GNAT Studio

GNAT Studio

GNAT Studio
Introduction

Introduction

GNAT Studio
Introduction

-
GNAT Studio

Our flagship IDE

m Available on Linux, Windows

Supports native, cross, and bare-board development
m Same look-and-feel

m Provides fully symbolic source-level debugging

Supports Ada 2012 and all prior versions

Supports C, C++ and Python

GNAT Studio
Introduction

GNAT Studio IDE

Tool Bar

Scenario /
Project Views

Outline / Learn
Views

File

Project

G GNAT Studio - Welcome - -

Default project

Edit Navigate Find Code VCs
@0 OChkm «» ©
0,z

v Woefault

Actions

Search

Replace Shift+Ctrl+F
Global search Ctri+u

Search ctri+F

Build SPARK CodePeer Analyze Debug View Window Help Menu Bar
- Default
Welcome
-

GNAT
STUDIO

GNAT Studio is a powerful and simple-to-use IDE that streamlines your software
development process from the initial coding stage through testing, debugging,

system integration, and maintenance.

For more information and help, please visit

for guides and API reference

al, to help you starting with GNAT Studio

0 on GitHub

Messages Locations

i o= =4 -

Welcome to GNAT Studio 21.1 (26210111) hosted on x8
_64-u64-mingn32
(€) 2001-2021 AdaCore

Workspace

Messages /
Locations / Etc

GNAT Studio
Introduction

-
Integrated with GNAT Project Files

m Graphically presents what the project file specifies
m Source directories
m Relationships to other projects
m Object and executable directories
m Etc.
m Builds apps per the project file settings
m Specified toolchain
m Switches to be applied
m GUI for working with scenario variables

GNAT Studio

B ——.
ntroduction -
GNAT Studio - Project Perspective

G GNAT Studio - screen_output ad - Ctutorifcommon’ - S prject - o x
rojec e Fle Edt Navigate Find Code VCS Buld SPARK CodePeer Andlyze Debug View Window Hep
Project nod
AEE OChm «» OGS AML bR Defau | search
i = screen_ outputadb
Source_Dirs entry itn Ada.Text_10; use Ada.Text_10;
vitn Toput;
sckage body Screen_utaut is
Files for specified pactae e
languages
Debug_0n : constant Soolean ix Folse;
Current file |
Source_Dirs ent
Obj_Dir entry
i# ena_
" end ¥sg; ’
Exec_Direntry oo
procedure Debus
besin
i not Debug_0n then
1 i
Messages
P = i =

GNAT Studio
Features

Features

GNAT Studio
Features

-
Configurable and Extensible

Use your own color themes, favorite fonts, etc.
Control layout for window panes within the application
Create your own actions, with menu entries
m Written in Python when appropriate
Define your own editor text expansions (aliases)
m Parameterized if necessary

Define your own keyboard key assignments
m E.g., binding a key sequence to an existing or user-defined action

GNAT Studio
Features

o ——
Provides Language-Sensitive Editing

m Syntax-directed coloring and highlighting
] Statements, types, annotations, comments, etc.

m Indentation based on language syntax & surrounding code

m Automatic formatting as you type
m Indentation, letter casing, coloring, etc.

Scope folding to elide syntax-defined blocks of code
Refactoring for entity renaming & subprogram extraction
Semantics-based completion for both words and constructs

GNAT Studio

Features

-
Syntax Highlighting

(5 GNAT Studio - screen_output.adb - C:\tutorial\common), - Sdc project - o X
File Edit Navigate Find Code VCS Build SPARK CodePeer Analyze Debug View Window Help

A @A 9Ca €« & DB L PR L
Cusveeg,
New_Line;

end or_Msg;

procedure Syntax_Error (S : String; Error_Pos : Natural := @) is
Pos : Natur Error_Pos;
begin
if Pos = @ then Reserved Word
Pos := Input Be
end if;
Put (s

Put_Line (Input Current_Line);

Put (s Strlng Literal
for Tin 1

end loop;

Put_Line ();

Put ("sdc) £

Put (Natural' Image (Input Line Number) & &s);
New_Line;

end

IScreen_Output.Syntax_Error

GNAT Studio
Features

Line / Block / Delimiter Highlighting

Current
Current Block [z
Indicator et Delimiter
) Indicators
A
'

