Ada.Characters

Ada.Characters

Ada.Characters

Introduction

Introduction

Ada.Characters

Character Capabilities

m Package Ada.Characters is the parent package for identification
and manipulation of characters
m Ada.Characters.Handling - queries and conversion subprograms
m Ada.Characters.Latin_1 - constants for character values O ..
255

Ada.Characters

Ada.Characters.Latin_1

Ada.Characters.Latin_1

Ada.Characters

Ada.Characters.Latin_1

Package Contents (Partial)

package Ada.Characters.Latin_1 is

NUL
SOH
STX
ETX
EOT
ENQ

Space

Exclamation
Quotation

Number_Sign
Dollar_Sign

LC_A
LC_B
LC_C
LC_D
LC_E

constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant

constant
constant
constant
constant
constant

Character :=
Character :=
Character :
Character :
Character :=
Character :=

Character :
Character :
Character :
Character :
Character :=

Character :
Character :
Character :
Character :=
Character :

end Ada.Characters.Latin_1;

Character'Val
Character'Val
Character'Val
Character'Val
Character'Val
Character'Val

0);
;
(2);
3);
(4);
(5);

' '; -- Character'Val(32)
'1'; -- Character'Val(33)
‘"1, —— Character'Val(34)

'#'; -- Character'Val(35)

'$'; -- Character'Val(36)

'a'; Character'Val (97)
'b'; Character'Val (98)
'y Character'Val (99)
d'; Character'Val (100)
'e'; Character'Val (101)

Ada.Characters

Idioms

m Obvious - giving names to unprintable characters
m Good coding practice to use names instead of literals
m Easier searching for non-alphanumeric characters
m Some symbols have multiple names, such as:
® Minus_Sign — Hyphen
m NBSP — No_Break_Space
m Ring Above — Degree_Sign

Ada.Characters

Ada.Characters.Handling

Ada.Characters.Handling

Ada.Characters

Ada.Characters.Handling

Character Queries

m Boolean functions whose return is based on the category of the
character, such as:

function
function
function
function
function
function
function
function

Is_Control
Is_Graphic
Is_Letter
Is_Lower
Is_Upper
Is_Basic
Is_Digit
Is_Decimal_Digit

renames Is_Digit;

function Is_Hexadecimal _Digit

function

Is_Alphanumeric

(Item :
(Item :
(Item :
(Item :
(Item :
(Item :
(Item :
(Item :

(Item :
(Item :

Character)
Character)
Character)
Character)
Character)
Character)
Character)
Character)

Character)
Character)

return
return
return
return
return
return
return
return

return
return

0

Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean

Boolean;
Boolean;

/123

Ada.Characters

Ada.Characters.Handling

Character Transformation

m Functions to force case

function To_Lower (Item : in Character) return Character;
function To_Upper (Item : in Character) return Character;

m Functions to force case (string version)

function To_Lower (Item : in String) return String;
function To_Upper (Item : in String) return String;

m Functions to convert to/from Wide_Character and Wide_String

function To_Character (Item : Wide_Character;
Substitute : Character := ' ')
return Character;
function To_String (Item : Wide_String;
Substitute : Character := ' ')

return String;
function To_Wide_Character (Item : Character)
return Wide_Character;
function To_Wide_String (Item : String)
return Wide_String;

Ada.Characters

Lab

Ada.Characters
Lab

Ada.Characters Lab

m Requirements
m Read an integer value (representing ASCII) from the console
m Convert the integer value to its character equivalent
m Print a result according to the following rules:
m If the character is a letter, convert it to the opposite case
m If the character is not a letter but it is printable, print it
m If the character is a line terminator, print its name
m If none of the above apply, just print out "unprintable"

Ada.Characters

Ada.Characters Lab Solution

with Ada.Text_I0; use Ada.Text_I0;
with Ada.Characters.Handling; use Ada.Characters.Handling;
with Ada.Characters.latin_1; use Ada.Characters.Latin_1
procedure Main is
Input : String (1)i
Last : Natural;

procedure Print (Char : Character) is
begin
Put ("Result: ");
if Is_Letter (Char) then
if Is_Upper (Char) then
Put (To_Lower (Char));
else
Put (To_Upper (Char));
end if;
elsif Is_Graphic (Char) then
Put (Char);
elsif Is_Line_Terminator (Char) then
case Char is
when LF => Put ('LF
when VT => Put ("VT'
when FF => Put ("FF");
when CR => Put ("CR")
when NEL => Put ("NEL")
when others
Put ("
end case;
else
Put ("unprintable");
end if;
New_Line;
end Print;

& Integer'image (Character'pos (Char)));

begin
Put ("Enter ASCIT value
Get_Line (Input, Last);
Print (Character'val (Integer'value (Input (Last)))
end Main;

Ada.Characters

Summary

Ada.Characters

Summary

m Ada.Characters contains consistent mechanisms for
m Referring to unprintable and special characters
m Queries on the properties of characters

m Same capabilities for other character sets in
Ada.Wide Characters and Ada.Wide Wide Characters

Ada.Strings

Ada.Strings

Ada.Strings

Introduction

Introduction

Ada.Strings

Predefined Type String

m String type allows varying lengths, but String objects are fixed

lengths
m It's just an unconstrained array of characters

m Language does not have any built-in string manipulation
subprograms
m What if we want to change the length of the object?

