
GNAT Studio

GNAT Studio

1 / 71

GNAT Studio
Introduction

Introduction

2 / 71

GNAT Studio
Introduction

GNAT Studio

Our flagship IDE
Available on Linux, Windows
Supports native, cross, and bare-board development

Same look-and-feel
Provides fully symbolic source-level debugging
Supports Ada 2012 and all prior versions
Supports C, C++ and Python

3 / 71

GNAT Studio
Introduction

GNAT Studio IDE

4 / 71

GNAT Studio
Introduction

Integrated with GNAT Project Files

Graphically presents what the project file specifies
Source directories
Relationships to other projects
Object and executable directories
Etc.

Builds apps per the project file settings
Specified toolchain
Switches to be applied

GUI for working with scenario variables

5 / 71

GNAT Studio
Introduction

GNAT Studio - Project Perspective

6 / 71

GNAT Studio
Features

Features

7 / 71

GNAT Studio
Features

Configurable and Extensible

Use your own color themes, favorite fonts, etc.
Control layout for window panes within the application
Create your own actions, with menu entries

Written in Python when appropriate
Define your own editor text expansions (aliases)

Parameterized if necessary
Define your own keyboard key assignments

E.g., binding a key sequence to an existing or user-defined action

8 / 71

GNAT Studio
Features

Provides Language-Sensitive Editing

Syntax-directed coloring and highlighting
Statements, types, annotations, comments, etc.

Indentation based on language syntax & surrounding code
Automatic formatting as you type

Indentation, letter casing, coloring, etc.
Scope folding to elide syntax-defined blocks of code
Refactoring for entity renaming & subprogram extraction
Semantics-based completion for both words and constructs

9 / 71

GNAT Studio
Features

Syntax Highlighting

10 / 71

GNAT Studio
Features

Line / Block / Delimiter Highlighting

11 / 71

GNAT Studio
Features

Automatic Indentation

Invoked when pressing enter key

Modes

None No indentation performed

Simple Next line indented same as current line

Extended Based on language syntax & surrounding code

Modes are controlled by preferences
Edit → Preferences → Editor → Ada

Also invoked by pressing the indentation key
Ctrl-Tab by default
Can change via key manager

12 / 71

GNAT Studio
Features

Textual (Word) Completion

Handy since source files often contain many references to the
same words
Invoked by Ctrl-/ after a partial word

Next possible completion will be inserted in the editor
Repeating cycles through list of candidate completions

Candidates are those words occurring in the edited source file itself
Key combination is customizable through the key manager dialog

13 / 71

GNAT Studio
Features

Smart (Semantic) Completions

Completes the identifier prefix under the cursor
Lists the results in a pop-up list
Offers completions from the entire project
Requires enabling smart completion preference

Hence computation of an entity database at GNAT Studio
startup

Allows configuring the time interval before pop-up
Invocations

Automatically, on a partial word
Manually, by hitting control-space
Automatically, immediately after a dot
Automatically, immediately after an opening (left) parenthesis

14 / 71

GNAT Studio
Features

Smart Completions Example for Packages

15 / 71

GNAT Studio
Features

Filtered Completion Proposals

16 / 71

GNAT Studio
Features

Information In Subprogram Proposals

17 / 71

GNAT Studio
Features

Formal Parameter Completions

18 / 71

GNAT Studio
Features

Supports Source Navigation

For Ada, C, and C++
Hyperlinks allow project-wide traversal

Visiting declaration for a given name, the body of a routine, etc.
Including language-defined entities

Contextual menus for navigating to current entity
Dynamic dispatching calls are highlighted
Traversable call graphs show entity relationships

E.g., "who calls this routine" or "who depends upon this package"
"Tool-tips" pop up to show semantic information

19 / 71

GNAT Studio
Features

Outline view

20 / 71

GNAT Studio
Features

Editor's Contextual Navigation Menu

21 / 71

GNAT Studio
Features

Tool-Tip Example

22 / 71

GNAT Studio
Features

Viewing Predefined and GNAT Source Files

23 / 71

GNAT Studio
Features

Call tree

24 / 71

GNAT Studio
Running Applications

Running Applications

25 / 71

GNAT Studio
Running Applications

Building Applications

Uses multi-language builder GPRbuild by default
Ada, C, C++, assembly, user-defined

Supports any compiler callable on command line
Built-in support for GNAT, gcc, and make

Provides easy navigation through error messages
Provides automatic "code-fixing"

Manually invoked

26 / 71

GNAT Studio
Running Applications

Integration with External Tools

Common GUI for version control systems
Predefined support for many version control systems
Manual integration allowed for other tools

GNAT-specific tools, if installed
GNAT SAS
SPARK
GNATtest
GNATcoverage
Etc.