B \
¥ N\

74 \\ Put (' ,1:);
~, for I iw 1. Pos - 1 loop

Current Line | o :_) A "
Indicator : Pat B"-";
77 end loop;

\.
\

Cursor

GNAT Studio
Features

e
Automatic Indentation

m Invoked when pressing enter key
m Modes
None No indentation performed
Simple Next line indented same as current line
Extended Based on language syntax & surrounding code
m Modes are controlled by preferences

o] Edic g Preferences B Editor B Ada

m Also invoked by pressing the indentation key

m Ctrl-Tab by default
m Can change via key manager

GNAT Studio
Features

-
Textual (Word) Completion

m Handy since source files often contain many references to the
same words
m Invoked by Ctrl-/ after a partial word
m Next possible completion will be inserted in the editor
m Repeating cycles through list of candidate completions
m Candidates are those words occurring in the edited source file itself
m Key combination is customizable through the key manager dialog

GNAT Studio
Features

-
Smart (Semantic) Completions

Completes the identifier prefix under the cursor
Lists the results in a pop-up list
Offers completions from the entire project
Requires enabling smart completion preference
m Hence computation of an entity database at GNAT STUDIO
startup
m Allows configuring the time interval before pop-up
Invocations
m Automatically, on a partial word
m Manually, by hitting control-space
m Automatically, immediately after a dot
m Automatically, immediately after an opening (left) parenthesis

GNAT Studio
Features

E——
Smart Completions Example for Packages

procedure E
begin

Put ("sdc error at line");

Put (Natural'Image (Input.Line_Number) & Y;

Put (51);

Put (S2);

Put (S3);

New_Line;

Ada.|
end Err g

(s1 :

(5]
n
~
n
-

Assertions

Asynchronous_Task_Control
® Calendar

W Characters

Command_Line

Containers

Complex_Text_IO
- W Decimal

® Directories

® Direct_IO

vind] M _Disnatchine
sdc.ali

GNAT Studio
Features

-
Filtered Completion Proposals

procedure Error_Msg (S1 : String; S2 : S
begin
Put (“"sdc error at line");
Put (Natural'Image (Input.Line_Number
Put (S1);
Put (52);
Put (S3);
New_Line;
Ada.T|
end Ern

Tags
Task_Attributes
Task_Identification
Task_Initialization
Task_Termination
Text_IO

GNAT Studio
Features

E——
Information In Subprogram Proposals

procedure Pause is

begin
Put (P to H
Skip_Line;
Errg
- T | . s
nd 5S¢ Declaration: screen output.adb:4d
Jutput Parameters:

s1 : in String
[52 : in String

=3

pLas M [s3 : in String := ""]

1= Prints the error message 51 followed by 52 followed by 53 on the screen.
1]

¥5-26

GNAT Studio

Features

Formal Parameter Completions

procedure Pause is

begin
Put (P t i
Skip_Lin
Error_Msg (|
end Paises # params of Error_lsg s2
s1
Declaration: screen output.adb:4d

1d Screen_Dutput;|
Type: String

uty

it.Pause
Prints the error message 51 followed by 52 followed by 53 on the screen.

es
| =
Luu su e wuupug

1 screer

5-26 18:84:37] pr

elapsed time: 8]
——

GNAT Studio
Features

E——
Supports Source Navigation

m For Ada, C, and C+—+
Hyperlinks allow project-wide traversal
m Visiting declaration for a given name, the body of a routine, etc.
m Including language-defined entities
m Contextual menus for navigating to current entity
Dynamic dispatching calls are highlighted
Traversable call graphs show entity relationships
m E.g., "who calls this routine" or "who depends upon this package"
"Tool-tips" pop up to show semantic information