Ada.Strings

Ada.Strings.Fixed
m Based on fixed-length string
m Strings are unconstrained arrays, so objects cannot change length

m Operations that return string of unknown (or different) length can
only be used for initialization

Ada.Strings

Ada.Strings.Bounded

m Contains generic package

m Must create instance passing in maximum string length
m String length is maintained internally

m Operations can modify objects in-place

m Subject to limit of maximum length
m Contains query to get maximum length

m Allows client to pre-determine if length will be exceeded

Ada.Strings

Ada.Strings.Unbounded

m Not a generic package

m No maximum length (except run-time limits!)
m String length is maintained internally

m Operations can modify objects in-place

m Subject to limit of maximum length

m Requires dynamic memory allocation

Ada.Strings

String Operations

String Operations

Ada.Strings

Primitive String Functions
m Operations like concatenation ("&") and comparison (">=", etc)
m Built in for fixed-length strings

m Defined in appropriate package for bounded and unbounded
® Require use or use type for simple visibility

Ada.Strings

Common Subprograms

Il*ll

Count

Delete
Find_Token
Head

Index
Index_Non_Blank
Insert
Overwrite
Replace_Slice
Tail
Translate
Trim

Return the character or string duplicated N times

Number of occurrences of specified string/character set

Remove slice

Location of token that matches/doesn’'t match character set

Front N characters (padded as necessary)

Index of character/string, given starting location/direction

Index of first/last character/string, given starting location/direction
Insert substring into source before the specified position

Overwrite source with new substring starting at the specified position
Replace specified slice with new string

Last N characters (padded as necessary)

Translate string using specified character mapping

Remove leading/trailing characters from source

Ada.Strings

Bounded /Unbounded Subprograms

Append

Element

Length
Replace_Element
Slice
To_String

Concatenate bounded strings and/or standard strings
to create an unbounded string

Character at specified position

Length of string

Put input character specified position

Standard string slice from specified positions
Convert unbounded string to standard string

Ada.Strings

Unique Subprograms

m Ada.Strings.Fixed

Move Copy source to target with truncation/padding

m Ada.Strings.Bounded

Bounded_Slice Bounded string slice from specified positions
Replicate Return the bounded string duplicated N times
Set_Bounded_String Procedural copy standard string to bounded string
To_Bounded_String Copy standard string to bounded string

m Ada.Strings.Unbounded

Set_Unbounded_String Procedural copy standard string to unbounded string
To_Unbounded_String Copy standard string to unbounded string
Unbounded_Slice Unbounded string slice from specified positions

Ada.Strings

Lab

Ada.Strings
Lab

Ada.Strings Lab

m Requirements
m Create a (simplistic) source code parser to read an Ada file
m Use your main program as input!
m Print the number of comments and semi-colons in the file

m Print a sorted list of objects found in the code

m Hints

m Object name will be identifier before a standalone ":
m Object list will need varying length strings

m Extra Credit (if you have time):

m When you search for strings, you will also find them as a search
parameter!
m Find a way to "skip over" string literals

Ada.Strings
Lab

Ada.Strings Lab Solution (Declarations)

with Ada.Text_I0; use Ada.Text_IO0;
with Ada.Strings.Fixed;

with Ada.Strings.Unbounded;
procedure Main is

-- hard-coded filename
Filename : constant String := "main.adb";

File : File_Type;
Line : String (1 .. 100);
Last : Natural;

Objects : array (1 .. 100) of Ada.Strings.Unbounded.Unbounded_String;
Object_Count : Natural := O;

Comments : Natural := 0;
Semicolons : Natural := 0;

Colon : Natural;

Ada.Strings

Ada.Strings Lab Solution (Main

begin

Open (Fils, In_File, Filenase

vhile not End_0f_File (File
Get_Line (File, Line, Last.
declare

Toop

Stripped_Line : constant

ring - Hide Stringe (Line (1 .. Last))

Comments := Comments + Ada.String
Source
Pattern

Fixed.Count

> Stripped_Line
Semicolons := Semicolons + Ada.Strings Fixed.Count

Sou ed_Line,

Pattern

Colon = Ada

trings. Fixed. Index
ripped_Line

o Stripped_Line'range then
Object_Count
Objects (Dbject_Count) :=
Ada.Strings.Unbounded. To_Unbounded_String
Stripped_Line (1 .. Colow);
Ada.Strings .Unbounded Trin

ject_Count

ct_Count), AdaStrings.Both);

Close (File);

Put_Line Integer inage
Put_Line (S0 " % Integer'inage (Semicolons))
declare
Hold inge Unbounded. Unbounded_String;
ase type Ada.Strings .Unbounded Unbounded_String;
begin
for Tin 1 .. Object_Count loo
for Jin 1 .. Object Count - 1 loop
if Objects (1) > Objects (J + 1) then
Hold Objects (3);
Objects (. Objects (3 + 1);
Objects (3 = Hold;
end it
end 1oop;
end Loop;
Put_Line ("Objects: ");
for T in Object_Count loop
Put_Line & Ada Strings Unbounded To_String (bjects (1))
end 1oop;
ond Matn;

Ada.Strings
Lab

Ada.Strings Lab Solution (Extra Credit)

function Hide_Strings
(Str : String)
return String is
First : Natural;
Last : Natural;
begin
First := Ada.Strings.Fixed.Index (Str, """");
if First in Str'range then
Last := Ada.Strings.Fixed.Index
(Source => Str (First + 1 .. Str'last),
Pattern => """");
if Last in Str'range then
return Ada.Strings.Fixed.Replace_Slice
(Str, First, Last, "");
end if;
end if;
return Str;
end Hide_Strings;

Ada.Strings

Summary

Ada.Strings

Summary

m Ada.Strings.Fixed
m String operations for String
m Ada.Strings.Bounded
m Varying length string where the maximum length is constrained
m Requires generic instantiation
® Implementation may be handled without dynamic memory

allocation

m Ada.Strings.Unbounded
m Varying length string with no maximum length
m Implementation typically requires dynamic memory allocation

Ada.Text_l0O

Ada.Text_10

Ada.Text_l0O

Introduction

Introduction

Ada.Text_l0O

Introduction

Ada.Text_10O

m Most common 1/O library unit - works with normal text |/O
m Works with string types
m Ada.Wide_Text_lO for wide_string
m Ada.Wide_Wide_Text_lO for wide_wide_string
m Other 1/0 packages (not discussed in this module):
m Ada.Sequential_|O and Ada.Direct_I0
m Operations on binary files for elements of a given type
m Ada.Storage_|0
m Operations on reading/writing to/from memory buffer
m Ada.Streams.Stream_|O
m Operations for streaming data to/from binary files
declare

-- read from default input file

From_Input : constant String := Ada.Text_IO.Get_Line;
begin

-- write to default output file

Ada.Text_IO.Put_Line ("I just typed: " & From_Input);
end;

