
Slide: 1Copyright © 2019 AdaCore

Barnes, chapter 5

Ada Declarations

Slide: 2Copyright © 2019 AdaCore

Identifiers

• Ada identifiers are case insensitive

– HELLO = hello = HellO

• Start with a letter

• Ends with a letter or a number

• May contain non-consecutive underscores

• Which of the following are legal?

– Something

– My__Id

– _Hello

– A_67_9

– _CONSTANT

– 09_A_2

– YOP_

Slide: 3Copyright © 2019 AdaCore

Comments

• Ada provides end of line comments with --

• There is no block comment (/* */)

-- This is an Ada comment // This is a C++ comment

Slide: 4Copyright © 2019 AdaCore

Numbers

• The underscore is allowed for numbers

– 1_000_000 = 1000000

• Numbers can be expressed with an integer base (from

2 to 16)

– 10#255# = 2#1111_1111# = 8#377# = 16#FF#

• Numbers can be defined with an exponent part

– 2#1#E8 = 256

– 2E8 = 200000000

• Real literals must have a dot

– With a digit before and after the dot.

• All of this can be combined and works for real literals

as well

– 2#11.1#E2 = 14.0

• Exponent is always a base-10 integer

Slide: 5Copyright © 2019 AdaCore

Variables declarations

• Defined by one (or several) names, followed by :, followed by

type reference and possibly an initial value

• Elaboration is done sequentially

• Initialization is called for each variable individually

• “:=“ on a declaration is an initialization, not an assignment

(special properties, mentioned later)

A : Integer;

B : Integer := 5;

C : constant Integer := 78;

D, E : Integer := F (5);

int A;

int B = 5;

const int C = 78;

int d = F (5), e = F(5);

A : Integer := 5;

B : Integer := A;

C : Integer := D; -- COMPILATION ERROR

D : Integer := 0;

A, B : Float := Compute_New_Random;

-- This is equivalent to:

A : Float := Compute_New_Random;

B : Float := Compute_New_Random;

Slide: 6Copyright © 2019 AdaCore

Numeric values

• No need to give the size – deduced from the

context

• It’s possible to declare “named numbers” with

infinite precision

A : Long_Integer := 0; long int A = 0L;

NN : constant := 1.0 / 3.0;

X : Float := NN;

X2 : Long_Float := NN;

X3 : Long_Long_Float := NN;

-- equals 3.33333333333333333E-01

X4 : Long_Long_Float := X;

-- equals 3.33333343267440796E-01

#define NN 1.0 / 3.0

float X = NN;

long float X2 = NN;

long long float X3 = NN;

long long float X4 = X;

Slide: 7Copyright © 2019 AdaCore

Declarative blocks

• Declarations can only occur in declarative parts

• Statements can only occur in the statement parts

• Sub-declaration blocks can be introduced with a

block statement

declare

 A : Integer := 0;

begin

 A := A + 1;

end;

{

 int A = 0;

 A++;

}

Slide: 8Copyright © 2019 AdaCore

Scope

• Defines a declaration lifetime

• The scope from an object goes from its

declaration point to the corresponding “end”

declare

 A : Integer;

begin

 -- code

 declare

 B : Integer;

 begin

 -- code

 end;

 A := B; -- COMPILATION ERROR

end;

{

 int A;

 // code

 {

 int B;

 // code

 }

 A = B;

}

Slide: 9Copyright © 2019 AdaCore

Visibility

• Nested scopes can “hide” declarations from outer scopes

• With named scopes, it’s still possible to have access to

outer entities

declare

 A : Integer;

begin

 -- references to the outer A

 declare

 A : Float;

 begin

 -- references to the inner A

 end;

 end;

{

 int A;

 // references to the outer A

 {

 float A;

 // references to the inner A

 }

 A = B;

}

Outer : declare

 A : Integer;

begin

 declare

 A : Float;

 B : Integer;

 begin

 A := Outer.A;

Slide: 10Copyright © 2019 AdaCore

Some Terminology...

• In a block statement, or subprogram body:

declare

 -- “Declarative part”

 subtype S is Integer range 0 .. 10; -- a declaration

 A : S; -- another declaration

begin

 -- “Statement Part”

 S1; -- A statement

 S2; -- Another statement

 A := X + Y; -- An assignment statement containing

 -- a Name (left hand side) and

 -- an Expression (right hand side).

end;

Slide: 11Copyright © 2019 AdaCore

Some Terminology...

• Statements are executed.

• Expressions are evaluated.

• Declarations are elaborated.

• A Static Expression is evaluated at compile-time.

• A Dynamic Expression is evaluated when the program is

running.

• Note for C and C++ users: expressions and statements are

completely separate things in Ada, and are not

interchangeable...

Slide: 12Copyright © 2019 AdaCore

Quiz

Slide: 13Copyright © 2019 AdaCore

Is there a compilation error? (1/10)

V : Natural := 7;

J : constant Natural := V + 4;

Slide: 14Copyright © 2019 AdaCore

Is there a compilation error? (2/10)

V : Natural := 7;

V : Real := 5.5;

Slide: 15Copyright © 2019 AdaCore

Is there a compilation error? (3/10)

V : Natural := 7;

V : Natural := V + 5;

Slide: 16Copyright © 2019 AdaCore

Is there a compilation error? (4/10)

V : Natural := V * 0;

Slide: 17Copyright © 2019 AdaCore

Is there a compilation error? (5/10)

V : Natural := 5;

declare

 V : Natural := V * 2;

Slide: 18Copyright © 2019 AdaCore

Is there a compilation error? (6/10)

V : Float := 5.0;

Slide: 19Copyright © 2019 AdaCore

Is there a compilation error? (7/10)

V : Float := 5.;

Slide: 20Copyright © 2019 AdaCore

Is there a compilation error? (8/10)

ClassRoom : constant Natural := 5;

Next_ClassRoom : Natural := classroom + 1;

Slide: 21Copyright © 2019 AdaCore

Is there a compilation error? (9/10)

Class__Room : constant Natural := 5;

Slide: 22Copyright © 2019 AdaCore

Is there a compilation error? (10/10)

_my_value : constant Natural := 5;

Slide: 1Copyright © 2019 AdaCore

Barnes, chapter 6

Ada Basic Types

Slide: 2Copyright © 2019 AdaCore

Ada Strong Typing

• Types are at the base of the Ada model

• Semantics ≠ Representation

• All Ada types are named

– (Well, almost all)

• Associated with properties (ranges, attributes…)

and operators

• The compiler will warn in case of inconsistencies

A : Integer := 10 * Integer (0.9);

A : Integer := Integer

 (Float (10) * 0.9);

int A = 10 * 0.9

Slide: 3Copyright © 2019 AdaCore

Types hierarchy

All Types

Elementary Types Composite Types

access
scalar array record protected task

discrete real

enumeration integer floating-point fixed-point

signed modular ordinary decimal

Numeric
Types

Slide: 4Copyright © 2019 AdaCore

Defining a Type

• New types can be created in declaration scopes

• Discrete types

• Floating point types

• Fixed point types

type <name> is <definition> [with predicate];

type <name> is new <definition> [with predicate];

type Score is range 0 .. 20;

type Color is (Red, Blue, Green);

type Oranges is new Positive;

type Apples is new Positive;

type Byte is mod 2**8;

type Size is new Float;

type Low_Precision is digits 4;

type Cm is delta 0.125 range 0.0 .. 240.0;

type Euro is delta 0.01 digits 15;

Slide: 5Copyright © 2019 AdaCore

What’s an enumeration (for a C programmer)

• An enumerated type is a scalar type

– Finite set of values

– Ordered

• Each value has a name

– Either an identifier

– Or a character

• No relationship with integer

• Boolean is an enumerated type
type Boolean is (False, True);

type Color is (Red, Blue, Green);
Type name

Values

Slide: 6Copyright © 2019 AdaCore

Integer types

• Signed integer types are defined by a range

– No values outside the range

• Modular type are defined by a modulus

– Wrap-around semantic of operators

type Columns is range 1 .. 80;
Type name

Values

Type Byte is mod 256;
Type name

Modulus

Slide: 7Copyright © 2019 AdaCore

Floating point types

• Defined by relative precision

– Minimum number of significant decimal digits

– May have a range

type Real is digits 8;
Type name

precision

type Real is digits 8 range 0.0 .. 1.0E10;
Type name

Slide: 9Copyright © 2019 AdaCore

Type Attributes

• Accessed through '

• Example

T'First -– first value of the type

T'Last -– last value of the type

T'Range -– equivalent to T’First .. T’Last

T'Succ (V) -- return the next value in the order

T’Pred (V) -- return the previous value in the order

T'Image (V) -- return a string representation of the value

T'Value (S) -- converts to a value representation

T'Pos (V) -- Return a position based on a value

T'Val (I) -- Return a value based on a position

T'Min (V1, V2) -- Return the min between two values

T'Max (V1, V2) -- Return the max between two values

T'Ceiling (V) -- Returns the smallest integral value after V

T'Floor (V) -- Returns the largest integral value before V

T'Truncation (V) -- Truncates the value towards 0

T'Size -- Return the size of the values of the type

T'Rounding (V) -- Rounds to the closest integer

V : Character := Character'Val (0);

S : String := Integer'Image (42);

Slide: 10Copyright © 2019 AdaCore

Subtypes

• Subtypes add a constraint to a type

• Subtypes do not create new types, and do not

require type conversion

• The language offers some basic subtypes

subtype D is Integer range 0 .. 9;

subtype D is Integer range 0 .. 9;

 A : Integer := 0;

 B : D := 1;

begin

 A := A + B;

subtype Positive is Integer range 1 .. Integer'Last;

subtype Natural is Integer range 0 .. Integer'Last;

Slide: 11Copyright © 2019 AdaCore

Base Type

• T’Base is the type used by the compiler to

implement the type according to the constraints

• Base types can be used for overflow checks (see

later)

• Base types can be used as a regular type

type Small_Int is range 0 .. 10;

Fits in a 8-bits integer

Put_Line (Small_Int'Base'Image (Small_Int'Base'First);

-- => -128 (implementation-dependent)

Put_Line (Small_Int'Base'Image (Small_Int'Base'Last);

-- => 127 (implementation-dependent)

Slide: 12Copyright © 2019 AdaCore

Subtype checks / Overflow checks

• Types and subtypes can be associated with subtype checks

• Subtype checks are computed in well defined places

(assignment, parameter passing and conversions…)

• In expressions, overflow checks are performed on

intermediate values:

type Small_Int is range 0 .. 10;

Valid values are between 0 and 10

V1 : Small_Int := 11; -- Exception

V1 : Small_Int := 2; -- OK

V2 : Small_Int := V1 + 10 – V1; -- OK, equals 10

V3 : Small_Int := (V1'Base'Last + 1) / 100; -- NOK, overflow check

Slide: 13Copyright © 2019 AdaCore

Dynamic Expression vs. Static Expression

• Ada differentiates static expressions and dynamic

expressions

• Static expressions are expressions including

– literals

– calls to static predefined functions and attributes

– constants initialized with static expressions

• Static expressions are evaluated at compile-time

• Static expressions are required by some

constructs

Slide: 14Copyright © 2019 AdaCore

Constants and Named Numbers

• It is possible to create a constant value

• A constant inherits from all properties of its types, except that it

can’t be written. In particular, it has to respect boundaries.

• A constant can be initialized through a dynamic expression, but is

then read-only for its lifetime.

• A named number doesn’t have a type

• It must be valuated by a static expression

• It can represent data out of bounds

• Exceptions can be raised at run-time when used

C : constant Integer := 0;

N : constant := 2 ** 128;

V1 : Integer := N - N + 1; -- OK

V2 : Integer := N; -- NOK

Slide: 15Copyright © 2019 AdaCore

Conversion / Qualification

• In certain cases, types can be converted from one to

the other

– They’re of the same structure (e.g. Numeric)

– One is the derivation of the other

• Conversion needs to be explicit

• A qualification can be used to specify the type or

subtype of an object - it doesn’t convert it

• Qualification is most useful when fixing ambiguities

(see later)

V1 : Integer := 0;

V2 : Integer := Natural’(V1);

V1 : Float := 0.0;

V2 : Integer := Integer (V1);

Slide: 16Copyright © 2019 AdaCore

Quiz

Slide: 17Copyright © 2019 AdaCore

Is there a compilation error? (1/10)

V : Float := 10;

Slide: 18Copyright © 2019 AdaCore

What’s the output of this code? (2/10)

type Float_1 is digits 5;

 type Float_2 is digits 7;

 V_1 : Float_1 := 10.0E10;

 W_1 : Float_1 := V_1 + 1.0;

 V_2 : Float_2 := 10.0E10;

 W_2 : Float_2 := V_2 + 1.0;

begin

 Put_Line (Boolean'Image (V_1 = W_1));

 Put_Line (Boolean'Image (V_2 = W_2));

Slide: 19Copyright © 2019 AdaCore

Is there an error? (3/10)

type X is mod 10;

V1 : X := 10;

V2 : X := 9 + 1;

Slide: 20Copyright © 2019 AdaCore

What’s the output of this code? (4/10)

F : Float := 7.6;

 Div : Integer := 10;

begin

 F := Float (Integer (F) / Div);

 Put_Line (Float'Image (F));

Slide: 21Copyright © 2019 AdaCore

Is there an exception? (5/10)

type T is range 1 .. 10;

 V : T := 9;

 W : T := 2;

begin

 V := V + W - 1;

Slide: 22Copyright © 2019 AdaCore

Is there an exception? (6/10)

type T is range 1 .. 10;

 V : T := 9;

 W : T := 2;

begin

 V := T (V + W) - 1;

Slide: 23Copyright © 2019 AdaCore

Is there a compilation or runtime error? (7/10)

C1 : constant := 2 ** 1024;

C2 : constant := 2 ** 1024 + 10;

C3 : constant := C1 - C2;

V : Integer := C1 - C2;

Slide: 24Copyright © 2019 AdaCore

Is there a compilation error? (8/10)

type T is (A, B, C);

V1 : T := T'Val ("A");

V2 : T := T'Value (2);

Slide: 25Copyright © 2019 AdaCore

Is there a run-time error? (9/10)

type T is (A, B, C);

V1 : T := T'Value ("A");

V2 : T := T'Value ("a");

V3 : T := T'Value (" a ");

Slide: 26Copyright © 2019 AdaCore

Is there a compilation error? (10/10)

type T is range 1 .. 0;

V : T;

Slide: 27Copyright © 2019 AdaCore

Quiz #2

Slide: 28Copyright © 2019 AdaCore

What is a type ?

Slide: 29Copyright © 2019 AdaCore

What is a type ?

