
package Multiprocessor_Mutex is

-- prevent copying of a lock
type Spin_Lock is limited record

Flag : Interfaces.Unsigned_8;
end record;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);
pragma Inline (Lock, Unlock);

end Multiprocessor_Mutex;

171 / 568

Limited Types
Declarations

Parameter Passing Mechanism

Always "by-reference" if explicitly limited
Necessary for various reasons (task and protected types, etc)
Advantageous when required for proper behavior

By definition, these subprograms would be called concurrently
Cannot operate on copies of parameters!

procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

172 / 568

Limited Types
Declarations

Composites with Limited Types

Composite containing a limited type becomes limited as well
Example: Array of limited elements

Array becomes a limited type

Prevents assignment and equality loop-holes

declare
-- if we can't copy component S, we can't copy User_Type
type User_Type is record -- limited because S is limited

S : File;
...

end record;
A, B : User_Type;

begin
A := B; -- not legal since limited
...

end;
173 / 568

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

L1, L2 : T;
B : Boolean;

Which statement(s) is(are) legal?

A. L1.I := 1
B. L1 := L2
C. B := (L1 = L2)
D. B := (L1.I = L2.I)

174 / 568

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

L1, L2 : T;
B : Boolean;

Which statement(s) is(are) legal?

A. L1.I := 1
B. L1 := L2
C. B := (L1 = L2)
D. B := (L1.I = L2.I)

174 / 568

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

Which of the following declaration(s) is(are) legal?

A. function "+" (A : T) return T is (A)
B. function "-" (A : T) return T is (I => -A.I)
C. function "=" (A, B : T) return Boolean is (True)
D. function "=" (A, B : T) return Boolean is (A.I =

T'(I => B.I).I)

175 / 568

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

Which of the following declaration(s) is(are) legal?

A. function "+" (A : T) return T is (A)
B. function "-" (A : T) return T is (I => -A.I)
C. function "=" (A, B : T) return Boolean is (True)
D. function "=" (A, B : T) return Boolean is (A.I =

T'(I => B.I).I)

175 / 568

Limited Types
Declarations

Quiz
package P is

type T is limited null record;
type R is record

F1 : Integer;
F2 : T;

end record;
end P;

with P;
procedure Main is

T1, T2 : P.T;
R1, R2 : P.R;

begin

Which assignment is legal?

A. T1 := T2;
B. R1 := R2;
C. R1.F1 := R2.F1;
D. R2.F2 := R2.F2;

Explanations

A. T1 and T2 are limited types
B. R1 and R2 contain limited types so they are also limited
C. Theses components are not limited types
D. These components are of a limited type

176 / 568

Limited Types
Declarations

Quiz
package P is

type T is limited null record;
type R is record

F1 : Integer;
F2 : T;

end record;
end P;

with P;
procedure Main is

T1, T2 : P.T;
R1, R2 : P.R;

begin

Which assignment is legal?

A. T1 := T2;
B. R1 := R2;
C. R1.F1 := R2.F1;
D. R2.F2 := R2.F2;

Explanations

A. T1 and T2 are limited types
B. R1 and R2 contain limited types so they are also limited
C. Theses components are not limited types
D. These components are of a limited type

176 / 568

Limited Types
Creating Values

Creating Values

177 / 568

Limited Types
Creating Values

Creating Values

Initialization is not assignment (but looks like it)!

Via limited constructor functions
Functions returning values of limited types

Via an aggregate

limited aggregate when used for a limited type

type Spin_Lock is limited record
Flag : Interfaces.Unsigned_8;

end record;
...
Mutex : Spin_Lock := (Flag => 0); -- limited aggregate

178 / 568

Limited Types
Creating Values

Limited Constructor Functions

Allowed wherever limited
aggregates are allowed
More capable (can perform
arbitrary computations)
Necessary when limited type
is also private

Users won’t have visibility
required to express
aggregate contents

function F return Spin_Lock
is
begin

...
return (Flag => 0);

end F;

179 / 568

Limited Types
Creating Values

Writing Limited Constructor Functions

Remember - copying is not allowed

function F return Spin_Lock is
Local_X : Spin_Lock;

begin
...
return Local_X; -- this is a copy - not legal
-- (also illegal because of pass-by-reference)

end F;

Global_X : Spin_Lock;
function F return Spin_Lock is
begin

...
-- This is not legal staring with Ada2005
return Global_X; -- this is a copy

end F;
180 / 568

Limited Types
Creating Values

"Built In-Place"

Limited aggregates and functions, specifically

No copying done by implementation
Values are constructed in situ

Mutex : Spin_Lock := (Flag => 0);

function F return Spin_Lock is
begin

return (Flag => 0);
end F;

181 / 568

Limited Types
Creating Values

Quiz
type T is limited record

I : Integer;
end record;

Which piece(s) of code is(are) a legal constructor for T?

A. function F return T is
begin

return T (I => 0);
end F;

B. function F return T is
Val : Integer := 0;

begin
return (I => Val);

end F;

C. function F return T is
Ret : T := (I => 0);

begin
return Ret;

end F;

D. function F return T is
begin

return (0);
end F;

182 / 568

Limited Types
Creating Values

Quiz
type T is limited record

I : Integer;
end record;

Which piece(s) of code is(are) a legal constructor for T?

A. function F return T is
begin

return T (I => 0);
end F;

B. function F return T is
Val : Integer := 0;

begin
return (I => Val);

end F;

C. function F return T is
Ret : T := (I => 0);

begin
return Ret;

end F;

D. function F return T is
begin

return (0);
end F;

182 / 568

Limited Types
Creating Values

Quiz

package P is
type T is limited record

F1 : Integer;
F2 : Character;

end record;
Zero : T := (0, ' ');
One : constant T := (1, 'a');
Two : T;
function F return T;

end P;

Which is a correct completion of F?

A. return (3, 'c');

B. Two := (2, 'b');
return Two;

C. return One;

D. return Zero;

A contains an "in-place" return. The rest all rely on other objects,
which would require an (illegal) copy.

183 / 568

Limited Types
Creating Values

Quiz

package P is
type T is limited record

F1 : Integer;
F2 : Character;

end record;
Zero : T := (0, ' ');
One : constant T := (1, 'a');
Two : T;
function F return T;

end P;

Which is a correct completion of F?

A. return (3, 'c');

B. Two := (2, 'b');
return Two;

C. return One;

D. return Zero;

A contains an "in-place" return. The rest all rely on other objects,
which would require an (illegal) copy.

183 / 568

Limited Types
Extended Return Statements

Extended Return Statements

184 / 568

Limited Types
Extended Return Statements

Function Extended Return Statements
Ada 2005

Extended return

Result is expressed as an object

More expressive than aggregates

Handling of unconstrained types

Syntax (simplified):

return identifier : subtype [:= expression];

return identifier : subtype
[do

sequence_of_statements ...
end return];

185 / 568

Limited Types
Extended Return Statements

Extended Return Statements Example
Ada 2005

-- Implicitly limited array
type Spin_Lock_Array (Positive range <>) of Spin_Lock;

function F return Spin_Lock_Array is
begin

return Result : Spin_Lock_Array (1 .. 10) do
...

end return;
end F;

186 / 568

Limited Types
Extended Return Statements

Expression / Statements Are Optional
Ada 2005

Without sequence (returns default if any)

function F return Spin_Lock is
begin

return Result : Spin_Lock;
end F;

With sequence

function F return Spin_Lock is
X : Interfaces.Unsigned_8;

begin
-- compute X ...
return Result : Spin_Lock := (Flag => X);

end F;
187 / 568

Limited Types
Extended Return Statements

Statements Restrictions
Ada 2005

No nested extended return

Simple return statement allowed
Without expression
Returns the value of the declared object immediately

function F return Spin_Lock is
begin

return Result : Spin_Lock do
if Set_Flag then

Result.Flag := 1;
return; -- returns 'Result'

end if;
Result.Flag := 0;

end return; -- Implicit return
end F;

188 / 568

Limited Types
Extended Return Statements

Quiz
type T is limited record

I : Integer;
end record;

function F return T is
begin

-- F body...
end F;

O : T := F;

Which declaration(s) of F is(are) valid?

A. return Return : T := (I => 1)

B. return Result : T

C. return Value := (others => 1)

D. return R : T do
R.I := 1;

end return;

A. Using return reserved keyword
B. OK, default value
C. Extended return must specify type
D. OK

189 / 568

Limited Types
Extended Return Statements

Quiz
type T is limited record

I : Integer;
end record;

function F return T is
begin

-- F body...
end F;

O : T := F;

Which declaration(s) of F is(are) valid?

A. return Return : T := (I => 1)

B. return Result : T

C. return Value := (others => 1)

D. return R : T do
R.I := 1;

end return;

A. Using return reserved keyword
B. OK, default value
C. Extended return must specify type
D. OK

189 / 568

Limited Types
Combining Limited and Private Views

Combining Limited and Private Views

190 / 568

Limited Types
Combining Limited and Private Views

Limited Private Types

A combination of limited and private views
No client compile-time visibility to representation
No client assignment or predefined equality

The typical design idiom for limited types

Syntax
Additional reserved word limited added to private type
declaration

type defining_identifier is limited private;

191 / 568

Limited Types
Combining Limited and Private Views

Limited Private Type Rationale (1)

package Multiprocessor_Mutex is
-- copying is prevented
type Spin_Lock is limited record

-- but users can see this!
Flag : Interfaces.Unsigned_8;

end record;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);
pragma Inline (Lock, Unlock);

end Multiprocessor_Mutex;

192 / 568

Limited Types
Combining Limited and Private Views

Limited Private Type Rationale (2)

package MultiProcessor_Mutex is
-- copying is prevented AND users cannot see contents
type Spin_Lock is limited private;
procedure Lock (The_Lock : in out Spin_Lock);
procedure Unlock (The_Lock : in out Spin_Lock);
pragma Inline (Lock, Unlock);

private
type Spin_Lock is ...

end MultiProcessor_Mutex;

193 / 568

Limited Types
Combining Limited and Private Views

Limited Private Type Completions

Clients have the partial view as limited and private
The full view completion can be any kind of type
Not required to be a record type just because the partial view is
limited

package P is
type Unique_ID_T is limited private;
...

private
type Unique_ID_T is range 1 .. 10;

end P;

194 / 568

Limited Types
Combining Limited and Private Views

Write-Only Register Example

package Write_Only is
type Byte is limited private;
type Word is limited private;
type Longword is limited private;
procedure Assign (Input : in Unsigned_8;

To : in out Byte);
procedure Assign (Input : in Unsigned_16;

To : in out Word);
procedure Assign (Input : in Unsigned_32;

To : in out Longword);
private

type Byte is new Unsigned_8;
type Word is new Unsigned_16;
type Longword is new Unsigned_32;

end Write_Only;
195 / 568

Limited Types
Combining Limited and Private Views

Explicitly Limited Completions

Completion in Full view includes word limited
Optional
Requires a record type as the completion

package MultiProcessor_Mutex is
type Spin_Lock is limited private;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

private
type Spin_Lock is limited -- full view is limited as well

record
Flag : Interfaces.Unsigned_8;

end record;
end MultiProcessor_Mutex;

196 / 568

Limited Types
Combining Limited and Private Views

Effects of Explicitly Limited Completions

Allows no internal copying too
Forces parameters to be passed by-reference

package MultiProcessor_Mutex is
type Spin_Lock is limited private;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

private
type Spin_Lock is limited record

Flag : Interfaces.Unsigned_8;
end record;

end MultiProcessor_Mutex;

197 / 568

Limited Types
Combining Limited and Private Views

Automatically Limited Full View

When other limited types are used in the representation
Recall composite types containing limited types are limited too

package Foo is
type Legal is limited private;
type Also_Legal is limited private;
type Not_Legal is private;
type Also_Not_Legal is private;

private
type Legal is record

S : A_Limited_Type;
end record;
type Also_Legal is limited record

S : A_Limited_Type;
end record;
type Not_Legal is limited record

S : A_Limited_Type;
end record;
type Also_Not_Legal is record

S : A_Limited_Type;
end record;

end Foo;
198 / 568

Limited Types
Combining Limited and Private Views

Quiz
package P is

type Priv is private;
private

type Lim is limited null record;
-- Complete Here

end P;

Which of the following piece(s) of code is(are) legal?

A. type Priv is record
E : Lim;

end record;

B. type Priv is record
E : Float;

end record;

C. type A is array (1 .. 10) of Lim;
type Priv is record

F : A;
end record;

D. type Priv is record
Field : Integer := Lim'Size;

end record;

A. E has limited type, partial view of Priv must be
limited private

B. F has limited type, partial view of Priv must be
limited private

199 / 568

Limited Types
Combining Limited and Private Views

Quiz
package P is

type Priv is private;
private

type Lim is limited null record;
-- Complete Here

end P;

Which of the following piece(s) of code is(are) legal?

A. type Priv is record
E : Lim;

end record;

B. type Priv is record
E : Float;

end record;

C. type A is array (1 .. 10) of Lim;
type Priv is record

F : A;
end record;

D. type Priv is record
Field : Integer := Lim'Size;

end record;

A. E has limited type, partial view of Priv must be
limited private

B. F has limited type, partial view of Priv must be
limited private

199 / 568

Limited Types
Combining Limited and Private Views

Quiz

package P is
type L1_T is limited private;
type L2_T is limited private;
type P1_T is private;
type P2_T is private;

private
type L1_T is limited record

Field : Integer;
end record;
type L2_T is record

Field : Integer;
end record;
type P1_T is limited record

Field : L1_T;
end record;
type P2_T is record

Field : L2_T;
end record;

end P;

What will happen when the above code
is compiled?
A. Type P1_T will generate a

compile error
B. Type P2_T will generate a

compile error
C. Both type P1_T and type P2_T

will generate compile errors
D. The code will compile successfully

The full definition of type P1_T adds
additional restrictions, which is not
allowed. Although P2_T contains a
component whose visible view is
limited, the internal view is not
limited so P2_T is not limited.

200 / 568

Limited Types
Combining Limited and Private Views

Quiz

package P is
type L1_T is limited private;
type L2_T is limited private;
type P1_T is private;
type P2_T is private;

private
type L1_T is limited record

Field : Integer;
end record;
type L2_T is record

Field : Integer;
end record;
type P1_T is limited record

Field : L1_T;
end record;
type P2_T is record

Field : L2_T;
end record;

end P;

What will happen when the above code
is compiled?
A. Type P1_T will generate a

compile error
B. Type P2_T will generate a

compile error
C. Both type P1_T and type P2_T

will generate compile errors
D. The code will compile successfully

The full definition of type P1_T adds
additional restrictions, which is not
allowed. Although P2_T contains a
component whose visible view is
limited, the internal view is not
limited so P2_T is not limited.

200 / 568

Limited Types
Lab

Lab

201 / 568

Limited Types
Lab

Limited Types Lab

Requirements
Create an employee record data type consisting of a name, ID,
hourly pay rate

ID should be a unique value generated for every record

Create a timecard record data type consisting of an employee
record, hours worked, and total pay

Create a main program that generates timecards and prints their
contents

Hints
If the ID is unique, that means we cannot copy employee records

202 / 568

Limited Types
Lab

Limited Types Lab Solution - Employee Data (Spec)
1 package Employee_Data is
2

3 subtype Name_T is String (1 .. 6);
4 type Employee_T is limited private;
5 type Hourly_Rate_T is delta 0.01 digits 6 range 0.0 .. 999.99;
6 type Id_T is range 999 .. 9_999;
7

8 function Create (Name : Name_T;
9 Rate : Hourly_Rate_T := 0.0)

10 return Employee_T;
11 function Id (Employee : Employee_T)
12 return Id_T;
13 function Name (Employee : Employee_T)
14 return Name_T;
15 function Rate (Employee : Employee_T)
16 return Hourly_Rate_T;
17

18 private
19 type Employee_T is limited record
20 Name : Name_T := (others => ' ');
21 Rate : Hourly_Rate_T := 0.0;
22 Id : Id_T := Id_T'First;
23 end record;
24 end Employee_Data;

203 / 568

Limited Types
Lab

Limited Types Lab Solution - Timecards (Spec)
1 with Employee_Data;
2 package Timecards is
3

4 type Hours_Worked_T is digits 3 range 0.0 .. 24.0;
5 type Pay_T is digits 6;
6 type Timecard_T is limited private;
7

8 function Create (Name : Employee_Data.Name_T;
9 Rate : Employee_Data.Hourly_Rate_T;

10 Hours : Hours_Worked_T)
11 return Timecard_T;
12

13 function Id (Timecard : Timecard_T)
14 return Employee_Data.Id_T;
15 function Name (Timecard : Timecard_T)
16 return Employee_Data.Name_T;
17 function Rate (Timecard : Timecard_T)
18 return Employee_Data.Hourly_Rate_T;
19 function Pay (Timecard : Timecard_T)
20 return Pay_T;
21 function Image (Timecard : Timecard_T)
22 return String;
23

24 private
25 type Timecard_T is limited record
26 Employee : Employee_Data.Employee_T;
27 Hours_Worked : Hours_Worked_T := 0.0;
28 Pay : Pay_T := 0.0;
29 end record;
30 end Timecards;

204 / 568

Limited Types
Lab

Limited Types Lab Solution - Employee Data (Body)
1 package body Employee_Data is
2

3 Last_Used_Id : Id_T := Id_T'First;
4

5 function Create (Name : Name_T;
6 Rate : Hourly_Rate_T := 0.0)
7 return Employee_T is
8 begin
9 return Ret_Val : Employee_T do

10 Last_Used_Id := Id_T'Succ (Last_Used_Id);
11 Ret_Val.Name := Name;
12 Ret_Val.Rate := Rate;
13 Ret_Val.Id := Last_Used_Id;
14 end return;
15 end Create;
16

17 function Id (Employee : Employee_T) return Id_T is
18 (Employee.Id);
19 function Name (Employee : Employee_T) return Name_T is
20 (Employee.Name);
21 function Rate (Employee : Employee_T) return Hourly_Rate_T is
22 (Employee.Rate);
23

24 end Employee_Data;
205 / 568

Limited Types
Lab

Limited Types Lab Solution - Timecards (Body)
1 package body Timecards is
2

3 function Create (Name : Employee_Data.Name_T;
4 Rate : Employee_Data.Hourly_Rate_T;
5 Hours : Hours_Worked_T)
6 return Timecard_T is
7 begin
8 return
9 (Employee => Employee_Data.Create (Name, Rate),

10 Hours_Worked => Hours,
11 Pay => Pay_T (Hours) * Pay_T (Rate));
12 end Create;
13

14 function Id (Timecard : Timecard_T) return Employee_Data.Id_T is
15 (Employee_Data.Id (Timecard.Employee));
16 function Name (Timecard : Timecard_T) return Employee_Data.Name_T is
17 (Employee_Data.Name (Timecard.Employee));
18 function Rate (Timecard : Timecard_T) return Employee_Data.Hourly_Rate_T is
19 (Employee_Data.Rate (Timecard.Employee));
20 function Pay (Timecard : Timecard_T) return Pay_T is
21 (Timecard.Pay);
22

23 function Image
24 (Timecard : Timecard_T)
25 return String is
26 Name_S : constant String := Name (Timecard);
27 Id_S : constant String :=
28 Employee_Data.Id_T'Image (Employee_Data.Id (Timecard.Employee));
29 Rate_S : constant String :=
30 Employee_Data.Hourly_Rate_T'Image
31 (Employee_Data.Rate (Timecard.Employee));
32 Hours_S : constant String :=
33 Hours_Worked_T'Image (Timecard.Hours_Worked);
34 Pay_S : constant String := Pay_T'Image (Timecard.Pay);
35 begin
36 return
37 Name_S & " (" & Id_S & ") => " & Hours_S & " hours * " & Rate_S &
38 "/hour = " & Pay_S;
39 end Image;
40 end Timecards;

206 / 568

Limited Types
Lab

Limited Types Lab Solution - Main

1 with Ada.Text_IO; use Ada.Text_IO;
2 with Timecards;
3 procedure Main is
4

5 One : constant Timecards.Timecard_T := Timecards.Create
6 (Name => "Fred ",
7 Rate => 1.1,
8 Hours => 2.2);
9 Two : constant Timecards.Timecard_T := Timecards.Create

10 (Name => "Barney",
11 Rate => 3.3,
12 Hours => 4.4);
13

14 begin
15 Put_Line (Timecards.Image (One));
16 Put_Line (Timecards.Image (Two));
17 end Main;

207 / 568

Limited Types
Summary

Summary

208 / 568

Limited Types
Summary

Summary

Limited view protects against improper operations
Incorrect equality semantics
Copying via assignment

Enclosing composite types are limited too
Even if they don’t use keyword limited themselves

Limited types are always passed by-reference

Extended return statements work for any type
Ada 2005 and later

Don’t make types limited unless necessary
Users generally expect assignment to be available

209 / 568

Private Types

Private Types

210 / 568

Private Types
Introduction

Introduction

211 / 568

Private Types
Introduction

Introduction

Why does fixing bugs introduce new ones?

Control over visibility is a primary factor
Changes to an abstraction’s internals shouldn’t break users
Including type representation

Need tool-enforced rules to isolate dependencies
Between implementations of abstractions and their users
In other words, "information hiding"

212 / 568

Private Types
Introduction

Information Hiding

A design technique in which
implementation artifacts are
made inaccessible to users
Based on control of visibility
to those artifacts

A product of
"encapsulation"
Language support provides
rigor

Concept is "software
integrated circuits"

213 / 568

Private Types
Introduction

Views

Specify legal manipulation for objects of a type
Types are characterized by permitted values and operations

Some views are implicit in language
Mode in parameters have a view disallowing assignment

Views may be explicitly specified
Disallowing access to representation
Disallowing assignment

Purpose: control usage in accordance with design
Adherence to interface
Abstract Data Types

214 / 568

Private Types
Implementing Abstract Data Types via Views

Implementing Abstract Data Types via Views

215 / 568

Private Types
Implementing Abstract Data Types via Views

Implementing Abstract Data Types

A combination of constructs in Ada

Not based on single "class" construct, for example

Constituent parts
Packages, with "private part" of package spec
"Private types" declared in packages
Subprograms declared within those packages

216 / 568

Private Types
Implementing Abstract Data Types via Views

Package Visible and Private Parts for Views

Declarations in visible part are exported to users

Declarations in private part are hidden from users
No compilable references to type’s actual representation

package name is
... exported declarations of types, variables, subprograms ...
private
... hidden declarations of types, variables, subprograms ...
end name;

217 / 568

Private Types
Implementing Abstract Data Types via Views

Declaring Private Types for Views
Partial syntax

type defining_identifier is private;

Private type declaration must occur in visible part

Partial view

Only partial information on the type

Users can reference the type name

But cannot create an object of that type until after the full type
declaration

Full type declaration must appear in private part

Completion is the Full view
Never visible to users
Not visible to designer until reached

package Control is
type Valve is private;
procedure Open (V : in out Valve);
procedure Close (V : in out Valve);
...

private
type Valve is ...

end Control;
218 / 568

Private Types
Implementing Abstract Data Types via Views

Partial and Full Views of Types

Private type declaration defines a partial view

The type name is visible
Only designer’s operations and some predefined operations
No references to full type representation

Full type declaration defines the full view
Fully defined as a record type, scalar, imported type, etc...
Just an ordinary type within the package

Operations available depend upon one’s view

219 / 568

Private Types
Implementing Abstract Data Types via Views

Software Engineering Principles

Encapsulation and abstraction enforced by views
Compiler enforces view effects

Same protection as hiding in a package body
Recall "Abstract Data Machines" idiom

Additional flexibility of types
Unlimited number of objects possible
Passed as parameters
Components of array and record types
Dynamically allocated
et cetera

220 / 568

Private Types
Implementing Abstract Data Types via Views

Users Declare Objects of the Type

Unlike "abstract data machine" approach

Hence must specify which stack to manipulate
Via parameter

X, Y, Z : Stack;
...
Push (42, X);
...
if Empty (Y) then
...
Pop (Counter, Z);

221 / 568

Private Types
Implementing Abstract Data Types via Views

Compile-Time Visibility Protection

No type representation details available outside the package

Therefore users cannot compile code referencing representation

This does not compile

with Bounded_Stacks;
procedure User is

S : Bounded_Stacks.Stack;
begin

S.Top := 1; -- Top is not visible
end User;

222 / 568

Private Types
Implementing Abstract Data Types via Views

Benefits of Views

Users depend only on visible part of specification
Impossible for users to compile references to private part
Physically seeing private part in source code is irrelevant

Changes to implementation don’t affect users
No editing changes necessary for user code

Implementers can create bullet-proof abstractions
If a facility isn’t working, you know where to look

Fixing bugs is less likely to introduce new ones

223 / 568

Private Types
Implementing Abstract Data Types via Views

Quiz

package P is
type Private_T is private;

type Record_T is record

Which component is legal?