Ada.Text_l0O

Scalar Type 1/0O

m Child generic packages of Ada.Text_lO to read / write scalar
types

m Ada.Text_l0.Integer_IO
m Ada.Text_10.Modular_IO

m Ada.Text_lO.Float_lO

m Ada.Text_l0.Fixed_lO

m Ada.Text_l0.Decimal_IO

m Ada.Text_l0.Enumeration_IlO

m Create instances of the generic package to read/write

declare
type Float_T is digits 6;
package Float_I0 is new Ada.Text_I0.Float_I0 (Float_T);
F : Float_T;
begin
-- Read floating point number from default input file
Float_I0.Get (F);
-— Writing floating point number to default output file
Float_I0.Put (F * 10.0, Fore => 1, Aft => 2, Exp => 3);
end;

Ada.Text_l0O

File Input/Output

File Input/Output

Ada.Text_l0O

Standard Input / Output

m Ada.Text_I0 maintains default input and output files

-- reads from default input file
S : constant string := Get_Line;

-— writes to default output file
Put_Line (S);

m At initialization, default input and output refer to the console

m Which is why all our previous usage was so simple!

Ada.Text_l0O

File Input/Output

Files

m Files can be created (new for writing) or opened (for reading,
writing, or appending)

m File modes:

m In_File — Open for reading
m Out_File — Reset file and open for writing
m Append_File — Position file at end and open for writing

declare
File : File_Type;
begin
Create (File => File,
Mode => QOut_File,
Name => "foo.txt");
Put_Line (File, "Line 1");
Close (File);
—— This " "

gal b

Open (File, Out_File, "foo.txt");
Put_Line (File, "Line 2");

Close (File);

Open (File, Append_File, "foo.txt");
Put_Line (File, "Line 3");
Close (File);

Open (File, In_File, "foo.txt");

wdard ou

- ad lines from file and print

Put_Line (Get_Line (File));

Put_Line (Get_Line (File));
end;

Ada.Text_l0O

File Status Queries

End_Of_File Check if end of file has been reached

Is_Open Check if file has been opened (regardless of file mode)
Mode Return how file was opened

Name Name of open file

Col Current column in file

Line Current line in file

Ada.Text_l0O

Type-Specific I/O

Type-Specific 1/0

Ada.Text_l0O

Ada.Text_|O.Integer_10

declare
type Integer_T is range -1_000 .. 1_000;
package Io is new Ada.Text_I0.Integer_IO0 (Integer_T);
I : Integer_T;

begin
TIo.Get (I);
Io.Put
(Item => I,
Width => 10, -- optional: minimum number of characters to print
Base => 16); -- optional: numeric base
end;

m Get will read until a non-numeric character is encountered,
ignoring leading or trailing whitespace

m 123 will set | to 123
m 45X67 will set | to 45

m I0 has global objects Default_Width and Default_Base which
can be modified to set default values for like-named parameters

m Ada.Text_IO0.Modular_IO behaves the same

Ada.Text_l0O

Ada.Text_10.Float_IO

declare
type Float_T is digits 6 range -100.0 .. 100.0;
package Io is new Ada.Text_I0.Float_IO (Float_T);

F : Float_T;
begin
Io.Get (F);
Io.Put
(Item => F,
Fore => 1, -- optional: number of digits before decimal point
Aft => 2, -- optional: number of digits after decimal point
Exp => 3); -- optional: numeric of characters for exponent
end;

m Get will read until a non-numeric character is encountered,
ignoring leading or trailing whitespace

m 12 will set F to 12.0
m 23.45.67 will set F to 23.45

m I0 has global objects Default_Fore, Default_Aft and
Default_Exp which can be modified to set default values for
like-named parameters

m Ada.Text_|0.Fixed_lO and Ada.Text_10.Decimal_IO
behave the same

Ada.Text_l0O

Type-Specific 1/O

Ada.Text_1O.Enumeration_|O

declare

type Enumeration_T is (Red, Yellow, Green);

package Io is new Ada.Text_IO.Enumeration_IO (Enumeration_T);
E : Enumeration_T;

begin
Io.Get (E);
Io.Put
(Item => F,
Width => 10, -- optional: minimum number of characters to print
Set => Lower_Case); -- optional: flag for Upper_Case or Lower_Case
end;

m Get will read until the end of the line or trailing whitespace,
case-insensitive

m YelloW will set E to Yellow
m Red Blue will set E to Red

m I0 has global objects Default_Width and Default_Setting
which can be modified to set default values for like-named
parameters

Ada.Text_l0O

Exceptions

Ada.Text_l0O

EEEE———————SS
Ada.lO_Exceptions

m |/O Packages have common exceptions (defined in
Ada.lO_Exceptions and renamed in Ada.Text_lO for easier

reference)

m The most common Text |/O exceptions:

m Status_Error — Raised on Open/Create if file being
opened/created is already open. For any other operation, raised if
file is not open

m Name_Error — Raised if filename is invalid for Open/Create

m Use_Error — Raised if unable to Open/Create

m Data_Error — Failure of Get to read valid data

Ada.Text_l0O

Lab

Ada.Text_l0O
Lab

Ada.Text_lO Lab

m Requirements
m Create an enumerated type
m Use the console to query the user how many inputs (N) will follow
m Use the console to query the user N times for an enumeral
m If the enumeral is valid, write the index and enumeral to a file
m Else write an error message to the console

m When all inputs were read, echo the file to the console

m Hints

m Use instantiations of the type-specific I/O packages to handle
console queries

m Better error handling

m Use Text_I|O to echo the file to the console

-
Ada.Text_l0O
Ada.Text_1O Lab Solution

with Ada.Text_I0; use Ada.Text_10;
procedure Main is
type Enumerated_T is (Red, Yellow, Green);
package Enum_Io is new Enumeration_I0 (Enumerated_T);
type Count_T is mod 10;
package Count_To is new Modular_To (Count_T);

E Enumerated_T;

c Count_T;

File : File_Type;
begin

Count_To.Get (C);
Create (File, Out_File, "foo.txt");

for I in C loop
Count_To.Put (I, Width => 3
Count_To.Put (File, I, Width
Put (" => ");
begin
Enum_To.Get (E);
Enum_To.Put (File, E, Width =>

exception
when others =>

Put_Line ("Something didn't look right");

end;
New_Line (File);
end loop;
Close (File);
Put_Line ("Echoing file");
Open (File, In_File, "foo.txt");
while not End_Of File (File) loop
Put_Line (Get_Line (File));
end loop;
end Main;