• A (finite) set of values

• Operations on this set

• Physical representation

Slide: 30Copyright © 2019 AdaCore

Ada vs. C typing

• In Ada, you can create new types for every kind of

type

– Including integers, unsigned

• Strong typing

• (Almost) no built-in types

– Except Boolean

– You don’t need to use predefined types

• You can create new operators

• You can specify physical representation

Slide: 1Copyright © 2018 AdaCore

Barnes chapter 7

Statements

Slide: 2Copyright © 2018 AdaCore

Simple statements

• The main Simple Statements

– Null

– Assignment

– Procedure Call and Return will be dealt with when we get to

Subprograms

– Raise Statement will be covered under Exceptions.

– Exit Statement will be covered with Loops.

– The rest are to do with Tasking.

Slide: 3Copyright © 2018 AdaCore

Null statement

• The Null Statement in Ada is written explicitly:

• This was a deliberate design decision in Ada to

make it very hard to “accidentally” write a null

statement.

• Compare:

null;

for I in 1 .. 10 loop

 null;

end loop;

for (i = 1; i <= 10; i++);

Slide: 4Copyright © 2018 AdaCore

Assignment statement

• Very simple syntax:

• A “name” in Ada can be “dotted” to include

package names and record components, and also

contain parentheses for array elements and so on.

• For example:

variable_name := expression ;

P.State (1).F1 := 6;

Slide: 5Copyright © 2018 AdaCore

Compound statements

• In Ada, statements are terminated with a

semicolon ‘;’

• The main compound statements

– If

– Case

– Loop

– Block

– The remainder are concerned with Tasking

Slide: 6Copyright © 2018 AdaCore

If Statements

• If statements

if A = 0 then

 Put_Line ("A is 0");

elsif B = 0 then

 Put_Line ("B is 0");

else

 Put_Line ("Else...");

end if;

if (A == 0) {

 printf ("A is 0");

} else if (B == 0) {

 printf ("B is 0");

} else {

 printf ("Else...");

}

Slide: 7Copyright © 2018 AdaCore

• Comparison

– /=

– =

– >=

– <=

– >

– <

• Boolean operators

– and

– or

– xor

– and then

– or else

– not (unary)

Condition symbols

Slide: 8Copyright © 2018 AdaCore

Beware of the boolean operators

• “and”, “or” are not short-circuit, both operands

are always evaluated

• The short-circuit operators are “and then” and

“or else”

if X /= 0 and Y / X > 1 then -- MAY RAISE AN EXCEPTION

if X /= 0 and then Y / X > 1 then -- OK

Slide: 9Copyright © 2018 AdaCore

Case Statement

case A is

 when 0 =>

 Put_Line ("zero");

 when -9 .. -1 | 1 .. 9 =>

 Put_Line ("digit");

 when others =>

 Put_Line ("other")

end case;

switch (A) {

 case 0:

 printf ("0");

 break;

 case -9:case -8:case -7:case -6:

 case -5:case -4:case -3:case -2:

 case -1:case 1:case 2:case 3:

 case 4:case 5:case 6:case 7:

 case 8:case 9:

 printf ("digit");

 break;

 default:

 printf ("other");

}

No fall through

Slide: 10Copyright © 2018 AdaCore

Case statements rules

• All values covered by the type of the expression

should be covered

• Values must be unique

V : Integer;

begin

 case V is

 when 0 =>

 Put_Line (0);

 end case; -- NOK!

V : Integer;

begin

 case V is

 when 0 =>

 Put_Line ("0");

 when Integer'First .. 0 => -- NOK!

 Put_Line ("Negative");

 when others =>

 null;

 end case;

Slide: 11Copyright © 2018 AdaCore

Writing ranges for case statements

• A case statement must contain static ranges only

– e.g. ranges computed out of static expressions

V : Integer;

 W : constant Integer := 0;

 subtype I1 is Integer range 1 .. 10;

 subtype I2 is Integer with Static_Predicate => I2 >= 1000;

 subtype I3 is Integer with Dynamic_Predicate => I3 >= V;

 X : Integer;

begin

 case X is

 when V => -- NOK

 when W => -- OK

 when I1 => -- OK

 when I2 => -- OK

 when 20 | 30 | 40 => -- OK

 when 50 + W => -- OK

 when I3 => -- NOK

 when W + 1 .. Integer'Last => -- OK

Slide: 12Copyright © 2018 AdaCore

Loop statement

• Simple loop

• While loop

• No do-while/repeat-until loops, use simple loop

with exit instead

loop

 <statements>

 {exit [when <condition>];}

 <statements>

end loop;

No direct equivalent

while <condition> loop

 <statements>

 {exit [when <condition>];}

end loop;

while (<condition>)

 <statements>

Slide: 13Copyright © 2018 AdaCore

For-Loop statement

• Iteration over indices

– range has to be growing

– var is constant in the loop

for <var> in <iterator>

 |[reverse] <range> loop

 <statements>

 {exit [when <condition>];}

end loop;

No direct equivalent

Slide: 14Copyright © 2018 AdaCore

Evaluation of loop range

• Loop range is evaluated before the loop

• Iterator is constant (can’t be modified directly)

A : Integer := 1;

begin

 for J in A .. F (A) loop

 A := 5; -- We still iterate between 1

 -- and what F(1) returned

 end loop;

for J in 1 .. 10 loop

 J := 5; -- NOK

end loop;

for (int j = 1; j<=10; j++)

 j = 5;

Slide: 15Copyright © 2018 AdaCore

Block statement

• The Block Statement introduces a nested

declarative part and sequence of statements:

• The declarative part is optional.

• Main uses:

– Introduction of local subtypes and arrays that depend on

previously computed dynamic values.

– Local exception handling.

[declare

 declarative_part]

begin

 handled_sequence_of_statements

end ;

Slide: 16Copyright © 2012 AdaCore

Quiz

Slide: 17Copyright © 2018 AdaCore

Is there an error? (1/10)

if A == 0 then

 Put_Line ("A is 0");

end if;

Slide: 18Copyright © 2018 AdaCore

Is there an error? (2/10)

if A := 0 then

 Put_Line ("A has been assigned to 0");

end if;

Slide: 19Copyright © 2018 AdaCore

Is there an error? (3/10)

A : Integer := Integer'Value (Get_Line);

begin

 case A is

 when 1 .. 9 =>

 Put_Line ("Simple digit");

 when 10 .. Integer'Last =>

 Put_Line ("Long positive");

 when Integer'First .. -1 =>

 Put_Line ("Negative");

 end case;

Slide: 20Copyright © 2018 AdaCore

Is there an error? (4/10)

A : Integer := Integer'Value (Get_Line);

begin

 case A is

 when Positive =>

 Put_Line ("Positive");

 when Natural =>

 Put_Line ("Natural");

 when others =>

 Put_Line ("Other");

 end case;

Slide: 21Copyright © 2018 AdaCore

Is there an error? (5/10)

A : Float := 10.0;

begin

 case A is

 when 1.0 .. Float'Last =>

 Put_Line ("Positive");

 when Float'First .. -1.0 =>

 Put_Line ("Negative");

 when others =>

 Put_Line ("Other");

 end case;

Slide: 22Copyright © 2018 AdaCore

Is there an error? (6/10)

for I in 0 .. 10 loop

 I := 10;

end loop;

Slide: 23Copyright © 2018 AdaCore

What is the output of this code? (7/10)

for I in 10 .. 0 loop

 Put_Line (Integer'Image (I));

end loop;

Slide: 24Copyright © 2018 AdaCore

Is there an error? (8/10)

if A != 0 then

 Put_Line ("A is not 0");

end if;

Slide: 25Copyright © 2018 AdaCore

Is there an error? (9/10)

I : Natural;

begin

 for I in 0 .. 10 loop

 null;

 end loop;

Slide: 26Copyright © 2018 AdaCore

What is the output of this code? (10/10)

X : Integer := 1;

begin

 for I in 1 .. X loop

 X := 10;

 Put_Line ('A');

 end loop;

Slide: 1Copyright © 2018 AdaCore

Barnes chapter 8

Arrays

Slide: 2Copyright © 2018 AdaCore

Arrays are first class citizens

• All arrays are (doubly) typed

• Properties of array types are…

– The index type (can be any discrete type, with optional specific

boundaries)

– The component type (can be any definite type)

• Properties of array objects are…

– The array type

– Specific boundaries

– Specific values

type T is array (Integer range <>)

 of Integer;

A : T (0 .. 14);

int * A = new int [15];

Slide: 3Copyright © 2018 AdaCore

Definite vs. Indefinite Types

• Definite types are types that can be used to create

objects without additional information

– Their size is known

– Their constraints are known

• Indefinite types need additional constraint

• Array types can be definite or indefinite

• Components of array types must be definite

type Definite is array (Integer range 1 .. 10) of Integer;

type Indefinite is array (Integer range <>) of Integer;

A1 : Definite;

A2 : Indefinite (1 .. 20);

Slide: 4Copyright © 2018 AdaCore

Array Indices

• Array indices can be of any discrete type

– Integer (signed or modular)

– Enumeration

• Array indices can be defined on any continuous range

• Array index range may be empty

• Array indices are computed at the point of array type

declaration

type A1 is array (Integer range <>) of Integer;

type A2 is array (Character range 'a' .. 'z') of Integer;

type A3 is array (Integer range 1 .. 0) of Integer;

type A4 is array (Boolean) of Integer;

X : Integer := 0;

type A is array (Integer range 1 .. X) of Integer;

-- changes to X don't change A instances after this point

Slide: 5Copyright © 2018 AdaCore

Accessing Array Components

• Array components can be directly accessed

• Array types and array objects offer ‘Length,

‘Range, ‘First and ‘Last attributes

• On access, bounds are dynamically checked and

raise Constraint_Error if overflowed or

underflowed

type A is array (Integer range <>) of Integer;

 V : A (1 .. 10);

begin

 V (1) := 0;

type A is array (Integer range <>);

 V : A (1 .. 10);

begin

 V (0) := 0; -- NOK

Slide: 6Copyright © 2018 AdaCore

Array Copy

• Array operations are first class citizens

• In copy operations, lengths are checked, but not

actual indices

type T is array (Integer range <>) of Integer;

 A1 : T (1 .. 10);

 A2 : T (1 .. 10);

begin

 A1 := A2;

type T is array (Integer range <>) of Integer;

 A1 : T (1 .. 10);

 A2 : T (11 .. 20);

 A3 : T (1 .. 20);

begin

 A1 := A2; -- OK

 A1 := A3; -- NOK

Slide: 7Copyright © 2018 AdaCore

Array Initialization

• Array copy can occur at initialization time

• If the array type is of an indefinite type, then an

object of this type can deduce bounds from

initialization

type T is array (Integer range <>) of Integer;

 A1 : T (1 .. 10);

 A2 : T (11 .. 20) := A1;

type T is array (Integer range <>) of Integer;

 A1 : T (1 .. 10);

 A2 : T := A1; -- A2 bounds are 1 .. 10

Slide: 8Copyright © 2018 AdaCore

Array Slices

• It’s possible to refer to only a part of the array

using a slice

– For array with only one dimension

• Slices can be used in any place that requires an

array object

type T is array (Integer range <>) of Integer;

 A1 : T (1 .. 10);

 A2 : T (1 .. 20);

begin

 A1 := A2 (1 .. 10);

 A1 (2 .. 4) := A2 (5 .. 7);

Slide: 9Copyright © 2018 AdaCore

Array Literals (Aggregates)

• Aggregates can be used to provide values to an array

as a whole

• They can be used wherever an array value is expected

• Finite aggregate can initialize variable constraints,

lower bound will be equal to T’First

({[<position> =>] <expression>,} [others => <expression>])

(1, 2, 3) -- finite positional aggregate

(1 => 1, 2 => 10, 3 => 30) -- finite named aggregate

(1, others => 0) -- indefinite positional aggregate

(1 => 1, others => 0) -- indefinite named aggregate

type T is array (Integer range <>) of Integer;

 V1 : T := (1, 2, 3);

 V2 : T := (others => 0); -- NOK (initialization)

begin

 V1 := (others => 0); -- OK (assignment)

Slide: 10Copyright © 2018 AdaCore

Array Concatenation

• Two arrays can be concatenated through the &

operators

– The resulting array’s lower bound is the lower bound of the

left operand

• An array can be concatenated with a value

type T is array (Integer range <>) of Integer;

A1 : T := (1, 2, 3);

A2 : T := (4, 5, 6);

A3 : T := A1 & A2;

type T is array (Integer range <>) of Integer;

A1 : T := (1, 2, 3);

A2 : T := A1 & 4 & 5;

Slide: 11Copyright © 2018 AdaCore

Array Equality

• Two arrays are equal if

– Their Length is equal

– Their components are equal one by one

• Actual indices do not matter in array equality

type T is array (Integer range <>) of Integer;

 A1 : T (1 .. 10);

 A2 : T (1 .. 20);

begin

 if A1 = A2 then -- ALWAYS FALSE

Slide: 12Copyright © 2018 AdaCore

Arrays are first class citizens (2)

• All array types can be passed as formal

parameters to/from subprograms.

• Array types can be returned from a function.

– Function return is by-copy, so can impose some performance

penalty.

– Alternative: use a procedure with an out parameter – almost

certainly passed by-reference, so efficient.

• A function can even return an unconstrained array

type, like String.

Slide: 13Copyright © 2018 AdaCore

Loops over an array

• Through an index loop

type T is array (Integer range <>) of Integer;

A : T (1 .. 10);

for I in A'Range loop

 A (I) := 0;

end loop;

Slide: 14Copyright © 2018 AdaCore

Matrices

• Two dimensional arrays

– Attributes are ’First (dimension), ’Last (dimension), ’Range

(dimension)

• Arrays of arrays

type T is array (Integer range <>, Integer range <>) of Integer;

 V : T (1 .. 10, 0 .. 2);

begin

 V (1, 0) := 0;

type T1 is array (Integer range <>) of Integer;

 type T2 is array (Integer range <>) of T1 (0 .. 2);

 V : T (1 .. 10);

begin

 V (1)(0) := 0;

Slide: 15Copyright © 2018 AdaCore

Strings

• Strings are regular arrays. Type String is declared

in package Standard

• There is a special String literal

• The package ASCII provides named Character

constants.