GNAT Studio
Features

Outline view

8
& |config
o . . .
with Ada.Mumerics.Aux_Linker Options:
mage. ads pragna Warnings (Off, Ada.Numerics.Aux Lin}
mage. adb

package Ada.Numerics.Aux_Long Long Flo:
mage-apps . ads pragma Pure:
mage-apps-simple_loop.ads .
OF7AppS-Slp €. 00P subtype T is Long_Long_Float;
mage-apps-simple_loop.adb -

mage-draw. ads

-
] = function 5in (X : T) return T with
= Inport, Convention = Intrinsic, Exter
w B Ada.Numerics.Aux_Long_Long_Float function Cos (X : T) return T with
vT Import, Convention =- Intrinsic, Extel
v G5 Acos function Tan (X : T) return T with
-T% O Asin Import, Convention => Intrinsic, Extel
3 Atan
© % function Exp (X : T) return T with
@ Cos Import, Convention =- Intrinsic, Extel
Cosh
S function Sqrt (X : T) return T with
Import, Convention =- Intrinsic, Extel
Log
% with
G5 Pon onvention == Intrinsic, Exter
O 5in . .
inh function Acos (X : T) return T with
mport, Convention =- Intrinsic, Extel
G5 Sinl I c T E
95 5art . .
aTan function Asin (X : T) return T with
‘Ada.Numerics.Aux_Long_Long_Float.Ex
© Tanh -

GNAT Studio
Features

o ——
Editor's Contextual Navigation Menu

Cursor when
right-clicked

Fut

Go Ta Body or Full Declaration
Y =

Put (
%

Put
end 1o Find References.

put_Li Locate sereen outputadb in Project View
Put -

il Tree '
put o rees
Mew_ LI

toring v

#nd Synta
sing '

Align L

Generate L4

Dabug »

Expanded code *
. Preprocess ¥

Represertation '
s Cay "
N Check Coding standard of sereen sutputad
s weoees_ Frefty Frint screen_output.adbh
1 SPARK x
526 10:84:

elapsed £5 Properies

GNAT Studio
Features

o ——
Tool-Tip Example

Cursor hovering over “Msg”

Subprogram Specification

procedure View 1

begin
for I in Tab'Firdf .. Last loop
Screen_Output.Msg (Values.To_String (Tab (I)));
end loop;
procedure Msg (S1 : String; S2 : String := ““; End_Line : Boolean := True)
Screen_Output .Msg
end View;
at screen_output.ads (5:4)
end Stack;

Prints message S1 followed by S2 on the screen. If End_Line is True
appends to the message a carriage return (ie it ends a line).

Subprogram Description
(from comments after specification)

Subprogram Location

GNAT Studio
Features

-
Viewing Predefined and GNAT Source Files

Characters ;
w Help
Command_Line r
Welcome :
Containers ¥
Contents
_oL X Direct IO r
GNAT Studio 4
Directories ¥
GNAT Runtime Standard . .
Dispatching 4
Exceptions 3
s GPR » GMAT v i
Execution_Time ¥
= GNU Tools L Interfaces ’
i Interrupts »
pu HMLAda 4 System 4
MNumerics >
Python 4
Real_Time r
SPARK »
Sequential_IO »
CodePeer 4
Streams >
GMNATcoverage L
strings 4
About
Synchronous_Task_Control >
3 1 String; Error_Pos : Natural := @) is
- Pos; Tags r
Wide_Characters 3
1_Number;

GNAT Studio
Features

Call tree

ads - es enume
adb type Bodies Array_T is array (Bodies_Enum_T) of Body T;
-ads procedure [P (Radi Tn Maus - i ank Bads To Badise -
-adb i Go To Declaration
ads end Solar_Systen
: Jump to Implementation File
_ Solar_System.Move Go To Bedy or Full Declaration
Locat call T Go To Type Declaration
Find All References
i - g
B Find References...
Move ALl is called
+Ctrl+F T e Locate solar_system.ads in Project View
Ctri+u Private_Types_}
T ~ Move ALl calls
Ctri+F ~ Hove Refactoring
~ Compute_X Casing
v Cos
1ark Align
== b Cos Generate
b Cos Debug
p Cos
Version Control
» Cos
» Compute_Y Expanded code

Preprocessing
Representation

GNATtest

¥ v v v v v vy wvww

Andise Rrrau T);

ing, 4 chars) 62:18

Move is called by

Move calls

GNAT Studio
Running Applications

Running Applications

25/

GNAT Studio
Running Applications

Building Applications

m Uses multi-language builder GPRBUILD by default
m Ada, C, C+-+, assembly, user-defined

m Supports any compiler callable on command line
m Built-in support for GNAT, gcc, and make

m Provides easy navigation through error messages

m Provides automatic "code-fixing"
m Manually invoked

e
Put ("sdc input error at line®);

Put (Natural'Image (Input.line_Number) & & 5);
New_Line;

end Syntax_Error

Fix: missing *;"