Ada.Text_l0O

Summary

Ada.Text_l0O

Summary

m Ada.Text_IO is the most common text input/output processing
process

m Text_|O has simple mechanisms to read scalar types

m 'Image and 'Value work, but are simplistic

m 'Image does not allow formatting of output
m 'Value will fail if entire input cannot be converted

Containers

Containers

Containers

Introduction

Introduction

Containers

Container Library

m Ada.Containers parent package

m Packages (including generics)

m Different types of data containers
m Hold an Element type
m Container types are tagged

m Types defined as a product of both

m A data structure
m An implementation
m Define some added operations

m Containers share sets of operations

m Seen later

Containers

Container Types

Container Types

Containers

Data Structures (1/2)

m Vector

m Essentially an array
] w and size can differ
m Doubly-linked list

m Linked list
m lteration in both directions

m Map
m Containers matching Key -> Element
m Not a one-to-one relationship
m Can have several keys for a single element
m Set
m Collection of unique values
m Queue

m No iterator
m Only ordered access
m For multi-tasking operations

Containers

Container Types

Data Structures (2/2)
Ada 2012

m Tree

m Similar to list
m A node can have several children

m Holder

m Wraps around an indefinite (unconstrained, classwide, incomplete...)
m Resulting type is definite
m Single element, no iteration or cursor

Containers

Implementations (1/2)

ol Bounded|

m Maximal storage is bounded

m Constant capacity and element size
m Only static allocation

® Bounded_<Structure>

Ll Unbounded

m Capacity can grow dynamically
m Easiest to use
m Default

g Ordered |

m Elements are sorted in order
m Must provide < and = operators
m Not hashed

m XXX_Ordered_<Structure>

] Hashed

m Elements are hashed

m Must provide Hash function and = operator

m Not ordered

m Some hash functions are provided (e.g. Ada.Strings.Hash)
m XXX_Hashed_<Structure>

Containers

Container Types

Implementations (2/2)
Ada 2012

o] ndefinite

m Element can be indefinite
m Size of element is unknown
m Indefinite_XXX_<Structure>

Containers

Example of Containers

m Standard defines 25 different container variations

m Indefinite_Vector

m Static capacity
m Dynamically sized (indefinite elements)
m Random access in 0(1)

m Ordered_Set

m Unique elements
m Differenciated by < and =
® Manipulated in order

m Bounded_Doubly_Linked_List

m Static size of container and elements
m Insertions and deletions in 0(1)

Containers

Declaration

m Generic packages
m Always need at least the Element_Type
m Examples chosen for the next slides:

package Pkg Vectors is new Ada.Containers.Bounded_Vectors
(Index_Type => Index_Type, Element_Type => Integer

-— "=" (A, B : Integer) is directly visible

)

package Pkg_Sets is new Ada.Containers
.Indefinite_Ordered_Sets
(Element_Type => String);

package Pkg Maps is new Ada.Containers.Hashed_Maps
(Key_Type => Ada.Strings.Unbounded.Unbounded_String,
Element_Type => Float,
Hash => Ada.Strings.Unbounded.Hash,
Equivalent_Keys => Ada.Strings.Unbounded."=");

Containers

Container Types

Instanciation

m May require an initial Empty_xxx value

Student_Per_Day : Pkg Vectors.Vector (5);
-— Warning: initial size ts 0, using an Empty_Vector as
- initial value would mean a *capacity* of 0!

Received_Parcels : Pkg_Sets.Set := Pkg_Sets.Empty_Set;

Math_Constants : Pkg_Maps.Map := Pkg_Maps.Empty_Map;

Containers

Containers Operations

Containers Operations

Containers

Common Operations

m Lots of common operations

m What is available depends greatly on the exact container type
m ... so does syntax

m Insertion

m [teration

m Comparison
m Sort

Search

Containers

Containers Operations

Insertion

m May be in order Append or Prepend
m May be Insert (at random or at given index)
m May Replace an existing element

Student_Per_Day.Append (10);
Student_Per_Day.Append (8);
Student_Per_Day.Append (9);

Received Parcels.Insert ("FEDEX AX431661VD");
Received_Parcels.Insert ("UPS ZZ-44-112");

Math_Constants.Insert
(To_Unbounded_String ("Pi"), 3.141_59);
Math_Constants.Insert (To_Unbounded_String ("e"), 2.718);

Containers

[teration

m Container have a Cursor type

m Points to an element in a container
m Can be used for advanced iterations

for Student_Count of Student_Per_Day loop
Put_Line (Integer'Image (Student_Count));
end loop;

for Parcel_Id of Received_Parcels loop
Put_Line (Parcel_Id);
end loop;

-- We use the cursor to have both key and value
for C in Math_Constants.Iterate loop
Put_Line
(To_String (Key (C)) & " = " &
Float'Image (Element (C)));
end loop;

Containers

Containers Operations

Comparison

-— zxT2 are objects with the exact same content
pragma Assert (Student_Per_Day = Student_Per_Day2);
pragma Assert (Received_Parcels = Received_Parcels2);
pragma Assert (Math_Constants = Math_Constants2) ;

-—- After changing the content, equality does mot hold
Student_Per_Day.Append (10);

Received_Parcels.Insert ("Chronopost 13214GUU-035");
Math_Constants.Insert (To_Unbounded_String ("G"), 9.8);

pragma Assert (Student_Per_Day /= Student_Per_Day?2);

pragma Assert (Received_Parcels /= Received_Parcels2);
pragma Assert (Math_Constants /= Math_Constants2);

Containers

Sort

m Arrays

m Ada.Containers.Generic__Array_Sort
m Ada.Containers.Generic__Constrained_Array_Sort

m Any object that has indexing
m Ada.Containers.Generic_Sort

procedure Sort
w : in out Pkg_Vectors.Vector; First : Index_Type;
Last : Index_Type)
is
procedure Swap_Object (A, B : Index_Type) is
Temp : Integer := V (A4);
begin
Vv (A) =V (B);
V (B) := Temp;
end Swap_Object;

procedure Sort_Object is new Ada.Containers
.Generic_Sort
(Index_Type => Index_Type, Before => "<,

Swap => Swap_Object) ;
begin
Sort_Object (First, Last);
end Sort;

Containers

Search

m Use Find for a Cursor

m <Pkg>.No_Element is a Cursor if not found
m Use Find_Index for an Index_Type (vectors)

C : constant Pkg_Vectors.Cursor :=
Student_Per_Day.Find (10);

C2 : constant Pkg_Sets.Cursor :=
Received_Parcels.Find ("UPS ZZ-44-112");

C3 : constant Pkg_Maps.Cursor :=
Math_Constants.Find

(To_Unbounded_String
("Pi")); -- Finds by the key!