• In Ada95 onwards, you can also use

Ada.Characters.Latin_1 and siblings.

type String is array (Positive range <>) of Character;

V : String := "This is it";

V2 : String := "Here come quotes ("")";

V : String := "This is null terminated" & ASCII.NUL;

Slide: 16Copyright © 2018 AdaCore

Array Subtypes and Derived Types

• When subtyping an array, it’s possible to define a

constraint

• Same with array derivation

• Once the array is definite, bounds cannot be

changed

type Any_Bounds is array (Integer range <>) of Integer;

subtype One_To_Ten is Any_Bounds (1 .. 10);

type Any_Bounds is array (Integer range <>) of Integer;

type One_To_Ten is new Any_Bounds (1 .. 10);

Slide: 17Copyright © 2018 AdaCore

Quiz

Slide: 18Copyright © 2018 AdaCore

Is there an error? (1/10)

type My_Int is new Integer range 1 .. 10;

 type T is array (My_Int) of Integer;

 V : T;

begin

 V (1) := 2;

Slide: 19Copyright © 2018 AdaCore

Is there an error? (2/10)

type T is array (Integer) of Integer;

 V : T;

begin

 V (1) := 2;

Slide: 20Copyright © 2018 AdaCore

Is there an error? (3/10)

type T1 is array (Integer range <>) of Integer;

 type T2 is array (Integer range <>) of Integer;

 V1 : T1 (1 .. 3) := (others => 0);

 V2 : T2 := (1, 2, 3);

begin

 V1 := V2;

Slide: 21Copyright © 2018 AdaCore

Is there an error? (4/10)

type T is array (Integer range <>) of Integer;

 V : T := (1, 2, 3);

begin

 V (0) := V (1) + V (2);

Slide: 22Copyright © 2018 AdaCore

Is there an error? (5/10)

type T is array (Integer range <>) of Integer;

 subtype TS is T (1 .. 2);

 V1 : T (10 .. 11);

 V2 : TS := (others => 0);

begin

 V1 := V2;

Slide: 23Copyright © 2018 AdaCore

Is there an error? (6/10)

X : Integer := 10;

 type T is array (Integer range 1 .. X) of Integer;

 V1 : T;

begin

 X := 100;

 declare

 V2 : T;

 begin

 V1 := V2;

Slide: 24Copyright © 2018 AdaCore

Is there an error? (7/10)

type T is array (Integer range <>) of Integer;

 V1 : T (1 .. 3) := (10, 20, 30);

 V2 : T := (10, 20, 30):

begin

 for I in V1'Range loop

 V1 (I) := V1 (I) + V2 (I);

 end loop;

Slide: 25Copyright © 2018 AdaCore

Is there an error? (8/10)

type Any_Bounds is array (Integer range <>) of Integer;

subtype TS is Any_Bounds (1 .. 10);

type T2 is new TS (1 .. 9);

Slide: 26Copyright © 2018 AdaCore

Is there an error? (9/10)

type String_Array is array (Integer range <>) of String;

Slide: 27Copyright © 2018 AdaCore

Is there an error? (10/10)

X : Integer := 0;

type T is array (Integer range <>) of Integer

 with Default_Component_Value => X;

V : T (1 .. 10);

Slide: 1Copyright © 2018 AdaCore

Barnes chapter 8

Record types

Slide: 2Copyright © 2018 AdaCore

Record types

• Allow named heterogeneous data in a type

• Fields are accessed through dot notation

type Shape is record

 Id : Integer;

 X, Y : Float;

end record;

S : Shape;

begin

 S.X := 0.0;

 S.Id := 1;

Slide: 3Copyright © 2018 AdaCore

Record types

• Any definite type can be used as a component type

• Size may not be known at compile time

– Has impact on code generated

type Position is record

 X, Y : Integer;

end record;

type Shape is record

 Name : String (1 .. 10);

 P : Position;

end record;

Len : Natural := Compute_Len;

type Name_Type is String (1 .. Len);

type Shape is record

 Name : Name_Type;

 P : Position;

end record;

Slide: 4Copyright © 2018 AdaCore

Default Values

• Default values can be provided to record components:

• Default values are dynamic expressions evaluated at

each object declaration

type Position is record

 X : Integer := 0;

 Y : Integer := 0;

end record;

Cx, Cy : Integer := 0;

type Position is record

 X : Integer := Cx;

 Y : Integer := Cy;

end record;

P1 : Position; -- = (0, 0);

begin

 Cx := 1;

 Cy := 1;

 declare

 P2 : Position; -- = (1, 1);

Slide: 5Copyright © 2018 AdaCore

Aggregates (1/2)

• Like arrays, record values can be given through

aggregates

• Named aggregates are possible (but cannot

switch back to positional)

type Position is record

 X, Y : Integer;

end record;

type Shape is record

 Name : String (1 .. 10);

 P : Position;

end record;

Center : Position := (0, 0);

Circle : Shape := ((others => ' '), Center);

P1 : Position := (0, Y => 0); -- OK

P1 : Position := (X => 0, Y => 0); -- OK

P3 : Position := (Y => 0, X => 0); -- OK

P4 : Position := (X => 0, 0); -- NOK

Slide: 6Copyright © 2018 AdaCore

Aggregates (2/2)

• Named aggregate is required for one-element records

• Default values can be referred as <> after a name or others

• If all remaining types are the same, others can use an

expression

type Singleton is record

 V : Integer;

end record;

V1 : Singleton := (V => 0); -- OK

V2 : Singleton := (0); -- NOK

type Rec is record

 A, B, C, D : Integer;

end record;

V1 : Rec := (others => <>); -- QUIZ is this OK?

V2 : Rec := (A => 0, B => <>, others => <>);

type Rec is record

 A, B : Integer;

 C, D : Float;

end record;

V1 : Rec := (0, 0, others => 0.0);

Slide: 7Copyright © 2018 AdaCore

Discriminant problematic

• Only a subset of the components are needed to

use this type, depending on the context

• Why do we need to use the memory for Radius if

the shape is a line?

type Shape is record

 X, Y : Float;

 X2, Y2 : Float;

 Radius : Float;

 Outer_Radius : Float;

end record;

Slide: 8Copyright © 2018 AdaCore

Use of a discriminant

• Types can be parameterized by a discrete type

• This type is indefinite, so needs to be constrained

at object declaration

type Shape_Kind is (Circle, Line, Torus);

type Shape (Kind : Shape_Kind) is record

 X, Y : Float;

 case Kind is

 when Line =>

 X2, Y2 : Float;

 when Torus =>

 Outer_Radius, Inner_Radius : Float;

 when Circle =>

 Radius : Float;

 end case;

end record;

V : Shape (Circle);

Slide: 9Copyright © 2018 AdaCore

General Syntax

• All identifiers must be unique – even if declared in

distinct variant parts

• There can be a variant part within the variant part

• All values must have a branch in the case – use

others if needed

• The object will fit the size needed to work with the

given discriminant – unnecessary fields won’t get

allocated

type Id ([Discriminant : Discrete_Type] {, Discriminant : Discrete_Type}) is

 record

 [common part]

 [variant part]

end record;

Slide: 10Copyright © 2018 AdaCore

Usage of a record with discriminant

• As for arrays – the unconstrained part has to be

specified

• Accessing a component not accessible for a given

constraint will raise Constraint_Error

V1 : Shape (Circle);

 V2 : Shape := V1; -- OK, constrained by initialization

begin

 V1.Radius := 0.0; -- OK, radius is in the Circle case

 V2.X2 := 0.0; -- Raises constraint error

Slide: 11Copyright © 2018 AdaCore

Aggregates

• Same as record aggregates – but have to give a

value to the discriminant

• Only the values related to the constraint have to

be valuated

V1 : Shape := (Kind => Line,

 X => 0.0,

 Y => 0.0,

 X2 => 10.0,

 Y2 => 10.0);

V2 : Shape := (Circle, 0.0, 0.0, 5.0);

Slide: 12Copyright © 2018 AdaCore

Constraints on record components

• Record component types need to be definite

• If a constraint is needed, it can be dependent on

the discriminant value

type String_Container (Size : Positive) is record

 S : String (1 .. Size);

end record;

V : String_Container (20);

Slide: 13Copyright © 2018 AdaCore

Mutable objects (1/2)

• We may want to change the constraint of an object

over time

• Such objects need to have an default initial value for

their discriminants – they are constrained

• The discriminant can’t be changed on its own – the

whole object has to be assigned to a new value

• The discriminant of an object with an explicit

constraint can’t be changed

type Shape (Kind : Shape_Kind := Line) is record

 ...

 end record;

 V : Shape (Circle); -- Still Ok

 V2 : Shape; -- Ok, of type line

begin

 V2 := V; -- OK, since the object is mutable

 V := (Line, 0.0, 0.0, 0.0, 0.0);

 -- Raises Constraint_Error, V has been explicitly constrained

Slide: 14Copyright © 2018 AdaCore

Mutable objects (2/2)

• The size of a mutable object is the maximal size

needed to represent all possible objects

• Be careful when used with array constraints !

• The above might raise Storage_Error, since the

maximal size is enough memory to store

Positive’Last characters.

type String_Container (Size : Positive := 1) is record

 S : String (1 .. Size);

end record;

V : String_Container;

Slide: 16Copyright © 2018 AdaCore

Quiz

Slide: 17Copyright © 2018 AdaCore

Is there an error? (1/10)

type R is record

 A, B, C : Integer := 0;

end record;

V : R := (A => 1);

Slide: 18Copyright © 2018 AdaCore

Is there an error? (2/10)

type My_Integer is new Integer;

type R is record

 A, B, C : Integer := 0;

 D : My_Integer := 0;

end record;

V : R := (others => 1);

Slide: 19Copyright © 2018 AdaCore

Is there an error? (3/10)

type Cell is record

 Val : Integer;

 Next : Cell;

end record;

Slide: 20Copyright © 2018 AdaCore

Is there an error? (4/10)

type My_Integer is new Integer;

type R is record

 A, B, C : Integer;

 D : My_Integer;

end record;

V : R := (others => <>);

Slide: 21Copyright © 2018 AdaCore

Is there an error? (5/10)

type R is record

 A : Integer := 0;

end record;

V : R := (0);

Slide: 22Copyright © 2018 AdaCore

Is there an error? (6/10)

type R is record

 V : String;

end record;

V : R := (V => "Hello");

Slide: 23Copyright © 2018 AdaCore

Is there an error? (7/10)

type R (D : Integer) is record

 null;

 end record;

 V1 : R := (D => 5);

 V2 : R := (D => 6);

begin

 V1 := V2;

Slide: 24Copyright © 2018 AdaCore

Is there an error? (8/10)

type R (Size : Integer := 0) is record

 S : String (1 .. Size);

end record;

V : R := (5, "Hello");

Slide: 25Copyright © 2018 AdaCore

Is there an error? (9/10)

type Shape_Kind is (Circle, Line);

type Shape (Kind : Shape_Kind) is record

 case Kind is

 when Line =>

 X, Y : Float;

 X2, Y2 : Float;

 when Circle =>

 X, Y : Float;

 Radius : Float;

 end case;

end record;

Slide: 26Copyright © 2018 AdaCore

Is there an error? (10/10)

type Shape_Kind is (Circle, Line);

 type Shape (Kind : Shape_Kind) is record

 X, Y : Float;

 case Kind is

 when Line =>

 X2, Y2 : Float;

 when Circle =>

 Radius : Float;

 end case;

 end record;

 V : Shape := (Circle, others => <>);

 V2 : Shape := (Line, others => <>);

begin

 V := V2;

Slide: 1Copyright © 2019 AdaCore

Barnes chapter 10

Subprograms

Slide: 2Copyright © 2019 AdaCore

Subprograms in Ada: Specifications

• Ada differentiates functions (returning values) and

procedures (with no return values)

– A function call is an expression.

– A procedure call is a statement.

function F (V : Integer) return Integer;

procedure P (V : in out Integer);

int F (int V);

void P (int *V);

Subprogram name
Parameter name

Parameter type
Return type

Parameter mode

Slide: 3Copyright © 2019 AdaCore

Subprograms in Ada: Declaration and Body

• Declaration is optional, but must be given before

use

• Functions’ result cannot be ignored

• Completion / body is introduced by “is”

function F (V : Integer) return Integer is

 R : Integer := V * 2;

begin

 R := R * 2;

 return R - 1;

end F;

function F (V : Integer) return Integer;
Declaration

Body

Slide: 4Copyright © 2019 AdaCore

Parameter Modes

• Mode "in"

– Actual parameter is not altered

– Only reading of formals is allowed

– Default mode

• Mode "out"

– Actual is expected to be altered

– Writing is expected, but reading is also allowed

– Initial value is not defined

– Only for procedure

• Mode "in out"

– Actual is expected to be both read and altered

– Both reading & updating of formals is allowed

– Only for procedure

function F (V : in Integer) return Integer is

 R : Integer := V * 2;

begin

 return R - 1;

end F;

procedure P (V : in out Integer) is

begin

 V := 0;

end P;

Slide: 5Copyright © 2019 AdaCore

Parameter Passing Mechanisms

• Passed either “by-copy” or “by-reference”

• By-Copy

– The formal denotes a separate object from the actual

– A copy of the actual is placed into the formal before the call

– A copy of the formal is placed back into the actual after the

call

• By-Reference

– The formal denotes a view of the actual

– Reads and updates to the formal directly affect the actual

• Parameter types control mechanism selection

– Not the parameter modes

Slide: 6Copyright © 2019 AdaCore

Standardized Parameter Passing Rules

• By-Copy types

– Scalar types

– Access types

– Private types that are fully defined as by-copy types

• By-Reference types

– Tagged types

– Task types and Protected types

– Limited types

– Composite types with by-reference component types

– Private types that are fully defined as by-reference types

• Implementation-defined types

– Array types containing only by-copy components

– Non-limited record types containing only by-copy components

– Implementation chooses most efficient method

Slide: 7Copyright © 2019 AdaCore

Subprogram Calls

• If no parameter is given, no parenthesis is allowed

• Named parameter association is possible

• out and in out modes require a variable object

function F return Integer;

V : Integer := F;

procedure P (A, B, C : Integer);

P (B => 0, C => 0, A => 1);

procedure P (X : out Integer);

V : Integer;

VC : constant Integer := 1;

P (V); -- OK

P (VC); -- NOT OK

Slide: 8Copyright © 2019 AdaCore

Default Values

• “in” parameters can be provided with a default

value

• Default values are dynamic expressions,

evaluated at the point of call if no explicit

expression is given

procedure P (A : Integer := 0; B : Integer := 0);

P; -- A = 0, B = 0;

P (1); -- A = 1, B = 0;

P (B => 2); -- A = 0, B = 2;

P (1, 2); -- A = 1, B = 2;

Slide: 9Copyright © 2019 AdaCore

Indefinite Parameters and Return Types

• Subprograms can have indefinite parameters and

return types

• Constraints are computed at the point of call

• Don’t assume boundaries!

function Comment (Stmt : String) return String is

begin

 return "/*" & Stmt & "*/";

end Comment;