A. Field_A : Integer := Private_T'Pos
(Private_T'First);

B. Field_B : Private_T := null;

C. Field_C : Private_T := 0;

D. Field_D : Integer := Private_T'Size;

end record;

Explanations

A. Visible part does not know Private_T is discrete
B. Visible part does not know possible values for Private_T
C. Visible part does not know possible values for Private_T
D. Correct - type will have a known size at run-time

224 / 568

Private Types
Implementing Abstract Data Types via Views

Quiz

package P is
type Private_T is private;

type Record_T is record

Which component is legal?

A. Field_A : Integer := Private_T'Pos
(Private_T'First);

B. Field_B : Private_T := null;

C. Field_C : Private_T := 0;

D. Field_D : Integer := Private_T'Size;

end record;

Explanations

A. Visible part does not know Private_T is discrete
B. Visible part does not know possible values for Private_T
C. Visible part does not know possible values for Private_T
D. Correct - type will have a known size at run-time

224 / 568

Private Types
Private Part Construction

Private Part Construction

225 / 568

Private Types
Private Part Construction

Private Part Location

Must be in package specification, not body

Body usually compiled separately after declaration

Users can compile their code before the package body is compiled
or even written

Package definition

package Bounded_Stacks is
type Stack is private;
...

private
type Stack is ...

end Bounded_Stacks;

Package reference

with Bounded_Stacks;
procedure User is

S : Bounded_Stacks.Stack;
...
begin

...
end User;

226 / 568

Private Types
Private Part Construction

Private Part and Recompilation

Private part is part of the specification
Compiler needs info from private part for users’ code, e.g., storage
layouts for private-typed objects

Thus changes to private part require user recompilation

Some vendors avoid "unnecessary" recompilation
Comment additions or changes
Additions which nobody yet references

227 / 568

Private Types
Private Part Construction

Declarative Regions

Declarative region of the spec extends to the body
Anything declared there is visible from that point down
Thus anything declared in specification is visible in body

package Foo is
type Private_T is private;
procedure X (B : in out Private_T);

private
-- Y and Hidden_T are not visible to users
procedure Y (B : in out Private_T);
type Hidden_T is ...;
type Private_T is array (1 .. 3) of Hidden_T;

end Foo;

package body Foo is
-- Z is not visible to users
procedure Z (B : in out Private_T) is ...
procedure Y (B : in out Private_T) is ...
procedure X (B : in out Private_T) is ...

end Foo;
228 / 568

Private Types
Private Part Construction

Full Type Declaration

May be any type
Predefined or user-defined
Including references to
imported types

Contents of private part are
unrestricted

Anything a package
specification may contain
Types, subprograms,
variables, etc.

package P is
type T is private;
...

private
type Vector is array (1.. 10)

of Integer;
function Initial

return Vector;
type T is record

A, B : Vector := Initial;
end record;

end P;

229 / 568

Private Types
Private Part Construction

Deferred Constants

Visible constants of a hidden representation
Value is "deferred" to private part
Value must be provided in private part

Not just for private types, but usually so

package P is
type Set is private;
Null_Set : constant Set; -- exported name
...

private
type Index is range ...
type Set is array (Index) of Boolean;
Null_Set : constant Set := -- definition

(others => False);
end P;

230 / 568

Private Types
Private Part Construction

Quiz
package P is

type Private_T is private;
Object_A : Private_T;
procedure Proc (Param : in out Private_T);

private
type Private_T is new Integer;
Object_B : Private_T;

end package P;

package body P is
Object_C : Private_T;
procedure Proc (Param : in out Private_T) is null;

end P;

Which object definition is not legal?

A. Object_A
B. Object_B
C. Object_C
D. None of the above

An object cannot be declared until its type is fully declared. Object_A
could be declared constant, but then it would have to be finalized in
the private section.

231 / 568

Private Types
Private Part Construction

Quiz
package P is

type Private_T is private;
Object_A : Private_T;
procedure Proc (Param : in out Private_T);

private
type Private_T is new Integer;
Object_B : Private_T;

end package P;

package body P is
Object_C : Private_T;
procedure Proc (Param : in out Private_T) is null;

end P;

Which object definition is not legal?

A. Object_A
B. Object_B
C. Object_C
D. None of the above

An object cannot be declared until its type is fully declared. Object_A
could be declared constant, but then it would have to be finalized in
the private section.

231 / 568

Private Types
View Operations

View Operations

232 / 568

Private Types
View Operations

View Operations

A matter of inside versus outside the package
Inside the package the view is that of the designer
Outside the package the view is that of the user

User of package has Partial view
Operations exported by
package
Basic operations

Designer of package has Full view
Once completion is
reached
All operations based upon
full definition of type
Indexed components for
arrays
components for records
Type-specific attributes
Numeric manipulation for
numerics
et cetera

233 / 568

Private Types
View Operations

Designer View Sees Full Declaration

package Bounded_Stacks is
Capacity : constant := 100;
type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);
...

private
type Index is range 0 .. Capacity;
type Vector is array (Index range 1..Capacity) of Integer;
type Stack is record

Top : Integer;
...

end Bounded_Stacks;

234 / 568

Private Types
View Operations

Designer View Allows All Operations

package body Bounded_Stacks is
procedure Push (Item : in Integer;

Onto : in out Stack) is
begin

Onto.Top := Onto.Top + 1;
...

end Push;

procedure Pop (Item : out Integer;
From : in out Stack) is

begin
Onto.Top := Onto.Top - 1;
...

end Pop;
end Bounded_Stacks;

235 / 568

Private Types
View Operations

Users Have the Partial View

Since they are outside package
Basic operations
Exported subprograms

package Bounded_Stacks is
type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);
procedure Pop (Item : out Integer; From : in out Stack);
function Empty (S : Stack) return Boolean;
procedure Clear (S : in out Stack);
function Top (S : Stack) return Integer;

private
...

end Bounded_Stacks;

236 / 568

Private Types
View Operations

User View’s Activities

Declarations of objects
Constants and variables
Must call designer’s functions for values

C : Complex.Number := Complex.I;

Assignment, equality and inequality, conversions

Designer’s declared subprograms

User-declared subprograms
Using parameters of the exported private type
Dependent on designer’s operations

237 / 568

Private Types
View Operations

User View Formal Parameters

Dependent on designer’s operations for manipulation
Cannot reference type’s representation

Can have default expressions of private types

-- external implementation of "Top"
procedure Get_Top (

The_Stack : in out Bounded_Stacks.Stack;
Value : out Integer) is

Local : Integer;
begin

Bounded_Stacks.Pop (Local, The_Stack);
Value := Local;
Bounded_Stacks.Push (Local, The_Stack);

end Get_Top;
238 / 568

Private Types
View Operations

Limited Private

limited is itself a view
Cannot perform assignment, copy, or equality

limited private can restrain user’s operation
Actual type does not need to be limited

package UART is
type Instance is limited private;
function Get_Next_Available return Instance;

[...]

declare
A, B := UART.Get_Next_Available;

begin
if A = B -- Illegal
then

A := B; -- Illegal
end if;

239 / 568

Private Types
When To Use or Avoid Private Types

When To Use or Avoid Private Types

240 / 568

Private Types
When To Use or Avoid Private Types

When To Use Private Types

Implementation may change
Allows users to be unaffected by changes in representation

Normally available operations do not "make sense"
Normally available based upon type’s representation
Determined by intent of ADT

A : Valve;
B : Valve;
C : Valve;
...
C := A + B; -- addition not meaningful

Users have no "need to know"
Based upon expected usage

241 / 568

Private Types
When To Use or Avoid Private Types

When To Avoid Private Types

If the abstraction is too simple to justify the effort
But that’s the thinking that led to Y2K rework

If normal user interface requires representation-specific operations
that cannot be provided

Those that cannot be redefined by programmers

Would otherwise be hidden by a private type

If Vector is private, indexing of elements is annoying

type Vector is array (Positive range <>) of Float;
V : Vector (1 .. 3);
...
V (1) := Alpha;

242 / 568

Private Types
Idioms

Idioms

243 / 568

Private Types
Idioms

Effects of Hiding Type Representation

Makes users independent of representation
Changes cannot require users to alter their code
Software engineering is all about money...

Makes users dependent upon exported operations
Because operations requiring representation info are not available to
users

Expression of values (aggregates, etc.)
Assignment for limited types

Common idioms are a result
Constructor
Selector

244 / 568

Private Types
Idioms

Constructors

Create designer’s objects from user’s values
Usually functions

package Complex is
type Number is private;
function Make (Real_Part : Float; Imaginary : Float) return Number;

private
type Number is record ...

end Complex;

package body Complex is
function Make (Real_Part : Float; Imaginary_Part : Float)

return Number is ...
end Complex:
...
A : Complex.Number :=

Complex.Make (Real_Part => 2.5, Imaginary => 1.0);
245 / 568

Private Types
Idioms

Procedures As Constructors

Spec

package Complex is
type Number is private;
procedure Make (This : out Number; Real_Part, Imaginary : in Float) ;
...

private
type Number is record

Real_Part, Imaginary : Float;
end record;

end Complex;

Body (partial)

package body Complex is
procedure Make (This : out Number;

Real_Part, Imaginary : in Float) is
begin

This.Real_Part := Real_Part;
This.Imaginary := Imaginary;

end Make;
...

246 / 568

Private Types
Idioms

Selectors
Decompose designer’s objects into user’s values
Usually functions

package Complex is
type Number is private;
function Real_Part (This: Number) return Float;
...

private
type Number is record

Real_Part, Imaginary : Float;
end record;

end Complex;

package body Complex is
function Real_Part (This : Number) return Float is
begin

return This.Real_Part;
end Real_Part;
...

end Complex;
...
Phase : Complex.Number := Complex.Make (10.0, 5.5);
Object : Float := Complex.Real_Part (Phase);

247 / 568

Private Types
Lab

Lab

248 / 568

Private Types
Lab

Private Types Lab

Requirements
Implement a program to create a map such that

Map key is a description of a flag
Map element content is the set of colors in the flag

Operations on the map should include: Add, Remove, Modify, Get,
Exists, Image

Main program should print out the entire map before exiting

Hints
Should implement a map ADT (to keep track of the flags)

This map will contain all the flags and their color descriptions

Should implement a set ADT (to keep track of the colors)

This set will be the description of the map element

Each ADT should be its own package

At a minimum, the map and set type should be private
249 / 568

Private Types
Lab

Private Types Lab Solution - Color Set
1 package Colors is
2 type Color_T is (Red, Yellow, Green, Blue, Black);
3 type Color_Set_T is private;
4

5 Empty_Set : constant Color_Set_T;
6

7 procedure Add (Set : in out Color_Set_T;
8 Color : Color_T);
9 procedure Remove (Set : in out Color_Set_T;

10 Color : Color_T);
11 function Image (Set : Color_Set_T) return String;
12 private
13 type Color_Set_Array_T is array (Color_T) of Boolean;
14 type Color_Set_T is record
15 Values : Color_Set_Array_T := (others => False);
16 end record;
17 Empty_Set : constant Color_Set_T := (Values => (others => False));
18 end Colors;
19

20 package body Colors is
21 procedure Add (Set : in out Color_Set_T;
22 Color : Color_T) is
23 begin
24 Set.Values (Color) := True;
25 end Add;
26 procedure Remove (Set : in out Color_Set_T;
27 Color : Color_T) is
28 begin
29 Set.Values (Color) := False;
30 end Remove;
31

32 function Image (Set : Color_Set_T;
33 First : Color_T;
34 Last : Color_T)
35 return String is
36 Str : constant String := (if Set.Values (First) then Color_T'Image (First) else "");
37 begin
38 if First = Last then
39 return Str;
40 else
41 return Str & " " & Image (Set, Color_T'Succ (First), Last);
42 end if;
43 end Image;
44 function Image (Set : Color_Set_T) return String is
45 (Image (Set, Color_T'First, Color_T'Last));
46 end Colors;

250 / 568

Private Types
Lab

Private Types Lab Solution - Flag Map (Spec)
1 with Colors;
2 package Flags is
3 type Key_T is (USA, England, France, Italy);
4 type Map_Element_T is private;
5 type Map_T is private;
6

7 procedure Add (Map : in out Map_T;
8 Key : Key_T;
9 Description : Colors.Color_Set_T;

10 Success : out Boolean);
11 procedure Remove (Map : in out Map_T;
12 Key : Key_T;
13 Success : out Boolean);
14 procedure Modify (Map : in out Map_T;
15 Key : Key_T;
16 Description : Colors.Color_Set_T;
17 Success : out Boolean);
18

19 function Exists (Map : Map_T; Key : Key_T) return Boolean;
20 function Get (Map : Map_T; Key : Key_T) return Map_Element_T;
21 function Image (Item : Map_Element_T) return String;
22 function Image (Flag : Map_T) return String;
23 private
24 type Map_Element_T is record
25 Key : Key_T := Key_T'First;
26 Description : Colors.Color_Set_T := Colors.Empty_Set;
27 end record;
28 type Map_Array_T is array (1 .. 100) of Map_Element_T;
29 type Map_T is record
30 Values : Map_Array_T;
31 Length : Natural := 0;
32 end record;
33 end Flags;

251 / 568

Private Types
Lab

Private Types Lab Solution - Flag Map (Body - 1 of 2)
3 procedure Add (Map : in out Map_T;
4 Key : Key_T;
5 Description : Colors.Color_Set_T;
6 Success : out Boolean) is
7 begin
8 Success := (for all Item of Map.Values
9 (1 .. Map.Length) => Item.Key /= Key);

10 if Success then
11 declare
12 New_Item : constant Map_Element_T :=
13 (Key => Key, Description => Description);
14 begin
15 Map.Length := Map.Length + 1;
16 Map.Values (Map.Length) := New_Item;
17 end;
18 end if;
19 end Add;
20 procedure Remove (Map : in out Map_T;
21 Key : Key_T;
22 Success : out Boolean) is
23 begin
24 Success := False;
25 for I in 1 .. Map.Length loop
26 if Map.Values (I).Key = Key then
27 Map.Values
28 (I .. Map.Length - 1) := Map.Values
29 (I + 1 .. Map.Length);
30 Map.Length := Map.Length - 1;
31 Success := True;
32 exit;
33 end if;
34 end loop;
35 end Remove;

252 / 568

Private Types
Lab

Private Types Lab Solution - Flag Map (Body - 2 of 2)
35 procedure Modify (Map : in out Map_T;
36 Key : Key_T;
37 Description : Colors.Color_Set_T;
38 Success : out Boolean) is
39 begin
40 Success := False;
41 for I in 1 .. Map.Length loop
42 if Map.Values (I).Key = Key then
43 Map.Values (I).Description := Description;
44 Success := True;
45 exit;
46 end if;
47 end loop;
48 end Modify;
49 function Exists (Map : Map_T; Key : Key_T) return Boolean is
50 (for some Item of Map.Values (1 .. Map.Length) => Item.Key = Key);
51 function Get (Map : Map_T; Key : Key_T) return Map_Element_T is
52 Ret_Val : Map_Element_T;
53 begin
54 for I in 1 .. Map.Length loop
55 if Map.Values (I).Key = Key then
56 Ret_Val := Map.Values (I);
57 exit;
58 end if;
59 end loop;
60 return Ret_Val;
61 end Get;
62 function Image (Item : Map_Element_T) return String is
63 (Key_T'Image (Item.Key) & " => " & Colors.Image (Item.Description));
64 function Image (Flag : Map_T) return String is
65 Ret_Val : String (1 .. 1_000);
66 Next : Integer := Ret_Val'First;
67 begin
68 for Item of Flag.Values (1 .. Flag.Length) loop
69 declare
70 Str : constant String := Image (Item);
71 begin
72 Ret_Val (Next .. Next + Str'Length) := Image (Item) & ASCII.LF;
73 Next := Next + Str'Length + 1;
74 end;
75 end loop;
76 return Ret_Val (1 .. Next - 1);
77 end Image;

253 / 568

Private Types
Lab

Private Types Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors;
3 with Flags;
4 with Input;
5 procedure Main is
6 Map : Flags.Map_T;
7 begin
8

9 loop
10 Put ("Enter country name (");
11 for Key in Flags.Key_T loop
12 Put (Flags.Key_T'Image (Key) & " ");
13 end loop;
14 Put ("): ");
15 declare
16 Str : constant String := Get_Line;
17 Key : Flags.Key_T;
18 Description : Colors.Color_Set_T;
19 Success : Boolean;
20 begin
21 exit when Str'Length = 0;
22 Key := Flags.Key_T'Value (Str);
23 Description := Input.Get;
24 if Flags.Exists (Map, Key) then
25 Flags.Modify (Map, Key, Description, Success);
26 else
27 Flags.Add (Map, Key, Description, Success);
28 end if;
29 end;
30 end loop;
31

32 Put_Line (Flags.Image (Map));
33 end Main;

254 / 568

Private Types
Summary

Summary

255 / 568

Private Types
Summary

Summary

Tool-enforced support for Abstract Data Types
Same protection as Abstract Data Machine idiom
Capabilities and flexibility of types

May also be limited

Thus additionally no assignment or predefined equality
More on this later

Common interface design idioms have arisen
Resulting from representation independence

Assume private types as initial design choice
Change is inevitable

256 / 568

Access Types

Access Types

257 / 568

Access Types
Introduction

Introduction

258 / 568

Access Types
Introduction

Access Types Design

Memory-addressed objects are called access types
Objects are associated to pools of memory

With different allocation / deallocation policies
Access objects are guaranteed to always be meaningful

In the absence of Unchecked_Deallocation
And if pool-specific

Ada
type Integer_Pool_Access

is access Integer;
P_A : Integer_Pool_Access

:= new Integer;

type Integer_General_Access
is access all Integer;

G : aliased Integer;
G_A : Integer_General_Access := G'access;

C++
int * P_C = malloc (sizeof (int));
int * P_CPP = new int;
int * G_C = &Some_Int;

.
259 / 568

Access Types
Introduction

Access Types Can Be Dangerous

Multiple memory issues
Leaks / corruptions

Introduces potential random failures complicated to analyze

Increase the complexity of the data structures

May decrease the performances of the application
Dereferences are slightly more expensive than direct access
Allocations are a lot more expensive than stacking objects

Ada avoids using accesses as much as possible
Arrays are not pointers
Parameters are implicitly passed by reference

Only use them when needed
260 / 568

Access Types
Introduction

Stack vs Heap

I : Integer := 0;
J : String := "Some Long String";

I : Access_Int := new Integer'(0);
J : Access_Str := new String'("Some Long String");

261 / 568

Access Types
Access Types

Access Types

262 / 568

Access Types
Access Types

Declaration Location

Can be at library level

package P is
type String_Access is access String;

end P;

Can be nested in a procedure

package body P is
procedure Proc is

type String_Access is access String;
begin

...
end Proc;

end P;

Nesting adds non-trivial issues
Creates a nested pool with a nested accessibility
Don’t do that unless you know what you are doing! (see later)

263 / 568

Access Types
Access Types

Null Values

A pointer that does not point to any actual data has a null value
Access types have a default value of null
null can be used in assignments and comparisons

declare
type Acc is access all Integer;
V : Acc;

begin
if V = null then

-- will go here
end if
V := new Integer'(0);
V := null; -- semantically correct, but memory leak

264 / 568

Access Types
Access Types

Access Types and Primitives

Subprogram using an access type are primitive of the access type
Not the type of the accessed object

type A_T is access all T;
procedure Proc (V : A_T); -- Primitive of A_T, not T

Primitive of the type can be created with the access mode
Anonymous access type

procedure Proc (V : access T); -- Primitive of T

265 / 568

Access Types
Access Types

Dereferencing Access Types

.all does the access dereference
Lets you access the object pointed to by the pointer

.all is optional for
Access on a component of an array
Access on a component of a record

266 / 568

Access Types
Access Types

Dereference Examples

type R is record
F1, F2 : Integer;

end record;
type A_Int is access Integer;
type A_String is access all String;
type A_R is access R;
V_Int : A_Int := new Integer;
V_String : A_String := new String'("abc");
V_R : A_R := new R;

V_Int.all := 0;
V_String.all := "cde";
V_String (1) := 'z'; -- similar to V_String.all (1) := 'z';
V_R.all := (0, 0);
V_R.F1 := 1; -- similar to V_R.all.F1 := 1;

267 / 568

Access Types
Pool-Specific Access Types

Pool-Specific Access Types

268 / 568

Access Types
Pool-Specific Access Types

Pool-Specific Access Type

An access type is a type

type T is [...]
type T_Access is access T;
V : T_Access := new T;

Conversion is not possible between pool-specific access types

269 / 568

Access Types
Pool-Specific Access Types

Allocations

Objects are created with the new reserved word

The created object must be constrained
The constraint is given during the allocation

V : String_Access := new String (1 .. 10);

The object can be created by copying an existing object - using a
qualifier

V : String_Access := new String'("This is a String");

270 / 568

Access Types
Pool-Specific Access Types

Deallocations

Deallocations are unsafe
Multiple deallocations problems
Memory corruptions
Access to deallocated objects

As soon as you use them, you lose the safety of your access

But sometimes, you have to do what you have to do ...
There’s no simple way of doing it
Ada provides Ada.Unchecked_Deallocation
Has to be instantiated (it’s a generic)
Must work on an object, reset to null afterwards

271 / 568

Access Types
Pool-Specific Access Types

Deallocation Example

-- generic used to deallocate memory
with Ada.Unchecked_Deallocation;
procedure P is

type An_Access is access A_Type;
-- create instances of deallocation function
-- (object type, access type)
procedure Free is new Ada.Unchecked_Deallocation

(A_Type, An_Access);
V : An_Access := new A_Type;

begin
Free (V);
-- V is now null

end P;

272 / 568

Access Types
General Access Types

General Access Types

273 / 568

Access Types
General Access Types

General Access Types

Can point to any pool (including stack)

type T is [...]
type T_Access is access all T;
V : T_Access := new T;

Still distinct type

Conversions are possible

type T_Access_2 is access all T;
V2 : T_Access_2 := T_Access_2 (V); -- legal

274 / 568

Access Types
General Access Types

Referencing The Stack

By default, stack-allocated objects cannot be referenced - and can
even be optimized into a register by the compiler

aliased declares an object to be referenceable through an access
value

V : aliased Integer;

'Access attribute gives a reference to the object

A : Int_Access := V'Access;

'Unchecked_Access does it without checks

275 / 568

Access Types
General Access Types

Aliased Objects Examples

type Acc is access all Integer;
V, G : Acc;
I : aliased Integer;
...
V := I'Access;
V.all := 5; -- Same a I := 5
...
procedure P1 is

I : aliased Integer;
begin

G := I'Unchecked_Access;
P2;

end P1;

procedure P2 is
begin

-- OK when P2 called from P1.
-- What if P2 is called from elsewhere?
G.all := 5;

end P2;
276 / 568

Access Types
General Access Types

Quiz

type One_T is access all Integer;
type Two_T is access Integer;

A : aliased Integer;
B : Integer;

One : One_T;
Two : Two_T;

Which assignment is legal?