User-defined tools, with menu entries if needed

27 / 71

GNAT Studio
Debugging Applications

Debugging Applications

28 / 71

GNAT Studio
Debugging Applications

Symbolic Debugging

Built in to GNAT Studio as a different "perspective"
Additional views, menu entries, and toolbar icons

A graphical interface to GDB
Uses a GDB enhanced to be Ada-aware

Task states, not just thread states
Advanced types' representations

Same interface for native, cross, bare-board
Some targets may require target-specific setup

Includes a GDB console for interactive commands

29 / 71

GNAT Studio
Debugging Applications

Language Sensitive

Multiple languages supported
Ada, C, C++ code in the same application

Set variables, display expressions
Using language-specific syntax

Browse source
Including language-defined entities

30 / 71

GNAT Studio
Debugging Applications

Extensible

You can call functions & procedures interactively
Using language-specific syntax
Very useful to print program specific info
No need to hardcode display routine calls within source

Has powerful scripting facility
Can execute when app stops at a breakpoint
User defined commands (on the fly)
Command files (macros useful for your project)

31 / 71

GNAT Studio
Debugging Applications

Fine-grained & Expressive Control

Stepping
Over source line
Into and around subprograms
Over a single assembly instruction

Breakpoints
Conditional & unconditional
Can execute a series of commands at breakpoint

Viewable call stack
Move to any called routine on the call chain

32 / 71

GNAT Studio
Debugging Applications

Exception Aware

Halt when a specific exception is raised
Halt when an unhandled exception is raised
Halt when any exception is raised

33 / 71

GNAT Studio
Debugging Applications

Tasking/Thread Aware

View all tasks/threads in the application
Set task specific breakpoints
Switch among tasks by clicking on view entries

34 / 71

GNAT Studio
Debugging Applications

GNAT Studio Debug Perspective

35 / 71

GNAT Studio
Debugging Applications

The Debugging Toolbar

36 / 71

GNAT Studio
Debugging Applications

Data Window

Displays values and their relationships in a table
Each value is displayed in its own row
Each row contains:

Name of the expression or variable
Components / elements can be expanded

Value
Type (Ada type definition)

37 / 71

GNAT Studio
Debugging Applications

GNAT Studio Active In Debug Perspective

38 / 71

GNAT Studio
Workflow Example

Workflow Example

39 / 71

GNAT Studio
Workflow Example

Starting GNAT Studio

From the desktop:
Double-click on the "project gpr" file icon in a file browser

Or start GNAT Studio and use the Welcome Screen to select
project

From the command line:
Change to the directory containing the project file
Enter gnatstudio on the command line

40 / 71

GNAT Studio
Workflow Example

GNAT Studio Welcome Screen

Choose Open Project
Click Browse and go to your "dev" directory if the correct
directory is not already indicated, or enter it directly

Click OK
41 / 71

GNAT Studio
Workflow Example

Building Executables
Press F4 (for first main in
list)
Or use "Build Main" icon

Or click Build → Project
→ main unit name

42 / 71

GNAT Studio
Workflow Example

Chance To Change Build Switches

May be displayed when build is invoked

Just press OK

43 / 71

GNAT Studio
Workflow Example

Error In Source File and Locations View

44 / 71

GNAT Studio
Workflow Example

Results of Building

Any error lines are displayed against a colored background in the
source window
Locations window displays error messages
Messages window gives tool output results

45 / 71

GNAT Studio
Workflow Example

Using the Locations Window

Can click on a line to go to that source location
Click on the "wrench" icon to apply Code Fix

46 / 71

GNAT Studio
Workflow Example

Result of Code Fix via Wrench Icon

47 / 71

GNAT Studio
Workflow Example

Build the Executable After Fix

Press F4 (for first main in list)
Or use "Build Main" icon
Or click Build → Project → main unit name

48 / 71

GNAT Studio
Workflow Example

Running The Program

Click Build → Run → main unit name
Leave Use external terminal unchecked
Press Execute

49 / 71

GNAT Studio
Workflow Example

(Internal) Run Window

50 / 71

GNAT Studio
Workflow Example

When Multiple Mains Are Defined
Build Icon Run Icon

51 / 71

GNAT Studio
Workflow Example

Help With GNAT Studio

52 / 71

GNAT Studio
Workflow Example

About GNAT Studio Help

Information on GNAT Studio
Welcome (gets you to the Tutorial and the Users Guide)
Contents (which includes links to your reference manuals for GNAT,
GDB and GCC, etc.)