S : String := Comment ("a=0"); -- return /*a=0*/

procedure Init (Stmt : in out String) is

 begin

 for J in 1 .. Stmt'Length loop

 Stmt (J) := ' ';

 end loop;

 end Init;

 S : String := "ABCxxx";

begin

 Init (S (4 .. 6));

Slide: 10Copyright © 2019 AdaCore

Overloading (1/2)

• Ada allows overloading of subprograms

• Overloading is allowed if specifications differ by

– Number of parameters

– Type of parameters

– Result type

• Some aspects of the specification are not taken into

account

– Parameter names

– Parameter subtypes

– Parameter modes

– Parameter default expressions

procedure Print (V : Integer);

procedure Print (V : Float);

subtype Positive is Integer range 1 .. Integer'Last;

procedure Print (V : Integer);

procedure Print (W : out Positive); -- NOK

Slide: 11Copyright © 2019 AdaCore

Overloading (2/2)

• Overloading may introduce ambiguities at call

time

• Ambiguities can be solved with additional

information

type Apples is new Integer;

 type Oranges is new Integer;

 procedure Print (Nb_Apples : Apples);

 procedure Print (Nb_Oranges : Oranges);

 N_A : Apples := 0;

begin

 Print (N_A); -- OK

 Print (0); -- NOK

 Print (Oranges'(0)); -- OK

 Print (Nb_Oranges => 0); -- OK

Slide: 12Copyright © 2019 AdaCore

Operator Overloading

• Default operators (=, /=, *, /, +, -, >, <, >=, <=, and, or…)

can be overloaded, added or removed for types

• “=“ overloading will automatically generate the

corresponding “/=“

type Distance is new Float;

type Surface is new Float;

function "*" (L, R : Distance) return Distance is abstract; -- removes "*"

function "*" (L, R : Surface) return Surface is abstract; -- removes "*"

-- Add “*” for (Distance, Distance) -> Surface

function "*" (L, R : Distance) return Surface;

type R is record

 Unimportant_Field : Integer;

 Important_Field : Integer;

end record;

function "=" (Left, Right : R) return Boolean is

begin

 return Left.Important_Field = Right.Important_Field;

end "=";

Slide: 13Copyright © 2019 AdaCore

Hiding

• It is possible to declare two subprograms of the exact

same profile but in different scope

• Overloading rules don’t apply here - the nested

subprogram hides the one declared in the parent

scope

• This is considered bad practice

A : declare

 procedure P (V : Integer);

begin

 P (0); -- calls A.P

 B : declare

 procedure P (V : Integer);

 begin

 P (0); -- calls B.P

 A.P (0); -- calls A.P

Slide: 14Copyright © 2019 AdaCore

Nested Subprograms and Access to Globals

• A subprogram can be nested in any scope

• A nested subprogram will have access to the

parent subprogram parameters, and variables

declared before

procedure P (V : Integer) is

 W : Integer;

 procedure Nested is

 begin

 W := V + 1;

 end Nested;

begin

 W := 0;

 Nested;

Slide: 15Copyright © 2019 AdaCore

Quiz

Slide: 16Copyright © 2019 AdaCore

Is there an error? (1/10)

function F (V : Integer) return Integer is

 begin

 Put_Line (Integer'Image (V));

 return V + 1;

 end F;

begin

 F (999);

Slide: 17Copyright © 2019 AdaCore

Is there an error? (2/10)

procedure P (V : Integer) is

begin

 V := V + 1;

end P;

Slide: 18Copyright © 2019 AdaCore

Is there an error? (3/10)

function F () return Integer is

 return 0;

end F;

V : Integer := F ();

Slide: 19Copyright © 2019 AdaCore

Is there an error? (4/10)

procedure P (V : Integer) is

 procedure Nested is

 begin

 W := V + 1;

 end Nested;

 W : Integer;

begin

 W := 0;

 Nested;

Slide: 20Copyright © 2019 AdaCore

Is there an error? (5/10)

function F return String is

begin

 return "A STRING";

end F;

V : String (1 .. 2) := F;

Slide: 21Copyright © 2019 AdaCore

Is there an error? (6/10)

procedure P (V : Integer := 0);

 procedure P (V : Float := 0.0);

begin

 P;

Slide: 22Copyright © 2019 AdaCore

Is there an error? (7/10)

procedure P1 (V : Integer := 0) is … end;

 procedure P2 (V : Integer := 0) is … end;

begin

 declare

 procedure P1 (V : Integer := 0) is … end;

 procedure P2 (V : Float := 0.0) is … end;

 begin

 P1;

 P2;

 end;

Slide: 23Copyright © 2019 AdaCore

Is there an error? (8/10)

procedure Multiply (V : out Integer; Times : Integer) is

 begin

 for J in 1 .. Times loop

 V := V + V;

 end loop;

 end Multiply;

 X : Integer := 10;

begin

 Multiply (X, 50);

Slide: 24Copyright © 2019 AdaCore

Is there an error? (9/10)

type My_Int is new Integer;

 function "=" (L, R : My_Int) return Boolean;

 function "=" (L, R : My_Int) return Boolean is

 begin

 if L <= 0 or else R <= 0 then

 return True;

 else

 return L = R;

 end if;

 end "=";

 V, W : My_Int := 1;

begin

 if V = W then

...

Slide: 25Copyright © 2019 AdaCore

Is there an error? (10/10)

type My_Int is new Integer;

 function "=" (L, R : My_Int) return Boolean;

 function "=" (L, R : My_Int) return Boolean is ...

 A, B : My_Int;

begin

 if A /= B then

 ...

Slide: 1Copyright © 2019 AdaCore

Barnes chapters 12, 13

Packages

Slide: 2Copyright © 2019 AdaCore

The Ada Package

• A package is the base of software architecture in

Ada

• It’s a semantic entity checked by the compiler

• It separates clearly a specification and an

implementation

-- p.ads

package P is

 procedure Proc;

end P;

-- p.adb

package body P is

 procedure Proc is

 begin

 null;

 end Proc;

end P;

/* p.h */

#ifndef __P_H__

#define __P_H__

void Proc ();

#endif

/* p.c */

int V;

void Proc () {

}

Slide: 3Copyright © 2019 AdaCore

General Structure of a Package

• Entities should be put in the body except if they

have to be exported

• The body is easier to change than the

specification

package P is

 -- Public part of the specification.

 -- Declaration of subprograms, variables exceptions, tasks.

 -- Visible to the external user.

 -- Used by the compiler for all dependencies.

end P;

package body P is

 -- Body

 -- Declaration of subprograms, variables exceptions, tasks.

 -- Implementation of subprograms.

 -- Used by the compiler to generate code for P.

 -- In certain cases (e.g. Inlining and Generics), used by the

 -- compiler to compile clients of P.

end P;

Slide: 4Copyright © 2019 AdaCore

Uses of a Package

1. Provide a common naming space for a logically related set

of entities

– The package acts as a name wrapper

– These kind of packages are typically stateless (i.e. there are no global

objects)

2. Group related types and objects

– A package of this sort provides a single place for inter-related types and

objects

– This type of package does not typically have a body

3. One-of-a-kind (aka “singleton”) objects

– One-of-a-kind objects are objects for which a single instance exists

– One-of-a-kind packages have the object state in their body

4. Create a data type abstraction

– Also known as “Abstract Data Type” (ADT)

– An ADT is a data type T (or family thereof) together with the operations

that are allowed to manipulate objects of type T

Slide: 5Copyright © 2019 AdaCore

Accessing components of a package

• Only entities declared in the public part are visible

• Entities are referenced through the dot notation

package P2 is

 procedure Proc;

end P2;

package P1 is

 procedure Pub_Proc;

end P1;

with P1;

package body P2 is

 procedure Proc is

 begin

 P1.Pub_Proc;

 P1.Priv_Proc;

 end Proc;

end P2;

package body P1 is

 procedure Priv_Proc;

 …

end P1;

Slide: 6Copyright © 2019 AdaCore

Child units

• A public child unit is an extension of a package

• Can be used to organize the namespace or break big

packages into pieces

• Child units have visibility over parents

• Generally speaking, it’s a good habit to split functionality

into packages as much as possible

-- p.ads

package P is

end P;

-- p-child_1.ads

package P.Child_1 is

end P.Child_1;

-- p-child_2.ads

package P.Child_2 is

end P.Child_2;

-- p-child_3.ads

package P.Child_3 is

end P.Child_3;

-- p-child_2-grand_child.ads

package P.Child_2.Grand_Child is

end P.Child_2.Grand_Child;

Slide: 7Copyright © 2019 AdaCore

Full dependencies (“with clause”)

• “With clause” defines a dependency between two packages

• Gives access to all the public declarations

• Can be applied to the spec or the body

• A dependency is normally done to a specification

• “Specification with” applies to the body

• “Specification with” applies to children

with P3;

package P2 is

end P2;

package P1 is

end P1;

with P1;

package body P2 is

end P2;

with P2;

package body P1 is

end P1;

package P3 is

end P3;

Slide: 8Copyright © 2019 AdaCore

Partial dependencies (“limited with”)

• Circular dependencies between units are forbidden (to

avoid illegal circular constructions)

• A partial dependency (“limited with”) allows such

circularity, but gives visibility of an incomplete view of

type declarations only (see later for more details)

• Regular “with clauses” can still be used in bodies

with Person;

package Medical is

 type Medical_R is record

 T_Info : Person.Person_R;

 end record;

end Person;

with Medical;

package Person is

 type Person_R is record

 T_Info : Medical.Medical_R;

 end record;

end Person;

limited with Person;

package Medical is

 type Medical_R is record

 T_Info : access Person.Person_R;

 end record;

end Person;

limited with Medical;

package Person is

 type Person_R is record

 T_Info : access Medical.Medical_R;

 end record;

end Person;

Slide: 9Copyright © 2019 AdaCore

Dependency shortcut (“use clause”)

• Prefix may be overkill

• The “use clause” grants “direct visibility” so the

prefix can be omitted.

• Can introduce ambiguities

• Can be placed in any scope

package P1 is

 procedure Proc1;

 type T is null record;

end P1;

with P1;

with P2; use P2;

package body P3 is

 X : T;

 procedure Proc is

 use P1;

 X : T;

 begin

 Proc1;

 P1.Proc1;

 P2.Proc1;

 end Proc;

end P3;

package P2 is

 procedure Proc1;

end P2;

Slide: 10Copyright © 2019 AdaCore

A Package is a High Level Semantic Entity

• The compiler is responsible for checking

structural and semantic consistency

-- p.ads

package P is

 V : Integer;

 procedure Proc;

 pragma Inline (Proc);

end P;

-- p.adb

package body P is

 procedure Proc is

 begin

 null;

 end Proc;

end P;

/* p.h */

#ifndef __P_H__

#define __P_H__

extern int V;

inline void Proc ();

#include “p.hi”

#endif

/* p.hi */

#ifndef __P_HI__

#define __P_HI__

inline void Proc () {

}

#endif

/* p.c */

int V;

Slide: 11Copyright © 2019 AdaCore

Compilation with GNAT (1/2)

• The compiler knows how to work just with the

specification

package P is

end P;

package Dep1 is

end Dep1;

package Dep2 is

end Dep2;

with Dep1;

with Dep2;

package body P is

end P;

package body Dep1 is

end Dep1;

Package body Dep2 is

end Dep2;

gcc –c p.adb

Slide: 12Copyright © 2019 AdaCore

Compilation with GNAT (2/2)

• If information is needed from the body (generic,

inline), the compiler works transparently

package P is

end P;

package Dep1 is

 procedure Proc;

 pragma Inline (Proc);

end Dep1;

package Dep2 is

end Dep2;

with Dep1;

with Dep2;

package body P is

end P;

package body Dep1 is

end Dep1;

package body Dep2 is

end Dep2;

gcc –c p.adb

Slide: 13Copyright © 2019 AdaCore

Quiz

Slide: 14Copyright © 2019 AdaCore

Is there a compilation error? (1/10)

package P1 is

 type T is null record;

end P1;

package P2 is

 X : P1.T;

end P2;

Slide: 15Copyright © 2019 AdaCore

Is there a compilation error? (2/10)

package P1 is

end P1;

with P1; use P1;

package P2 is

 X : T;

end P2;

package body P1 is

 type T is null record;

end P1;

Slide: 16Copyright © 2019 AdaCore

Is there a compilation error? (3/10)

with P2;

package P1 is

 type T1 is null record;

 V : P2.T2;

end P1;

with P1;

package P2 is

 type T2 is null record;

 V : P1.T1;

end P2;

Slide: 17Copyright © 2019 AdaCore

Is there a compilation error? (4/10)

with P2;

package P1 is

 type T1 is null record;

 V : P2.T2;

end P1;

limited with P1;

package P2 is

 type T2 is null record;

 V : access P1.T1;

end P2;

Slide: 18Copyright © 2019 AdaCore

Is there a compilation error? (5/10)

with P2;

package P1 is

 type T1 is null record;

 V : P2.T2;

end P1;

package P2 is

 type T2 is null record;

end P2;

with P1;

package body P2 is

 X : P1.T1;

end P2;

Slide: 19Copyright © 2019 AdaCore

Is there a compilation error? (6/10)

package P1 is

 type T is null record;

end P1;

package body P1.Child is

 X : T;

end P1.Child;

package P1.Child is

end P1.Child;

Slide: 20Copyright © 2019 AdaCore

Is there a compilation error? (7/10)

with P1.Child;

package P1 is

 X : P1.Child.T;

end P1;

package P1.Child is

 type T is null record;

end P1.Child;

Slide: 21Copyright © 2019 AdaCore

Is there a compilation error? (8/10)

package P1 is

end P1;

with P1.Child;

package body P1 is

 X : P1.Child.T;

end P1;

package P1.Child is

 type T is null record;

end P1.Child;

Slide: 22Copyright © 2019 AdaCore

Is there a compilation error? (9/10)

limited with P2;

package P1 is

 type T1 is null record;

 V : P2.T2;

end P1;

limited with P1;

package P2 is

 type T2 is null record;

 V : access P1.T1;

end P2;

Slide: 23Copyright © 2019 AdaCore

Is there a compilation error? (10/10)

with Dep;

package P1 is

end P1;

package body P1.Child is

 X : Dep.T;

end P1.Child;

package P1.Child is

end P1.Child;

package Dep is

 type T is null record;

end Dep;

Slide: 1Copyright © 2018 AdaCore

Barnes chapter 12

Basic Privacy

Slide: 2Copyright © 2018 AdaCore

Private types

Slide: 3Copyright © 2018 AdaCore

Typical problem

• Having the full implementation of the types accessible

is error-prone

• But the compiler needs to have access to the

representation (needs to know how much memory is

to be used)

• So the representation has to stay in the specification

procedure Main is

 S : Stacks.Stack_Type;

 V : Integer;

begin

 Push (S, 15);

 S.Max := 10;

 Pop (S, V);

end Main;

package Stacks is

 type Stack_Data is array (1 .. 100) of Integer;

 type Stack_Type is record

 Max : Integer := 0;

 Data : Stack_Data;

 end record;

 procedure Push

 (Stack : in out Stack_Type; Val : Integer);

 procedure Pop

 (Stack : in out Stack_Type; Val : out Integer);

end Stacks;

Slide: 4Copyright © 2018 AdaCore

Private types

• Introduces a new section in the package specification : the private section

– Visible to the compiler

– Visible to the body and any child packages

– Not visible to the user of the package

• In Ada, private applies to a type as a whole, not on a field by field basis

• In Ada, privacy is managed at package level, not at class level

package Stacks is

 type Stack_Type is private;

 procedure Push

 (Stack : in out Stack_Type;

 Val : Integer);

private

 type Stack_Data is array (1 .. 100)

 of Integer;

 type Stack_Type is record

 Max : Integer := 0;

 Data : Stack_Data;

 end record;

end Stacks;

namespace Stacks {

 class Stack_Type {

 public:

 void Push (int val);

 private:

 int [] Data;

 int Max;

 };

}

Slide: 5Copyright © 2018 AdaCore

Who has access to the private information?