Containers

Reference

Reference

Containers

Standard Ada.Containers Packages

m Definite Types
m Vectors
m Doubly_Linked_Lists
m Multiway_ Trees
m Hashed_Maps
m Ordered_Maps
m Hashed_Sets
m Ordered_Sets

m Indefinite Types
m Indefinite_Vectors
m Indefinite_Doubly_ Linked_ Lists
m Indefinite_Multiway_ Trees
m Indefinite_Hashed_Maps
m Indefinite_Ordered_Maps
m Indefinite_Hashed_ Sets
m Indefinite_Ordered_Sets
m Indefinite_Holders

m Bounded Types
m Bounded_Vectors
m Bounded_Doubly_Linked_Lists
m Bounded_Multiway_ Trees
m Bounded_Hashed_Maps
m Bounded_Ordered_Maps
m Bounded_Hashed_ Sets
m Bounded_Ordered_Sets

Containers

Lab

Containers

Containers Lab

m Requirements
m Create a database of various information about various cities
m Populate the database

m No requirement to add all information for each city at the same
time

m Print the database
m For extra credit: Cities / information should be sorted
m Hints
m Use a map ADT to organize data by city
m Multliple methods to organize city information

m Array, list, vector, etc

Containers
Lab

Containers Lab Solution - Database (Spec)

with Ada.Containers.Bounded_Vectors;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package City_Trivia is

package Strings_Vector is new Ada.Containers.Bounded_Vectors
(Index_Type => Natural, Element_Type => Unbounded_String);
subtype Strings_Vector_T is Strings_Vector.Vector (100);

procedure Add_Trivia
(City : String;
Information : String);

function Get_Trivia
(City : String)
return Strings_Vector_T;
function Get_Keys return Strings_Vector_T;

package Sort is new Strings_Vector.Generic_Sorting;

end City_Trivia;

Containers

Containers Lab Solution - Database (Body

package Yaps is now da Containers.Sounded Ordered Maps
s Unbounded_String, Element_Type => Strings_Vector T

ype
ype oo Cuser
Hap : Maps)

‘ constant Unbounded_String := To_Unbounded_String (City
Info : constant Unbounded String := To_Unbounded String (Inform

Careor : Maps.Cureor;
Vactor : Strings Vector T

Cursor = Map.Find (Key
1 Cursor - Haps Yo_Erenent, then
Vector Append (nfo) ;

Wap. Tnsert. (Key >

New_Ttam => Vector)
elee
Vector := Maps.Elenent (Cursor);
Vactor Append (Info);
Hap. Replace_Elenent. (Position => Cursor

New_Tten =

nd it
end Ada_Trivia

funceion Get_Trivia (City : String) return Strings Vector_T is
Rot_val
Key

Carsor Maps.Cursor

= Wap_Find (Key)
s lio_lesent then

Ret_Val := Maps Element (Cursor)

Sort Sort (Ret_Val);
end Get_Trivia

function Gat_Keye return Strings Vector_T is

First;

s lio_Elesent 1

Append. := Maps Key (Carsor)
Ret_Val.Append (To_ppend)

revurn Ret_Vali
end Get_Keys
end City_Trivia

Containers

o
Containers Lab Solution - Main

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_I0;
with City_Triv

use Ada.Text_I0;
a;
procedure Main is

Trivia : City_Trivia.Strings_Vector_T;
Keys

City_Trivia.Strings_Vector_T;

function Get (Prompt : String) return String is
begin

return Get_Line;

end Get;

Put (Prompt

begin

Outer_Loop

constant String
begin

= Get ("City name")

exit Outer_Loop when City'Length
Inner_Loop

constant String :=

Get (

exit Inner_Loop when Info'Length = 0
City_Trivia.Add_Trivia (City => City,

Information => Info);

end;

end loop Inmer_Loop;

end;

end loop Outer_Loop;

Keys := City_ Trivia.Get Keys;
City_Trivia.Sort.Sort (Keys);
for Key of Keys loop
Trivia := City_Trivia.Get_Trivia
Put_Line

o_String (Ke
for Info of Trivia loop
Put_Line (" " & To_String (Info));
end loop;
end loop;
end Main;

(To_String (Key));

Containers

Summary

Containers

Containers Review

m Containers class is the ultimate "code re-use"
m Solidifies most common containers used in coding
m Full functionality

m When writing your own, you may not create all the functions
someone else neds

m Part of the language, so reliability is much higher
m Availability depends on language-version and runtime

m Typically not available on certified runtimes (e.g. ravenscar)