A. One := B'Access;
B. One := A'Access;
C. Two := B'Access;
D. Two := A'Access;

'Access is only allowed for general access types (One_T). To use
'Access on an object, the object must be aliased.

277 / 568

Access Types
General Access Types

Quiz

type One_T is access all Integer;
type Two_T is access Integer;

A : aliased Integer;
B : Integer;

One : One_T;
Two : Two_T;

Which assignment is legal?

A. One := B'Access;
B. One := A'Access;
C. Two := B'Access;
D. Two := A'Access;

'Access is only allowed for general access types (One_T). To use
'Access on an object, the object must be aliased.

277 / 568

Access Types
Accessibility Checks

Accessibility Checks

278 / 568

Access Types
Accessibility Checks

Introduction to Accessibility Checks (1/2)
The depth of an object depends on its nesting within declarative
scopes

package body P is
-- Library level, depth 0
O0 : aliased Integer;
procedure Proc is

-- Library level subprogram, depth 1
type Acc1 is access all Integer;
procedure Nested is

-- Nested subprogram, enclosing + 1, here 2
O2 : aliased Integer;

Objects can be referenced by access types that are at same
depth or deeper

An access scope must be ≤ the object scope

type Acc1 (depth 1) can access O0 (depth 0) but not O2 (depth
2)

The compiler checks it statically
Removing checks is a workaround!

Note: Subprogram library units are at depth 1 and not 0
279 / 568

Access Types
Accessibility Checks

Introduction to Accessibility Checks (2/2)

package body P is
type T0 is access all Integer;
A0 : T0;
V0 : aliased Integer;
procedure Proc is

type T1 is access all Integer;
A1 : T1;
V1 : aliased Integer;

begin
A0 := V0'Access;
A0 := V1'Access; -- illegal
A0 := V1'Unchecked_Access;
A1 := V0'Access;
A1 := V1'Access;
A1 := T1 (A0);
A1 := new Integer;
A0 := T0 (A1); -- illegal

end Proc;
end P;

To avoid having to face these issues, avoid nested access types
280 / 568

Access Types
Accessibility Checks

Getting Around Accessibility Checks

Sometimes it is OK to use unsafe accesses to data

'Unchecked_Access allows access to a variable of an
incompatible accessibility level

Beware of potential problems!

type Acc is access all Integer;
G : Acc;
procedure P is

V : aliased Integer;
begin

G := V'Unchecked_Access;
...
Do_Something (G.all);
G := null; -- This is "reasonable"

end P;
281 / 568

Access Types
Accessibility Checks

Using Access Types For Recursive Structures

It is not possible to declare recursive structure
But there can be an access to the enclosing type

type Cell; -- partial declaration
type Cell_Access is access all Cell;
type Cell is record -- full declaration

Next : Cell_Access;
Some_Value : Integer;

end record;

282 / 568

Access Types
Accessibility Checks

Quiz

type Global_Access_T is access all Integer;
Global_Pointer : Global_Access_T;
Global_Object : aliased Integer;
procedure Proc_Access is

type Local_Access_T is access all Integer;
Local_Pointer : Local_Access_T;
Local_Object : aliased Integer;

begin

Which assignment is not legal?

A. Global_Pointer := Global_Object'Access;
B. Global_Pointer := Local_Object'Access;
C. Local_Pointer := Global_Object'Access;
D. Local_Pointer := Local_Object'Access;

Explanations

A. Pointer type has same depth as object
B. Pointer type is not allowed to have higher level than pointed-to

object
C. Pointer type has lower depth than pointed-to object
D. Pointer type has same depth as object

283 / 568

Access Types
Accessibility Checks

Quiz

type Global_Access_T is access all Integer;
Global_Pointer : Global_Access_T;
Global_Object : aliased Integer;
procedure Proc_Access is

type Local_Access_T is access all Integer;
Local_Pointer : Local_Access_T;
Local_Object : aliased Integer;

begin

Which assignment is not legal?

A. Global_Pointer := Global_Object'Access;
B. Global_Pointer := Local_Object'Access;
C. Local_Pointer := Global_Object'Access;
D. Local_Pointer := Local_Object'Access;

Explanations

A. Pointer type has same depth as object
B. Pointer type is not allowed to have higher level than pointed-to

object
C. Pointer type has lower depth than pointed-to object
D. Pointer type has same depth as object

283 / 568

Access Types
Memory Management

Memory Management

284 / 568

Access Types
Memory Management

Common Memory Problems (1/3)
Uninitialized pointers

declare
type An_Access is access all Integer;
V : An_Access;

begin
V.all := 5; -- constraint error

Double deallocation

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
Free (V2);

May raise Storage_Error if memory is still protected
(unallocated)

May deallocate a different object if memory has been reallocated

Putting that object in an inconsistent state

285 / 568

Access Types
Memory Management

Common Memory Problems (2/3)

Accessing deallocated memory

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
V2.all := 5;

May raise Storage_Error if memory is still protected
(unallocated)
May modify a different object if memory has been reallocated
(putting that object in an inconsistent state)

286 / 568

Access Types
Memory Management

Common Memory Problems (3/3)

Memory leaks

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V : An_Access := new Integer;

begin
V := null;

Silent problem

Might raise Storage_Error if too many leaks
Might slow down the program if too many page faults

287 / 568

Access Types
Memory Management

How To Fix Memory Problems?

There is no language-defined solution

Use the debugger!

Use additional tools
gnatmem monitor memory leaks
valgrind monitor all the dynamic memory
GNAT.Debug_Pools gives a pool for an access type, raising
explicit exception in case of invalid access
Others...

288 / 568

Access Types
Anonymous Access Types

Anonymous Access Types

289 / 568

Access Types
Anonymous Access Types

Anonymous Access Parameters

Parameter modes are of 4 types: in, out, in out, access

The access mode is called anonymous access type

Anonymous access is implicitly general (no need for all)

When used:
Any named access can be passed as parameter
Any anonymous access can be passed as parameter

type Acc is access all Integer;
Aliased_Integer : aliased Integer;
Access_Object : Acc := Aliased_Integer'access;
procedure P1 (Anon_Access : access Integer) is null;
procedure P2 (Access_Parameter : access Integer) is
begin

P1 (Aliased_Integer'access);
P1 (Access_Object);
P1 (Access_Parameter);

end P2;
290 / 568

Access Types
Anonymous Access Types

Anonymous Access Types

Other places can declare an anonymous access

function F return access Integer;
V : access Integer;
type T (V : access Integer) is record

C : access Integer;
end record;
type A is array (Integer range <>) of access Integer;

Do not use them without a clear understanding of accessibility
check rules

291 / 568

Access Types
Anonymous Access Types

Anonymous Access Constants

constant (instead of all) denotes an access type through which
the referenced object cannot be modified

type CAcc is access constant Integer;
G1 : aliased Integer;
G2 : aliased constant Integer := 123;
V1 : CAcc := G1'Access;
V2 : CAcc := G2'Access;
V1.all := 0; -- illegal

not null denotes an access type for which null value cannot be
accepted

Available in Ada 2005 and later

type NAcc is not null access Integer;
V : NAcc := null; -- illegal

Also works for subprogram parameters

procedure Bar (V1 : access constant Integer);
procedure Foo (V1 : not null access Integer); -- Ada 2005

292 / 568

Access Types
Lab

Lab

293 / 568

Access Types
Lab

Access Types Lab

Overview
Create a (really simple) Password Manager

The Password Manager should store the password and a counter
for each of some number of logins
As it’s a Password Manager, you want to modify the data directly
(not pass the information around)

Requirements
Create a Password Manager package

Create a record to store the password string and the counter
Create an array of these records indexed by the login identifier
The user should be able to retrieve a pointer to the record, either
for modification or for viewing

Main program should:

Set passwords and initial counter values for many logins
Print password and counter value for each login

Hint
Password is a string of varying length

Easiest way to do this is a pointer to a string that gets initialized to
the correct length

294 / 568

Access Types
Lab

Access Types Lab Solution - Password Manager
package Password_Manager is

type Login_T is (Email, Banking, Amazon, Streaming);
type Password_T is record

Count : Natural;
Password : access String;

end record;

type Modifiable_T is access all Password_T;
type Viewable_T is access constant Password_T;

function Update (Login : Login_T) return Modifiable_T;
function View (Login : Login_T) return Viewable_T;

end Password_Manager;

package body Password_Manager is

Passwords : array (Login_T) of aliased Password_T;

function Update (Login : Login_T) return Modifiable_T is
(Passwords (Login)'Access);

function View (Login : Login_T) return Viewable_T is
(Passwords (Login)'Access);

end Password_Manager;

295 / 568

Access Types
Lab

Access Types Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Password_Manager; use Password_Manager;
3 procedure Main is
4

5 procedure Update (Which : Password_Manager.Login_T;
6 Pw : String;
7 Count : Natural) is
8 begin
9 Update (Which).Password := new String'(Pw);

10 Update (Which).Count := Count;
11 end Update;
12

13 begin
14 Update (Email, "QWE!@#", 1);
15 Update (Banking, "asd123", 22);
16 Update (Amazon, "098poi", 333);
17 Update (Streaming, ")(*LKJ", 444);
18

19 for Login in Login_T'Range loop
20 Put_Line
21 (Login'Image & " => " & View (Login).Password.all &
22 View (Login).Count'Image);
23 end loop;
24 end Main;

296 / 568

Access Types
Summary

Summary

297 / 568

Access Types
Summary

Summary

Access types are the same as C/C++ pointers

There are usually better ways of memory management
Language has its own ways of dealing with large objects passed as
parameters
Language has libraries dedicated to memory allocation /
deallocation

At a minimum, create your own generics to do allocation /
deallocation

Minimize memory leakage and corruption

298 / 568

Genericity

Genericity

299 / 568

Genericity
Introduction

Introduction

300 / 568

Genericity
Introduction

The Notion of a Pattern
Sometimes algorithms can be abstracted from types and
subprograms

procedure Swap_Int (Left, Right : in out Integer) is
V : Integer;

begin
V := Left;
Left := Right;
Right := V;

end Swap_Int;

procedure Swap_Bool (Left, Right : in out Boolean) is
V : Boolean;

begin
V := Left;
Left := Right;
Right := V;

end Swap_Bool;

It would be nice to extract these properties in some common
pattern, and then just replace the parts that need to be replaced

procedure Swap (Left, Right : in out (Integer | Boolean)) is
V : (Integer | Boolean);

begin
V := Left;
Left := Right;
Right := V;

end Swap;

301 / 568

Genericity
Introduction

Solution: Generics

A generic unit is a unit that does not exist
It is a pattern based on properties
The instantiation applies the pattern to certain parameters

302 / 568

Genericity
Introduction

Ada Generic Compared to C++ Template

Ada Generic
-- specification
generic

type T is private;
procedure Swap (L, R : in out T);

-- implementation
procedure Swap (L, R : in out T) is

Tmp : T := L
begin

L := R;
R := Tmp;

end Swap;

-- instance
procedure Swap_F is new Swap (Float);

C++ Template
// prototype
template <class T>
void Swap (T & L, T & R);

// implementation
template <class T>
void Swap (T & L, T & R) {

T Tmp = L;
L = R;
R = Tmp;

}

// instance
int x, y;
Swap<int>(x,y);

303 / 568

Genericity
Creating Generics

Creating Generics

304 / 568

Genericity
Creating Generics

What Can Be Made Generic?

Subprograms and packages can be made generic

generic
type T is private;

procedure Swap (L, R : in out T)
generic

type T is private;
package Stack is

procedure Push (Item : T);
...

Children of generic units have to be generic themselves

generic
package Stack.Utilities is

procedure Print (S : Stack_T);
305 / 568

Genericity
Creating Generics

How Do You Use A Generic?

Generic instantiation is creating new set of data where a generic
package contains library-level variables:

package Integer_Stack is new Stack (Integer);
package Integer_Stack_Utils is

new Integer_Stack.Utilities;
...
Integer_Stack.Push (S, 1);
Integer_Stack_Utils.Print (S);

306 / 568

Genericity
Generic Data

Generic Data

307 / 568

Genericity
Generic Data

Generic Types Parameters (1/2)

A generic parameter is a template

It specifies the properties the generic body can rely on

generic
type T1 is private;
type T2 (<>) is private;
type T3 is limited private;

package Parent is

The actual parameter must be no more restrictive then the
generic contract

308 / 568

Genericity
Generic Data

Generic Types Parameters (2/3)

Generic formal parameter tells generic what it is allowed to do
with the type

type T1 is (<>); Discrete type; 'First, 'Succ, etc available
type T2 is range <>; Signed Integer type; appropriate mathematic operations allowed
type T3 is digits <>; Floating point type; appropriate mathematic operations allowed
type T4 (<>); Indefinite type; can only be used as target of access
type T5 is tagged; tagged type; can extend the type
type T6 is private; No knowledge about the type other than assignment, comparison, object creation allowed
type T7 (<>) is private; (<>) indicates type can be unconstrained, so any object has to be initialized

309 / 568

Genericity
Generic Data

Generic Types Parameters (3/3)

The usage in the generic has to follow the contract
Generic Subprogram
generic

type T (<>) is private;
procedure P (V : T);
procedure P (V : T) is

X1 : T := V; -- OK, can constrain by initialization
X2 : T; -- Compilation error, no constraint to this

begin
Instantiations
type Limited_T is limited null record;

-- unconstrained types are accepted
procedure P1 is new P (String);

-- type is already constrained
-- (but generic will still always initialize objects)
procedure P2 is new P (Integer);

-- Illegal: the type can't be limited because the generic
-- thinks it can make copies
procedure P3 is new P (Limited_T);

310 / 568

Genericity
Generic Data

Generic Parameters Can Be Combined

Consistency is checked at compile-time

generic
type T (<>) is private;
type Acc is access all T;
type Index is (<>);
type Arr is array (Index range <>) of Acc;

function Element (Source : Arr;
Position : Index)
return T;

type String_Ptr is access all String;
type String_Array is array (Integer range <>)

of String_Ptr;

function String_Element is new Element
(T => String,
Acc => String_Ptr,
Index => Integer,
Arr => String_Array);

311 / 568

Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is not a legal instantiation?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

312 / 568

Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is not a legal instantiation?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

312 / 568

Genericity
Generic Formal Data

Generic Formal Data

313 / 568

Genericity
Generic Formal Data

Generic Constants/Variables as Parameters

Variables can be specified on
the generic contract
The mode specifies the way
the variable can be used:

in → read only
in out → read write

Generic variables can be
defined after generic types

Generic package
generic

type Element_T is private;
Array_Size : Positive;
High_Watermark : in out Element_T;

package Repository is
Generic instance
V : Float;
Max : Float;

procedure My_Repository is new Repository
(Element_T => Float,
Array_size => 10,
High_Watermark => Max);

314 / 568

Genericity
Generic Formal Data

Generic Subprogram Parameters

Subprograms can be defined in the generic contract

Must be introduced by with to differ from the generic unit

generic
type T is private;
with function Less_Than (L, R : T) return Boolean;

function Max (L, R : T) return T;

function Max (L, R : T) return T is
begin

if Less_Than (L, R) then
return R;

else
return L;

end if;
end Max;

type Something_T is null record;
function Less_Than (L, R : Something_T) return Boolean;
procedure My_Max is new Max (Something_T, Less_Than);

315 / 568

Genericity
Generic Formal Data

Generic Subprogram Parameters Defaults
Ada 2005

is <> - matching subprogram is taken by default

is null - null subprogram is taken by default
Only available in Ada 2005 and later

generic
type T is private;
with function Is_Valid (P : T) return Boolean is <>;
with procedure Error_Message (P : T) is null;

procedure Validate (P : T);

function Is_Valid_Record (P : Record_T) return Boolean;

procedure My_Validate is new Validate (Record_T,
Is_Valid_Record);

-- Is_Valid maps to Is_Valid_Record
-- Error_Message maps to a null subprogram

316 / 568

Genericity
Generic Formal Data

Quiz

generic
type Element_T is (<>);
Last : in out Element_T;

procedure Write (P : Element_T);

Numeric : Integer;
Enumerated : Boolean;
Floating_Point : Float;

Which of the following piece(s) of code is(are) legal?

A. procedure Write_A is new Write (Integer, Numeric)
B. procedure Write_B is new Write (Boolean, Enumerated)
C. procedure Write_C is new Write (Integer, Integer'Pos

(Enumerated))
D. procedure Write_D is new Write (Float,

Floating_Point)

A. Legal
B. Legal
C. The second generic parameter has to be a variable
D. The first generic parameter has to be discrete

317 / 568

Genericity
Generic Formal Data

Quiz

generic
type Element_T is (<>);
Last : in out Element_T;

procedure Write (P : Element_T);

Numeric : Integer;
Enumerated : Boolean;
Floating_Point : Float;

Which of the following piece(s) of code is(are) legal?

A. procedure Write_A is new Write (Integer, Numeric)
B. procedure Write_B is new Write (Boolean, Enumerated)
C. procedure Write_C is new Write (Integer, Integer'Pos

(Enumerated))
D. procedure Write_D is new Write (Float,

Floating_Point)

A. Legal
B. Legal
C. The second generic parameter has to be a variable
D. The first generic parameter has to be discrete

317 / 568

Genericity
Generic Formal Data

Quiz
Ada 2005

1 procedure Double (X : in out Integer);
2 procedure Square (X : in out Integer);
3 procedure Half (X : in out Integer);
4 generic
5 with procedure Double (X : in out Integer) is <>;
6 with procedure Square (X : in out Integer) is null;
7 procedure Math (P : in out Integer);
8 procedure Math (P : in out Integer) is
9 begin

10 Double(P);
11 Square(P);
12 end Math;
13 procedure Instance is new Math (Double => Half);
14 Number : Integer := 10;

What is the value of Number after
calling Instance (Number)
A. 20
B. 400
C. 5
D. 10

A. Would be correct for procedure Instance is new Math;
B. Would be correct for either

procedure Instance is new Math (Double, Square); or
procedure Instance is new Math (Square => Square);

C. Correct

We call formal parameter Double, which has been assigned to
actual subprogram Half, so P, which is 10, is halved.

Then we call formal parameter Square, which has no actual
subprogram, so it defaults to null, so nothing happens to P

D. Would be correct for either
procedure Instance is new Math (Double, Half); or
procedure Instance is new Math (Square => Half);

318 / 568

Genericity
Generic Formal Data

Quiz
Ada 2005

1 procedure Double (X : in out Integer);
2 procedure Square (X : in out Integer);
3 procedure Half (X : in out Integer);
4 generic
5 with procedure Double (X : in out Integer) is <>;
6 with procedure Square (X : in out Integer) is null;
7 procedure Math (P : in out Integer);
8 procedure Math (P : in out Integer) is
9 begin

10 Double(P);
11 Square(P);
12 end Math;
13 procedure Instance is new Math (Double => Half);
14 Number : Integer := 10;

What is the value of Number after
calling Instance (Number)
A. 20
B. 400
C. 5
D. 10

A. Would be correct for procedure Instance is new Math;
B. Would be correct for either

procedure Instance is new Math (Double, Square); or
procedure Instance is new Math (Square => Square);

C. Correct

We call formal parameter Double, which has been assigned to
actual subprogram Half, so P, which is 10, is halved.
Then we call formal parameter Square, which has no actual
subprogram, so it defaults to null, so nothing happens to P

D. Would be correct for either
procedure Instance is new Math (Double, Half); or
procedure Instance is new Math (Square => Half);

318 / 568

Genericity
Generic Formal Data

Quiz Answer In Depth

A. Wrong - result for procedure Instance is new Math;
B. Wrong - result for

procedure Instance is new Math (Double, Square);
C. Double at line 10 is mapped to Half at line 3, and Square at line

11 wasn’t specified so it defaults to null
D. Wrong - result for

procedure Instance is new Math (Square => Half);

Math is going to call two subprograms in order, Double and Square,
but both of those come from the formal data.

Whatever is used for Double, will be called by the Math instance. If
nothing is passed in, the compiler tries to find a subprogram named
Double and use that. If it doesn’t, that’s a compile error.

Whatever is used for Square, will be called by the Math instance. If
nothing is passed in, the compiler will treat this as a null call.

In our case, Half is passed in for the first subprogram, but nothing is
passed in for the second, so that call will just be null.

So the final answer should be 5 (hence letter C).

319 / 568

Genericity
Generic Formal Data

Quiz Answer In Depth

A. Wrong - result for procedure Instance is new Math;
B. Wrong - result for

procedure Instance is new Math (Double, Square);
C. Double at line 10 is mapped to Half at line 3, and Square at line

11 wasn’t specified so it defaults to null
D. Wrong - result for

procedure Instance is new Math (Square => Half);

Math is going to call two subprograms in order, Double and Square,
but both of those come from the formal data.

Whatever is used for Double, will be called by the Math instance. If
nothing is passed in, the compiler tries to find a subprogram named
Double and use that. If it doesn’t, that’s a compile error.

Whatever is used for Square, will be called by the Math instance. If
nothing is passed in, the compiler will treat this as a null call.

In our case, Half is passed in for the first subprogram, but nothing is
passed in for the second, so that call will just be null.