26/

GNAT Studio
Running Applications

Integration with External Tools

m Common GUI for version control systems
m Predefined support for many version control systems
m Manual integration allowed for other tools

m GNAT-specific tools, if installed

GNAT SAS

SPARK

GNATTEST

GNATCOVERAGE

m Etc.

m User-defined tools, with menu entries if needed

27

GNAT Studio
Debugging Applications

Debugging Applications

GNAT Studio
Debugging Applications

Symbolic Debugging

m Built in to GNAT STUDIO as a different "perspective"
m Additional views, menu entries, and toolbar icons
m A graphical interface to GDB
m Uses a GDB enhanced to be Ada-aware
m Task states, not just thread states
m Advanced types' representations
m Same interface for native, cross, bare-board
m Some targets may require target-specific setup
m Includes a GDB console for interactive commands

GNAT Studio
Debugging Applications

Language Sensitive

m Multiple languages supported

m Ada, C, C++ code in the same application
m Set variables, display expressions

m Using language-specific syntax
m Browse source

m Including language-defined entities

30/

GNAT Studio
Debugging Applications

Extensible

m You can call functions & procedures interactively

m Using language-specific syntax

m Very useful to print program specific info

m No need to hardcode display routine calls within source
m Has powerful scripting facility

m Can execute when app stops at a breakpoint

m User defined commands (on the fly)

m Command files (macros useful for your project)

GNAT Studio
Debugging Applications

Fine-grained & Expressive Control

m Stepping

m Over source line

m Into and around subprograms

m Over a single assembly instruction
m Breakpoints

m Conditional & unconditional

m Can execute a series of commands at breakpoint
m Viewable call stack

m Move to any called routine on the call chain

GNAT Studio
Debugging Applications

Exception Aware

m Halt when a specific exception is raised
m Halt when an unhandled exception is raised
m Halt when any exception is raised

GNAT Studio
Debugging Applications

Tasking/Thread Aware

m View all tasks/threads in the application
m Set task specific breakpoints
m Switch among tasks by clicking on view entries

Debugger Tasks
1 893960 15 Child Termination Wait main_task
L] 824710 1 15 Runnable task_one
3 897d90 1 15 Runnable task_two

34/

GNAT Studio
Debugging Applications

GNAT St1UuDIO Debug Perspective

G GNAT Studio - Debugger Console - - Sdc project

Fle Edt Navigtte Find Code VCS Buld SPARK Codepeer Anahze Debug View Window Help

€« CUABRLIRL DIN ~T + 12

: : cads sdcadd .
- it Exeents
With Screen Output; use Sereen_Outout;
vith Stack;
Sith Tokensi uze Tokens
Wth Ade.Text_10; use Ade.Text_I0;
with Ada. Conand_Line; use Ada,Command_Line;
screen_output.ad procedure sac is
e Types
begin
Msg (“vie: et type and:)
15 Argument_Count = 1 then
begin
Open (File, Tn_rile, Argument (1));
exception
“nen Use_Error | Name_grror = .
« o % ¥

return;

Set_tnput (File);
ena 1%

1000

begin

Process (Next);

Breakpoints

except:
when Stack.Underflow

scages Debugger Console Locations

=4 -

Reading symbols from C:/tutorial/zdc.exe. ..

peIs e

GNAT Studio

Debugging Applications

The Debugging Toolbar

> 1 N

Start/Continue Call-Frame Traversal

Execute until next source line Execute until different

in same frame, stepping over source line, stepping into
subroutine calls other frames

Continue execution until
selected stack frame returns

AdaCore 36 /71

GNAT Studio
Debugging Applications

Data Window

m Displays values and their relationships in a table
m Each value is displayed in its own row
m Each row contains:
m Name of the expression or variable
m Components / elements can be expanded
m Value
m Type (Ada type definition)

37/

GNAT Studio
Debugging Applications

GNAT STUDIO Active In Debug Perspective

" * - s Calt Stk
a
i L Detug. t;
L L - -]
] \
L% £ 3 H
& 3 =

[| Debugger Console

GNAT Studio
Workflow Example

Workflow Example

GNAT Studio
Workflow Example

Starting GNAT STUDIO

m From the desktop:
m Double-click on the "project gpr" file icon in a file browser