• Body, and child units have access to the

implementation
package Stacks is

 type Stack_Type is private;

 procedure Push

 (Stack : in out Stack_Type;

 Val : Integer);

private

 type Stack_Data is array (1 .. 100)

 of Integer;

 type Stack_Type is record

 Max : Integer := 0;

 Data : Stack_Data;

 end record;

end Stacks;

package body Stacks is

 procedure Push

 (Stack : in out Stack_Type;

 Val : Integer)

 is

 begin

 Stack.Data (Stack.Max + 1) := Val;

 Stack.Max := Stack.Max + 1;

 end Push;

end Stacks;

package Stacks.Utils is

 procedure Empty

 (Stack : in out Stack_Type);

end Stacks.Utils;

package body Stack.Utils is

 procedure Empty

 (Stack : in out Stack_Type) is

 begin

 Stack.Max := 0;

 end Stack.Utils;

end Stack.Utils;

with Stacks; use Stacks;

with Stacks.Utils; use Stacks.Utils;

procedure Main is

 S : Stack_Type;

begin

 Push (S, 10);

 Empty (S);

 S.Max := 0;

end Main;

Slide: 6Copyright © 2018 AdaCore

What can you do with a private type?

• From the user perspective, a private type is

equivalent to a null record

• It can be used for

– Variables, parameters and components declarations

– Copies (“:=” is predefined)

– Comparisons (“=“ and “/=“)
procedure Main is

 S1, S2 : Stacks.Stack_Type;

begin

 Push (S1, 15);

 S2 := S1;

 Push (S2, 0);

 Push (S1, 0);

 if S1 = S2 then

 Push (S1, 1);

 end if;

end Main;

package Stacks is

 type Stack_Type is private;

 procedure Push

 (Stack : in out Stack_Type;

 Val : Integer);

private

 […]

end Stacks;

Slide: 7Copyright © 2018 AdaCore

How can a private type be implemented?

• A “simple” private type can be implemented by any type

giving at least the same level of capabilities

– The type must allow variable declarations without the need of

constraints, it has to be definite (e.g. no unconstrained arrays)

– The type must allow copy and comparison (e.g. no limited types)

package Stacks is

 type Stack_Type is private;

private

 type Stack_Type is range 1 .. 10;

end Stacks;

private

 type Stack_Type is record

 V : Integer;

 end record;

end Stacks;

private

 type Stack_Type is array

 (Integer range 1 .. 10);

 of Integer;

end Stacks;

private

 type Stack_Type is array (Integer range <>)

 of Integer;

end Stacks;

private

 type Stack_Type (Size : Integer) is record

 V : Integer;

 end record;

end Stacks;

Slide: 8Copyright © 2018 AdaCore

How can a private type be implemented?

• An “indefinite” private type can be implemented by any type

that can be implemented by private type as well as

indefinites

– But the user needs to consider it as indefinite (no declaration without

initialization)

package Stacks is

 type Stack_Type (<>) is private;

private

 type Stack_Type is range 1 .. 10;

end Stacks;

private

 type Stack_Type is record

 V : Integer;

 end record;

end Stacks;

private

 type Stack_Type is array

 (Integer range 1 .. 10);

 of Integer;

end Stacks;

private

 type Stack_Type is array (Integer range <>)

 of Integer;

end Stacks;

private

 type Stack_Type (Size : Integer) is record

 V : Integer;

 end record;

end Stacks;

Slide: 9Copyright © 2018 AdaCore

Public Discriminants on Private Types

• It’s possible to specify the discriminants of a

private type

package Stacks is

 type Stack_Type (Size : Integer) is private;

private

 type Stack_Type (Size : Integer) is record

 V : Integer;

 end record;

end Stacks;

Slide: 10Copyright © 2018 AdaCore

Deferred private constants

• It’s useful to declare constants visible in the

public view

• Values can’t be given before the representation is

accessible – so constants of private types have a

public and a private view
package Stacks is

 type Stack_Type is private;

 Empty_Stack : constant Stack_Type;

private

 type Stack_Data is array (1 .. 100)

 of Integer;

 type Stack_Type is record

 Max : Integer := 0;

 Data : Stack_Data;

 end record;

 Empty_Stack : constant Stack_Type :=

 (0, (others => 0));

end Stacks;

Slide: 11Copyright © 2018 AdaCore

Private part is not only for private types

• Any kind of declaration can be provided in the

private part of the package

• Entities declared only in the private part are not

visible at all to a client
package P is

 -- Public part of the specification.

 -- Declaration of subprograms, variables exceptions, tasks.

 -- Visible to the external user

 -- Used by the compiler for all dependencies.

private

 -- Private part of the specification.

 -- Declaration of subprograms, variables exceptions, tasks.

 -- Visible to the children and the implementation.

 -- Used by the compiler for all dependencies.

end P;

package body P is

 -- Body

 -- Declaration of subprograms, variables exceptions, tasks.

 -- Implementation of subprograms

end P;

Slide: 12Copyright © 2018 AdaCore

Quiz

Slide: 13Copyright © 2018 AdaCore

Is there a compilation error? (1/7)

package P is

 type T is private;

private

 type T is range 0 .. 10;

end P;

with P; use P;

procedure P.Main is

 V : T;

begin

 V := 0;

end P.Main;

with P; use P;

procedure Main is

 V : T;

begin

 V := 0;

end Main;

Slide: 14Copyright © 2018 AdaCore

Is there a compilation error? (2/7)

package P is

 type T is private;

 Zero : constant T := 0;

private

 type T is range 0 .. 10;

end P;

with P; use P;

package P2 is

 type T2 is record

 F : T;

 end record;

end P2;

with P; use P;

with P2; use P2;

procedure Main is

 V : T2;

begin

 V.F := Zero;

end Main;

Slide: 15Copyright © 2018 AdaCore

Is there a compilation error? (3/7)

package P is

 type T is private;

private

 type T is range 0 .. 10;

 Zero : constant T := 0;

end P;

with P; use P;

procedure P.Main is

 V : T;

begin

 V := Zero;

end P.Main;

with P; use P;

procedure Main is

 V : T;

begin

 V := Zero;

end Main;

Slide: 16Copyright © 2018 AdaCore

Is there a compilation error? (4/7)

package P is

 type T is private;

private

 type T is array (Integer range <>) of Integer;

end P;

procedure P.Main is

 V : T (1 .. 10);

begin

 V (1) := 0;

end P.Main;

Slide: 17Copyright © 2018 AdaCore

Is there a compilation error? (5/7)

package P is

 type T (<>) is private;

private

 type T is array (Integer range 1 .. 10) of Integer;

end P;

with P; use P;

procedure Main is

 V : T;

begin

 null;

end Main;

Slide: 18Copyright © 2018 AdaCore

Is there a compilation error? (6/7)

package P is

 type T is private;

 One : constant T;

private

 type T is range 0 .. 10;

 One : constant T := 0;

end P;

with P; use P;

procedure Main is

 Val : T;

begin

 Val := One + One;

end Main;

Slide: 19Copyright © 2018 AdaCore

Is there a compilation error? (7/7)

package P is

 type T is private;

private

 type T is range 0 .. 10;

end P;

with P; use P;

with P.Constants; use P.Constants;

procedure Main is

 V : T := One;

begin

 null;

end Main;

package P.Constants is

 Zero : constant T := 0;

 One : constant T := 1;

end P.Constants;

Slide: 1Copyright © 2018 AdaCore

Barnes chapter 15

Exceptions

Slide: 2Copyright © 2018 AdaCore

Exception Declaration and Raise

• Ada exceptions are a dedicated kind of entity

– associated with a scope and visibility

– declared like a variable

• The environment can raise predefined exceptions

– Constraint_Error

– Program_Error

– Storage_Error

– …

My_Exception : exception;

Slide: 3Copyright © 2018 AdaCore

Manual Exception Raise

• An exception can be raised manually, and associated with a

message

– As a raise statement

raise My_Exception;

raise My_Exception with "My message";

Slide: 4Copyright © 2018 AdaCore

Exception Handling

• Exception can be caught at the end of any block

of statements

• Several exceptions can be handled by the same

code

begin

 -- some code

exception

 when My_Exception =>

 -- some code

end;

try {

 // some code

} catch (My_Exception e) {

 // some code

}

begin

 -- some code

exception

 when Constraint_Error | Storage_Error =>

 -- some code

 when others =>

 -- code for all other exceptions

end;

Slide: 5Copyright © 2018 AdaCore

Exceptions Occurences and Reraise

• In an exception block, the current exception can

be re-raised

• It is possible to manipulate the current occurrence

by naming it, allowing its message to be extracted

or to re-raise an occurrence explicitly

exception

 when others =>

 raise;

end;

with Ada.Exceptions; use Ada.Exceptions;

[...]

exception

 when E : others =>

 Put_Line (Exception_Message (E));

 Reraise_Occurrence (E);

end;

Slide: 6Copyright © 2018 AdaCore

Class Exercise

• In the Ada RM, find and have a look at the

specification of the package

– Ada.Exceptions

• In the GNAT Runtime Sources, find and have a

look at the specification of the package

– System.Traceback.Symbolic

Slide: 7Copyright © 2018 AdaCore

Quiz

Slide: 8Copyright © 2018 AdaCore

What will be printed? (1/5)

with Text_IO; use Text_IO;

procedure E is

begin

 declare

 A : Positive;

 begin

 A := -5;

 exception

 when Constraint_Error =>

 Put_Line ("caught it");

 end;

exception

 when others =>

 Put_Line ("last chance handler");

end;

Slide: 9Copyright © 2018 AdaCore

What will be printed? (2/5)

with Text_IO; use Text_IO;

procedure E is

begin

 declare

 A : Positive;

 begin

 A := -5;

 exception

 when Constraint_Error =>

 Put_Line ("caught it");

 raise;

 end;

exception

 when others =>

 Put_Line ("last chance handler");

end;

Slide: 10Copyright © 2018 AdaCore

What will be printed? (3/5)

with Text_IO; use Text_IO;

procedure E is

begin

 declare

 A : Positive := -1;

 begin

 A := -5;

 exception

 when Constraint_Error =>

 Put_Line ("caught it");

 end;

exception

 when others =>

 Put_Line ("last chance handler");

end;

Slide: 11Copyright © 2018 AdaCore

What will be printed? (4/5)

with Text_IO; use Text_IO;

procedure E is

begin

 declare

 A, B, C : Positive;

 begin

 A := 10;

 B := 9;

 C := 2;

 A := B – A + C;

 exception

 when Constraint_Error =>

 Put_Line ("caught it");

 end;

exception

 when others =>

 Put_Line ("last chance handler");

end;

Slide: 12Copyright © 2018 AdaCore

What is the assignment result? (5/5)

A, B : Integer := 5;

...

B := (if A /= 0 or raise Division_Error then B / A else 0);

Slide: 1Copyright © 2018 AdaCore

Barnes chapter 19

Genericity

Slide: 2Copyright © 2018 AdaCore

The notion of a pattern

• Sometimes, algorithms can be abstracted from

the types that they operate on

• It would be nice to extract these properties in

some common pattern, and then just replace the

parts that need to be replaced

procedure Swap_Int (Left, Right : in out Integer) is

 V : Integer;

begin

 V := Left;

 Left := Right;

 Right := V;

end Swap_Int;

procedure Swap_Bool (Left, Right : in out Boolean) is

 V : Boolean;

begin

 V := Left;

 Left := Right;

 Right := V;

end Swap_Bool;

procedure Swap (Left, Right : in out (Integer | Boolean)) is

 V : (Integer | Boolean);

begin

 V := Left;

 Left := Right;

 Right := V;

end Swap;

Slide: 3Copyright © 2018 AdaCore

Solution: generics

• A generic unit is a unit that doesn’t exist

• It is a pattern based on properties

• The instantiation applies the pattern to certain parameters

generic

 type T is private;

procedure Swap (L, R : in out T)

procedure Swap (L, R : in out T)

is

 Tmp : T := L

begin

 L := R;

 R := Tmp;

end Swap;

procedure Swap_I is new Swap (Integer);

procedure Swap_F is new Swap (Float);

I1, I2 : Integer;

F1, F2 : Float;

procedure Main is

begin

 Swap_I (I1, I2);

 Swap_F (F1, F2);

end Main;

template <class T>

void Swap (T & L, T & R);

template <class T>

void Swap (T & L, T & R) {

 T Tmp = L;

 L = R;

 R = Tmp;

}

int I1, I2;

float F1, F2;

void Main (void) {

 Swap <int> (I1, I2);

 Swap <float> (F1, F2);

}

Slide: 4Copyright © 2018 AdaCore

What can be made generic?

• Subprograms & packages can be made generic

• Children of generic units have to be generic themselves

generic

 type T is private;

package Parent is […]

generic

package Parent.Child is […]

package I is new Parent (Integer);

package I_Child is new I.Child;

Slide: 5Copyright © 2018 AdaCore

What can be made generic?