So the final answer should be 5 (hence letter C).
319 / 568

Genericity
Generic Completion

Generic Completion

320 / 568

Genericity
Generic Completion

Implications at Compile-Time

The body needs to be visible when compiling the user code
Therefore, when distributing a component with generics to be
instantiated, the code of the generic must come along

321 / 568

Genericity
Generic Completion

Generic and Freezing Points

A generic type freezes the type and needs the full view
May force separation between its declaration (in spec) and
instantiations (in private or body)

generic
type X is private;

package Base is
V : access X;

end Base;

package P is
type X is private;
-- illegal
package B is new Base (X);

private
type X is null record;

end P;
322 / 568

Genericity
Generic Completion

Generic Incomplete Parameters

A generic type can be incomplete
Allows generic instantiations before full type definition
Restricts the possible usages (only access)

generic
type X; -- incomplete

package Base is
V : access X;

end Base;

package P is
type X is private;
-- legal
package B is new Base (X);

private
type X is null record;

end P;
323 / 568

Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is(are) legal for G_P’s body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

324 / 568

Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is(are) legal for G_P’s body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

324 / 568

Genericity
Lab

Lab

325 / 568

Genericity
Lab

Genericity Lab

Requirements
Create a record structure containing multiple fields

Need subprograms to convert the record to a string, and compare
the order of two records
Lab prompt package Data_Type contains a framework

Create a generic list implementation

Need subprograms to add items to the list, sort the list, and print
the list

The main program should:

Add many records to the list
Sort the list
Print the list

Hints
Sort routine will need to know how to compare elements
Print routine will need to know how to print one element

326 / 568

Genericity
Lab

Genericity Lab Solution - Generic (Spec)
1 generic
2 type Element_T is private;
3 Max_Size : Natural;
4 with function ">" (L, R : Element_T) return Boolean is <>;
5 with function Image (Element : Element_T) return String;
6 package Generic_List is
7

8 type List_T is private;
9

10 procedure Add (This : in out List_T;
11 Item : in Element_T);
12 procedure Sort (This : in out List_T);
13 procedure Print (List : List_T);
14

15 private
16 subtype Index_T is Natural range 0 .. Max_Size;
17 type List_Array_T is array (1 .. Index_T'Last) of Element_T;
18

19 type List_T is record
20 Values : List_Array_T;
21 Length : Index_T := 0;
22 end record;
23 end Generic_List;

327 / 568

Genericity
Lab

Genericity Lab Solution - Generic (Body)
1 with Ada.Text_io; use Ada.Text_IO;
2 package body Generic_List is
3

4 procedure Add (This : in out List_T;
5 Item : in Element_T) is
6 begin
7 This.Length := This.Length + 1;
8 This.Values (This.Length) := Item;
9 end Add;

10

11 procedure Sort (This : in out List_T) is
12 Temp : Element_T;
13 begin
14 for I in 1 .. This.Length loop
15 for J in 1 .. This.Length - I loop
16 if This.Values (J) > This.Values (J + 1) then
17 Temp := This.Values (J);
18 This.Values (J) := This.Values (J + 1);
19 This.Values (J + 1) := Temp;
20 end if;
21 end loop;
22 end loop;
23 end Sort;
24

25 procedure Print (List : List_T) is
26 begin
27 for I in 1 .. List.Length loop
28 Put_Line (Integer'Image (I) & ") " & Image (List.Values (I)));
29 end loop;
30 end Print;
31

32 end Generic_List;

328 / 568

Genericity
Lab

Genericity Lab Solution - Main
1 with Data_Type;
2 with Generic_List;
3 procedure Main is
4 package List is new Generic_List (Element_T => Data_Type.Record_T,
5 Max_Size => 20,
6 ">" => Data_Type.">",
7 Image => Data_Type.Image);
8

9 My_List : List.List_T;
10 Element : Data_Type.Record_T;
11

12 begin
13 List.Add (My_List, (Integer_Field => 111,
14 Character_Field => 'a'));
15 List.Add (My_List, (Integer_Field => 111,
16 Character_Field => 'z'));
17 List.Add (My_List, (Integer_Field => 111,
18 Character_Field => 'A'));
19 List.Add (My_List, (Integer_Field => 999,
20 Character_Field => 'B'));
21 List.Add (My_List, (Integer_Field => 999,
22 Character_Field => 'Y'));
23 List.Add (My_List, (Integer_Field => 999,
24 Character_Field => 'b'));
25 List.Add (My_List, (Integer_Field => 112,
26 Character_Field => 'a'));
27 List.Add (My_List, (Integer_Field => 998,
28 Character_Field => 'z'));
29

30 List.Sort (My_List);
31 List.Print (My_List);
32 end Main;

329 / 568

Genericity
Summary

Summary

330 / 568

Genericity
Summary

Generic Routines vs Common Routines

package Helper is
type Float_T is digits 6;
generic

type Type_T is digits <>;
Min : Type_T;
Max : Type_T;

function In_Range_Generic (X : Type_T) return Boolean;
function In_Range_Common (X : Float_T;

Min : Float_T;
Max : Float_T)
return Boolean;

end Helper;

procedure User is
type Speed_T is new Float_T range 0.0 .. 100.0;
B : Boolean;
function Valid_Speed is new In_Range_Generic

(Speed_T, Speed_T'First, Speed_T'Last);
begin

B := Valid_Speed (12.3);
B := In_Range_Common (12.3, Speed_T'First, Speed_T'Last);

331 / 568

Genericity
Summary

Summary

Generics are useful for copying code that works the same just for
different types

Sorting, containers, etc

Properly written generics only need to be tested once
But testing / debugging can be more difficult

Generic instantiations are best done at compile time
At the package level
Can be run-time expensive when done in subprogram scope

332 / 568

Tagged Derivation

Tagged Derivation

333 / 568

Tagged Derivation
Introduction

Introduction

334 / 568

Tagged Derivation
Introduction

Object-Oriented Programming With Tagged Types

For record types

type T is tagged record
...

Child types can add new components (attributes)

Object of a child type can be substituted for base type

Primitive (method) can dispatch at runtime depending on the
type at call-site

Types can be extended by other packages
Casting and qualification to base type is allowed

Private data is encapsulated through privacy

335 / 568

Tagged Derivation
Introduction

Tagged Derivation Ada vs C++

type T1 is tagged record
Member1 : Integer;

end record;

procedure Attr_F (This : T1);

type T2 is new T1 with record
Member2 : Integer;

end record;

overriding procedure Attr_F (
This : T2);

procedure Attr_F2 (This : T2);

class T1 {
public:

int Member1;
virtual void Attr_F(void);

};

class T2 : public T1 {
public:

int Member2;
virtual void Attr_F(void);
virtual void Attr_F2(void);

};

336 / 568

Tagged Derivation
Tagged Derivation

Tagged Derivation

337 / 568

Tagged Derivation
Tagged Derivation

Difference with Simple Derivation

Tagged derivation can change the structure of a type
Keywords tagged record and with record

type Root is tagged record
F1 : Integer;

end record;

type Child is new Root with record
F2 : Integer;

end record;

Conversion is only allowed from child to parent

V1 : Root;
V2 : Child;
...
V1 := Root (V2);
V2 := Child (V1); -- illegal

338 / 568

Tagged Derivation
Tagged Derivation

Primitives

Child cannot remove a primitive

Child can add new primitives

Controlling parameter

Parameters the subprogram is a primitive of
For tagged types, all should have the same type

type Root1 is tagged null record;
type Root2 is tagged null record;

procedure P1 (V1 : Root1;
V2 : Root1);

procedure P2 (V1 : Root1;
V2 : Root2); -- illegal

339 / 568

Tagged Derivation
Tagged Derivation

Freeze Point For Tagged Types

Freeze point definition does not change
A variable of the type is declared
The type is derived
The end of the scope is reached

Declaring tagged type primitives past freeze point is forbidden

type Root is tagged null record;

procedure Prim (V : Root);

type Child is new Root with null record; -- freeze root

procedure Prim2 (V : Root); -- illegal

V : Child; -- freeze child

procedure Prim3 (V : Child); -- illegal
340 / 568

Tagged Derivation
Tagged Derivation

Overriding Indicators
Ada 2005

Optional overriding and not overriding indicators

type Shape_T is tagged record
Name : String(1..10);

end record;

-- primitives of "Shape_T"
function Get_Name (S : Shape_T) return String;
procedure Set_Name (S : in out Shape_T);

-- Derive "Point" from Shape_T
type Point is new Shape_T with record

Origin : Coord_T;
end Point;

-- Get_Name is inherited
-- We want to _change_ the behavior of Set_Name
overriding procedure Set_Name (P : in out Point_T);
-- We want to _add_ a new primitive
not overriding procedure Set_Origin (P : in out Point_T);

341 / 568

Tagged Derivation
Tagged Derivation

Prefix Notation
Ada 2012

Tagged types primitives can be called as usual

The call can use prefixed notation
If the first argument is a controlling parameter
No need for use or use type for visibility

-- Prim1 visible even without *use Pkg*
X.Prim1;

declare
use Pkg;

begin
Prim1 (X);

end;
342 / 568

Tagged Derivation
Tagged Derivation

Quiz

Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
Object : T1;
procedure P (O : T1) is null;

D. package Nested is
type T1 is tagged null record;

end Nested;
use Nested;
procedure P (O : T1) is null;

A. Primitive (same scope)
B. Primitive (T1 is not yet frozen)
C. T1 is frozen by the object declaration
D. Primitive must be declared in same scope as type

343 / 568

Tagged Derivation
Tagged Derivation

Quiz

Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
Object : T1;
procedure P (O : T1) is null;

D. package Nested is
type T1 is tagged null record;

end Nested;
use Nested;
procedure P (O : T1) is null;

A. Primitive (same scope)
B. Primitive (T1 is not yet frozen)
C. T1 is frozen by the object declaration
D. Primitive must be declared in same scope as type

343 / 568

Tagged Derivation
Tagged Derivation

Quiz

with Shapes; -- Defines tagged type Shape, with primitive P
with Colors; use Colors; -- Defines tagged type Color, with primitive P
with Weights; -- Defines tagged type Weight, with primitive P
use type Weights.Weight;

procedure Main is
The_Shape : Shapes.Shape;
The_Color : Colors.Color;
The_Weight : Weights.Weight;

Which statement(s) is(are) valid?

A. The_Shape.P
B. P (The_Shape)
C. P (The_Color)
D. P (The_Weight)

D. use type only gives visibility to operators; needs to be
use all type

344 / 568

Tagged Derivation
Tagged Derivation

Quiz

with Shapes; -- Defines tagged type Shape, with primitive P
with Colors; use Colors; -- Defines tagged type Color, with primitive P
with Weights; -- Defines tagged type Weight, with primitive P
use type Weights.Weight;

procedure Main is
The_Shape : Shapes.Shape;
The_Color : Colors.Color;
The_Weight : Weights.Weight;

Which statement(s) is(are) valid?

A. The_Shape.P
B. P (The_Shape)
C. P (The_Color)
D. P (The_Weight)

D. use type only gives visibility to operators; needs to be
use all type

344 / 568

Tagged Derivation
Tagged Derivation

Quiz

Which code block is legal?
A. type A1 is record

Field1 : Integer;
end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Field2 : Integer;
end record;
type B2 is new B1 with
record

Field2b : Integer;
end record;

C. type C1 is tagged
record

Field3 : Integer;
end record;
type C2 is new C1 with
record

Field3 : Integer;
end record;

D. type D1 is tagged
record

Field1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

345 / 568

Tagged Derivation
Tagged Derivation

Quiz

Which code block is legal?
A. type A1 is record

Field1 : Integer;
end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Field2 : Integer;
end record;
type B2 is new B1 with
record

Field2b : Integer;
end record;

C. type C1 is tagged
record

Field3 : Integer;
end record;
type C2 is new C1 with
record

Field3 : Integer;
end record;

D. type D1 is tagged
record

Field1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

345 / 568

Tagged Derivation
Extending Tagged Types

Extending Tagged Types

346 / 568

Tagged Derivation
Extending Tagged Types

How Do You Extend A Tagged Type?
Premise of a tagged type is to extend an existing type

In general, that means we want to add more fields
We can extend a tagged type by adding fields

package Animals is
type Animal_T is tagged record

Age : Natural;
end record;

end Animals;

with Animals; use Animals;
package Mammals is

type Mammal_T is new Animal_T with record
Number_Of_Legs : Natural;

end record;
end Mammals;

with Mammals; use Mammals;
package Canines is

type Canine_T is new Mammal_T with record
Domesticated : Boolean;

end record;
end Canines;

347 / 568

Tagged Derivation
Extending Tagged Types

Tagged Aggregate

At initialization, all fields (including inherited) must have a value

Animal : Animal_T := (Age => 1);
Mammal : Mammal_T := (Age => 2,

Number_Of_Legs => 2);
Canine : Canine_T := (Age => 2,

Number_Of_Legs => 4,
Domesticated => True);

But we can also "seed" the aggregate with a parent object

Mammal := (Animal with Number_Of_Legs => 4);
Canine := (Animal with Number_Of_Legs => 4,

Domesticated => False);
Canine := (Mammal with Domesticated => True);

348 / 568

Tagged Derivation
Extending Tagged Types

Private Tagged Types

But data hiding says types should be private!

So we can define our base type as private
package Animals is

type Animal_T is tagged private;
function Get_Age (P : Animal_T) return Natural;
procedure Set_Age (P : in out Animal_T; A : Natural);

private
type Animal_T is tagged record

Age : Natural;
end record;

end Animals;

And still allow derivation
with Animals;
package Mammals is

type Mammal_T is new Animals.Animal_T with record
Number_Of_Legs : Natural;

end record;

But now the only way to get access to Age is with accessor
subprograms

349 / 568

Tagged Derivation
Extending Tagged Types

Private Extensions

In the previous slide, we exposed the fields for Mammal_T!

Better would be to make the extension itself private

package Mammals is
type Mammal_T is new Animals.Animal_T with private;

private
type Mammal_T is new Animals.Animal_T with record

Number_Of_Legs : Natural;
end record;

end Mammals;

350 / 568

Tagged Derivation
Extending Tagged Types

Aggregates with Private Tagged Types

Remember, an aggregate must specify values for all components
But with private types, we can’t see all the components!

So we need to use the "seed" method:

procedure Inside_Mammals_Pkg is
Animal : Animal_T := Animals.Create;
Mammal : Mammal_T;

begin
Mammal := (Animal with Number_Of_Legs => 4);
Mammal := (Animals.Create with Number_Of_Legs => 4);

end Inside_Mammals_Pkg;

Note that we cannot use others => <> for components that are
not visible to us

Mammal := (Number_Of_Legs => 4,
others => <>); -- Compile Error

351 / 568

Tagged Derivation
Extending Tagged Types

Null Extensions

To create a new type with no additional fields
We still need to "extend" the record - we just do it with an empty
record

type Dog_T is new Canine_T with null record;

We still need to specify the "added" fields in an aggregate

C : Canine_T := Canines.Create;
Dog1 : Dog_T := C; -- Compile Error
Dog2 : Dog_T := (C with null record);

352 / 568

Tagged Derivation
Extending Tagged Types

Quiz
Given the following code:

package Parents is
type Parent_T is tagged private;
function Create return Parent_T;

private
type Parent_T is tagged record

Id : Integer;
end record;

end Parents;

with Parents; use Parents;
package Children is

P : Parent_T;
type Child_T is new Parent_T with record

Count : Natural;
end record;
function Create (C : Natural) return Child_T;

end Children;

Which completion(s) of C is/are valid?

A. function Create return Child_T is (Parents.Create
with Count => 0);

B. function Create return Child_T is (others => <>);
C. function Create return Child_T is (0, 0);
D. function Create return Child_T is (P with Count =>

0);

Explanations

A. Correct - Parents.Create returns Parent_T
B. Cannot use others to complete private part of an aggregate
C. Aggregate has no visibility to Id field, so cannot assign
D. Correct - P is a Parent_T

353 / 568

Tagged Derivation
Extending Tagged Types

Quiz
Given the following code:

package Parents is
type Parent_T is tagged private;
function Create return Parent_T;

private
type Parent_T is tagged record

Id : Integer;
end record;

end Parents;

with Parents; use Parents;
package Children is

P : Parent_T;
type Child_T is new Parent_T with record

Count : Natural;
end record;
function Create (C : Natural) return Child_T;

end Children;

Which completion(s) of C is/are valid?

A. function Create return Child_T is (Parents.Create
with Count => 0);

B. function Create return Child_T is (others => <>);
C. function Create return Child_T is (0, 0);
D. function Create return Child_T is (P with Count =>

0);

Explanations

A. Correct - Parents.Create returns Parent_T
B. Cannot use others to complete private part of an aggregate
C. Aggregate has no visibility to Id field, so cannot assign
D. Correct - P is a Parent_T

353 / 568

Tagged Derivation
Lab

Lab

354 / 568

Tagged Derivation
Lab

Tagged Derivation Lab

Requirements
Create a type structure that could be used in a business

A person has some defining characteristics
An employee is a person with some employment information
A staff member is an employee with specific job information

Create primitive operations to read and print the objects

Create a main program to test the objects and operations

Hints
Use overriding and not overriding as appropriate (Ada 2005
and above)
Data hiding is important!

355 / 568

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Spec)
1 package Employee is
2 type Person_T is tagged private;
3 subtype Name_T is String (1 .. 6);
4 type Date_T is record
5 Year : Positive;
6 Month : Positive;
7 Day : Positive;
8 end record;
9 type Job_T is (Sales, Engineer, Bookkeeping);

10

11 procedure Set_Name (O : in out Person_T;
12 Value : Name_T);
13 function Name (O : Person_T) return Name_T;
14 procedure Set_Birth_Date (O : in out Person_T;
15 Value : Date_T);
16 function Birth_Date (O : Person_T) return Date_T;
17 procedure Print (O : Person_T);
18

19 type Employee_T is new Person_T with private;
20 not overriding procedure Set_Start_Date (O : in out Employee_T;
21 Value : Date_T);
22 not overriding function Start_Date (O : Employee_T) return Date_T;
23 overriding procedure Print (O : Employee_T);
24

25 type Position_T is new Employee_T with private;
26 not overriding procedure Set_Job (O : in out Position_T;
27 Value : Job_T);
28 not overriding function Job (O : Position_T) return Job_T;
29 overriding procedure Print (O : Position_T);
30

31 private
32 type Person_T is tagged record
33 The_Name : Name_T;
34 The_Birth_Date : Date_T;
35 end record;
36

37 type Employee_T is new Person_T with record
38 The_Employee_Id : Positive;
39 The_Start_Date : Date_T;
40 end record;
41

42 type Position_T is new Employee_T with record
43 The_Job : Job_T;
44 end record;
45 end Employee;

356 / 568

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Partial Body)
1 with Ada.Text_IO; use Ada.Text_IO;
2 package body Employee is
3

4 function Image (Date : Date_T) return String is
5 (Date.Year'Image & " -" & Date.Month'Image & " -" & Date.Day'Image);
6

7 procedure Set_Name (O : in out Person_T;
8 Value : Name_T) is
9 begin

10 O.The_Name := Value;
11 end Set_Name;
12 function Name (O : Person_T) return Name_T is (O.The_Name);
13

14 procedure Set_Birth_Date (O : in out Person_T;
15 Value : Date_T) is
16 begin
17 O.The_Birth_Date := Value;
18 end Set_Birth_Date;
19 function Birth_Date (O : Person_T) return Date_T is (O.The_Birth_Date);
20

21 procedure Print (O : Person_T) is
22 begin
23 Put_Line ("Name: " & O.Name);
24 Put_Line ("Birthdate: " & Image (O.Birth_Date));
25 end Print;
26

27 not overriding procedure Set_Start_Date (O : in out Employee_T;
28 Value : Date_T) is
29 begin
30 O.The_Start_Date := Value;
31 end Set_Start_Date;
32 not overriding function Start_Date (O : Employee_T) return Date_T is
33 (O.The_Start_Date);
34

35 overriding procedure Print (O : Employee_T) is
36 begin
37 Print (Person_T (O)); -- Use parent "Print"
38 Put_Line ("Startdate: " & Image (O.Start_Date));
39 end Print;
40

357 / 568

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Employee;
3 procedure Main is
4 Applicant : Employee.Person_T;
5 Employ : Employee.Employee_T;
6 Staff : Employee.Position_T;
7

8 begin
9 Applicant.Set_Name ("Wilma ");

10 Applicant.Set_Birth_Date ((Year => 1_234,
11 Month => 12,
12 Day => 1));
13

14 Employ.Set_Name ("Betty ");
15 Employ.Set_Birth_Date ((Year => 2_345,
16 Month => 11,
17 Day => 2));
18 Employ.Set_Start_Date ((Year => 3_456,
19 Month => 10,
20 Day => 3));
21

22 Staff.Set_Name ("Bambam");
23 Staff.Set_Birth_Date ((Year => 4_567,
24 Month => 9,
25 Day => 4));
26 Staff.Set_Start_Date ((Year => 5_678,
27 Month => 8,
28 Day => 5));
29 Staff.Set_Job (Employee.Engineer);
30

31 Applicant.Print;
32 Employ.Print;
33 Staff.Print;
34 end Main;

358 / 568

Tagged Derivation
Summary

Summary

359 / 568

Tagged Derivation
Summary

Summary

Tagged derivation
Building block for OOP types in Ada

Primitives rules for tagged types are trickier
Primitives forbidden below freeze point
Unique controlling parameter
Tip: Keep the number of tagged type per package low

360 / 568

Polymorphism

Polymorphism

361 / 568

Polymorphism
Introduction

Introduction

362 / 568

Polymorphism
Introduction

Introduction

'Class operator to categorize classes of types

Type classes allow dispatching calls
Abstract types
Abstract subprograms

Run-time call dispatch vs compile-time call dispatching

363 / 568

Polymorphism
Classes of Types

Classes of Types

364 / 568

Polymorphism
Classes of Types

Classes

In Ada, a Class denotes an inheritance subtree

Class of T is the class of T and all its children

Type T'Class can designate any object typed after type of class
of T

type Root is tagged null record;
type Child1 is new Root with null record;
type Child2 is new Root with null record;
type Grand_Child1 is new Child1 with null record;
-- Root'Class = {Root, Child1, Child2, Grand_Child1}
-- Child1'Class = {Child1, Grand_Child1}
-- Child2'Class = {Child2}
-- Grand_Child1'Class = {Grand_Child1}

Objects of type T'Class have at least the properties of T
Fields of T
Primitives of T

365 / 568

Polymorphism
Classes of Types

Indefinite type

A class wide type is an indefinite type
Just like an unconstrained array or a record with a discriminant

Properties and constraints of indefinite types apply
Can be used for parameter declarations
Can be used for variable declaration with initialization

procedure Main is
type T is tagged null record;
type D is new T with null record;
procedure P (X : in out T'Class) is null;
Obj : D;
Dc : D'Class := Obj;
Tc1 : T'Class := Dc;
Tc2 : T'Class := Obj;
-- initialization required in class-wide declaration
Tc3 : T'Class; -- compile error
Dc2 : D'Class; -- compile error

begin
P (Dc);
P (Obj);

end Main;
366 / 568

Polymorphism
Classes of Types

Testing the type of an object

The tag of an object denotes its type
It can be accessed through the ’Tag attribute
Applies to both objects and types
Membership operator is available to check the type against a
hierarchy

type Parent is tagged null record;
type Child is new Parent with null record;
Parent_Obj : Parent; -- Parent_Obj'Tag = Parent'Tag
Child_Obj : Child; -- Child_Obj'Tag = Child'Tag
Parent_Class_1 : Parent'Class := Parent_Obj;

-- Parent_Class_1'Tag = Parent'Tag
Parent_Class_2 : Parent'Class := Child_Obj;

-- Parent_Class_2'Tag = Child'Tag
Child_Class : Child'Class := Child(Parent_Class_2);

-- Child_Class'Tag = Child'Tag

B1 : Boolean := Parent_Class_1 in Parent'Class; -- True
B2 : Boolean := Parent_Class_1'Tag = Child'Tag; -- False
B3 : Boolean := Child_Class'Tag = Parent'Tag; -- False
B4 : Boolean := Child_Class in Child'Class; -- True

367 / 568

Polymorphism
Classes of Types

Abstract Types

A tagged type can be declared abstract

Then, abstract tagged types:
cannot be instantiated
can have abstract subprograms (with no implementation)
Non-abstract derivation of an abstract type must override and
implement abstract subprograms