I3) CG\temp\deep_copy
Name =
s
| & demo_deep_copy.adb
dev.gpr

@ stack_management.adb
@ stack_management.ads

m Or start GNAT STUDIO and use the Welcome Screen to select
project
m From the command line:
m Change to the directory containing the project file

m Enter [eakRAiaitlebll on the command line

GNAT Studio
Workflow Example

GNAT Stubpio Welcome Screen

{5 Welcome to GNAT Studio

| sde.gpr

| Citutorialisde.gpr

 GNAT

STUDIO

Version 21.1

+ Create new project
iOpen project

P> start with default project

[M@ IIY Open Project

m Click [lE@/E2] and go to your "dev" directory if the correct
directory is not already indicated, or enter it directly

= Click

GNAT Studio
Workflow Example

o ——
Building Executables

m Press F4 (for first main in m Or click [—

list) —_main unit name
m Or use "Build Main" icon

de V(S Bund SPARK CodePeer

= amfn,'ﬁ > &

Build Main sdc.adb

Action: Build Main Number 1 e
Category: Build

Shortcut: F4

Menu: /Build/Project/sdc.adb

Build Main sdcadb

Action: 8uld Main Number 2

Category: Euild
Menu: /Buld/Project/sdcadb

GNAT Studio
Workflow Example

-
Chance To Change Build Switches

m May be displayed when build is invoked
m Just press OK

G Build Main

Eprbuils - -PC:\tutorial\sdc.gor Ci\tutorial\common\nain. ad>

GNAT Studio
Workflow Example

Error In Source File and Locations View

main.adb
with Except;
I 2 with Screen_Output; use Screen_Output;
5 with Stack;
with Tokens; use Tokens;
with Ada.Text_IO; use Ada.Text_IO;

with Ada.Command_Line; use Ada.Command_Line;
procedure main is

main 10:9 L}
Messages Locations

4 as 4 - |z B &
gprbuild -d -PC:\tutorialisdc.gpr -XBUTLD=DEBUG C:\tutori - Builder results (1 item in 1 ile)

al\common\main.adb : .
- main.adb (1 item)

Compile it

foos seinom
main.adb:1@:89: missing ;"
gprbuild: *** compilation phase failed
[2821-85-26 15:42:11] process exited with status 4, elaps
ed time: 28.83s

GNAT Studio
Workflow Example

-
Results of Building

m Any error lines are displayed against a colored background in the
source window

m Locations window displays error messages

m Messages window gives tool output results

GNAT Studio

Workflow Example

B ————
o ——
Using the Locations Window

m Can click on a line to go to that source location
m Click on the "wrench" icon to apply Code Fix

Locations

= 4
LD=DEBUG C:\tutori

B I | Q-Filte
w i Builder

results (1 item in 1 file)
main.adb (1 item)

wan
.

Fixz missing

GNAT Studio
Workflow Example

e
Result of Code Fix via Wrench lcon

main.adb

with Except;

with Screen_Output; use Screen_Output;
with Stack;

with Tokens; use Tokens;

with Ada.Text_IO; use Ada.Text_I0;

with Ada.Command_Line; use Ada.Command_Line;
procedure main is
begin
null;
end main|

main

Messages Locations

A QA= = b -

gprbuild -d -PC:\tutoriall\sdc.gpr -XBUILD=DEBUG C:\tutori - Builder results (1 item in 1 File)
alycommonymain.adb I .
Compile - main.adb (1 item)

[ada] main.adb 10:9
main.adb:18:89: missing ";"
gprbuild: *#* compilation phase failed

[2@821-85-26 15:42:11] process exited with status 4, elaps

GNAT Studio
Workflow Example

e
Build the Executable After Fix

m Press F4 (for first main in list)
m Or use "Build Main" icon
m Or click BNl — EOEEE — main unit name

GNAT Studio
Workflow Example

o ——
Running The Program

m Click m — m — main unit name

m Leave Use external terminal unchecked
m Press

|| B -

) . x .
C:\tutorialimain

GNAT Studio
Workflow Example

-
(Internal) Run Window

=
o,
5
=}
=]

!'-.-'iESSBf:IEE Locations Run: main.exe
]

C:\tutorialimain.exe
[2821-85-26 15:49:33] process terminated successfully, elapsed time: 8@.21s