Elaboration

Elaboration

Elaboration

Introduction

Introduction

Elaboration

Why Elaboration Is Needed

m Ada has some powerful features that require initialization:

with Depl;
package P1 is

-- wvalue not known at compile time
Val : constant Integer := Depl.Call;
end P1;

m May also involve dynamic allocation:

with P1;
package P2 is
- not known at time
Buffer : String (1 .. P1.Val);
end P1;

m Or explicit user code to initialize a package
package body P3 is
begin

Put_Line ("Starting P3");
end P3;

m Requires initialization code at startup

m Implies ordering

Elaboration

Elaboration

Elaboration

Elaboration

Elaboration

Examples

with Initializer; use Initializer;
package Elab_i is
Spec_Object : Integer := Call (101)
procedure Proc;
end Elab_1;

package body Elab_1 is
Body_Object : Integer := Call (102);
procedure Proc is mull;

begin
Body_Object := Body_Object + Call (iC
end Elab_1;

with Initializer; use Initializer;
package Elab_2 is
Spec_Object : Integer := Call (2!
procedure Proc;
end Elab_2;

package body Elab_2 is
Body_Object : Integer := Call (
procedure Proc is mull;

begin
Body_Object := Body_Object + Call (2

end Elab_

with Elab_2;
with Elab_1;
procedure Test_Elab is
begin
Elab_2 Proc;
Elab_t.Proc;
end Test_Elab;

package Initializer is
function Call (I : Integer) return Integer;
end Initializer;

with Ada.Text_I0; use Ada.Text_I0;

package body Initializer is
function Call (I : Integer) return Integer is
begin

Put_Line (" »
return I;
end Call;

end Initializer;

& Integer'Inage (I)

Elaboration

Elaboration

m Process where entities are created
m The Rule: "an entity has to be elaborated before use"

m Subprograms have to be elaborated before being called
m Variables have to be elaborated before being referenced

m Such elaboration issues typically arise due to:

m Global variable initialization
m Package sequence of statements

with Depl;

package P1 is
—-— Depl body has to be elaborated before this point
V_Spec : Integer := Depl.Call;

end P1;

with Dep2;

package body P1 is
V_Body : Integer;

begin
—-— Dep2 body has to be elaborated before this point
V_Body := Dep2.Call;

end P1;

Elaboration

Elaboration Order

m The elaboration order is the order in which the packages are
created

m |t may or may not be deterministic

package P1 is

V_Spec : Integer := Call(1l);
end P1;
package body P1 is

V_Body : Integer := Call(2);
end P1;
package P2 is

V_Spec : Integer := Call('A');

end P1;
package body P2 is

V_Body : Integer := Call('B');
end P1;

The binder (GNAT: gnatbind) is responsible for finding an
elaboration order

m Computes the possible order
m Reports an error when no order is possible

Elaboration

Circular Elaboration Dependencies

m Although not explicitly specified by the with clauses, elaboration
dependencies may exhibit circularities

Sometimes, they are static

package body P1 is

V_Body : Integer := P2.Call;
end P1;
package body P2 is

V_Body : Integer := P1.Call;
end P2;

Sometimes they are dynamic

package body P1 is
V_Body : Integer;
begin
if Something then
V_Body := P1.Call;
end if;
end P1;
package body P2 is
V_Body : Integer;
begin
if Something then
V_Body := P2.Call;
end if;
end P2;

Elaboration

GNAT Static Elaboration Model

m By default, GNAT ensures elaboration safety

m It adds elaboration control pragma to statically ensure that
elaboration is possible

m Very safe, but...

m Not fully Ada compliant (may reject some valid programs)

m Highly recommended however (least surprising effect)

m Performed by

Automatically called by a builder (Jeysigeibhis})

m
m Reads ALI files from the closure

m Generates b_xxx.ad[sb] or b__xxx.ad[sb] files
m Contains elaboration and finalization procedures

m Defines the entry point procedure, main().

Elaboration

ulz

with Ada Text_I0; use Ada.Text_I0;
package P is
function Call (X : Integer) return Integer;
end P
package body P is
function Call (X : Integer) return Integer is
begin
Put_Line ("Ca
return X;
end Call;
end P;

& X'Inage) ;

with P; use P;
package P1 is
P1_Spec : Integer := P.Call (101
procedure P1_Proc;
end P1;
package body P1 is
P1_Body : Integer := P.Call (102
procedure P1_Proc is mull;
end P1;

with P; use P;
package P2 is
P2_Spec : Integer := P.Call (
procedure P2_Proc;

P2;
kage body P2 is

P2_Body : Integer := P.Call (
procedure P2_Proc is mull;
end P2;

with P2; with P1;
procedure Main is
begin
null;
end Main;
What is the output of running this program

101, 102, 201, 202
201, 202, 101, 102
101, 201, 102, 202
Cannot be determined

Elaboration
ulz

with Ada Text_I0; use Ada.Text_I0;
package P is
function Call (X : Integer) return Integer;
end P
package body P is
function Call (X : Integer) return Integer is
begin
Put_Line ("Call " & X'Inmage);
return X;
end Call;
end P;

with P; use P;
package P1 is
P1_Spec : Integer := P.Call (101

procedure P1_Proc;
end P1;
package body P1 is
P1_Body : Integer := P.Call (102
procedure P1_Proc is mull;
end P1;

with P; use P;
package P2 is
P2_Spec : Integer := P.Call (
procedure P2_Proc;

P2;

kage body P2 is
P2_Body : Integer := P.Call (
procedure P2_Proc is mull;
end P2;

with P2; with P1;
procedure Main is
begin
null;
end Main;
What is the output of running this program

101, 102, 201, 202
201, 202, 101, 102
101, 201, 102, 202
Cannot be determined

As there are no dependencies between P1 and P2, the compiler/linker
can enforce any elaboration order. Even the order of with's" in Main
may not affect elaboration order

Elaboration

Elaboration Control

Elaboration Control

Elaboration

Examples

sss Elaboraca Body.P:

Elaboration

Pragma Preelaborate

m Adds restrictions on a unit to ease elaboration

m Elaboration without explicit execution of code

m No user initialization code

m No calls to subprograms

m Static values

m Dependencies only on Preelaborate packages

package P1 is
pragma Preelaborate;
Var : Integer := 7;
end P1;

m But compiler may generate elaboration code

package P1 is

pragma Preelaborate;

type Ptr is access String;

v : Ptr := new String'("hello");
end P1;

Elaboration

Pragma Pure

m Adds more restrictions on a unit to ease elaboration

m Preelaborate restrictions plus ...

m No variable declaration
m No allocators
m No access type declaration
m Dependencies only on Pure packages
package Ada.Numerics is
pragma Pure;
Argument_Error : exception;
Pi : constant := 3.14...;
end Ada.Numerics;

m But compiler may generate elaboration code

package P2 is
pragma Pure;
Var : constant Array (1 .. 10 * 1024) of Integer :=
(others => 118);
end P2;