368 / 568

Polymorphism
Classes of Types

Abstract Types Ada vs C++
Ada

type Root is abstract tagged record
F : Integer;

end record;
procedure P1 (V : Root) is abstract;
procedure P2 (V : Root);
type Child is abstract new Root with null record;
type Grand_Child is new Child with null record;

overriding -- Ada 2005 and later
procedure P1 (V : Grand_Child);

C++

class Root {
public:

int F;
virtual void P1 (void) = 0;
virtual void P2 (void);

};
class Child : public Root {
};
class Grand_Child {

public:
virtual void P1 (void);

};

369 / 568

Polymorphism
Classes of Types

Relation to Primitives

Warning: Subprograms with parameter of type T’Class are not
primitives of T

type Root is tagged null record;
procedure P (V : Root'Class);
type Child is new Root with null record;
-- This does not override P!
overriding procedure P (V : Child'Class);

370 / 568

Polymorphism
Classes of Types

’Class and Prefix Notation
Ada 2012

Prefix notation rules apply when the first parameter is of a class wide
type

type Root is tagged null record;
procedure P (V : Root'Class);
type Child is new Root with null record;

V1 : Root;
V2 : Root'Class := Root'(others => <>);
...
P (V1);
P (V2);
V1.P;
V2.P;

371 / 568

Polymorphism
Dispatching and Redispatching

Dispatching and Redispatching

372 / 568

Polymorphism
Dispatching and Redispatching

Calls on class-wide types (1/3)

Any subprogram expecting a T object can be called with a
T'Class object

type Root is tagged null record;
procedure P (V : Root);

type Child is new Root with null record;
procedure P (V : Child);

V1 : Root'Class := [...]
V2 : Child'Class := [...]

begin
P (V1);
P (V2);

373 / 568

Polymorphism
Dispatching and Redispatching

Calls on class-wide types (2/3)

The actual type of the object is not known at compile time
The right type will be selected at runtime

Ada
declare

V1 : Root'Class :=
Root'(others => <>);

V2 : Root'Class :=
Child'(others => <>);

begin
V1.P; -- calls P of Root
V2.P; -- calls P of Child

C++
Root * V1 = new Root ();
Root * V2 = new Child ();
V1->P ();
V2->P ();

374 / 568

Polymorphism
Dispatching and Redispatching

Calls on class-wide types (3/3)

It is still possible to force a call to be static using a conversion of
view

Ada
declare

V1 : Root'Class :=
Root'(others => <>);

V2 : Root'Class :=
Child'(others => <>);

begin
Root (V1).P; -- calls P of Root
Root (V2).P; -- calls P of Root

C++
Root * V1 = new Root ();
Root * V2 = new Child ();
((Root) *V1).P ();
((Root) *V2).P ();

375 / 568

Polymorphism
Dispatching and Redispatching

Definite and class wide views

In C++, dispatching occurs only on pointers
In Ada, dispatching occurs only on class wide views

type Root is tagged null record;
procedure P1 (V : Root);
procedure P2 (V : Root);
type Child is new Root with null record;
overriding procedure P2 (V : Child);
procedure P1 (V : Root) is
begin

P2 (V); -- always calls P2 from Root
end P1;
procedure Main is

V1 : Root'Class :=
Child'(others => <>);

begin
-- Calls P1 from the implicitly overridden subprogram
-- Calls P2 from Root!
V1.P1;

376 / 568

Polymorphism
Dispatching and Redispatching

Redispatching

tagged types are always passed by reference
The original object is not copied

Therefore, it is possible to convert them to different views

type Root is tagged null record;
procedure P1 (V : Root);
procedure P2 (V : Root);
type Child is new Root with null record;
overriding procedure P2 (V : Child);

377 / 568

Polymorphism
Dispatching and Redispatching

Redispatching Example

procedure P1 (V : Root) is
V_Class : Root'Class renames

Root'Class (V); -- naming of a view
begin

P2 (V); -- static: uses the definite view
P2 (Root'Class (V)); -- dynamic: (redispatching)
P2 (V_Class); -- dynamic: (redispatching)

-- Ada 2005 "distinguished receiver" syntax
V.P2; -- static: uses the definite view
Root'Class (V).P2; -- dynamic: (redispatching)
V_Class.P2; -- dynamic: (redispatching)

end P1;

378 / 568

Polymorphism
Dispatching and Redispatching

Quiz
package P is

type Root is tagged null record;
function F1 (V : Root) return Integer is (101);
type Child is new Root with null record;
function F1 (V : Child) return Integer is (201);
type Grandchild is new Child with null record;
function F1 (V : Grandchild) return Integer is (301);

end P;

with P; use P;
procedure Main is

Z : Root'Class := Grandchild'(others => <>);

What is the value returned by F1 (Child'Class (Z));?

A. 301
B. 201
C. 101
D. Compilation error

Explanations

A. Correct
B. Would be correct if the cast was Child - Child'Class leaves the

object as Grandchild
C. Object is initialized to something in Root'class, but it doesn’t

have to be Root
D. Would be correct if function parameter types were 'Class

379 / 568

Polymorphism
Dispatching and Redispatching

Quiz
package P is

type Root is tagged null record;
function F1 (V : Root) return Integer is (101);
type Child is new Root with null record;
function F1 (V : Child) return Integer is (201);
type Grandchild is new Child with null record;
function F1 (V : Grandchild) return Integer is (301);

end P;

with P; use P;
procedure Main is

Z : Root'Class := Grandchild'(others => <>);

What is the value returned by F1 (Child'Class (Z));?

A. 301
B. 201
C. 101
D. Compilation error

Explanations

A. Correct
B. Would be correct if the cast was Child - Child'Class leaves the

object as Grandchild
C. Object is initialized to something in Root'class, but it doesn’t

have to be Root
D. Would be correct if function parameter types were 'Class

379 / 568

Polymorphism
Exotic Dispatching Operations

Exotic Dispatching Operations

380 / 568

Polymorphism
Exotic Dispatching Operations

Multiple dispatching operands

Primitives with multiple dispatching operands are allowed if all
operands are of the same type

type Root is tagged null record;
procedure P (Left : Root; Right : Root);
type Child is new Root with null record;
overriding procedure P (Left : Child; Right : Child);

At call time, all actual parameters’ tags have to match, either
statically or dynamically

R1, R2 : Root;
C1, C2 : Child;
Cl1 : Root'Class := R1;
Cl2 : Root'Class := R2;
Cl3 : Root'Class := C1;
...
P (R1, R2); -- static: ok
P (R1, C1); -- static: error
P (Cl1, Cl2); -- dynamic: ok
P (Cl1, Cl3); -- dynamic: error
P (R1, Cl1); -- static: error
P (Root'Class (R1), Cl1); -- dynamic: ok

381 / 568

Polymorphism
Exotic Dispatching Operations

Special case for equality

Overriding the default equality for a tagged type involves the use
of a function with multiple controlling operands
As in general case, static types of operands have to be the same
If dynamic types differ, equality returns false instead of raising
exception

type Root is tagged null record;
function "=" (L : Root; R : Root) return Boolean;
type Child is new Root with null record;
overriding function "=" (L : Child; R : Child) return Boolean;
R1, R2 : Root;
C1, C2 : Child;
Cl1 : Root'Class := R1;
Cl2 : Root'Class := R2;
Cl3 : Root'Class := C1;
...
-- overridden "=" called via dispatching
if Cl1 = Cl2 then [...]
if Cl1 = Cl3 then [...] -- returns false

382 / 568

Polymorphism
Exotic Dispatching Operations

Controlling result (1/2)

The controlling operand may be the return type
This is known as the constructor pattern

type Root is tagged null record;
function F (V : Integer) return Root;

If the child adds fields, all such subprograms have to be overridden

type Root is tagged null record;
function F (V : Integer) return Root;

type Child is new Root with null record;
-- OK, F is implicitly inherited

type Child1 is new Root with record
X : Integer;

end record;
-- ERROR no implicitly inherited function F

Primitives returning abstract types have to be abstract

type Root is abstract tagged null record;
function F (V : Integer) return Root is abstract;

383 / 568

Polymorphism
Exotic Dispatching Operations

Controlling result (2/2)

Primitives returning tagged types can be used in a static context

type Root is tagged null record;
function F return Root;
type Child is new Root with null record;
function F return Child;
V : Root := F;

In a dynamic context, the type has to be known to correctly
dispatch

V1 : Root'Class := Root'(F); -- Static call to Root primitive
V2 : Root'Class := V1;
V3 : Root'Class := Child'(F); -- Static call to Child primitive
V4 : Root'Class := F; -- Error - ambiguous expression
...
V1 := F; -- Dispatching call to Root primitive
V2 := F; -- Dispatching call to Root primitive
V3 := F; -- Dispatching call to Child primitive

No dispatching is possible when returning access types
384 / 568

Polymorphism
Lab

Lab

385 / 568

Polymorphism
Lab

Polymorphism Lab

Requirements
Create a multi-level types hierarchy of shapes

Level 1: Shape → Quadrilateral | Triangle
Level 2: Quadrilateral → Square

Types should have the following primitive operations

Description
Number of sides
Perimeter

Create a main program that has multiple shapes

Create a nested subprogram that takes any shape and prints all
appropriate information

Hints
Top-level type should be abstract

But can have concrete operations

Nested subprogram in main should take a shape class parameter
386 / 568

Polymorphism
Lab

Polymorphism Lab Solution - Shapes (Spec)
1 package Shapes is
2 type Length_T is new Natural;
3 type Lengths_T is array (Positive range <>) of Length_T;
4 subtype Description_T is String (1 .. 10);
5

6 type Shape_T is abstract tagged record
7 Description : Description_T;
8 end record;
9 function Get_Description (Shape : Shape_T'Class) return Description_T;

10 function Number_Of_Sides (Shape : Shape_T) return Natural is abstract;
11 function Perimeter (Shape : Shape_T) return Length_T is abstract;
12

13 type Quadrilateral_T is new Shape_T with record
14 Lengths : Lengths_T (1 .. 4);
15 end record;
16 function Number_Of_Sides (Shape : Quadrilateral_T) return Natural;
17 function Perimeter (Shape : Quadrilateral_T) return Length_T;
18

19 type Square_T is new Quadrilateral_T with null record;
20 function Perimeter (Shape : Square_T) return Length_T;
21

22 type Triangle_T is new Shape_T with record
23 Lengths : Lengths_T (1 .. 3);
24 end record;
25 function Number_Of_Sides (Shape : Triangle_T) return Natural;
26 function Perimeter (Shape : Triangle_T) return Length_T;
27 end Shapes;

387 / 568

Polymorphism
Lab

Polymorphism Lab Solution - Shapes (Body)
1 package body Shapes is
2

3 function Perimeter (Lengths : Lengths_T) return Length_T is
4 Ret_Val : Length_T := 0;
5 begin
6 for I in Lengths'First .. Lengths'Last
7 loop
8 Ret_Val := Ret_Val + Lengths (I);
9 end loop;

10 return Ret_Val;
11 end Perimeter;
12

13 function Get_Description (Shape : Shape_T'Class) return Description_T is
14 (Shape.Description);
15

16 function Number_Of_Sides (Shape : Quadrilateral_T) return Natural is
17 (4);
18 function Perimeter (Shape : Quadrilateral_T) return Length_T is
19 (Perimeter (Shape.Lengths));
20

21 function Perimeter (Shape : Square_T) return Length_T is
22 (4 * Shape.Lengths (Shape.Lengths'First));
23

24 function Number_Of_Sides (Shape : Triangle_T) return Natural is
25 (3);
26 function Perimeter (Shape : Triangle_T) return Length_T is
27 (Perimeter (Shape.Lengths));
28 end Shapes;

388 / 568

Polymorphism
Lab

Polymorphism Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Shapes; use Shapes;
3 procedure Main is
4

5 Rectangle : constant Shapes.Quadrilateral_T :=
6 (Description => "rectangle ",
7 Lengths => (10, 20, 10, 20));
8 Triangle : constant Shapes.Triangle_T :=
9 (Description => "triangle ",

10 Lengths => (200, 300, 400));
11 Square : constant Shapes.Square_T :=
12 (Description => "square ",
13 Lengths => (5_000, 5_000, 5_000, 5_000));
14

15 procedure Describe (Shape : Shapes.Shape_T'Class) is
16 begin
17 Put_Line (Shape.Get_Description);
18 Put_Line
19 (" Number of sides:" & Integer'Image (Shape.Number_Of_Sides));
20 Put_Line (" Perimeter:" & Shapes.Length_T'Image (Shape.Perimeter));
21 end Describe;
22 begin
23

24 Describe (Rectangle);
25 Describe (Triangle);
26 Describe (Square);
27 end Main;

389 / 568

Polymorphism
Summary

Summary

390 / 568

Polymorphism
Summary

Summary

’Class operator
Allows subprograms to be used for multiple versions of a type

Dispatching
Abstract types require concrete versions

Abstract subprograms allow template definitions

Need an implementation for each abstract type referenced

Run-time call dispatch vs compile-time call dispatching
Compiler resolves appropriate call where it can
Run-time resolves appropriate call where it can
If not resolved, exception

391 / 568

Multiple Inheritance

Multiple Inheritance

392 / 568

Multiple Inheritance
Introduction

Introduction

393 / 568

Multiple Inheritance
Introduction

Multiple Inheritance Is Forbidden In Ada

There are potential conflicts with multiple inheritance
Some languages allow it: ambiguities have to be resolved when
entities are referenced
Ada forbids it to improve integration

type Graphic is tagged record
X, Y : Float;

end record;
function Get_X (V : Graphic) return Float;

type Shape is tagged record
X, Y : Float;

end record;
function Get_X (V : Shape) return Float;

type Displayable_Shape is new Shape and Graphic with ...
394 / 568

Multiple Inheritance
Introduction

Multiple Inheritance - Safe Case

If only one type has concrete operations and fields, this is fine

type Graphic is abstract tagged null record;
function Get_X (V : Graphic) return Float is abstract;

type Shape is tagged record
X, Y : Float;

end record;
function Get_X (V : Shape) return Float;

type Displayable_Shape is new Shape and Graphic with ...

This is the definition of an interface (as in Java)

type Graphic is interface;
function Get_X (V : Graphic) return Float is abstract;

type Shape is tagged record
X, Y : Float;

end record;
function Get_X (V : Shape) return Float;

type Displayable_Shape is new Shape and Graphic with ...
395 / 568

Multiple Inheritance
Interfaces

Interfaces

396 / 568

Multiple Inheritance
Interfaces

Interfaces - Rules

An interface is a tagged type marked interface, containing
Abstract primitives
Null primitives
No fields

Null subprograms provide default empty bodies to primitives that
can be overridden

type I is interface;
procedure P1 (V : I) is abstract;
procedure P2 (V : access I) is abstract
function F return I is abstract;
procedure P3 (V : I) is null;

Note: null can be applied to any procedure (not only used for
interfaces)

397 / 568

Multiple Inheritance
Interfaces

Interface Derivation
An interface can be derived from another interface, adding
primitives

type I1 is interface;
procedure P1 (V : I) is abstract;
type I2 is interface and I1;
Procedure P2 (V : I) is abstract;

A tagged type can derive from several interfaces and can derive
from one interface several times

type I1 is interface;
type I2 is interface and I1;
type I3 is interface;

type R is new I1 and I2 and I3 ...

A tagged type can derive from a single tagged type and several
interfaces

type I1 is interface;
type I2 is interface and I1;
type R1 is tagged null record;

type R2 is new R1 and I1 and I2 ...
398 / 568

Multiple Inheritance
Interfaces

Interfaces And Privacy

If the partial view of the type is tagged, then both the partial and
the full view must expose the same interfaces

package Types is

type I1 is interface;
type R is new I1 with private;

private

type R is new I1 with record ...

399 / 568

Multiple Inheritance
Interfaces

Limited Tagged Types And Interfaces

When a tagged type is limited in the hierarchy, the whole hierarchy
has to be limited

Conversions to interfaces are "just conversions to a view"
A view may have more constraints than the actual object

limited interfaces can be implemented by BOTH limited types
and non-limited types

Non-limited interfaces have to be implemented by non-limited
types

400 / 568

Multiple Inheritance
Lab

Lab

401 / 568

Multiple Inheritance
Lab

Multiple Inheritance Lab

Requirements
Create a tagged type to define shapes

Possible components could include location of shape

Create an interface to draw lines

Possible accessor functions could include line color and width

Create a new type inheriting from both of the above for a
"printable object"

Implement a way to print the object using Ada.Text_IO
Does not have to be fancy!

Create a "printable object" type to draw something (rectangle,
triangle, etc)

Hints
This example is taken from Barnes’ Programming in Ada 2012
Section 21.2

402 / 568

Multiple Inheritance
Lab

Inheritance Lab Solution - Data Types

1 package Base_Types is
2

3 type Coordinate_T is record
4 X_Coord : Integer;
5 Y_Coord : Integer;
6 end record;
7 function Image (Coord : Coordinate_T) return String is
8 ("(" & Coord.X_Coord'Image & "," &
9 Coord.Y_Coord'Image & ")");

10

11 type Line_T is array (1 .. 2) of Coordinate_T;
12 type Lines_T is array (Natural range <>) of Line_T;
13

14 type Color_T is mod 256;
15 type Width_T is range 1 .. 10;
16

17 end Base_Types;
403 / 568

Multiple Inheritance
Lab

Inheritance Lab Solution - Shapes

1 with Base_Types;
2 package Geometry is
3

4 -- Create a tagged type to define shapes
5 type Object_T is abstract tagged private;
6

7 -- Create accessor functions for some common component
8 function Origin (Object : Object_T'Class) return Base_Types.Coordinate_T;
9

10 private
11

12 type Object_T is abstract tagged record
13 The_Origin : Base_Types.Coordinate_T;
14 end record;
15

16 function Origin (Object : Object_T'Class) return Base_Types.Coordinate_T is
17 (Object.The_Origin);
18

19 end Geometry;
404 / 568

Multiple Inheritance
Lab

Inheritance Lab Solution - Drawing (Spec)
1 with Base_Types;
2 package Line_Draw is
3

4 type Object_T is interface;
5

6 -- Create accessor functions for some line attributes
7 procedure Set_Color (Object : in out Object_T;
8 Color : in Base_Types.Color_T)
9 is abstract;

10 function Color (Object : Object_T) return Base_Types.Color_T
11 is abstract;
12

13 procedure Set_Pen_Width (Object : in out Object_T;
14 Width : in Base_Types.Width_T)
15 is abstract;
16 function Pen_Width (Object : Object_T) return Base_Types.Width_T
17 is abstract;
18

19 function Convert (Object : Object_T) return Base_Types.Lines_T
20 is abstract;
21

22 procedure Print (Object : Object_T'Class);
23

24 end Line_Draw;
405 / 568

Multiple Inheritance
Lab

Inheritance Lab Solution - Drawing (Body)

1 with Ada.Text_IO;
2 package body Line_Draw is
3

4 procedure Print (Object : Object_T'Class) is
5 Lines : constant Base_Types.Lines_T := Object.Convert;
6 begin
7 for Index in Lines'Range loop
8 Ada.Text_IO.Put_Line ("Line" & Index'Image);
9 Ada.Text_IO.Put_Line

10 (" From: " & Base_Types.Image (Lines (Index) (1)));
11 Ada.Text_IO.Put_Line
12 (" To: " & Base_Types.Image (Lines (Index) (2)));
13 end loop;
14 end Print;
15

16 end Line_Draw;
406 / 568

Multiple Inheritance
Lab

Inheritance Lab Solution - Printable Object
1 with Geometry;
2 with Line_Draw;
3 with Base_Types;
4 package Printable_Object is
5 type Object_T is
6 abstract new Geometry.Object_T and Line_Draw.Object_T with private;
7 procedure Set_Color (Object : in out Object_T;
8 Color : Base_Types.Color_T);
9 function Color (Object : Object_T) return Base_Types.Color_T;

10

11 procedure Set_Pen_Width (Object : in out Object_T;
12 Width : Base_Types.Width_T);
13 function Pen_Width (Object : Object_T) return Base_Types.Width_T;
14 private
15 type Object_T is
16 abstract new Geometry.Object_T and Line_Draw.Object_T with record
17 The_Color : Base_Types.Color_T := 0;
18 The_Pen_Width : Base_Types.Width_T := 1;
19 end record;
20 end Printable_Object;
21

22 package body Printable_Object is
23 procedure Set_Color (Object : in out Object_T;
24 Color : Base_Types.Color_T) is
25 begin
26 Object.The_Color := Color;
27 end Set_Color;
28 function Color (Object : Object_T) return Base_Types.Color_T is (Object.The_Color);
29

30 procedure Set_Pen_Width (Object : in out Object_T;
31 Width : Base_Types.Width_T) is
32 begin
33 Object.The_Pen_Width := Width;
34 end Set_Pen_Width;
35 function Pen_Width (Object : Object_T) return Base_Types.Width_T is (Object.The_Pen_Width);
36 end Printable_Object;

407 / 568

Multiple Inheritance
Lab

Inheritance Lab Solution - Rectangle
1 with Base_Types;
2 with Printable_Object;
3

4 package Rectangle is
5 subtype Lines_T is Base_Types.Lines_T (1 .. 4);
6

7 type Object_T is new Printable_Object.Object_T with private;
8

9 procedure Set_Lines (Object : in out Object_T;
10 Lines : Lines_T);
11 function Lines (Object : Object_T) return Lines_T;
12

13 private
14

15 type Object_T is new Printable_Object.Object_T with record
16 Lines : Lines_T;
17 end record;
18

19 function Convert (Object : Object_T) return Base_Types.Lines_T is
20 (Object.Lines);
21 end Rectangle;
22

23 package body Rectangle is
24 procedure Set_Lines (Object : in out Object_T;
25 Lines : Lines_T) is
26 begin
27 Object.Lines := Lines;
28 end Set_Lines;
29

30 function Lines (Object : Object_T) return Lines_T is (Object.Lines);
31 end Rectangle;

408 / 568

Multiple Inheritance
Lab

Inheritance Lab Solution - Main

1 with Base_Types;
2 with Rectangle;
3 procedure Main is
4

5 Object : Rectangle.Object_T;
6 Line1 : constant Base_Types.Line_T :=
7 ((1, 1), (1, 10));
8 Line2 : constant Base_Types.Line_T :=
9 ((6, 6), (6, 15));

10 Line3 : constant Base_Types.Line_T :=
11 ((1, 1), (6, 6));
12 Line4 : constant Base_Types.Line_T :=
13 ((1, 10), (6, 15));
14 begin
15 Object.Set_Lines ((Line1, Line2, Line3, Line4));
16 Object.Print;
17 end Main;

409 / 568

Multiple Inheritance
Summary

Summary

410 / 568

Multiple Inheritance
Summary

Summary

Interfaces must be used for multiple inheritance
Usually combined with tagged types, but not necessary
By using only interfaces, only accessors are allowed

Typically there are other ways to do the same thing
In our example, the conversion routine could be common to simplify
things

But interfaces force the compiler to determine when operations are
missing

411 / 568

Exceptions

Exceptions

412 / 568

Exceptions
Introduction

Introduction

413 / 568

Exceptions
Introduction

Rationale for Exceptions

Textual separation from normal processing

Rigorous Error Management
Cannot be ignored, unlike status codes from routines
Example: running out of gasoline in an automobile

package Automotive is
type Vehicle is record

Fuel_Quantity, Fuel_Minimum : Float;
Oil_Temperature : Float;
...

end record;
Fuel_Exhausted : exception;
procedure Consume_Fuel (Car : in out Vehicle);
...

end Automotive;
414 / 568

Exceptions
Introduction

Semantics Overview

Exceptions become active by being raised
Failure of implicit language-defined checks
Explicitly by application

Exceptions occur at run-time
A program has no effect until executed

May be several occurrences active at same time
One per task of control

Normal execution abandoned when they occur
Error processing takes over in response
Response specified by exception handlers
Handling the exception means taking action in response
Other tasks need not be affected

415 / 568

Exceptions
Introduction

Semantics Example: Raising

package body Automotive is
function Current_Consumption return Float is

...
end Current_Consumption;
procedure Consume_Fuel (Car : in out Vehicle) is
begin

if Car.Fuel_Quantity <= Car.Fuel_Minimum then
raise Fuel_Exhausted;

else -- decrement quantity
Car.Fuel_Quantity := Car.Fuel_Quantity -

Current_Consumption;
end if;

end Consume_Fuel;
...

end Automotive;
416 / 568

Exceptions
Introduction

Semantics Example: Handling

procedure Joy_Ride is
Hot_Rod : Automotive.Vehicle;
Bored : Boolean := False;
use Automotive;

begin
while not Bored loop

Steer_Aimlessly (Bored);
-- error situation cannot be ignored
Consume_Fuel (Hot_Rod);

end loop;
Drive_Home;

exception
when Fuel_Exhausted =>

Push_Home;
end Joy_Ride;

417 / 568

Exceptions
Introduction

Handler Part Is Skipped Automatically

If no exceptions are active, returns normally

begin
...