Workflow Example
E——
When Multiple Mains Are Defined

m Run lcon

m Build Icon

Right-Click

Right-Click

Debug View Window Help

S Build §PARK CodePeer Analyze Debug View V Analyze
>IHmE ~1T 41l

CLABLPRL PIE ~T B A

A C:\tutorial\common\main.adb screen_c
P> catutorialcommon\sdc.adb

-
Citutorial\common\sdc.adb
= e Debug_On : constant Boolean := False;

Debug_On : constant Boolean :=

GNAT Studio
Workflow Example

E——
Help With GNAT STUDIO

wdow Help
Welcome Default | se
Contents
_outpi : Bl il T
GMAT Studio Welcome
Toke
GNAT Runtime X Tutorial
othe gat
‘aise
=3 GPR L GMNATdoc User's Gu
Load the documentation for 'GNAT Studio User's Guide' into an external
GMNU Tools b Python extensions web browser
wcept.
ien_Ou XMLAda LR !)
It.Ski Action: display documentation GNAT Studio User's Guide
_vali Python 4 Category:
SPARK. ¥ Menu: /Help/GNAT Studio/GNAT Studio User's Guide
CodePeer 3
GMATcoverage r
About

GNAT Studio
Workflow Example

E——
About GNAT STUDIO Help

m Information on GNAT STUDIO
m Welcome (gets you to the Tutorial and the Users Guide)
m Contents (which includes links to your reference manuals for GNAT,
GDB and GCC, etc.)
m Information on other tools and capabilities
m GNAT
GNAT SAS
GNU tools
GNAT Runtime
Python Extensions

m All GNATPro tools have a command-line argument

GNAT Studio
Workflow Example

User Guides and Examples

~ GNATPRO
~ 211
bin
bLLS
etc
include
lib
libexec
ocami
~ share
= doc
aunit

gnat

—
- gnatcoverage
Documentation R
gnatstudio

gprbuild
libadalang
\ xmlada 7
Vs examples \
aunit
aws
gnat
gnatcheck

gnatcoll

gnatcoverage
y gnatstack

gnatstudio

gnattest

gprbuild

xmlada

54 /7

GNAT Studio
Using Version Control Systems

Using Version Control Systems

55 /

GNAT Studio

Using Version Control Systems

What is version control

m System that records changes
m to a file or set of files
over time
recall specific versions later
revert selected files back to a previous state
compare changes over time
who introduced an issue, and when
m GNAT Studio Supports many Version Control Systems (VCS)
Git
Subversion
CVS
Rational Clearcase
Mercurial

GNAT Studio

Using Version Control Systems

What is Git

m A VCS

m Used to demo the GNAT Studio VCS Features
m Distributed

m No single database of reference

m Most operations don't require a server

m Integrity checks
m 3 states

Working
Directory

Staging
Area

.git directory
(Repository)

Checkout the project

Stage Fixes

Commit

GNAT Studio
Using Version Control Systems

GNAT Studio interface for Staging

A&EE 92C s

v B8 Modified

® alire.toml

Commits

¥ src/ady_240_tasking_protected_objects/answers/solar_systen-graphics.ad:
X src/ady_240_tasking_protected_objects/answers/solar_systen.ads

Staged

Unt racked

? src/adv_240_tasking_protected objects/answers/solar_systesssn.ads

7 src/ady_240_tasking_protected_objects/answers/toto.ads

m Tip: Renaming = Removing a file and creating a new file with the
same content

- B Modified

Commits

o alire.toal
X sre/ady_240_tosking_protected_dbjects/ansvers/solar_systen-grophics.ods
- B staged
[o sre/ady_240_tasking protected objects/answers,/solar_systen.ads -> src/ady_240_tasking_protected objects/ansver:
~ B ntracked

2 sre/ody_240_tasking protected_objects/ansvers/toto.ods

GNAT Studio
Using Version Control Systems

File Diff

m Clicking on a file opens a diff

Diff alire.tom| [HEAD]

index 1464a66..dald27] 100644

+++ alire. tonl

-nane = “labs_solar_systen"
+authors =

+"Léo Germond",

+1

description = "A set of SDL-based exercises to learn Ada"
+executables =

+'getting_started main".