• Generic instantiation creates a new set of data where a

generic package contains library-level variables:

generic

 type T is private;

 package P is

 V : T;

 end P;

 package I1 is new P (Integer);

 package I2 is new P (Integer);

begin

 I1.V := 5;

 I2.V := 6;

 if I1.V /= I2.V then

 -- will go there

Slide: 6Copyright © 2018 AdaCore

Generic types parameters

• A generic parameter is a template

• It specifies the properties the generic body can rely on

• The actual parameter must provide at least as many

properties as the generic contract

• The usage in the generic has to follow the contract

generic

 type T1 is private; -- this should have the properties of a private type

 -- (assignment, comparison, ability to declare variables on the stack…)

 type T2 (<>) is private; -- this type can be unconstrained

package Parent is […]

generic

 type T (<>) is private;

procedure P (V : T);

procedure P (V : T)

is

 X1 : T := V; -- OK, we can constrain the object by initialization

 X2 : T; -- Compilation error, there is no constraint for this object

begin […]

procedure P1 is new P (String); -- OK, unconstrained objects are accepted

procedure P2 is new P (Integer); -- OK, the object is already constrained

Slide: 7Copyright © 2018 AdaCore

Properties that can be expressed on generic types

• private – any definite (and non-limited) type

• (<>) private – allowed to be indefinite

• (<>) – any discrete (integer or enumeration)

• range <> – any signed integer

• mod <> – any modular integer

• digits <> – any float

• array – array type (needs index and components)

• access – access type (needs target)
generic

 type T is (<>);

function Add_One (V : T) return T is

begin

 return T'Succ (V);

end Add_One;

function Add_One_I is new Add_One (Integer);

function Add_One_C is new Add_One (Character);

Slide: 8Copyright © 2018 AdaCore

Generic parameters can be built one on top of the other

• Consistency is checked at compile-time

generic

 type T is private;

 type Index is (<>);

 type Arr is array (Index range <>) of T;

procedure P;

type Int_Array is array (Character range <>) of Integer;

procedure P_String is new P

 (T => Integer,

 Index => Character,

 Arr => Int_Array);

Slide: 9Copyright © 2018 AdaCore

Generic constants & variables parameters

• Variables can be specified in the generic contract

• The mode specifies the way the variable can be

used:

– in -> read only

– in out -> read write

• Generic variables can be defined after generic

types
generic

 type T is private;

 X1 : Integer;

 X2 : in out T;

procedure P;

V : Float;

procedure P_I is new P

 (T => Float,

 X1 => 42,

 X2 => V);

Slide: 10Copyright © 2018 AdaCore

Generic subprograms parameters

• Subprograms can be defined in the generic contract

• Must be introduced by “with” to differ from the generic unit

• “is <>” – matching subprogram is taken by default

• “is null” – null subprogram is taken by default

generic

 with procedure Callback;

procedure P;

procedure P is

begin

 Callback;

end P;

procedure Something;

procedure P_I is new P (Something);

generic

 with procedure Callback_1 is <>;

 with procedure Callback_2 is null;

procedure P;

procedure Callback_1;

procedure P_I is new P; -- Will take Callback_1 and null

Slide: 11Copyright © 2018 AdaCore

Generic Child Units

• A generic unit can only have generic children,

even if they don’t have any parameters

• To use a generic child, the parent must be

instantiated first

generic

 type T is private;

package Lists is

 [...]

generic

package Lists.Utils is

 [...]

package L is new Lists (Integer);

package U is new L.Utils;

Slide: 12Copyright © 2018 AdaCore

Quiz

Slide: 13Copyright © 2018 AdaCore

Is there a compilation error? (1/8)

generic

 type T is private;

package G is

 V : T;

end G;

with G; use G;

procedure P is

 package I is new G (Integer);

begin

 V := 0;

end P;

Slide: 14Copyright © 2018 AdaCore

Is there a compilation error? (2/8)

generic

 type T is private;

package G is

 V : T;

end G;

with G;

procedure P is

 type My_Integer is new Integer;

 package I1 is new G (Integer);

 package I2 is new G (My_Integer);

 use I1, I2;

begin

 V := 0;

end P;

Slide: 15Copyright © 2018 AdaCore

Is there a compilation error? (3/8)

generic

 type T is private;

package G is

 V : T;

end G;

with G;

procedure P is

 type My_Integer is new Integer;

 package I1 is new G (Integer);

 package I2 is new G (My_Integer);

 use I1;

begin

 V := 0;

end P;

Slide: 16Copyright © 2018 AdaCore

Is there a compilation error? (4/8)

generic

 type T is private;

package G is

end G;

generic

package G.Child is

 V : T;

end G.Child;
with G;

procedure P is

 package I1 is new G (Integer);

begin

 I1.Child.V := 0;

end P;

Slide: 17Copyright © 2018 AdaCore

Is there a compilation error? (5/8)

generic

 type T (<>) is private;

package G is

 V : T;

end G;

with G;

procedure P is

 package I1 is new G (Integer);

begin

 I1.V := 0;

end P;

Slide: 18Copyright © 2018 AdaCore

Is there a compilation error? (6/8)

with G;

package P is

 type My_Type is private;

 package I1 is new G (My_Type);

private

 type My_Type is null record;

end P;

generic

 type T is private;

package G is

 V : T;

end G;

Slide: 19Copyright © 2018 AdaCore

Is there a compilation error? (7/8)

generic

 type T is private;

procedure P;

type R is record

 null;

end record;

type A is access all R;

procedure I1 is new P (Integer);

procedure I2 is new P (Float);

procedure I3 is new P (Character);

procedure I4 is new P (String);

procedure I5 is new P (R);

procedure I6 is new P (A);

Slide: 20Copyright © 2018 AdaCore

Is there a compilation error? (8/8)

generic

 type T (<>) is private;

procedure P;

type R is record

 null;

end record;

type A is access all R;

procedure I1 is new P (Integer);

procedure I2 is new P (Float);

procedure I3 is new P (Character);

procedure I4 is new P (String);

procedure I5 is new P (R);

procedure I6 is new P (A);

Slide: 1Copyright © 2012 AdaCore

Barnes chapter 11

Access Types

Basic access types

Slide: 2Copyright © 2012 AdaCore

Access types design

• Java references, or C/C++ pointers are called access type in

Ada

• An object is associated to a pool of memory

• Different pools may have different allocation / deallocation

policies

• Without doing unchecked deallocations, and by using pool-

specific access types, access values are guaranteed to be

always meaningful

• In Ada, access types are typed

type Integer_Access is access Integer;

V : Integer_Access := new Integer;

int * V = malloc (sizeof (int));

/* or in C++ */

int * V = new int;

Slide: 3Copyright © 2012 AdaCore

Access types are dangerous

• Multiple memory issues

– Leaks / corruptions

• Introduces potential random failures complicated

to analyze

• Increase the complexity of the data structures

• May decrease the performances of the application

– Dereferences are slightly more expensive than direct access

– Allocations are a lot more expensive than stacking objects

• Ada avoids to use accesses as much as possible

– Arrays are not pointers

– Parameters are implicitly passed by reference

• Only use them when needed

Slide: 4Copyright © 2012 AdaCore

Stack vs Heap

I

J

I

J

Stack

Stack
Heap

I : Integer := 0;

J : String := "Some Long String";

I : Access_Integer := new Integer'(0);

J : Access_String := new String'("Some Long String");

Slide: 5Copyright © 2012 AdaCore

Pool specific access type

• An access type is a type

• Conversion is needed to move an object pointed

by one type to another (pools may differ)

• You can not do this kind of conversion with a

pool-specific access type:

type T is […]

type T_Access is access T;

V : T_Access := new T;

type T_Access_2 is access T;

V2 : T_Access_2 := T_Access_2 (V);

Slide: 6Copyright © 2012 AdaCore

General access types

• Can point to any pool (including stack)

• Still distinct type

• Conversions are possible

type T is […]

type T_Access is access all T;

V : T_Access := new T;

type T_Access_2 is access all T;

V2 : T_Access_2 := T_Access_2 (V);

Slide: 7Copyright © 2012 AdaCore

Declaration location

• Can be at library level

• Can be nested in a procedure

• Nesting adds non-trivial issues

– Creates a nested pool with a nested accessibility

– Don’t do that unless you know what you are doing !

(see later)

package P is

 type String_Access is access all String;

end P;

package body P is

 procedure Proc is

 type String_Access is access all String;

 begin

 …

 end Proc;

end P;

Slide: 8Copyright © 2012 AdaCore

Null values

• A pointer that does not point to any actual data

has a null value

• Without an initialization, a pointer is null by

default

• null can be used in assignments and comparisons

type Acc is access all Integer;

 V : Acc;

begin

 if V = null then

 -- will go here

 end if

 V := new Integer'(0);

 V := null; -- semantically correct, but introduces a leak

Slide: 9Copyright © 2012 AdaCore

Allocations

• Objects are created with the “new” reserved word

• The created object must be constrained;

the constraint is given during the allocation

• The object can be created by copying an existing

object – using a qualifier

V : String_Access := new String (1 .. 10);

V : String_Access := new String'("This is a String");

Slide: 10Copyright © 2012 AdaCore

Deallocations

• Deallocations are unsafe

– Multiple deallocations problems

– Memory corruptions

– Access to deallocated objects

• As soon as you use them:

you lose the safety of your pointers

• But sometimes, you have to do what you have to

do …

– There’s no simple way of doing it

– Ada provides Ada.Unchecked_Deallocation

– Has to be instantiated (it’s a generic)

– Must work on an object, reset to null afterwards

Slide: 11Copyright © 2012 AdaCore

with Ada.Unchecked_Deallocation;

procedure P is

 type An_Access is access all A_Type;

 procedure Free is new Ada.Unchecked_Deallocation (A_Type, An_Access);

 V : An_Access := new A_Type;

begin

 Free (V);

end P;

Deallocation example

dependency on the

generic subprogram

creation of the deallocation

function (instance of the

generic subprogram)

mention first the type and then
the access.

V is null after the call

Slide: 12Copyright © 2012 AdaCore

Dereferencing pointers

• .all does the access dereference

– Lets you access the object pointed to by the pointer

• .all is optional for

– Access on a component of an array

– Access on a component of a record

Slide: 13Copyright © 2012 AdaCore

Dereference examples

type R is record

 F1, F2 : Integer:

end record;

type A_Int is access all Integer;

type A_String is access all String;

type A_R is access all R;

V_Int : A_Int := new Integer;

V_String : A_String := new String'("abc");

V_R : A_R := new R;

[…]

V_Int.all := 0;

V_String.all := "cde";

V_String (1) := 'z'; -- similar to V_String.all (1) := 'z';

V_R.all := (0, 0);

V_R.F1 := 1; -- similar to V_R.all.F1 := 1;

Slide: 14Copyright © 2012 AdaCore

Pointing on objects declared on the stack

• By default:

you cannot point to objects from the stack

– What if the compiler has optimized the object to a register ?

• Stack Objects on which an access can be created:

– Must be declared aliased

– Accesses are then obtained through the ‘Access attribute

– Only general pointers (declared with all) can point to such

objects

– Should not be deallocated

– You should not keep references outside the scope of an

object

Slide: 15Copyright © 2012 AdaCore

Aliased objects example (1/2)

type Acc is access all Integer;

 V : Acc;

 I : aliased Integer;

begin

 V := I’Access;
 V.all := 5; -- Same a I := 5

Slide: 16Copyright © 2012 AdaCore

Aliased objects example (2/2)

type Acc is access all Integer;

G : Acc;

procedure P1 is

 I : aliased Integer;

begin

 G := I'Unchecked_Access; -- Same as 'Access (see after)

end P1;

procedure P2 is

begin

 G.all := 5; -- What if P2 is called after P1 ???

end P2;

Slide: 17Copyright © 2012 AdaCore

Introduction to accessibility checks (1/2)

• The depth of an object depends on its nesting within

declarative scopes

• Access types can access to objects at most of the

same depth

• The compiler checks it statically

(Removing checks is a workaround!)

package body P is

 -- Library level, depth 0

 procedure Proc is

 -- Library level subprogram, depth 1

 procedure Nested is

 -- Nested subprogram, enclosing + 1, here 2

 begin

 null;

 end Nested;

 begin

 null;

 end Proc;

end P;

Slide: 18Copyright © 2012 AdaCore

Introduction to accessibility checks (2/2)

• To avoid having to face these issues, avoid

nested access types

package body P is

 type T0 is access all Integer;

 A0 : T0;

 V0 : aliased Integer;

 procedure Proc is

 type T1 is access all Integer;

 A1 : T1;

 V1 : aliased Integer;

 begin

 A0 := V0'Access;

 A0 := V1'Access;

 A0 := V1'Unchecked_Access;

 A1 := V0'Access;

 A1 := V1'Access;

 A1 := T1 (A0);

 A0 := T0 (A1);

 A1 := new Integer;

 A0 := T0 (A1);

 end Proc;

end P;

Slide: 19Copyright © 2012 AdaCore

Using pointers to create recursive structures

• It is not possible to declare recursive structure

• But there can be an access to the enclosing type

type Cell;

type Cell_Access is access all Cell;

type Cell is record

 Next : Cell_Access;

 Some_Value : Integer;

end record;

Partial declaration

Full declaration

Slide: 20Copyright © 2012 AdaCore

Common memory problems – uninitialized pointers

Will raise Constraint_Error

type An_Access is access all Integer;

 V : An_Access;

begin

 V.all := 5;

Slide: 21Copyright © 2012 AdaCore

Common memory problems – double deallocation

May raise Storage_Error if the memory is still protected

 (deallocated)

May deallocate an other object if the memory has been

 reallocated – putting an object in an inconsistent state

type An_Access is access all Integer;

 procedure Free is new Ada.Unchecked_Deallocation (Integer, An_Access);

 V1 : An_Access := new Integer;

 V2 : An_Access := V1;

begin

 Free (V1);

 ...

 Free (V2);

Slide: 22Copyright © 2012 AdaCore

Common memory problems – accessing deallocated memory

type An_Access is access all Integer;

 procedure Free is new Ada.Unchecked_Deallocation (Integer, An_Access);

 V1 : An_Access := new Integer;

 V2 : An_Access := V1;

begin

 Free (V1);

 ...

 V2.all := 5;

May raise Storage_Error if the memory is still protected

 (deallocated)

May change an other object if the memory has been

 reallocated – putting an object in an inconsistent state

Slide: 23Copyright © 2012 AdaCore

Common memory problems – memory leaks

Silent problem

Might raise Storage_Error if too many leaks

Might slow down the program if too many page faults

type An_Access is access all Integer;

 procedure Free is new Ada.Unchecked_Deallocation (Integer, An_Access);

 V : An_Access := new Integer;

begin

 V := null;

Slide: 24Copyright © 2012 AdaCore

How to fix memory problems ?

• There is no language-defined solution

• Use the debugger!