-- if we get here, skip to end
exception

when Name1 =>
...
when Name2 | Name3 =>
...
when Name4 =>
...

end;

418 / 568

Exceptions
Handlers

Handlers

419 / 568

Exceptions
Handlers

Exception Handler Part

Contains the exception handlers within a frame
Within block statements, subprograms, tasks, etc.

Separates normal processing code from abnormal

Starts with the reserved word exception

Optional

begin
sequence_of_statements

[exception
exception_handler
{ exception handler }]

end

420 / 568

Exceptions
Handlers

Exception Handlers Syntax

Associates exception names with statements to execute in response

If used, others must appear at the end, by itself
Associates statements with all other exceptions

Syntax

exception_handler ::=
when exception_choice { | exception_choice } =>

sequence_of_statements
exception_choice ::= exception_name | others

421 / 568

Exceptions
Handlers

Similarity To Case Statements

Both structure and meaning

Exception handler

...
exception

when Constraint_Error | Storage_Error | Program_Error =>
...
when others =>
...

end;

Case statement

case exception_name is
when Constraint_Error | Storage_Error | Program_Error =>
...
when others =>
...

end case;
422 / 568

Exceptions
Handlers

Handlers Don’t "Fall Through"

begin
...
raise Name3;
-- code here is not executed
...

exception
when Name1 =>

-- not executed
...

when Name2 | Name3 =>
-- executed
...

when Name4 =>
-- not executed
...

end;
423 / 568

Exceptions
Handlers

When An Exception Is Raised

Normal processing is
abandoned
Handler for active exception
is executed, if any
Control then goes to the
caller
If handled, caller continues
normally, otherwise repeats
the above

Caller
...
Joy_Ride;
Do_Something_At_Home;
...
Callee
procedure Joy_Ride is

...
begin

...
Drive_Home;

exception
when Fuel_Exhausted =>

Push_Home;
end Joy_Ride;

424 / 568

Exceptions
Handlers

Handling Specific Statements’ Exceptions

begin
loop

Prompting : loop
Put (Prompt);
Get_Line (Filename, Last);
exit when Last > Filename'First - 1;

end loop Prompting;
begin

Open (F, In_File, Filename (1..Last));
exit;

exception
when Name_Error =>

Put_Line ("File '" & Filename (1..Last) &
"' was not found.");

end;
end loop;

425 / 568

Exceptions
Handlers

Exception Handler Content

No restrictions
Block statements,
subprogram calls, etc.

Do whatever makes sense

begin
...

exception
when Some_Error =>

declare
New_Data : Some_Type;

begin
P (New_Data);
...

end;
end;

426 / 568

Exceptions
Handlers

Quiz
1 procedure Main is
2 A, B, C, D : Integer range 0 .. 100;
3 begin
4 A := 1; B := 2; C := 3; D := 4;
5 begin
6 D := A - C + B;
7 exception
8 when others => Put_Line ("One");
9 D := 1;

10 end;
11 D := D + 1;
12 begin
13 D := D / (A - C + B);
14 exception
15 when others => Put_Line ("Two");
16 D := -1;
17 end;
18 exception
19 when others =>
20 Put_Line ("Three");
21 end Main;

What will get printed?
A. One, Two, Three
B. Two, Three
C. Two
D. Three

Explanations
A. Although (A - C) is not in the range

of natural, the range is only checked
on assignment, which is after the
addition of B, so One is never printed

B. Correct
C. If we reach Two, the assignment on

line 16 will cause Three to be
reached

D. Divide by 0 on line 13 causes an
exception, so Two must be called

427 / 568

Exceptions
Handlers

Quiz
1 procedure Main is
2 A, B, C, D : Integer range 0 .. 100;
3 begin
4 A := 1; B := 2; C := 3; D := 4;
5 begin
6 D := A - C + B;
7 exception
8 when others => Put_Line ("One");
9 D := 1;

10 end;
11 D := D + 1;
12 begin
13 D := D / (A - C + B);
14 exception
15 when others => Put_Line ("Two");
16 D := -1;
17 end;
18 exception
19 when others =>
20 Put_Line ("Three");
21 end Main;

What will get printed?
A. One, Two, Three
B. Two, Three
C. Two
D. Three

Explanations
A. Although (A - C) is not in the range

of natural, the range is only checked
on assignment, which is after the
addition of B, so One is never printed

B. Correct
C. If we reach Two, the assignment on

line 16 will cause Three to be
reached

D. Divide by 0 on line 13 causes an
exception, so Two must be called

427 / 568

Exceptions
Implicitly and Explicitly Raised Exceptions

Implicitly and Explicitly Raised Exceptions

428 / 568

Exceptions
Implicitly and Explicitly Raised Exceptions

Implicitly-Raised Exceptions

Correspond to language-defined checks

Can happen by statement execution

K := -10; -- where K must be greater than zero

Can happen by declaration elaboration

Doomed : array (Positive) of Big_Type;

429 / 568

Exceptions
Implicitly and Explicitly Raised Exceptions

Some Language-Defined Exceptions

Constraint_Error

Violations of constraints on range, index, etc.

Program_Error

Runtime control structure violated (function with no return ...)

Storage_Error

Insufficient storage is available

For a complete list see RM Q-4

430 / 568

Exceptions
Implicitly and Explicitly Raised Exceptions

Explicitly-Raised Exceptions
Raised by application via raise
statements

Named exception becomes
active

Syntax
raise_statement ::= raise; |

raise exception_name
[with string_expression];

with string_expression
only available in Ada 2005
and later

A raise by itself is only allowed in
handlers

if Unknown (User_ID) then
raise Invalid_User;

end if;

if Unknown (User_ID) then
raise Invalid_User

with "Attempt by " &
Image (User_ID);

end if;

431 / 568

Exceptions
User-Defined Exceptions

User-Defined Exceptions

432 / 568

Exceptions
User-Defined Exceptions

User-Defined Exceptions

Syntax

defining_identifier_list : exception;

Behave like predefined exceptions
Scope and visibility rules apply
Referencing as usual
Some minor differences

Exception identifiers’ use is restricted
raise statements
Handlers
Renaming declarations

433 / 568

Exceptions
User-Defined Exceptions

User-Defined Exceptions Example

An important part of the abstraction
Designer specifies how component can be used

package Stack is
Underflow, Overflow : exception;
procedure Push (Item : in Integer);
...

end Stack;

package body Stack is
procedure Push (Item : in Integer) is
begin

if Top = Index'Last then
raise Overflow;

end if;
Top := Top + 1;
Values (Top) := Item;

end Push;
...

434 / 568

Exceptions
Propagation

Propagation

435 / 568

Exceptions
Propagation

Propagation

Control does not return to point of raising
Termination Model

When a handler is not found in a block statement
Re-raised immediately after the block

When a handler is not found in a subprogram
Propagated to caller at the point of call

Propagation is dynamic, back up the call chain
Not based on textual layout or order of declarations

Propagation stops at the main subprogram
Main completes abnormally unless handled

436 / 568

Exceptions
Propagation

Propagation Demo

1 procedure Do_Something is
2 Error : exception;
3 procedure Unhandled is
4 begin
5 Maybe_Raise(1);
6 end Unhandled;
7 procedure Handled is
8 begin
9 Unhandled;

10 Maybe_Raise(2);
11 exception
12 when Error =>
13 Print("Handle 1 or 2");
14 end Handled;

16 begin -- Do_Something
17 Maybe_Raise(3);
18 Handled;
19 exception
20 when Error =>
21 Print("Handle 3");
22 end Do_Something;

437 / 568

Exceptions
Propagation

Termination Model

When control goes to handler, it continues from here

procedure Joy_Ride is
begin

loop
Steer_Aimlessly;

-- If next line raises Fuel_Exhausted, go to handler
Consume_Fuel;

end loop;
exception

when Fuel_Exhausted => -- Handler
Push_Home;
-- Resume from here: loop has been exited

end Joy_Ride;
438 / 568

Exceptions
Propagation

Quiz
2 Main_Problem : exception;
3 I : Integer;
4 function F (P : Integer) return Integer is
5 begin
6 if P > 0 then
7 return P + 1;
8 elsif P = 0 then
9 raise Main_Problem;

10 end if;
11 end F;
12 begin
13 I := F(Input_Value);
14 Put_Line ("Success");
15 exception
16 when Constraint_Error => Put_Line ("Constraint Error");
17 when Program_Error => Put_Line ("Program Error");
18 when others => Put_Line ("Unknown problem");

What will get printed if Input_Value on line 13 is Integer'Last?

A. Unknown Problem
B. Success
C. Constraint Error
D. Program Error

Explanations

A. "Unknown Problem" is printed by the when others due to the
raise on line 9 when P is 0

B. "Success" is printed when 0 < P < Integer'Last
C. Trying to add 1 to P on line 7 generates a Constraint_Error
D. Program_Error will be raised by F if P < 0 (no return

statement found)

439 / 568

Exceptions
Propagation

Quiz
2 Main_Problem : exception;
3 I : Integer;
4 function F (P : Integer) return Integer is
5 begin
6 if P > 0 then
7 return P + 1;
8 elsif P = 0 then
9 raise Main_Problem;

10 end if;
11 end F;
12 begin
13 I := F(Input_Value);
14 Put_Line ("Success");
15 exception
16 when Constraint_Error => Put_Line ("Constraint Error");
17 when Program_Error => Put_Line ("Program Error");
18 when others => Put_Line ("Unknown problem");

What will get printed if Input_Value on line 13 is Integer'Last?

A. Unknown Problem
B. Success
C. Constraint Error
D. Program Error

Explanations

A. "Unknown Problem" is printed by the when others due to the
raise on line 9 when P is 0

B. "Success" is printed when 0 < P < Integer'Last
C. Trying to add 1 to P on line 7 generates a Constraint_Error
D. Program_Error will be raised by F if P < 0 (no return

statement found)

439 / 568

Exceptions
Exceptions as Objects

Exceptions as Objects

440 / 568

Exceptions
Exceptions as Objects

Exceptions Are Not Objects

May not be manipulated
May not be components of composite types
May not be passed as parameters

Some differences for scope and visibility
May be propagated out of scope

441 / 568

Exceptions
Exceptions as Objects

But You Can Treat Them As Objects

For raising and handling, and more
Standard Library

package Ada.Exceptions is
type Exception_Id is private;
procedure Raise_Exception (E : Exception_Id;

Message : String := "");
...
type Exception_Occurrence is limited private;
function Exception_Name (X : Exception_Occurrence)

return String;
function Exception_Message (X : Exception_Occurrence)

return String;
function Exception_Information (X : Exception_Occurrence)

return String;
procedure Reraise_Occurrence (X : Exception_Occurrence);
procedure Save_Occurrence (

Target : out Exception_Occurrence;
Source : Exception_Occurrence);

...
end Ada.Exceptions;

442 / 568

Exceptions
Exceptions as Objects

Exception Occurrence

Syntax associates an object with active exception

when defining_identifier : exception_name ... =>

A constant view representing active exception

Used with operations defined for the type

exception
when Caught_Exception : others =>

Put (Exception_Name (Caught_Exception));

443 / 568

Exceptions
Exceptions as Objects

Exception_Occurrence Query Functions

Exception_Name
Returns full expanded name of the exception in string form

Simple short name if space-constrained

Predefined exceptions appear as just simple short name

Exception_Message
Returns string value specified when raised, if any

Exception_Information
Returns implementation-defined string content

Should include both exception name and message content

Presumably includes debugging information

Location where exception occurred
Language-defined check that failed (if such)

444 / 568

Exceptions
Exceptions as Objects

Exception ID

For an exception identifier, the identity of the exception is
<name>'Identity

Mine : exception
use Ada.Exceptions;
...
exception

when Occurrence : others =>
if Exception_Identity(Occurrence) = Mine'Identity
then

...

445 / 568

Exceptions
Raise Expressions

Raise Expressions

446 / 568

Exceptions
Raise Expressions

Raise Expressions
Ada 2012

Expression raising specified exception at run-time

Foo : constant Integer := (case X is
when 1 => 10,
when 2 => 20,
when others => raise Error);

447 / 568

Exceptions
In Practice

In Practice

448 / 568

Exceptions
In Practice

Exceptions Are Not Always Appropriate

What does it mean to have
an unexpected error in a
safety-critical application?

Maybe there’s no
reasonable response

449 / 568

Exceptions
In Practice

Relying On Exception Raising Is Risky
They may be suppressed

By runtime environment
By build switches

Not recommended

function Tomorrow (Today : Days) return Days is
begin

return Days'Succ (Today);
exception

when Constraint_Error =>
return Days'First;

end Tomorrow;

Recommended

function Tomorrow (Today : Days) return Days is
begin

if Today = Days'Last then
return Days'First;

else
return Days'Succ (Today);

end if;
end Tomorrow;

450 / 568

Exceptions
Lab

Lab

451 / 568

Exceptions
Lab

Exceptions Lab

(Simplified) Input Verifier

Overview
Create an application that converts strings to numeric values

Requirements
Create a package to define your numeric type
Define a primitive to convert a string to your numeric type

The primitive should raise your own exceptions; one for
out-of-range and one for illegal string

Main program should run multiple tests on the primitive

452 / 568

Exceptions
Lab

Exceptions Lab Solution - Numeric Types
1 package Numeric_Types is
2 Illegal_String : exception;
3 Out_Of_Range : exception;
4

5 Max_Int : constant := 2**15;
6 type Integer_T is range -(Max_Int) .. Max_Int - 1;
7

8 function Value (Str : String) return Integer_T;
9 end Numeric_Types;

10

11 package body Numeric_Types is
12

13 function Legal (C : Character) return Boolean is
14 begin
15 return
16 C in '0' .. '9' or C = '+' or C = '-' or C = '_' or C = 'e' or C = 'E';
17 end Legal;
18

19 function Value (Str : String) return Integer_T is
20 begin
21 for I in Str'Range loop
22 if not Legal (Str (I)) then
23 raise Illegal_String;
24 end if;
25 end loop;
26 return Numeric_Types.Integer_T'Value (Str);
27 exception
28 when Constraint_Error =>
29 raise Out_Of_Range;
30 end Value;
31

32 end Numeric_Types;

453 / 568

Exceptions
Lab

Exceptions Lab Solution - Main
1 with Ada.Text_IO;
2 with Numeric_Types;
3 procedure Main is
4

5 procedure Print_Value (Str : String) is
6 Value : Numeric_Types.Integer_T;
7 begin
8 Ada.Text_IO.Put (Str & " => ");
9 Value := Numeric_Types.Value (Str);

10 Ada.Text_IO.Put_Line (Numeric_Types.Integer_T'Image (Value));
11 exception
12 when Numeric_Types.Out_Of_Range =>
13 Ada.Text_IO.Put_Line ("Out of range");
14 when Numeric_Types.Illegal_String =>
15 Ada.Text_IO.Put_Line ("Illegal entry");
16 end Print_Value;
17

18 begin
19 Print_Value ("123");
20 Print_Value ("2_3_4");
21 Print_Value ("-345");
22 Print_Value ("+456");
23 Print_Value ("1234567890");
24 Print_Value ("123abc");
25 Print_Value ("12e3");
26 end Main;

454 / 568

Exceptions
Summary

Summary

455 / 568

Exceptions
Summary

Summary

Should be for unexpected errors

Give clients the ability to avoid them

If handled, caller should see normal effect
Mode out parameters assigned
Function return values provided

Package Ada.Exceptions provides views as objects
For both raising and special handling
Especially useful for debugging

Checks may be suppressed

456 / 568

Advanced Tasking

Advanced Tasking

457 / 568

Advanced Tasking
Introduction

Introduction

458 / 568

Advanced Tasking
Introduction

A Simple Task

Parallel code execution via task

limited types (No copies allowed)

procedure Main is
task type T;
task body T is
begin

loop
delay 1.0;
Put_Line ("T");

end loop;
end T;

begin
loop

delay 1.0;
Put_Line ("Main");

end loop;
end;

A task is started when its declaration scope is elaborated

Its enclosing scope exits when all tasks have finished
459 / 568

Advanced Tasking
Introduction

Two Synchronization Models

Active
Rendezvous
Client / Server model
Server entries
Client entry calls

Passive
Protected objects model
Concurrency-safe semantics

460 / 568

Advanced Tasking
Tasks

Tasks

461 / 568

Advanced Tasking
Tasks

Rendezvous Definitions
Server declares several entry

Client calls entries like subprograms

Server accept the client calls

At each standalone accept, server task blocks
Until a client calls the related entry

task type Msg_Box_T is
entry Start;
entry Receive_Message (S : String);

end Msg_Box_T;

task body Msg_Box_T is
begin

loop
accept Start;
Put_Line ("start");

accept Receive_Message (S : String) do
Put_Line ("receive " & S);

end Receive_Message;
end loop;

end Msg_Box_T;
462 / 568

Advanced Tasking
Tasks

Rendezvous Entry Calls

Upon calling an entry, client blocks
Until server reaches end of its accept block

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
T.Receive_Message ("2");

May be executed as follows:

calling start
start -- May switch place with line below
calling receive 1 -- May switch place with line above
receive 1
calling receive 2
-- Blocked until another task calls Start

463 / 568

Advanced Tasking
Tasks

Accepting a Rendezvous

accept statement
Wait on single entry
If entry call waiting: Server handles it
Else: Server waits for an entry call

select statement
Several entries accepted at the same time
Can time-out on the wait
Can be not blocking if no entry call waiting
Can terminate if no clients can possibly make entry call
Can conditionally accept a rendezvous based on a guard
expression

464 / 568

Advanced Tasking
Tasks

Accepting a Rendezvous

Simple accept statement
Used by a server task to indicate a willingness to provide the service
at a given point

Selective accept statement (later in these slides)
Wait for more than one rendezvous at any time
Time-out if no rendezvous within a period of time
Withdraw its offer if no rendezvous is immediately available
Terminate if no clients can possibly call its entries
Conditionally accept a rendezvous based on a guard expression

465 / 568

Advanced Tasking
Tasks

Example: Task - Declaration

package Tasks is

task T is
entry Start;
entry Receive_Message (V : String);

end T;

end Tasks;

466 / 568

Advanced Tasking
Tasks

Example: Task - Body

with Ada.Text_IO; use Ada.Text_IO;

package body Tasks is

task body T is
begin

loop
accept Start do

Put_Line ("Start");
end Start;

accept Receive_Message (V : String) do
Put_Line ("Receive " & V);

end Receive_Message;
end loop;

end T;

end Tasks;
467 / 568

Advanced Tasking
Tasks

Example: Main

with Ada.Text_IO; use Ada.Text_IO;
with Tasks; use Tasks;

procedure Main is
begin

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
-- Locks until somebody calls Start
T.Receive_Message ("2");

end Main;

468 / 568

Advanced Tasking
Tasks

Quiz

task type T is
entry Go;

end T;

task body T is
begin

accept Go do
loop

null;
end loop;

end Go;
end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Runtime error
C. The calling task hangs
D. My_Task hangs

469 / 568

Advanced Tasking
Tasks

Quiz

task type T is
entry Go;

end T;

task body T is
begin

accept Go do
loop

null;
end loop;

end Go;
end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Runtime error
C. The calling task hangs
D. My_Task hangs

469 / 568

Advanced Tasking
Tasks

Quiz

task type T is
entry Go;

end T;

task body T is
begin

accept Go;
loop

null;
end loop;

end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Runtime error
C. The calling task hangs
D. My_Task hangs

470 / 568

Advanced Tasking
Tasks

Quiz

task type T is
entry Go;

end T;

task body T is
begin

accept Go;
loop

null;
end loop;

end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Runtime error
C. The calling task hangs
D. My_Task hangs

470 / 568

Advanced Tasking
Tasks

Quiz

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

task type T is
entry Hello;
entry Goodbye;

end T;
task body T is
begin

loop
accept Hello do

Put_Line ("Hello");
end Hello;
accept Goodbye do

Put_Line ("Goodbye");
end Goodbye;

end loop;
Put_Line ("Finished");

end T;
begin

T.Hello;
T.Goodbye;
Put_Line ("Done");

end Main;

What is the output of this
program?
A. Hello, Goodbye, Finished,

Done
B. Hello, Goodbye, Finished
C. Hello, Goodbye, Done
D. Hello, Goodbye

- Entries Hello and Goodbye are
reached (so "Hello" and
"Goodbye" are printed).
- After Goodbye, task returns to
Main (so "Done" is printed) but
the loop in the task never finishes
(so "Finished" is never printed).

471 / 568

Advanced Tasking
Tasks

Quiz

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

task type T is
entry Hello;
entry Goodbye;

end T;
task body T is
begin

loop
accept Hello do

Put_Line ("Hello");
end Hello;
accept Goodbye do

Put_Line ("Goodbye");
end Goodbye;

end loop;
Put_Line ("Finished");

end T;
begin

T.Hello;
T.Goodbye;
Put_Line ("Done");

end Main;

What is the output of this
program?
A. Hello, Goodbye, Finished,

Done
B. Hello, Goodbye, Finished
C. Hello, Goodbye, Done
D. Hello, Goodbye

- Entries Hello and Goodbye are
reached (so "Hello" and
"Goodbye" are printed).
- After Goodbye, task returns to
Main (so "Done" is printed) but
the loop in the task never finishes
(so "Finished" is never printed).