+1

+licenses = "GPL-3.0-or-later”
smmintainers = [

+"Léo Germond <gernond@adacare. cam>",
-1

smaintainers-logins = [
+"Leogermond”,

41

abs_solar_systen”

[
+"training",
+"Labs",
+'graphics”,
+"windowed",
+1

version
website
-authors = ["Léo Germond"]
-maintainers = ["Léo Germond <germond@adacore. com="]
-maintainers-logins = ["leogermond"]
-licenses = "GPL-3.0-or-later”
-executables = ["getting started main"]

b

tanc "1ahen

it alire.

1.
https: //public-training.adacore. com/doc/Labs/solar_systen/index. htnl*

Frtraingnnt aranhice® i ndousde]

om| alire.toml

GNAT Studio
Using Version Control Systems

Actions on the staging area

- o v B o 0O

m Local
m Undo local change(s)
m Commit
m Merge
m Distant
m Push
m Fetch
m Pull = Fetch + Merge

Q- fil.

60/

GNAT Studio
Using Version Control Systems

Commit a local change

+ () a- fil..

1. Select:the staged change
2. Enter your message
3. Press “Commit"

mModified
. ®Staged
-~ ®mUntracked

Commits

GNAT Studio
Lab

Lab

GNAT Studio
Lab

-
GNAT Studio Lab

m Goals
m Using GNAT STUDIO, you should be able to:

m Build a project using existing source files
m Fix coding issues by hand or automatically
m Debug executables

m Copy the two source directories (common and struct) to a
work area

GNAT Studio
Lab

o ——
Create Project - New Project

m Start GNAT STUDIO from the command line or the application
menu

m In the Welcome dialog, select REEES G vo)[<les
m Select SIMPISVICENZEIEEE and click

m Fill in Location and Settings as appropriate
m Click FAVN2 to build the project

GNAT Studio
Lab

-
Create Project - Project Settings

m Select adl Project Properties...

m Navigate to the Sources — Directories tab

m Remove the pre-populated directory
® Add the common and struct directories

m Navigate to the Sources — Main tab

m Replace the main.adb file with sdc.adb
m (Clicking the + icon brings up a list of all possible files)

m Navigate to the Build — Switches — Ada tab

B Select Debug information (so we can debug later)
m Under Warnings, enable most warnings

m Click to save settings

GNAT Studio
Lab

-
Create Project - Build Project

m Press [0 (and then 28802 to build the executable

m There are errors in the supplied code!

GNAT Studio
Lab

o ——
Error Fixing

m The error(s) appear in the Locations window
m Clicking on the error line will jump to that line of code
m For errors which GNAT STUDIO can fix, a wrench icon appears

m In the Locations window
m In the source file window

m Clicking either of these wrenches should fix the problem

m Continue fixing errors (and warnings) until the executable builds

GNAT Studio

Lab

o ——
Running the Executable

m This example is a simplistic postfix desktop calculator that accepts
input from a file or interactively

m For example, entering should give you the result 4,

while [RREEVARSSRAA ill give you the result 2

m Run the executable via m — m or by pressing the
right-pointing triangle icon

m Enter pRPEEIRSSbAA as the command
m Internal Error is not your fault - there is a bug in the code!

GNAT Studio
Lab

-
Debugging the Executable
m Internal Error is printed when an exception is raised - let's try to
find it
m Click the bug-like icon (REHIERZNBIEIA) on the toolbar to start
the debugger
m Click the icon to start execution

m Dialog has checkboxes - make sure Stop at beginning of main
subprogram is checked so we can set a breakpoint

m Executable stops at main subprogram (Temporary breakpoint)

GNAT Studio
Lab

o ——
Debug - Setting an Exception Breakpoint

m We want to set a breakpoint
when an exception is raised -

m In the Breakpoints window,
click the + icon

m Set the breakpoint type to ; ———

break on exception =
m Breakpoint appears in the o

Breakpoints window /
m Click to enter your B

data and see the exception

GNAT Studio
Lab

o ——
Debug - Following an Breakpoint

m Execution stops where exception is raised
m Not always in your actual code
m In Debugger Console exception information is presented
m In Call Stack window, you can see where you are in the call stack
m Click on the first entry that looks like your code
m To see current value of an object, hover over it

m To track the value, right-click and select [BIE —

Display <> in Variables view

	Introduction
	Features
	Running Applications
	Debugging Applications
	Workflow Example
	Using Version Control Systems
	Lab