• Use additional tools

– gnatmem → monitor memory leaks

– valgrind → monitor all the dynamic memory

– GNAT.Debug_Pools → gives a pool for an access type,

 raising explicit exception in case

 of invalid access

– Others…

Slide: 25Copyright © 2012 AdaCore

Quiz

Slide: 26Copyright © 2012 AdaCore

Is there an error? (1/10)

type An_Access is access all Integer;

W : Integer;

V : An_Access := W'Access;

Slide: 27Copyright © 2012 AdaCore

Is there an error? (2/10)

type An_Access is access Integer;

W : aliased Integer;

V : An_Access := W'Access;

Slide: 28Copyright © 2012 AdaCore

Is there an error? (3/10)

type An_Access is access all Integer;

procedure Proc is

 W : aliased Integer;

 X : An_Access := W'Access;

begin

 null;

end Proc;

Slide: 29Copyright © 2012 AdaCore

Is there an error? (4/10)

type R is record

 F1, F2 : Integer;

end record;

type R_Access is access all R;

procedure Proc is

 V : R_Access := new R;

begin

 V.F1 := 0;

 V.all.F2 := 0;

end Proc;

Slide: 30Copyright © 2012 AdaCore

Is there an error? (5/10)

G : aliased Integer;

procedure Proc is

 type A_Access is access all Integer;

 V : A_Access;

begin

 V := G'Access;

end Proc;

Slide: 31Copyright © 2012 AdaCore

Is there an error? (6/10)

type R is record

 F1, F2, F3 : Integer;

 end record;

 type R_Access is access all R;

 type R_Access_Access is access all R_Access;

 V : R_Access_Access;

begin

 V := new R_Access;

 V.all := new R;

 V.F1 := 0;

 V.all.F2 := 0;

 V.all.all.F3 := 0;

Slide: 32Copyright © 2012 AdaCore

Is there an error? (7/10)

type A_Access is access all Integer;

 procedure Free is new Ada.Unchecked_Deallocation

 (Integer, A_Access);

 V1 : A_Access := new Integer;

 V2 : A_Access := V1;

begin

 Free (V1);

 Free (V2);

Slide: 33Copyright © 2012 AdaCore

Is there an error? (8/10)

type A_Access is access all Integer;

 procedure Free is new Ada.Unchecked_Deallocation

 (Integer, A_Access);

 V : A_Access;

begin

 Free (V);

 V := new Integer;

 Free (V);

 Free (V);

Slide: 34Copyright © 2012 AdaCore

Is there an error? (9/10)

type A_Access is access all Integer;

 procedure Free is new Ada.Unchecked_Deallocation

 (Integer, A_Access);

 V : A_Access;

 W : aliased Integer;

begin

 V := W'Access;

 Free (V);

Slide: 35Copyright © 2012 AdaCore

Is there an error? (10/10)

type A_Access is access all Integer;

type R is record

 V : A_Access;

 W : aliased Integer;

end record;

G : R;

procedure P is

 L : R;

begin

 G.V := G.W'Access;

 L.V := L.W'Access;

end P;

Slide: 1Copyright © 2018 AdaCore

Barnes chapter 14

Inheritance

Slide: 2Copyright © 2018 AdaCore

Primitives

Slide: 3Copyright © 2018 AdaCore

The notion of a primitive

• A type is characterized by two sets of properties

– Its data structure

– The set of operations that applies to it

• These operations are called “methods” in C++, or

“Primitive Operations” in Ada

• In Ada

– the primitive relationship is implicit

– The “hidden” parameter “this” is explicit

(and can have any name)

type T is record

 Attribute_Data : Integer;

end record;

procedure Attribute_Function (This : T);

class T {

 public:

 int Attribute_Data;

 void Attribute_Function (void);

};

Slide: 4Copyright © 2018 AdaCore

General rule for a primitive

• A subprogram S is a primitive of type T if

– S is declared in the scope of T

– S has at least one parameter of type T (of any mode,

including access) or returns a value of type T

• A subprogram can be a primitive of several types

package P is

 type T is range 1 .. 10;

 procedure P1 (V : T);

 procedure P2 (V1 : Integer; V2 : T);

 function F return T;

end P;

package P is

 type T1 is range 1 .. 10;

 type T2 is (A, B, C);

 procedure Proc (V1 : T1; V2 : T2);

end P;

Slide: 5Copyright © 2018 AdaCore

Beware of access types !

• Using a named access type in a subprogram

creates a primitive of the access type,

NOT the type of the accessed object!

• In order to create a primitive using an access

type, the access mode should be used

package P is

 type T is range 1 .. 10;

 type A_T is access all T;

 procedure Proc (V : A_T); -- Primitive of A_T

end P;

package P is

 type T is range 1 .. 10;

 procedure Proc (V : access T); -- Primitive of T

end P;

Slide: 6Copyright © 2018 AdaCore

Implicit primitive operations

• At type declaration, primitives are implicitly

created if not explicitly given by the developer,

depending on the kind of the type

• These primitives can be used just as any others

package P is

 type T1 is range 1 .. 10;

 -- implicitly declares function “+” (Left, Right : T1) return T1;

 -- implicitly declares function “-” (Left, Right : T1) return T1;

 -- …

 type T2 is null record;

 -- implicitly declares function “=” (Left, Right : T2) return T2;

end P;

procedure Main is

 V1, V2 : P.T1;

begin

 V1 := P."+" (V1, V2);

end Main;

Slide: 7Copyright © 2018 AdaCore

Use clauses

• Often, to avoid ambiguity and confusing overloading,

“use package clauses” are forbidden by a coding standard.

This means that all operations have to be prefixed, thus:

• This is very annoying, though. I would prefer to write

“V1 := V1 + V2” in the natural way...

package A.B.C is

 type T1 is range 1 .. 10;

 procedure Print (V : T1);

end A.B.C;

with A.B.C;

procedure Main is

 V1, V2 : A.B.C.T1;

begin

 V1 := A.B.C."+" (V1, V2);

 A.B.C.Print (V1);

end Main;

Slide: 8Copyright © 2018 AdaCore

Simple derivation

Slide: 9Copyright © 2018 AdaCore

Simple type derivation

• In Ada, any (non-tagged) type can be derived

• A child is a distinct type inheriting from:

– The data representation of the parent

– The primitives of the parent

• Conversions are possible for non-primitive operations

Type Child is new Parent;

type Parent is range 1 .. 10;

 procedure Prim (V : Parent);

 type Child is new Parent;

 -- implicit procedure Prim (V : Child);

 V : Child;

begin

 V := 5;

 Prim (V);

package P is

 type Parent is range 1 .. 10;

 type Child is new Parent;

end P;

procedure Main is

 procedure Not_A_Primitive (V : Parent);

 V1 : Parent;

 V2 : Child;

begin

 Not_A_Primitive (V1);

 Not_A_Primitive (Parent (V2));

end Main;

Slide: 10Copyright © 2018 AdaCore

What can simple derivation do to the structure?

• The structure of the type has to be kept

– An array stays an array

– A scalar stays a scalar

• Scalar ranges can be reduced

• Constraints on unconstrained types can be

specified

type Int is range -100 .. 100;

type Nat is new Int range 0 .. 100;

type Pos is new Nat range 1 .. 100;

type Arr is array (Integer range <>) of Integer;

type Ten_Elem_Arr is new Arr (1 .. 10);

type Rec (Size : Integer) is record

 Elem : Arr (1 .. Size);

end record;

type Ten_Elem_Rec is new Rec (10);

Slide: 11Copyright © 2018 AdaCore

Signed Integer Types

(revisited...)

Slide: 12Copyright © 2018 AdaCore

Signed Integer Types (revisited)

• The “Basic Types” lecture introduced Ada’s signed integer types,

and the predefined Integer types in package Standard.

• But...we missed one important detail.

• A declaration like this:

• Is actually a short-hand for:

type T is range L .. R;

type <Anon> is new Predefined-Integer-Type;

subtype T is <Anon> range L .. R;

Slide: 13Copyright © 2018 AdaCore

Signed Integer Types (revisited)

• What’s going on?

1. The compiler looks at L and R (which must be static) and chooses

a predefined signed Integer type from Standard (e.g. Integer,

Short_Integer, Long_Integer etc.) which at least includes

the range L .. R.

2. This choice is implementation-defined.

3. An anonymous type <Anon> is created, derived from that

predefined type. <Anon> inherits all of the predefined type’s

primitive operations, like “+”, “-”, “*” and so on.

4. A subtype T of <Anon> is created with range L .. R

• <Anon> can be referred to as T’Base in your program.

type <Anon> is new Predefined-Integer-Type;

subtype T is <Anon> range L .. R;

Slide: 14Copyright © 2018 AdaCore

Signed Integer Types (revisited)

• What’s going on?

• Warning! The choice of T’Base affects whether runtime

computations will overflow.

– Example: on one machine, the compiler chooses Integer, which is 32-bit, and your code

runs fine with no overflows.

– On another machine, a compiler might choose Short_Integer, which is 16-bit, and your

code will fail an Overflow_Check.

– Extra care is needed if you have two compilers – e.g. for Host (like Windows or Linux)

and Cross targets...

• Good news! GNAT makes consistent and predictable choices on

all major platforms.

type <Anon> is new Predefined-Integer-Type;

subtype T is <Anon> range L .. R;

Slide: 15Copyright © 2018 AdaCore

Signed Integer Types (revisited)

• Guidance

• You can avoid the implementation-defined choice by deriving your

own Base Types explicitly, and using Assert to enforce the

expected range

• Something like

• Then derive further types and subtypes from My_Base_Integer

• Don’t assume that “Shorter = Faster” for integer maths. On some

machines, 32-bit is more efficient than 8- or 16-bit maths!

type My_Base_Integer is new Integer;

pragma Assert (My_Base_Integer’First = -2**31);

pragma Assert (My_Base_Integer’Last = 2**31-1);

Slide: 16Copyright © 2018 AdaCore

Signed Integer Types (revisited)

• Guidance 2

• If you want to derive from a base type that has a well-defined bit

length (for example when dealing with hardware registers that

must be a particular bit length), then package Interfaces declares

types such as:

type Integer_8 is range -2**7 .. 2**7-1;

for Integer_8’Size use 8;

-- and so on for 16, 32, 64 bit types...

Slide: 17Copyright © 2018 AdaCore

Quiz

Slide: 18Copyright © 2018 AdaCore

Is there a compilation error? (1/10)

package P1 is

 type T1 is range 1 .. 10;

end P1;

with P1; use P1;

package P2 is

 type T2 is new T1;

end P2;

with P1; use P1;

package P3 is

 procedure Proc (V : T1);

end P3;

with P1; use P1;

with P2; use P2;

with P3; use P3;

procedure Main is

 V : T2;

begin

 Proc (V);

end Main;

Slide: 19Copyright © 2018 AdaCore

Is there a compilation error? (2/10)

package P1 is

 type T1 is range 1 .. 10;

 procedure Proc (V : T1);

end P1;

with P1; use P1;

package P2 is

 type T2 is new T1;

end P2;

with P1; use P1;

with P2; use P2;

procedure Main is

 V : T2;

begin

 Proc (V);

end Main;

Slide: 20Copyright © 2018 AdaCore

What’s the result of this call? (3/10)

package P is

 type T1 is range 1 .. 10;

 procedure Proc (V : T1);

 type T2 is range 1 .. 10;

 procedure Proc (V : T2);

end P;

with P; use P;

procedure Main is

 V1 : T1;

 V2 : T2;

begin

 Proc (V1);

 Proc (V2);

 Proc (T2 (V1));

 Proc (T1 (V2));

end Main;

with Ada.Text_IO; use Ada.Text_IO;

package body P is

 procedure Proc (V : T1) is

 begin

 Put_Line (“1”);

 end Proc;

 procedure Proc (V : T2) is

 begin

 Put_Line (“2”);

 end Proc;

end P;

Slide: 1Copyright © 2018 AdaCore

Barnes chapter 13

Elaboration

Slide: 2Copyright © 2018 AdaCore

Why elaboration is needed

• Ada has some powerful features that require initialization:

• May also involve dynamic allocation:

• Or explicit user code to initialize a package

• Requires initialization code at startup

• Implies ordering

with Dep1;

package P1 is

 Val : constant Integer := Dep1.Call;

end P1;

Value is not known by the compiler

with P1;

package P2 is

 Buffer : String (1 .. P1.Val);

end P1;

Size is not known by the compiler

package body P3 is

 …

begin

 Put_Line ("Starting P3");

end P3;

Slide: 3Copyright © 2018 AdaCore

Elaboration

• Process where entities are created

• The Rule: “an entity has to be elaborated before use”

– Subprograms have to be elaborated before being called

– Variables have to be elaborated before being referenced

• Such elaboration issues typically arise on

– Global variable initialization

– Package sequence of statements

with Dep1;

package P1 is

 V_Spec : Integer := Dep1.Call;

 -- Dep1 body has to be elaborated before this point

end P1;

with Dep2;

package body P1 is

 V_Body : Integer;

begin

 V_Body := Dep2.Call;

 -- Dep2 body has to be elaborated before this point

end P1;

Slide: 5Copyright © 2018 AdaCore

Elaboration order

• The elaboration order is the order in which the

packages are created

• It may or may not be deterministic

• The binder (GNAT: gnatbind) is responsible for

finding an elaboration order

– Computes the possible ones

– Reports an error when no order is possible

package P1 is

 V_Spec : Integer := Call;

end P1;

package body P1 is

 V_Body : Integer := Call;

end P1;

package P2 is

 V_Spec : Integer := Call;

end P1;

package body P2 is

 V_Body : Integer := Call;

end P1;

Slide: 6Copyright © 2018 AdaCore

Circular elaboration dependencies

• Although not explicitly specified by the with clauses,

elaboration dependencies may exhibit circularities

• Sometimes, they are static

• Sometimes they are dynamic

package P1 is

 function Call return Integer;

end P1;

with P2;

package body P1 is

 V_Body : Integer := P2.Call;

end P1;

package P2 is

 function Call return Integer;

end P2;

with P1;

package body P2 is

 V_Body : Integer := P1.Call;

end P2;

with P2;

package body P1 is

 V_Body : Integer;

begin

 if Day mod 2 = 1 then

 V_Body := P2.Call;

 end if;

end P1;

with P1;

package body P2 is

 V_Body : Integer;

begin

 if Day mod 2 = 0 then

 V_Body := P1.Call;

 end if;

end P2;

Slide: 7Copyright © 2018 AdaCore

GNAT Static Elaboration Model

• By default, GNAT ensures elaboration safety

– It adds elaboration control pragma to statically ensure that

elaboration is possible

– Very safe, but…

– Not fully Ada compliant (may reject some valid programs)

– Highly recommended however (least surprising effect)

• Performed by gnatbind

– Automatically called by a builder (gnatmake or gprbuild)

– Reads ALI files from the closure

– Generates b~xxx.ad[sb] or b__xxx.ad[sb] files

– Contains elaboration and finalization procedures

– Defines the entry point procedure, main().