Elaboration
Elaboration Control

Pragma Elaborate__Body

m Forces the elaboration of a body just after a specification

m Forces a body to be present even if none is required

m Problem: it may introduce extra circularities

package P1 is
pragma Elaborate_Body;
function Call return Integer;
end P1;
with P2;
package body P1 is

end P1;
package P2 is
pragma Elaborate_Body;
function Call return Integer;
end P2;
with P1;
package body P2 is

end P2;

initialized in the body

Useful in the case where a variable declared in the specification is

Elaboration

Pragma Elaborate

m Pragma Elaborate forces the elaboration of a dependency body
m |t does not force the elaboration of transitive dependencies

package P1 is
function Call return Integer;
end P1;
package P2 is
function Call return Integer;
end P1;
with P1;
package body P2 is
function Call return Integer is
begin
return P1.Call;
end Call;
end P2;
with P2;
pragma Elaborate (PQ)

package body P3 is
V : Integer;
begin
V := P2.Call;
end P3;

123

Elaboration

Pragma Elaborate_All

m Pragma Elaborate_All forces the elaboration of a dependency
body and all transitive dependencies

m May introduce unwanted cycles

m Safer than Elaborate

package P1 is
function Call return Integer;
end P1;
package P2 is
function Call return Integer;
end P1;
with P1;
package body P2 is
function Call return Integer is
begin
return P1.Call;
end Call;
end P2;
with P2;
pragma Elaborate_All (P2);

- + be

te_A
package body P3 is
V : Integer;
begin
V := P2.Call;
end P3;

Elaboration

Lab

Elaboration
Lab

Elaboration Lab

m Requirements
m Create a pure package containing some constants

m Lower limit of some integer range
m Upper limit of some integer range
m Flag indicating an invalid state

m Create a package whose interface consists solely of one global object
m Array of integers initialized to the invalid state
m During elaboration, fill in the array object by querying the user
m All entries must be in the range of Lower Limit to Upper Limit
m Create a main program to print out the array
m Only print values set by the user
m Hints

m The only indication of actual number of entries is the array itself
m Need to tell the compiler that the global object is initialized in the
package body

Elaboration

Elaboration Lab Solution - Constants

package Constants
pragma Pure;

Minimum_ Value
Maximum_Value

Invalid_Value

end Constants;

is

constant
constant
constant

-1_000;
15_000;
Integer'Last;

Elaboration

Elaboration Lab Solution - Data Store

package Datastore is
pragma Elaborate_Body;

Object : array (1 .. 100) of Integer;
end Datastore;
with Constants;
with Ada.Text_I0; use Ada.Text_IO;

package body Datastore is

subtype Valid_Range is

Integer range Constants.Minimum_Value .. Constants.Maximum_Value;
Attempt : Integer;
Count : Integer := Object'First;
begin
loop

Put ("Value: ");
Attempt := Integer'Value (Ada.Text_I0.Get_Line);
exit when Attempt not in Valid_Range;
Object (Count) := Attempt;
Count Count + 1;
end loop;

for I in Count .. Object'Last loop
Object (I) := Constants.Invalid_Value;
end loop;

end Datastore;

Elaboration

Elaboration Lab Solution - Main

with Ada.Text_I0; use Ada.Text_I0;
with Constants;

with Datastore;

procedure Main is

begin

for I in Datastore.Object'First .. Datastore.Object'Last
loop
exit when Datastore.0Object (I) = Constants.Invalid_Value;
Put_Line (Integer'Image (I) & " =>" &
Integer'Image (Datastore.Object (I)));
end loop;

end Main;

Elaboration

Summary

Elaboration

Summary

Elaboration is a difficult problem to deal with

The binder tries to resolve it in a "safe way"

If it can't, it's possible to manually place elaboration pragmas
Better to avoid elaboration constraints as much as possible
Use dynamic elaboration (gnat binder switch -E) as last resort
See Elaboration Order Handling in GNAT annex in GNAT Pro
User's Guide.

Controlled Types

Controlled Types

Controlled Types

Introduction

Introduction

Controlled Types

Introduction

Constructor / Destructor

m Possible to specify behavior of object initialization, finalization,
and assignment

m Based on type definition

m Type must derive from Controlled or Limited__Controlled in
package Ada.Finalization

m This derived type is called a controlled type

m User may override any or all subprograms in Ada.Finalization
m Default implementation is a null body

Controlled Types

Ada.Finalization

Ada.Finalization

Controlled Types

Package Spec

package Ada.Finalization is

type Controlled is abstract tagged private;
procedure Initialize(Object : in out Controlled)

is null;

procedure Adjust (Object : in out Controlled)
is null;

procedure Finalize (Object : in out Controlled)
is null;

type Limited_Controlled is abstract tagged limited private;
procedure Initialize(Object : in out Limited_Controlled)

is null;
procedure Finalize (Object : in out Limited_Controlled)

is null;

private
-- implementation defined
end Ada.Finalization;

Controlled Types

Uses

m Prevent "resource leak"

m Logic centralized in service rather than distributed across clients
m Examples: heap reclamation, "mutex" unlocking

m User-defined assignment

Controlled Types

Initialization

m Subprogram Initialize invoked after object created

m Either by object declaration or allocator
m Only if no explicit initialization expression

m Often default initialization expressions on record components are
sufficient

m No need for an explicit call to Initialize

m Similar to C++ constructor

Controlled Types

Finalization

m Subprogram Finalize invoked just before object is destroyed

m Leaving the scope of a declared object
m Unchecked deallocation of an allocated object

m Similar to C4++ destructor

-
Controlled Types
Assignment

m Subprogram Adjust invoked as part of an assignment operation
m Assignment statement Target := Source; is basically:

m Finalize (Target)

m Copy Source to Target

m Adjust (Target)

m Actual rules are more complicated, e.g. to allow cases where Target
and Source are the same object

m Typical situations where objects are access values

m Finalize does unchecked deallocation or decrements a reference

count

m The copy step copies the access value

m Adjust either clones a "deep copy" of the referenced object or
increments a reference count