Information on other tools and capabilities
GNAT
GNAT SAS
GNU tools
GNAT Runtime
Python Extensions

All GNATPro tools have a command-line argument --help

53 / 71

GNAT Studio
Workflow Example

User Guides and Examples

54 / 71

GNAT Studio
Using Version Control Systems

Using Version Control Systems

55 / 71

GNAT Studio
Using Version Control Systems

What is version control

System that records changes
to a file or set of files
over time
recall specific versions later
revert selected files back to a previous state
compare changes over time
who introduced an issue, and when

GNAT Studio Supports many Version Control Systems (VCS)
Git
Subversion
CVS
Rational Clearcase
Mercurial

56 / 71

GNAT Studio
Using Version Control Systems

What is Git
A VCS

Used to demo the GNAT Studio VCS Features
Distributed

No single database of reference
Most operations don't require a server

Integrity checks
3 states

57 / 71

GNAT Studio
Using Version Control Systems

GNAT Studio interface for Staging

Tip: Renaming = Removing a file and creating a new file with the
same content

58 / 71

GNAT Studio
Using Version Control Systems

File Diff

Clicking on a file opens a diff

59 / 71

GNAT Studio
Using Version Control Systems

Actions on the staging area

Local
Undo local change(s)
Commit
Merge

Distant
Push
Fetch
Pull = Fetch + Merge

60 / 71

GNAT Studio
Using Version Control Systems

Commit a local change

1. Select the staged change
2. Enter your message
3. Press "Commit"

61 / 71

GNAT Studio
Lab

Lab

62 / 71

GNAT Studio
Lab

GNAT Studio Lab

Goals
Using GNAT Studio, you should be able to:

Build a project using existing source files
Fix coding issues by hand or automatically
Debug executables

Copy the two source directories (common and struct) to a
work area

63 / 71

GNAT Studio
Lab

Create Project - New Project

Start GNAT Studio from the command line or the application
menu

In the Welcome dialog, select Create new project

Select Simple Ada Project and click Next

Fill in Location and Settings as appropriate
Click Apply to build the project

64 / 71

GNAT Studio
Lab

Create Project - Project Settings

Select Edit → Project Properties...
Navigate to the Sources → Directories tab

Remove the pre-populated directory
Add the common and struct directories

Navigate to the Sources → Main tab
Replace the main.adb file with sdc.adb
(Clicking the + icon brings up a list of all possible files)

Navigate to the Build → Switches → Ada tab
Select Debug information (so we can debug later)
Under Warnings, enable most warnings

Click Save to save settings

65 / 71

GNAT Studio
Lab

Create Project - Build Project

Press F4 (and then Execute) to build the executable
There are errors in the supplied code!

66 / 71

GNAT Studio
Lab

Error Fixing

The error(s) appear in the Locations window
Clicking on the error line will jump to that line of code

For errors which GNAT Studio can fix, a wrench icon appears
In the Locations window
In the source file window

Clicking either of these wrenches should fix the problem

Continue fixing errors (and warnings) until the executable builds

67 / 71

GNAT Studio
Lab

Running the Executable

This example is a simplistic postfix desktop calculator that accepts
input from a file or interactively

For example, entering 1 2 + print should give you the result 4,
while 12 6 / print will give you the result 2

Run the executable via Build → Run or by pressing the
right-pointing triangle icon

Enter 1 2 + print as the command
Internal Error is not your fault - there is a bug in the code!

68 / 71

GNAT Studio
Lab

Debugging the Executable

Internal Error is printed when an exception is raised - let's try to
find it

Click the bug-like icon (Build & Debug) on the toolbar to start
the debugger

Click the Continue icon to start execution
Dialog has checkboxes - make sure Stop at beginning of main
subprogram is checked so we can set a breakpoint

Executable stops at main subprogram (Temporary breakpoint)

69 / 71

GNAT Studio
Lab

Debug - Setting an Exception Breakpoint
We want to set a breakpoint
when an exception is raised
In the Breakpoints window,
click the + icon
Set the breakpoint type to
break on exception
Press OK
Breakpoint appears in the
Breakpoints window
Click Continue to enter your
data and see the exception

70 / 71

GNAT Studio
Lab

Debug - Following an Breakpoint

Execution stops where exception is raised
Not always in your actual code

In Debugger Console exception information is presented

In Call Stack window, you can see where you are in the call stack
Click on the first entry that looks like your code

To see current value of an object, hover over it

To track the value, right-click and select Debug →
Display <> in Variables view

71 / 71

	Introduction
	Features
	Running Applications
	Debugging Applications
	Workflow Example
	Using Version Control Systems
	Lab