471 / 568

Advanced Tasking
Protected Objects

Protected Objects

472 / 568

Advanced Tasking
Protected Objects

Protected Objects

Multitask-safe accessors to get and set state
No direct state manipulation
No concurrent modifications
limited types (No copies allowed)

473 / 568

Advanced Tasking
Protected Objects

Protected: Functions and Procedures

A function can get the state
Multiple-Readers
Protected data is read-only
Concurrent call to function is allowed
No concurrent call to procedure

A procedure can set the state
Single-Writer
No concurrent call to either procedure or function

In case of concurrency, other callers get blocked
Until call finishes

Support for read-only locks depends on OS
Windows has no support for those
In that case, function are blocking as well

474 / 568

Advanced Tasking
Protected Objects

Protected: Limitations

No potentially blocking action
select, accept, entry call, delay, abort

task creation or activation

Some standard lib operations, eg. IO

Depends on implementation

May raise Program_Error or deadlocks

Will cause performance and portability issues

pragma Detect_Blocking forces a proactive runtime detection

Solve by deferring blocking operations
Using eg. a FIFO

475 / 568

Advanced Tasking
Protected Objects

Protected: Lock-Free Implementation

GNAT-Specific

Generates code without any locks

Best performance

No deadlock possible

Very constrained
No reference to entities outside the scope
No direct or indirect entry, goto, loop, procedure call
No access dereference
No composite parameters
See GNAT RM 2.100

protected Object
with Lock_Free is

476 / 568

Advanced Tasking
Protected Objects

Example: Protected Objects - Declaration

package Protected_Objects is

protected Object is

procedure Set (Prompt : String; V : Integer);
function Get (Prompt : String) return Integer;

private
Local : Integer := 0;

end Object;

end Protected_Objects;

477 / 568

Advanced Tasking
Protected Objects

Example: Protected Objects - Body
with Ada.Text_IO; use Ada.Text_IO;

package body Protected_Objects is

protected body Object is

procedure Set (Prompt : String; V : Integer) is
Str : constant String := "Set " & Prompt & V'Image;

begin
Local := V;
Put_Line (Str);

end Set;

function Get (Prompt : String) return Integer is
Str : constant String := "Get " & Prompt & Local'Image;

begin
Put_Line (Str);
return Local;

end Get;

end Object;

end Protected_Objects;
478 / 568

Advanced Tasking
Protected Objects

Quiz
protected O is

function Get return Integer;
procedure Set (V : Integer);

private
Val, Access_Count : Integer := 0;

end O;

protected body O is
function Get return Integer is
begin

Access_count := Access_Count + 1;
return Val;

end Get;

procedure Set (V : Integer) is
begin

Access_count := Access_Count + 1;
Val := V;

end Set;
end O;

What is the result of compiling and running this code?

A. No error
B. Compilation error
C. Runtime error

Cannot set Access_Count from a function

479 / 568

Advanced Tasking
Protected Objects

Quiz
protected O is

function Get return Integer;
procedure Set (V : Integer);

private
Val, Access_Count : Integer := 0;

end O;

protected body O is
function Get return Integer is
begin

Access_count := Access_Count + 1;
return Val;

end Get;

procedure Set (V : Integer) is
begin

Access_count := Access_Count + 1;
Val := V;

end Set;
end O;

What is the result of compiling and running this code?

A. No error
B. Compilation error
C. Runtime error

Cannot set Access_Count from a function

479 / 568

Advanced Tasking
Protected Objects

Quiz
protected P is

procedure Initialize (V : Integer);
procedure Increment;
function Decrement return Integer;
function Query return Integer;

private
Object : Integer := 0;

end P;

Which completion(s) of P is(are) illegal?

A. procedure Initialize (V : Integer) is
begin

Object := V;
end Initialize;

B. procedure Increment is
begin

Object := Object + 1;
end Increment;

C. function Decrement return Integer is
begin

Object := Object - 1;
return Object;

end Decrement;

D. function Query return Integer is begin
return Object;

end Query;

A. Legal
B. Legal - subprograms do not need parameters
C. Functions in a protected object cannot modify global objects
D. Legal

480 / 568

Advanced Tasking
Protected Objects

Quiz
protected P is

procedure Initialize (V : Integer);
procedure Increment;
function Decrement return Integer;
function Query return Integer;

private
Object : Integer := 0;

end P;

Which completion(s) of P is(are) illegal?

A. procedure Initialize (V : Integer) is
begin

Object := V;
end Initialize;

B. procedure Increment is
begin

Object := Object + 1;
end Increment;

C. function Decrement return Integer is
begin

Object := Object - 1;
return Object;

end Decrement;

D. function Query return Integer is begin
return Object;

end Query;

A. Legal
B. Legal - subprograms do not need parameters
C. Functions in a protected object cannot modify global objects
D. Legal

480 / 568

Advanced Tasking
Delays

Delays

481 / 568

Advanced Tasking
Delays

Delay keyword

delay keyword part of tasking
Blocks for a time
Relative: Blocks for at least Duration
Absolute: Blocks until no earlier than Calendar.Time or
Real_Time.Time

with Calendar;

procedure Main is
Relative : Duration := 1.0;
Absolute : Calendar.Time

:= Calendar.Time_Of (2030, 10, 01);
begin

delay Relative;
delay until Absolute;

end Main;
482 / 568

Advanced Tasking
Task and Protected Types

Task and Protected Types

483 / 568

Advanced Tasking
Task and Protected Types

Task Activation

Instantiated tasks start running when activated

On the stack
When enclosing declarative part finishes elaborating

On the heap
Immediately at instantiation

task type First_T is ...
type First_T_A is access all First_T;

task body First_T is ...
...
declare

V1 : First_T;
V2 : First_T_A;

begin -- V1 is activated
V2 := new First_T; -- V2 is activated immediately

484 / 568

Advanced Tasking
Task and Protected Types

Single Declaration

Instantiate an anonymous task (or protected) type
Declares an object of that type

task type Task_T is
entry Start;

end Task_T;

type Task_Ptr_T is access all Task_T;

task body Task_T is
begin

accept Start;
end Task_T;
...

V1 : Task_T;
V2 : Task_Ptr_T;

begin
V1.Start;
V2 := new Task_T;
V2.all.Start;

485 / 568

Advanced Tasking
Task and Protected Types

Task Scope

Nesting is possible in any declarative block

Scope has to wait for tasks to finish before ending

At library level: program ends only when all tasks finish

package P is
task type T;

end P;

package body P is
task body T is

loop
delay 1.0;
Put_Line ("tick");

end loop;
end T;

Task_Instance : T;
end P;

486 / 568

Advanced Tasking
Task and Protected Types

Waiting On Different Entries

It is convenient to be able to accept several entries

The select statements can wait simultaneously on a list of entries
For task only
It accepts the first one that is requested

select
accept Receive_Message (V : String)
do

Put_Line ("Message : " & V);
end Receive_Message;

or
accept Stop;

exit;
end select;

487 / 568

Advanced Tasking
Task and Protected Types

Guard Conditions
accept may depend on a guard condition with when

Evaluated when entering select

May use a guard condition , that only accepts entries on a
boolean condition

Condition is evaluated when the task reaches it

task body T is
Val : Integer;
Initialized : Boolean := False;

begin
loop

select
accept Put (V : Integer) do

Val := V;
Initialized := True;

end Put;
or

when Initialized =>
accept Get (V : out Integer) do

V := Val;
end Get;

end select;
end loop;

end T;

488 / 568

Advanced Tasking
Task and Protected Types

Protected Object Entries

Special kind of protected procedure

May use a barrier which is evaluated when
A task calls an entry
A protected entry or procedure is exited

Several tasks can be waiting on the same entry

Only one may be re-activated when the barrier is relieved

protected body Stack is
entry Push (V : Integer) when Size < Buffer'Length is
...
entry Pop (V : out Integer) when Size > 0 is
...

end Object;
489 / 568

Advanced Tasking
Task and Protected Types

Example: Protected Objects - Declaration

package Protected_Objects is

protected type Object is
procedure Set (Caller : Character; V : Integer);
function Get return Integer;
procedure Initialize (My_Id : Character);

private

Local : Integer := 0;
Id : Character := ' ';

end Object;

O1, O2 : Object;

end Protected_Objects;
490 / 568

Advanced Tasking
Task and Protected Types

Example: Protected Objects - Body
with Ada.Text_IO; use Ada.Text_IO;

package body Protected_Objects is

protected body Object is

procedure Initialize (My_Id : Character) is
begin

Id := My_Id;
end Initialize;

procedure Set (Caller : Character; V : Integer) is
begin

Local := V;
Put_Line ("Task-" & Caller & " Object-" & Id & " => " & V'Image);

end Set;

function Get return Integer is
begin

return Local;
end Get;

end Object;

end Protected_Objects;
491 / 568

Advanced Tasking
Task and Protected Types

Example: Tasks - Declaration

package Tasks is
task type T is

entry Start
(Id : Character; Initial_1, Initial_2 : Integer);

entry Receive_Message (Delta_1, Delta_2 : Integer);
end T;

T1, T2 : T;
end Tasks;

492 / 568

Advanced Tasking
Task and Protected Types

Example: Tasks - Body

task body T is
My_Id : Character := ' ';
...
accept Start (Id : Character; Initial_1, Initial_2 : Integer) do

My_Id := Id;
O1.Set (My_Id, Initial_1);
O2.Set (My_Id, Initial_2);

end Start;

loop
accept Receive_Message (Delta_1, Delta_2 : Integer) do

declare
New_1 : constant Integer := O1.Get + Delta_1;
New_2 : constant Integer := O2.Get + Delta_2;

begin
O1.Set (My_Id, New_1);
O2.Set (My_Id, New_2);

end;
end Receive_Message;

end loop;
493 / 568

Advanced Tasking
Task and Protected Types

Example: Main

with Tasks; use Tasks;
with Protected_Objects; use Protected_Objects;

procedure Test_Protected_Objects is
begin

O1.Initialize ('X');
O2.Initialize ('Y');
T1.Start ('A', 1, 2);
T2.Start ('B', 1_000, 2_000);
T1.Receive_Message (1, 2);
T2.Receive_Message (10, 20);

-- Ugly...
abort T1;
abort T2;

end Test_Protected_Objects;
494 / 568

Advanced Tasking
Task and Protected Types

Quiz
procedure Main is

protected type O is
entry P;

private
Ok : Boolean := False;

end O;

protected body O is
entry P when not Ok is
begin

Ok := True;
end P;

end O;
begin

O.P;
end Main;

What is the result of compiling and running this code?

A. Ok = True
B. Nothing
C. Compilation error
D. Runtime error

O is a protected type, needs instantiation

495 / 568

Advanced Tasking
Task and Protected Types

Quiz
procedure Main is

protected type O is
entry P;

private
Ok : Boolean := False;

end O;

protected body O is
entry P when not Ok is
begin

Ok := True;
end P;

end O;
begin

O.P;
end Main;

What is the result of compiling and running this code?

A. Ok = True
B. Nothing
C. Compilation error
D. Runtime error

O is a protected type, needs instantiation
495 / 568

Advanced Tasking
Some Advanced Concepts

Some Advanced Concepts

496 / 568

Advanced Tasking
Some Advanced Concepts

Waiting With a Delay

A select statement can wait with a delay

If that delay is exceeded with no entry call, block is executed

The delay until statement can be used as well

There can be multiple delay statements
(useful when the value is not hard-coded)

select
accept Receive_Message (V:String) do

Put_Line ("Message : " & V);
end Receive_Message;

or
delay 50.0;
Put_Line ("Don't wait any longer");
exit;

end select;
497 / 568

Advanced Tasking
Some Advanced Concepts

Calling an Entry With a Delay Protection

A call to entry blocks the task until the entry is accept ’ed
Wait for a given amount of time with select ... delay
Only one entry call is allowed
No accept statement is allowed

task Msg_Box is
entry Receive_Message (V : String);

end Msg_Box;

procedure Main is
begin

select
Msg_Box.Receive_Message ("A");

or
delay 50.0;

end select;
end Main;

498 / 568

Advanced Tasking
Some Advanced Concepts

The Delay Is Not A Timeout

The time spent by the client is actually not bounded
Delay’s timer stops on accept
The call blocks until end of server-side statements

In this example, the total delay is up to 1010 s

task body Msg_Box is
accept Receive_Message (S : String) do

delay 1000.0;
end Receive_Message;

...
procedure Client is
begin

select
Msg_Box.Receive_Message ("My_Message")

or
delay 10.0;

end select;
499 / 568

Advanced Tasking
Some Advanced Concepts

Non-blocking Accept or Entry

Using else

Task skips the accept or entry call if they are not ready to be
entered

On an accept

select
accept Receive_Message (V : String) do

Put_Line ("T: Receive " & V);
end Receive_Message;

else
Put_Line ("T: Nothing received");

end select;

As caller on an entry

select
T.Stop;

else
Put_Line ("No stop");

end select;

delay is not allowed in this case
500 / 568

Advanced Tasking
Some Advanced Concepts

Issues With "Double Non-Blocking"
For accept ... else the server peeks into the queue

Server does not wait

For <entry-call> ... else the caller looks for a waiting
server

If both use it, the entry will never be called

Server

select
accept Receive_Message (V : String) do

Put_Line ("T: Receive " & V);
end Receive_Message;

else
Put_Line ("T: Nothing received");

end select;

Caller

select
T.Receive_Message ("1");

else
Put_Line ("No message sent");

end select;
501 / 568

Advanced Tasking
Some Advanced Concepts

Terminate Alternative

An entry can’t be called anymore if all tasks calling it are over

Handled through or terminate alternative
Terminates the task if all others are terminated
Or are blocked on or terminate themselves

Task is terminated immediately
No additional code executed

select
accept Entry_Point

or
terminate;

end select;

502 / 568

Advanced Tasking
Some Advanced Concepts

Select On Protected Objects Entries

Same as select but on task entries
With a delay part

select
O.Push (5);

or
delay 10.0;
Put_Line ("Delayed overflow");

end select;

or with an else part

select
O.Push (5);

else
Put_Line ("Overflow");

end select;
503 / 568

Advanced Tasking
Some Advanced Concepts

Queue

Protected entry, procedure, and tasks entry are activated by
one task at a time

Mutual exclusion section

Other tasks trying to enter are queued
In First-In First-Out (FIFO) by default

When the server task terminates, tasks still queued receive
Tasking_Error

504 / 568

Advanced Tasking
Some Advanced Concepts

Queuing Policy

Queuing policy can be set using

pragma Queuing_Policy (<policy_identifier>);

The following policy_identifier are available
FIFO_Queuing (default)
Priority_Queuing

FIFO_Queuing
First-in First-out, classical queue

Priority_Queuing
Takes into account priority
Priority of the calling task at time of call

505 / 568

Advanced Tasking
Some Advanced Concepts

Setting Task Priority

GNAT available priorities are 0 .. 30, see gnat/system.ads
Tasks with the highest priority are prioritized more
Priority can be set statically

task type T
with Priority => <priority_level>
is ...

Priority can be set dynamically

with Ada.Dynamic_Priorities;

task body T is
begin

Ada.Dynamic_Priorities.Set_Priority (10);
end T;

506 / 568

Advanced Tasking
Some Advanced Concepts

requeue Instruction

requeue can be called in any entry (task or protected)

Puts the requesting task back into the queue
May be handled by another entry
Or the same one...

Reschedule the processing for later

entry Extract (Qty : Integer) when True is
begin

if not Try_Extract (Qty) then
requeue Extract;

end if;
end Extract;

Same parameter values will be used on the queue
507 / 568

Advanced Tasking
Some Advanced Concepts

requeue Tricks

Only an accepted call can be requeued

Accepted entries are waiting for end

Not in a select ... or delay ... else anymore

So the following means the client blocks for 2 seconds

task body Select_Requeue_Quit is
begin

accept Receive_Message (V : String) do
requeue Receive_Message;

end Receive_Message;
delay 2.0;

end Select_Requeue_Quit;
...
select

Select_Requeue_Quit.Receive_Message ("Hello");
or

delay 0.1;
end select;

508 / 568

Advanced Tasking
Some Advanced Concepts

Abort Statements

abort stops the tasks immediately
From an external caller
No cleanup possible
Highly unsafe - should be used only as last resort

procedure Main is
task type T;

task body T is
begin

loop
delay 1.0;
Put_Line ("A");

end loop;
end T;

begin
delay 10.0;
abort T;

end;
509 / 568

Advanced Tasking
Some Advanced Concepts

select ... then abort

select can call abort
Can abort anywhere in the processing
Highly unsafe

510 / 568

Advanced Tasking
Some Advanced Concepts

Multiple Select Example

loop
select

accept Receive_Message (V : String) do
Put_Line ("Select_Loop_Task Receive: " & V);

end Receive_Message;
or

accept Send_Message (V : String) do
Put_Line ("Select_Loop_Task Send: " & V);

end Send_Message;
or when Termination_Flag =>

accept Stop;
or

delay 0.5;
Put_Line

("No more waiting at" & Day_Duration'Image (Seconds (Clock)));
exit;

end select;
end loop;

511 / 568

Advanced Tasking
Some Advanced Concepts

Example: Main

with Ada.Text_IO; use Ada.Text_IO;
with Task_Select; use Task_Select;

procedure Main is
begin

Select_Loop_Task.Receive_Message ("1");
Select_Loop_Task.Send_Message ("A");
Select_Loop_Task.Send_Message ("B");
Select_Loop_Task.Receive_Message ("2");
Select_Loop_Task.Stop;

exception
when Tasking_Error =>

Put_Line ("Expected exception: Entry not reached");
end Main;

512 / 568

Advanced Tasking
Some Advanced Concepts

Quiz

task T is
entry E1;
entry E2;

end T;
...
task body Other_Task is
begin

select
T.E1;

or
T.E2;

end select;
end Other_Task;

What is the result of compiling and running this code?

A. T.E1 is called
B. Nothing
C. Compilation error
D. Runtime error

A select entry call can only call one entry at a time.

513 / 568

Advanced Tasking
Some Advanced Concepts

Quiz

task T is
entry E1;
entry E2;

end T;
...
task body Other_Task is
begin

select
T.E1;

or
T.E2;

end select;
end Other_Task;

What is the result of compiling and running this code?

A. T.E1 is called
B. Nothing
C. Compilation error
D. Runtime error

A select entry call can only call one entry at a time.
513 / 568

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

task T is
entry A;

end T;

task body T is
begin

select
accept A;
Put ("A");

else
delay 1.0;

end select;
end T;

begin
select

T.A;
else

delay 1.0;
end select;

end Main;

What is the output of this code?
A. "AAAAA..."
B. Nothing
C. Compilation error
D. Runtime error

Common mistake: Main and T
won’t wait on each other and will
both execute their delay
statement only.

.
514 / 568

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

task T is
entry A;

end T;

task body T is
begin

select
accept A;
Put ("A");

else
delay 1.0;

end select;
end T;

begin
select

T.A;
else

delay 1.0;
end select;

end Main;

What is the output of this code?
A. "AAAAA..."
B. Nothing
C. Compilation error
D. Runtime error

Common mistake: Main and T
won’t wait on each other and will
both execute their delay
statement only.

.
514 / 568

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

task type T is
entry A;

end T;

task body T is
begin

select
accept A;

or
terminate;

end select;

Put_Line ("Terminated");
end T;

My_Task : T;
begin

null;
end Main;

What is the output of this code?

A. "Terminated"
B. Nothing
C. Compilation error
D. Runtime error

T is terminated at the end of Main

515 / 568

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

task type T is
entry A;

end T;

task body T is
begin

select
accept A;

or
terminate;

end select;

Put_Line ("Terminated");
end T;

My_Task : T;
begin

null;
end Main;

What is the output of this code?

A. "Terminated"
B. Nothing
C. Compilation error
D. Runtime error

T is terminated at the end of Main

515 / 568

Advanced Tasking
Some Advanced Concepts

Quiz

procedure Main is
begin

select
delay 2.0;

then abort
loop

delay 1.5;
Put ("A");

end loop;
end select;

Put ("B");
end Main;

What is the output of this code?

A. "A"
B. "AAAA..."
C. "AB"
D. Compilation error
E. Runtime error

then abort aborts the select only, not Main.

516 / 568

Advanced Tasking
Some Advanced Concepts

Quiz

procedure Main is
begin

select
delay 2.0;

then abort
loop

delay 1.5;
Put ("A");

end loop;
end select;

Put ("B");
end Main;

What is the output of this code?

A. "A"
B. "AAAA..."
C. "AB"
D. Compilation error
E. Runtime error

then abort aborts the select only, not Main.
516 / 568

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

Ok : Boolean := False

protected O is
entry P;

end O;

protected body O is
begin

entry P when Ok is
Put_Line ("OK");

end P;
end O;

begin
O.P;

end Main;

What is the result of compiling and running this code?

A. "OK"
B. Nothing
C. Compilation error
D. Runtime error

Stuck on waiting for Ok to be set, Main will never terminate.

517 / 568

Advanced Tasking
Some Advanced Concepts

Quiz
procedure Main is

Ok : Boolean := False

protected O is
entry P;

end O;

protected body O is
begin

entry P when Ok is
Put_Line ("OK");

end P;
end O;

begin
O.P;

end Main;

What is the result of compiling and running this code?

A. "OK"
B. Nothing
C. Compilation error
D. Runtime error

Stuck on waiting for Ok to be set, Main will never terminate.
517 / 568

Advanced Tasking
Some Advanced Concepts

Standard "Embedded" Tasking Profiles

Better performances but more constrained
Ravenscar profile

Ada 2005
No select
No entry for tasks
Single entry for protected types
No entry queues

Jorvik profile
Ada 2022
Less constrained, still performant
Any number of entry for protected types
Entry queues

See RM D.13

518 / 568

Advanced Tasking
Summary

Summary

519 / 568

Advanced Tasking
Summary

Summary

Tasks are language-based multithreading mechanisms
Not necessarily designed to be operated in parallel
Original design assumed task-switching / time-slicing

Multiple mechanisms to synchronize tasks
Delay
Rendezvous
Protected Objects

520 / 568

Low Level Programming

Low Level Programming

521 / 568

Low Level Programming
Introduction

Introduction

522 / 568

Low Level Programming
Introduction

Introduction

Sometimes you need to get your hands dirty

Hardware Issues
Register or memory access
Assembler code for speed or size issues

Interfacing with other software
Object sizes
Endianness
Data conversion

523 / 568

Low Level Programming
Data Representation

Data Representation

524 / 568

Low Level Programming
Data Representation

Data Representation vs Requirements

Developer usually defines requirements on a type

type My_Int is range 1 .. 10;

The compiler then generates a representation for this type that
can accommodate requirements

In GNAT, can be consulted using -gnatR2 switch

type My_Int is range 1 .. 10;
for My_Int'Object_Size use 8;
for My_Int'Value_Size use 4;
for My_Int'Alignment use 1;

-- using Ada 2012 aspects
type Ada2012_Int is range 1 .. 10

with Object_Size => 8,
Value_Size => 4,
Alignment => 1;

These values can be explicitly set, the compiler will check their
consistency

They can be queried as attributes if needed

X : Integer := My_Int'Alignment;
525 / 568

Low Level Programming
Data Representation

Value_Size / Size

Value_Size (or Size in the Ada Reference Manual) is the
minimal number of bits required to represent data

For example, Boolean'Size = 1

The compiler is allowed to use larger size to represent an actual
object, but will check that the minimal size is enough

type T1 is range 1 .. 4;
for T1'Size use 3;

-- using Ada 2012 aspects
type T2 is range 1 .. 4

with Size => 3;

526 / 568

Low Level Programming
Data Representation

Object Size (GNAT-Specific)

Object_Size represents the size of the object in memory

It must be a multiple of Alignment * Storage_Unit (8), and at
least equal to Size

type T1 is range 1 .. 4;
for T1'Value_Size use 3;
for T1'Object_Size use 8;

-- using Ada 2012 aspects
type T2 is range 1 .. 4

with Value_Size => 3,
Object_Size => 8;

Object size is the default size of an object, can be changed if
specific representations are given

527 / 568

Low Level Programming
Data Representation

Alignment

Number of bytes on which the type has to be aligned

Some alignment may be more efficient than others in terms of
speed (e.g. boundaries of words (4, 8))

Some alignment may be more efficient than others in terms of
memory usage

type T1 is range 1 .. 4;
for T1'Size use 4;
for T1'Alignment use 8;

-- using Ada 2012 aspects
type T2 is range 1 .. 4

with Size => 4,
Alignment => 8;

528 / 568

Low Level Programming
Data Representation

Record Types

Ada doesn’t force any
particular memory layout
Depending on optimization
of constraints, layout can be
optimized for speed, size, or
not optimized

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record;

529 / 568

Low Level Programming
Data Representation

Pack Aspect
pack aspect (or pragma) applies to composite types (record and
array)

Compiler optimizes data for size no matter performance impact

Unpacked

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record;
type Ar is array (1 .. 1000) of Boolean;
-- Rec'Size is 56, Ar'Size is 8000

Packed

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record with Pack;
type Ar is array (1 .. 1000) of Boolean;
pragma Pack (Ar);
-- Rec'Size is 36, Ar'Size is 1000

530 / 568

Low Level Programming
Data Representation

Record Representation Clauses

Exact mapping between a
record and its binary
representation
Optimization purposes, or
hardware requirements

Driver mapped on the
address space,
communication protocol...