Controlled Types

Example

Controlled Types

Unbounded String via Access Type

m Type contains a pointer to a string type
m We want the provider to allocate and free memory "safely"

No sharing

Adjust allocates referenced String

Finalize frees the referenced String

Assignment deallocates target string and assigns copy of source
string to target string

Controlled Types

Unbounded String Usage
with Unbounded_String_Pkg; use Unbounded_String_Pkg;

procedure Test is
Ul : Ustring_T;

begin
Ul := To_Ustring T ("Hello");
declare
U2 : Ustring_T;
begin
U2 := To_Ustring T ("Goodbye");
Ul := U2; -- Reclaims Ul memory
end; -- Reclaims U2 memory
end Test; -- Reclaims Ul memory

Controlled Types

Unbounded String Definition

with Ada.Finalization; use Ada.Finalization;
package Unbounded_String_Pkg is
-— Implement unbounded strings
type Ustring T is private;
function "=" (L, R : Ustring T) return Boolean;
function To_Ustring T (Item : String) return Ustring T;
function To_String (Item : Ustring_T) return String;
function Length (Item : Ustring T) return Natural;
function "&" (L, R : Ustring_T) return Ustring_T;
private
type String_Ref is access String;
type Ustring T is new Controlled with record
Ref : String Ref := new String (1 .. 0);
end record;
procedure Finalize (Object : in out Ustring_T);
procedure Adjust (Object : in out Ustring T);
end Unbounded_String_Pkg;

-
Controlled Types
Unbounded String Implementation

with Ada.Unchecked Deallocation;
package body Unbounded_String_Pkg is
procedure Free_String is new Ada.Unchecked_Deallocation
(String, String_Ref);

function "=" (L, R : Ustring_T) return Boolean is
(L.Ref.all = R.Ref.all);

function To_Ustring_T (Item : String) return Ustring_ T is
(Controlled with Ref => new String'(Item));

function To_String (Item : Ustring T) return String is
(Item.Ref.all);

function Length (Item : Ustring T) return Natural is
(Item.Ref.all'Length);

function "&" (L, R : Ustring_T) return Ustring T is
(Controlled with Ref => new String'(L.Ref.all & R.Ref.all);

procedure Finalize (Object : in out Ustring_ T) is
begin

Free_String (Object.Ref);
end Finalize;

procedure Adjust (Object : in out Ustring T) is
begin
Object.Ref := new String'(Object.Ref.all);
end Adjust;
end Unbounded_String_Pkg;

Controlled Types
Lab

Lab

Controlled Types
Lab

Controlled Types Lab

m Requirements
m Create a simplistic secure key tracker system

m Keys should be unique
m Keys cannot be copied
m When a key is no longer in use, it is returned back to the system

m Interface should contain the following methods

Generate a new key

Return a generated key

Indicate how many keys are in service
Return a string describing the key

m Create a main program to generate / destroy / print keys

m Hints

m Need to return a key when out-of-scope OR on user request
m Global data to track used keys

Controlled Types
Lab

Controlled Types Lab Solution - Keys (Spec)

with Ada.Finalization;
package Keys_Pkg is

type Key_T is limited private;

function Generate return Key_T;

procedure Destroy (Key : Key_T);

function In_Use return Natural;

function Image (Key : Key_T) return String;

private
type Key_T is new Ada.Finalization.Limited_Controlled with record
Value : Character;
end record;
procedure Initialize (Key : in out Key_T);
procedure Finalize (Key : in out Key_T);

end Keys_Pkg;

Controlled Types
Lab

Controlled Types Lab Solution - Keys (Body)

package body Keys_Pkg is
1_Tn_Use : array ') of Boolean

ter range

Globa’ s

(others => False)

pragaa Warnings (0ff);
function Next_vailable return Character is
begin
for C in Global_Tn_Use'Range loop
if not Global In_ then

end loop

end Next_vailable;
pragaa Warnings (On);

function In_Use return Natural is
Ret_Val : Natural := 0;
begin
for Flag of Global_In_Use loop
Rot_Val := Ret_Val + (if Flag then 1 else 0)
end 1oop;
return Ret_Val;
end In_Use;

function Generate return Key_T is

return X : Key_T;
end Generate;
procedure Destroy (Key : Key T) is
begin

Global_In_Use (Key.Value) := False;
end Destroy

function Tnage (Key : Key_T) return String is

" & Key.Value);

procedure Initialize (Key : in out KeyT) is
begt
Key.Value = Next_Available;
Global_In Use (Key.Value) := True;

end Initialize;

procedure Finalize (Key : in out KeyT) is

begin

Global_In Use (Key.Value) := False;
end Finalize;

end Keys_Pkg:

Controlled Types
Lab

Controlled Types Lab Solution - Main

with Keys_Pkg;
with Ada.Text_I0; use Ada.Text_IO;
procedure Main is

procedure Generate (Count : Natural) is
Keys : array (1 .. Count) of Keys_Pkg.Key_T;
begin
Put_Line ("In use: " & Integer'Image (Keys_Pkg.In_Use));
for Key of Keys
loop
Put_Line (" " & Keys_Pkg.Image (Key));
end loop;
end Generate;

begin
Put_Line ("In use: " & Integer'Image (Keys_Pkg.In_Use));

Generate (4);
Put_Line ("In use: " & Integer'Image (Keys_Pkg.In_Use));

end Main;

Controlled Types

Summary

Controlled Types

Summary

m Controlled types allow access to object construction, assignment,
destruction

m Ada.Finalization can be expensive to use

m Other mechanisms may be more efficient

m But require more rigor in usage

	Ada.Characters
	Introduction
	Ada.Characters.Latin_1
	Ada.Characters.Handling
	Lab
	Summary

	Ada.Strings
	Introduction
	String Operations
	Lab
	Summary

	Ada.Text_IO
	Introduction
	File Input/Output
	Type-Specific I/O
	Exceptions
	Lab
	Summary

	Containers
	Introduction
	Container Types
	Containers Operations
	Reference
	Lab
	Summary

	Elaboration
	Introduction
	Elaboration
	Elaboration Control
	Lab
	Summary

	Controlled Types
	Introduction
	Ada.Finalization
	Example
	Lab
	Summary