Fields represented as
<name> at <byte> range

<starting-bit> ..
<ending-bit>

type Rec1 is record
A : Integer range 0 .. 4;
B : Boolean;
C : Integer;
D : Enum;

end record;
for Rec1 use record

A at 0 range 0 .. 2;
B at 0 range 3 .. 3;
C at 0 range 4 .. 35;
-- unused space here
D at 5 range 0 .. 2;

end record;

531 / 568

Low Level Programming
Data Representation

Array Representation Clauses

Component_Size for array’s component’s size

type Ar1 is array (1 .. 1000) of Boolean;
for Ar1'Component_Size use 2;

-- using Ada 2012 aspects
type Ar2 is array (1 .. 1000) of Boolean

with Component_Size => 2;

532 / 568

Low Level Programming
Data Representation

Endianness Specification
Bit_Order for a type’s endianness

Scalar_Storage_Order for composite types
Endianess of components’ ordering
GNAT-specific
Must be consistent with Bit_Order

Compiler will peform needed bitwise transformations when
performing operations

type Rec is record
A : Integer;
B : Boolean;

end record;
for Rec use record

A at 0 range 0 .. 31;
B at 0 range 32 .. 33;

end record;
for Rec'Bit_Order use System.High_Order_First;
for Rec'Scalar_Storage_Order use System.High_Order_First;

-- using Ada 2012 aspects
type Ar is array (1 .. 1000) of Boolean with

Scalar_Storage_Order => System.Low_Order_First;
533 / 568

Low Level Programming
Data Representation

Change of Representation

Explicit new type can be used to set representation
Very useful to unpack data from file/hardware to speed up
references

type Rec_T is record
Field1 : Unsigned_8;
Field2 : Unsigned_16;
Field3 : Unsigned_8;

end record;
type Packed_Rec_T is new Rec_T;
for Packed_Rec_T use record

Field1 at 0 range 0 .. 7;
Field2 at 0 range 8 .. 23;
Field3 at 0 range 24 .. 31;

end record;
R : Rec_T;
P : Packed_Rec_T;
...
R := Rec_T (P);
P := Packed_Rec_T (R);

534 / 568

Low Level Programming
Address Clauses and Overlays

Address Clauses and Overlays

535 / 568

Low Level Programming
Address Clauses and Overlays

Address

Ada distinguishes the notions of
A reference to an object
An abstract notion of address (System.Address)
The integer representation of an address

Safety is preserved by letting the developer manipulate the right
level of abstraction

Conversion between pointers, integers and addresses are possible

The address of an object can be specified through the Address
aspect

536 / 568

Low Level Programming
Address Clauses and Overlays

Address Clauses

Ada allows specifying the address of an entity

Var : Unsigned_32;
for Var'Address use ... ;

Very useful to declare I/O registers
For that purpose, the object should be declared volatile:

pragma Volatile (Var);

Useful to read a value anywhere

function Get_Byte (Addr : Address) return Unsigned_8 is
V : Unsigned_8;
for V'Address use Addr;
pragma Import (Ada, V);

begin
return V;

end;

In particular the address doesn’t need to be constant
But must match alignment

537 / 568

Low Level Programming
Address Clauses and Overlays

Address Values

The type Address is declared in System
But this is a private type
You cannot use a number

Ada standard way to set constant addresses:
Use System.Storage_Elements which allows arithmetic on
address

for V'Address use
System.Storage_Elements.To_Address (16#120#);

GNAT specific attribute ’To_Address
Handy but not portable

for V'Address use System'To_Address (16#120#);
538 / 568

Low Level Programming
Address Clauses and Overlays

Volatile

The Volatile property can be set using an aspect (in Ada2012
only) or a pragma

Ada also allows volatile types as well as objects

type Volatile_U16 is mod 2**16;
pragma Volatile(Volatile_U16);
type Volatile_U32 is mod 2**32 with Volatile; -- Ada 2012

The exact sequence of reads and writes from the source code must
appear in the generated code

No optimization of reads and writes

Volatile types are passed by-reference

539 / 568

Low Level Programming
Address Clauses and Overlays

Ada Address Example

type Bitfield is array (Integer range <>) of Boolean;
pragma Component_Size (1);

V : aliased Integer; -- object can be referenced elsewhere
pragma Volatile (V); -- may be updated at any time

V2 : aliased Integer;
pragma Volatile (V2);

V_A : System.Address := V'Address;
V_I : Integer_Address := To_Integer (V_A);

-- This maps directly on to the bits of V
V3 : aliased Bitfield (1 .. V'Size);
for V3'Address use V_A; -- overlay

V4 : aliased Integer;
-- Trust me, I know what I'm doing, this is V2
for V4'Address use To_Address (V_I - 4);

540 / 568

Low Level Programming
Address Clauses and Overlays

Aliasing Detection

Aliasing : multiple objects are accessing the same address

Types can be different
Two pointers pointing to the same address
Two references onto the same address
Two objects at the same address

Var1'Has_Same_Storage (Var2) checks if two objects occupy
exactly the same space

Var'Overlaps_Storage (Var2) checks if two object are
partially or fully overlapping

541 / 568

Low Level Programming
Address Clauses and Overlays

Unchecked Conversion

Unchecked_Conversion allows an unchecked bitwise conversion
of data between two types

Needs to be explicitly instantiated

type Bitfield is array (1 .. Integer'Size) of Boolean;
function To_Bitfield is new

Ada.Unchecked_Conversion (Integer, Bitfield);
V : Integer;
V2 : Bitfield := To_Bitfield (V);

Avoid conversion if the sizes don’t match
Not defined by the standard
Many compilers will warn if the type sizes do not match

542 / 568

Low Level Programming
Inline Assembly

Inline Assembly

543 / 568

Low Level Programming
Inline Assembly

Calling Assembly Code

Calling assembly code is a vendor-specific extension

GNAT allows passing assembly with
System.Machine_Code.ASM

Handled by the linker directly

The developer is responsible for mapping variables on temporaries
or registers

See documentation
GNAT RM 13.1 Machine Code Insertion
GCC UG 6.39 Assembler Instructions with C Expression Operands

544 / 568

Low Level Programming
Inline Assembly

Simple Statement

Instruction without inputs/outputs

Asm ("halt", Volatile => True);

You may specify Volatile to avoid compiler optimizations
In general, keep it False unless it created issues

You can group several instructions

Asm ("nop" & ASCII.LF & ASCII.HT
& "nop", Volatile => True);

Asm ("nop; nop", Volatile => True);

The compiler doesn’t check the assembly, only the assembler will
Error message might be difficult to read

545 / 568

Low Level Programming
Inline Assembly

Operands

It is often useful to have inputs or outputs...
Asm_Input and Asm_Output attributes on types

546 / 568

Low Level Programming
Inline Assembly

Mapping Inputs / Outputs on Temporaries

Asm (<script referencing $<input> >,
Inputs => ({<type>'Asm_Input (<constraint>,

<variable>)}),
Outputs => ({<type>'Asm_Output (<constraint>,

<variable>)});

assembly script containing assembly instructions + references to
registers and temporaries
constraint specifies how variable can be mapped on memory (see
documentation for full details)

Constraint Meaning

R General purpose register
M Memory
F Floating-point register
I A constant
g global (on x86)
a eax (on x86)

547 / 568

Low Level Programming
Inline Assembly

Main Rules

No control flow between assembler statements
Use Ada control flow statement
Or use control flow within one statement

Avoid using fixed registers
Makes compiler’s life more difficult
Let the compiler choose registers
You should correctly describe register constraints

On x86, the assembler uses AT&T convention
First operand is source, second is destination

See your toolchain’s as assembler manual for syntax

548 / 568

Low Level Programming
Inline Assembly

Volatile and Clobber ASM Parameters

Volatile → True deactivates optimizations with regards to
suppressed instructions

Clobber → "reg1, reg2, ..." contains the list of registers
considered to be "destroyed" by the use of the ASM call

memory if the memory is accessed

Compiler won’t use memory cache in registers across the instruction

cc if flags might have changed

549 / 568

Low Level Programming
Inline Assembly

Instruction Counter Example (x86)

with System.Machine_Code; use System.Machine_Code;
with Ada.Text_IO; use Ada.Text_IO;
with Interfaces; use Interfaces;
procedure Main is

Low : Unsigned_32;
High : Unsigned_32;
Value : Unsigned_64;
use ASCII;

begin
Asm ("rdtsc" & LF,

Outputs =>
(Unsigned_32'Asm_Output ("=g", Low),
Unsigned_32'Asm_Output ("=a", High)),

Volatile => True);
Values := Unsigned_64 (Low) +

Unsigned_64 (High) * 2 ** 32;
Put_Line (Values'Image);

end Main;
550 / 568

Low Level Programming
Inline Assembly

Reading a Machine Register (ppc)

function Get_MSR return MSR_Type is
Res : MSR_Type;

begin
Asm ("mfmsr %0",

Outputs => MSR_Type'Asm_Output ("=r", Res),
Volatile => True);

return Res;
end Get_MSR;
generic

Spr : Natural;
function Get_Spr return Unsigned_32;
function Get_Spr return Unsigned_32 is

Res : Unsigned_32;
begin

Asm ("mfspr %0,%1",
Inputs => Natural'Asm_Input ("K", Spr),
Outputs => Unsigned_32'Asm_Output ("=r", Res),
Volatile => True);

return Res;
end Get_Spr;
function Get_Pir is new Get_Spr (286);

551 / 568

Low Level Programming
Inline Assembly

Writing a Machine Register (ppc)

generic
Spr : Natural;

procedure Set_Spr (V : Unsigned_32);
procedure Set_Spr (V : Unsigned_32) is
begin

Asm ("mtspr %0,%1",
Inputs => (Natural'Asm_Input ("K", Spr),

Unsigned_32'Asm_Input ("r", V)));
end Set_Spr;

552 / 568

Low Level Programming
Tricks

Tricks

553 / 568

Low Level Programming
Tricks

Package Interfaces

Package Interfaces provide Integer and unsigned types for many
sizes

Integer_8, Integer_16, Integer_32, Integer_64
Unsigned_8, Unsigned_16, Unsigned_32, Unsigned_64

With shift/rotation functions for unsigned types

554 / 568

Low Level Programming
Tricks

Fat/Thin pointers for Arrays

Unconstrained array access is a fat pointer

type String_Acc is access String;
Msg : String_Acc;
-- array bounds stored outside array pointer

Use a size representation clause for a thin pointer

type String_Acc is access String;
for String_Acc'size use 32;
-- array bounds stored as part of array pointer

555 / 568

Low Level Programming
Tricks

Flat Arrays

A constrained array access is a thin pointer
No need to store bounds

type Line_Acc is access String (1 .. 80);

You can use big flat array to index memory
See GNAT.Table
Not portable

type Char_array is array (natural) of Character;
type C_String_Acc is access Char_Array;

556 / 568

Low Level Programming
Lab

Lab

557 / 568

Low Level Programming
Lab

Low Level Programming Lab

(Simplified) Message generation / propagation

Overview
Populate a message structure with data and a CRC (cyclic
redundancy check)
"Send" and "Receive" messages and verify data is valid

Goal
You should be able to create, "send", "receive", and print messages
Creation should include generation of a CRC to ensure data security
Receiving should include validation of CRC

558 / 568

Low Level Programming
Lab

Project Requirements

Message Generation
Message should at least contain:

Unique Identifier
(Constrained) string field
Two other fields
CRC value

"Send" / "Receive"
To simulate send/receive:

"Send" should do a byte-by-byte write to a text file
"Receive" should do a byte-by-byte read from that same text file

Receiver should validate received CRC is valid
You can edit the text file to corrupt data

559 / 568

Low Level Programming
Lab

Hints

Use a representation clause to specify size of record
To get a valid size, individual components may need new types with
their own rep spec

CRC generation and file read/write should be similar processes
Need to convert a message into an array of "something"

560 / 568

Low Level Programming
Lab

Low Level Programming Lab Solution - CRC
1 with System;
2 package Crc is
3 type Crc_T is mod 2**32;
4 for Crc_T'size use 32;
5 function Generate
6 (Address : System.Address;
7 Size : Natural)
8 return Crc_T;
9 end Crc;

10

11 package body Crc is
12 type Array_T is array (Positive range <>) of Crc_T;
13 function Generate
14 (Address : System.Address;
15 Size : Natural)
16 return Crc_T is
17 Word_Count : Natural;
18 Retval : Crc_T := 0;
19 begin
20 if Size > 0
21 then
22 Word_Count := Size / 32;
23 if Word_Count * 32 /= Size
24 then
25 Word_Count := Word_Count + 1;
26 end if;
27 declare
28 Overlay : Array_T (1 .. Word_Count);
29 for Overlay'address use Address;
30 begin
31 for I in Overlay'range
32 loop
33 Retval := Retval + Overlay (I);
34 end loop;
35 end;
36 end if;
37 return Retval;
38 end Generate;
39 end Crc;

561 / 568

Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Spec)
1 with Crc; use Crc;
2 package Messages is
3 type Message_T is private;
4 type Command_T is (Noop, Direction, Ascend, Descend, Speed);
5 for Command_T use
6 (Noop => 0, Direction => 1, Ascend => 2, Descend => 4, Speed => 8);
7 for Command_T'size use 8;
8 function Create (Command : Command_T;
9 Value : Positive;

10 Text : String := "")
11 return Message_T;
12 function Get_Crc (Message : Message_T) return Crc_T;
13 procedure Write (Message : Message_T);
14 procedure Read (Message : out Message_T;
15 valid : out boolean);
16 procedure Print (Message : Message_T);
17 private
18 type U32_T is mod 2**32;
19 for U32_T'size use 32;
20 Max_Text_Length : constant := 20;
21 type Text_Index_T is new Integer range 0 .. Max_Text_Length;
22 for Text_Index_T'size use 8;
23 type Text_T is record
24 Text : String (1 .. Max_Text_Length);
25 Last : Text_Index_T;
26 end record;
27 for Text_T'size use Max_Text_Length * 8 + Text_Index_T'size;
28 type Message_T is record
29 Unique_Id : U32_T;
30 Command : Command_T;
31 Value : U32_T;
32 Text : Text_T;
33 Crc : Crc_T;
34 end record;
35 end Messages;

562 / 568

Low Level Programming
Lab

Low Level Programming Lab Solution - Main (Helpers)
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Messages;
3 procedure Main is
4 Message : Messages.Message_T;
5 function Command return Messages.Command_T is
6 begin
7 loop
8 Put ("Command (");
9 for E in Messages.Command_T

10 loop
11 Put (Messages.Command_T'image (E) & " ");
12 end loop;
13 Put ("): ");
14 begin
15 return Messages.Command_T'value (Get_Line);
16 exception
17 when others =>
18 Put_Line ("Illegal");
19 end;
20 end loop;
21 end Command;
22 function Value return Positive is
23 begin
24 loop
25 Put ("Value: ");
26 begin
27 return Positive'value (Get_Line);
28 exception
29 when others =>
30 Put_Line ("Illegal");
31 end;
32 end loop;
33 end Value;
34 function Text return String is
35 begin
36 Put ("Text: ");
37 return Get_Line;
38 end Text;

563 / 568

Low Level Programming
Lab

Low Level Programming Lab Solution - Main
1 procedure Create is
2 C : constant Messages.Command_T := Command;
3 V : constant Positive := Value;
4 T : constant String := Text;
5 begin
6 Message := Messages.Create
7 (Command => C,
8 Value => V,
9 Text => T);

10 end Create;
11 procedure Read is
12 Valid : Boolean;
13 begin
14 Messages.Read (Message, Valid);
15 Ada.Text_IO.Put_Line("Message valid: " & Boolean'Image (Valid));
16 end read;
17 begin
18 loop
19 Put ("Create Write Read Print: ");
20 declare
21 Command : constant String := Get_Line;
22 begin
23 exit when Command'length = 0;
24 case Command (Command'first) is
25 when 'c' | 'C' =>
26 Create;
27 when 'w' | 'W' =>
28 Messages.Write (Message);
29 when 'r' | 'R' =>
30 read;
31 when 'p' | 'P' =>
32 Messages.Print (Message);
33 when others =>
34 null;
35 end case;
36 end;
37 end loop;
38 end Main;

564 / 568

Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Helpers)
1 with Ada.Text_IO;
2 with Unchecked_Conversion;
3 package body Messages is
4 Global_Unique_Id : U32_T := 0;
5 function To_Text (Str : String) return Text_T is
6 Length : Integer := Str'length;
7 Retval : Text_T := (Text => (others => ' '), Last => 0);
8 begin
9 if Str'length > Retval.Text'length then

10 Length := Retval.Text'length;
11 end if;
12 Retval.Text (1 .. Length) := Str (Str'first .. Str'first + Length - 1);
13 Retval.Last := Text_Index_T (Length);
14 return Retval;
15 end To_Text;
16 function From_Text (Text : Text_T) return String is
17 Last : constant Integer := Integer (Text.Last);
18 begin
19 return Text.Text (1 .. Last);
20 end From_Text;
21 function Get_Crc (Message : Message_T) return Crc_T is
22 begin
23 return Message.Crc;
24 end Get_Crc;
25 function Validate (Original : Message_T) return Boolean is
26 Clean : Message_T := Original;
27 begin
28 Clean.Crc := 0;
29 return Crc.Generate (Clean'address, Clean'size) = Original.Crc;
30 end Validate;

565 / 568

Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Body)
1 function Create (Command : Command_T;
2 Value : Positive;
3 Text : String := "")
4 return Message_T is
5 Retval : Message_T;
6 begin
7 Global_Unique_Id := Global_Unique_Id + 1;
8 Retval :=
9 (Unique_Id => Global_Unique_Id, Command => Command,

10 Value => U32_T (Value), Text => To_Text (Text), Crc => 0);
11 Retval.Crc := Crc.Generate (Retval'address, Retval'size);
12 return Retval;
13 end Create;
14 type Char is new Character;
15 for Char'size use 8;
16 type Overlay_T is array (1 .. Message_T'size / 8) of Char;
17 function Convert is new Unchecked_Conversion (Message_T, Overlay_T);
18 function Convert is new Unchecked_Conversion (Overlay_T, Message_T);
19 Const_Filename : constant String := "message.txt";
20 procedure Write (Message : Message_T) is
21 Overlay : constant Overlay_T := Convert (Message);
22 File : Ada.Text_IO.File_Type;
23 begin
24 Ada.Text_IO.Create (File, Ada.Text_IO.Out_File, Const_Filename);
25 for I in Overlay'range loop
26 Ada.Text_IO.Put (File, Character (Overlay (I)));
27 end loop;
28 Ada.Text_IO.New_Line (File);
29 Ada.Text_IO.Close (File);
30 end Write;
31 procedure Read (Message : out Message_T;
32 Valid : out Boolean) is
33 Overlay : Overlay_T;
34 File : Ada.Text_IO.File_Type;
35 begin
36 Valid := False;
37 Ada.Text_IO.Open (File, Ada.Text_IO.In_File, Const_Filename);
38 declare
39 Str : constant String := Ada.Text_IO.Get_Line (File);
40 begin
41 Ada.Text_IO.Close (File);
42 for I in Str'range loop
43 Overlay (I) := Char (Str (I));
44 end loop;
45 Message := Convert (Overlay);
46 Valid := Validate (Message);
47 end;
48 end Read;
49 procedure Print (Message : Message_T) is
50 begin
51 Ada.Text_IO.Put_Line ("Message" & U32_T'image (Message.Unique_Id));
52 Ada.Text_IO.Put_Line (" " & Command_T'image (Message.Command) & " =>" &
53 U32_T'image (Message.Value));
54 Ada.Text_IO.Put_Line (" Additional Info: " & From_Text (Message.Text));
55 end Print;
56 end Messages;

566 / 568

Low Level Programming
Summary

Summary

567 / 568

Low Level Programming
Summary

Summary

Like C, Ada allows access to assembly-level programming
Unlike C, Ada imposes some more restrictions to maintain some
level of safety
Ada also supplies language constructs and libraries to make low
level programming easier

568 / 568

	Ada Basic Types - Advanced
	Subtypes - Full Picture
	Base Type
	Modular Types
	Representation Values
	Character Types

	Record Types
	Introduction
	Components Rules
	Operations
	Aggregates
	Default Values
	Discriminated Records
	Lab
	Summary

	Discriminated Record Types
	Introduction
	Discriminated Record Semantics
	Unconstrained Discriminated Records
	Unconstrained Arrays
	Discriminated Record Details
	Lab
	Summary

	Type Derivation
	Introduction
	Primitives
	Simple Derivation
	Summary

	Quantified Expressions
	Quantified Expressions
	Lab
	Summary

	Limited Types
	Introduction
	Declarations
	Creating Values
	Extended Return Statements
	Combining Limited and Private Views
	Lab
	Summary

	Private Types
	Introduction
	Implementing Abstract Data Types via Views
	Private Part Construction
	View Operations
	When To Use or Avoid Private Types
	Idioms
	Lab
	Summary

	Access Types
	Introduction
	Access Types
	Pool-Specific Access Types
	General Access Types
	Accessibility Checks
	Memory Management
	Anonymous Access Types
	Lab
	Summary

	Genericity
	Introduction
	Creating Generics
	Generic Data
	Generic Formal Data
	Generic Completion
	Lab
	Summary

	Tagged Derivation
	Introduction
	Tagged Derivation
	Extending Tagged Types
	Lab
	Summary

	Polymorphism
	Introduction
	Classes of Types
	Dispatching and Redispatching
	Exotic Dispatching Operations
	Lab
	Summary

	Multiple Inheritance
	Introduction
	Interfaces
	Lab
	Summary

	Exceptions
	Introduction
	Handlers
	Implicitly and Explicitly Raised Exceptions
	User-Defined Exceptions
	Propagation
	Exceptions as Objects
	Raise Expressions
	In Practice
	Lab
	Summary

	Advanced Tasking
	Introduction
	Tasks
	Protected Objects
	Delays
	Task and Protected Types
	Some Advanced Concepts
	Summary

	Low Level Programming
	Introduction
	Data Representation
	Address Clauses and Overlays
	Inline Assembly
	Tricks
	Lab
	Summary