Slide: 8Copyright © 2018 AdaCore

Pragma Preelaborate

• Adds restrictions on a unit to ease elaboration

• Elaboration without explicit execution of code

– No user initialization code

– No calls to subprograms

– Static values

– Dependencies only on Preelaborate packages

• But compiler may generate elaboration code

package P1 is

 pragma Preelaborate;

 Var : Integer := 7;

end P1;

package P1 is

 pragma Preelaborate;

 type ptr is access String;

 v : ptr := new String'("hello");

end P1;

Slide: 9Copyright © 2018 AdaCore

Pragma Pure

• Adds restrictions on a unit to ease elaboration

• Preelaborate +

– No variable declaration

– No allocators

– No access type declaration

– Dependencies only on Pure packages

• But compiler may generate elaboration code

package Ada.Numerics is

 pragma Pure;

 Argument_Error : exception;

 Pi : constant := 3.14…;

end Ada.Numerics;

package P2 is

 pragma Pure;

 Var : constant Array (1 .. 10 * 1024) of Integer := (others => 118);

end P2;

Slide: 10Copyright © 2018 AdaCore

Pragma Elaborate_Body

• Forces the elaboration of a body just after a

specification

• Forces a body to be present even if none is

required

• Problem: it may introduce extra circularities

• Useful in the case where a variable declared in the

specification is initialized in the body

package P1 is

 pragma Elaborate_Body;

 function Call return Integer;

end P1;

with P2;

package body P1 is

end P1;

package P2 is

 pragma Elaborate_Body;

 function Call return Integer;

end P2;

with P1;

package body P2 is

end P2;

Slide: 11Copyright © 2018 AdaCore

Pragma Elaborate

• Pragma Elaborate forces the elaboration of a

dependency body

• It does not force the elaboration of transitive

dependencies
package P1 is

 function Call return Integer;

end P1;

with P2;

pragma Elaborate (P2);

package body P3 is

 V : Integer;

begin

 V := P2.Call;

end P3;

package P2 is

 function Call return Integer;

end P1;

with P1;

package body P2 is

 function Call return Integer

 begin

 P1.Call;

 end Call;

end P2;

Slide: 12Copyright © 2018 AdaCore

Pragma Elaborate_All

• Pragma Elaborate forces the elaboration of a

dependency body and all transitive dependencies

• May introduce unwanted cycles

• Safer than Elaborate
package P1 is

 function Call return Integer;

end P1;

with P2;

pragma Elaborate_All (P2);

package body P3 is

 V : Integer;

begin

 V := P2.Call;

end P3;

package P2 is

 function Call return Integer;

end P2;

with P1;

package body P2 is

 function Call return Integer

 begin

 P1.Call;

 end Call;

end P2;

Slide: 13Copyright © 2018 AdaCore

Bottom line

• Elaboration is a difficult problem to deal with

• The binder tries to resolve it in a “safe way”

• If it can’t, it’s possible to manually place

elaboration pragmas

• Better to avoid elaboration constraints as much

as possible

• Use dynamic elaboration (gnat binder switch -E)

as last resort

• See ‘Elaboration Order Handling in GNAT’ annex

in GNAT Pro User’s Guide.

Slide: 14Copyright © 2018 AdaCore

Quiz

Slide: 15Copyright © 2018 AdaCore

Is there a compilation error? (1/2)

package P is

 function F return Integer;

 A : Integer := F;

end P;

Slide: 16Copyright © 2018 AdaCore

Is there a compilation error? (2/2)

with P2;

pragma Elaborate_All (P2);

package P1 is

end P1;

package P2 is

end P2;

with P1;

package body P2 is

end P2;

Slide: 1Copyright © 2013 AdaCore

Tasking

Slide: 2Copyright © 2013 AdaCore

Overview

Slide: 3Copyright © 2013 AdaCore

A simple task

• Ada implements the notion of a “thread” via the task entity

• A task is started when its declaration scope is elaborated

• Its enclosing scope exits when all tasks have finished

procedure Main is

 task T;

 task body T is

 begin

 loop

 delay 1.0;

 Put_Line ("T");

 end loop;

 end T;

begin

 loop

 delay 1.0;

 Put_Line ("Main");

 end loop;

end;

Slide: 4Copyright © 2013 AdaCore

Interacting with tasks

• Active synchronization

– Client/server model of interaction (“asymmetric rendezvous”)

– Server task declares “entries” for interacting

– Services it offers to other tasks

– Can wait for a client task to request its service

– Client task makes an “entry call”

– Request for a service offered by another task

– Will wait for the server task to “accept” and handle entry call

• Passive synchronization

– Uses data objects with concurrency-safe access semantics

– “Protected objects” in Ada – more about them later

Slide: 5Copyright © 2013 AdaCore

Rendezvous (1/2)

• A task can declare “entries” for interacting and wait for an “entry

call” to arrive

• When reaching an accept statement, the task will wait until its

entry is called

• When calling an entry, the caller waits until the task is ready to be

called

task T is

 entry Start;

 entry Receive_Message (V : String);

end T;

task body T is

begin

 loop

 accept Start;

 accept Receive_Message (V : String);

 end loop;

end T;

-- OK

T.Start;

T.Receive_Message ("");

-- Locks until somebody calls Start

T.Receive_Message ("");

Slide: 6Copyright © 2013 AdaCore

Rendezvous (2/2)

• The task can perform operations while the caller

and the callee are in the entry / accept statement

• The caller will be released once the end of the

accept block is reached

task T is

 entry Start;

 entry Receive_Message (V : String);

end T;

task body T is

begin

 loop

 accept Start do

 Put_Line ("Start");

 end Start;

 accept Receive_Message (V : String) do

 Put_Line ("Message : " & V);

 end Receive_Message;

 end loop;

end T;

Slide: 7Copyright © 2013 AdaCore

Accepting a rendezvous

• Simple accept statement

– Used by a server task to indicate a willingness to provide the

service at a given point

• Selective accept statement

– Wait for more than one rendezvous at any time

– Time-out if no rendezvous within a period of time

– Withdraw its offer if no rendezvous is immediately available

– Terminate if no clients can possibly call its entries

– Conditionally accept a rendezvous based on a guard

expression

Slide: 8Copyright © 2013 AdaCore

Protected objects

• Tasks are “active” objects

• Synchronization can be achieved through

“passive” objects that hold and manage values

• A protected object is an object with an interface

– No concurrent modifications are allowed

• It is a natural replacement for a lot of cases where

a semaphore is needed

protected O is

 -- Only subprograms are allowed here

 procedure Set (V : Integer);

 function Get return Integer;

private

 -- Data declaration

 Local : Integer;

end O;

protected body O is

 procedure Set (V : Integer) is

 begin

 Local := V;

 end Set;

 function Get return Integer is

 begin

 return Local;

 end Get;

end O;

Slide: 9Copyright © 2013 AdaCore

Protected functions vs. protected procedures

• Procedures can modify the state of the protected

data

– No concurrent access to procedures can be done

– No procedure can be called when functions are called

• Functions are just ways to retrieve values, the

protected data is read-only

– Concurrent access to functions can be done

– No function can be called when a procedure is called

Slide: 10Copyright © 2013 AdaCore

Task types

• It is possible to create task types

– Objects can be instantiated on the stack or on the heap

• Tasks instantiated on the stack are activated at the end of

the elaboration of their enclosing declarative part

– As if they were declared there

• Tasks instantiated on the heap are activated right away

• Tasks are limited objects (no copies allowed)

task type T is

 entry Start;

end T;

type T_A is access all

T;

task body T is

begin

 accept Start;

end T;

V1 : T;

 V2 : T;

 V3 : A_T;

begin

 V1.Start;

 V2.Start;

 V3 := new T;

 V3.all.Start;

Slide: 11Copyright © 2013 AdaCore

Protected object types

• Like tasks, protected objects can be defined through types

• Instantiation can then be done on the heap or the stack

• Protected object types are limited types

protected type O is

 entry Push (V : Integer);

 entry Pop (V : out Integer);

private

 Buffer : Integer_Array (1 .. 10);

 Size : Integer := 0;

end O;

type O_Access is access all O;

protected body O is

 entry Push (V : Integer)

 when Size < Buffer'Length

 is

 begin

 Buffer (Size + 1) := V;

 Size := Size + 1;

 end Push;

 entry Pop (V : out Integer)

 when Size > 0

 is

 begin

 V := Buffer (Size);

 Size := Size – 1;

 end Pop;

end O;

V1, V2 : O;

V3 : O_Access := new O;

Slide: 12Copyright © 2013 AdaCore

Scope of a task

• Tasks can be nested in any declarative block

• When nested in e.g. a subprogram, the task and the

subprogram body have to finish before the

subprogram ends

• Tasks declared at library level all have to finish before

the program terminates

package P is

 task T;

end P;

package body P is

 task body T is

 loop

 delay 1.0;

 Put_Line ("tick");

 end loop;

 end T;

end P;

Slide: 13Copyright © 2013 AdaCore

Some Advanced Concepts…

Slide: 14Copyright © 2013 AdaCore

Waiting on different entries

• It is convenient to be able to accept several entries

• The select statements can wait simultaneously on a list of

entries, and accept the first one that is requested
task T is

 entry Start;

 entry Receive_Message (V : String);

 entry Stop;

end T;

task body T is

begin

 accept Start;

 loop

 select

 accept Receive_Message (V : String) do

 Put_Line ("Message : " & String);

 end Receive_Message;

 or

 accept Stop;

 exit;

 end select;

 end loop;

end T;

T.Start;

T.Receive_Message ("A");

T.Receive_Message ("B");

T.Stop;

Slide: 15Copyright © 2013 AdaCore

Waiting with a delay

• A select statement can wait for only a given amount of time,

and then do something when that delay is exceeded

• the “delay until” statement can be used as well

• there can be multiple delay statements

(useful when the value is not hard-coded)

task T is

 entry Receive_Message (V : String);

end T;

task body T is

begin

 loop

 select

 accept Receive_Message (V : String) do

 Put_Line ("Message : " & String);

 end Receive_Message;

 or

 delay 50.0;

 Put_Line ("Don't wait any longer");

 exit;

 end select;

 end loop;

end T;

Slide: 16Copyright © 2013 AdaCore

Calling an entry with a delay protection

• A call to an entry normally blocks the thread until

the entry can be accepted by the task

• It is possible to wait for a given amount of time

using a select … delay statement

• Only one entry call is allowed

• No “accept statement” is allowed

task T is

 entry Receive_Message (V : String);

end T;

procedure Main is

begin

 select

 T.Receive_Message ("A");

 or

 delay 50.0;

 end select;

end Main;

Slide: 17Copyright © 2013 AdaCore

Avoid waiting if no entry or accept can be taken

• The “else” part allows to avoid waiting if the accept

statements or entries are not ready to be entered

• No delay statement is allowed in this case

task T is

 entry Receive_Message (V : String);

end T;

task body T is

begin

 select

 accept Receive_Message (V : String) do

 Put_Line ("Received : " & V);

 end Receive_Message;

 else

 Put_Line ("Nothing to receive");

 end select;

end T;

procedure Main is

begin

 select

 T.Receive_Message ("A");

 else

 Put_Line ("Receive message not called");

 end select;

end Main;

Slide: 18Copyright © 2013 AdaCore

Terminate alternative

• When waiting for an entry, if all other task dependent on the

same master task (including the master task) are terminated,

the entry can’t be called anymore

• This can be detected by the “or terminate” alternative, which

terminates the tasks if all other tasks are terminated

– Or themselves waiting on “or terminate” select statements

• Once reached, the task is terminated right away, no

additional code is called

select

 accept E;

or

 terminate;

end select;

Slide: 19Copyright © 2013 AdaCore

Guard expressions

• The accept statement can be activated according to

a guard condition

• This condition is evaluated when entering select

task T is

 entry Put (V : Integer);

 entry Get (V : out Integer);

end T;

task body T is

 Val : Integer;

 Initialized : Boolean := False;

begin

 loop

 select

 accept Put (V : Integer) do

 Val := V;

 Initialized := True;

 end Put;

 or

 when Initialized =>

 accept Get (V : out Integer) do

 V := Val;

 end Get;

 end select;

 end loop;

end T;

Slide: 20Copyright © 2013 AdaCore

Protected object entries (1/2)

• Protected entries are a special kind of protected procedures

• They can be defined using a barrier, a conditional

expression allowing the entry to be called or not

• The barriers are evaluated…

– Every time a task request to call an entry

– Every time a protected entry or procedure is exited

protected O is

 entry Push (V : Integer);

 entry Pop (V : out Integer);

private

 Buffer : Integer_Array (1 .. 10);

 Size : Integer := 0;

end O;

protected body O is

 entry Push (V : Integer)

 when Size < Buffer'Length

 is

 begin

 Buffer (Size + 1) := V;

 Size := Size + 1;

 end Push;

 entry Pop (V : out Integer)

 when Size > 0

 is

 begin

 V := Buffer (Size);

 Size := Size – 1;

 end Pop;

end O;

Slide: 21Copyright © 2013 AdaCore

Protected object entries (2/2)

• Several tasks can be waiting on entries

• Only one task is reactivated when the barrier is

relieved, depending on the activation policy

task body T1 is

 V : Integer;

begin

 O.Pop (V);

end T1;

task body T2 is

 V : Integer;

begin

 O.Pop (V);

end T2;

task body T3 is

begin

 delay 1.0;

 O.Push (42);

end T3;

Slide: 22Copyright © 2013 AdaCore

Select on protected objects entries

• Works the same way as select on task entries

– With a delay part

– With an else part

select

 O.Push (5);

or

 delay 10.0;

 Put_Line ("Delayed overflow");

end select;

select

 O.Push (5);

else

 Put_Line ("Overflow");

end select;

Slide: 23Copyright © 2013 AdaCore

Notion of a Queue

• Protected entries, protected procedures and task

entries can only be activated by one task at a time

• If several tasks are trying to enter a mutually

exclusion section, they are put in a queue

• By default, task are entering the queue in FIFO

• If several tasks are in a queue when the server

task is terminated, TASKING_ERROR is sent to

the waiting tasks

Slide: 24Copyright © 2013 AdaCore

Requeue instruction

• The “requeue” instruction can be called in an

entry (task or protected)

• It places the queued task back to another entry

with the same profile

– Or the same entry…

• Useful if the treatment couldn’t be done and need

to be re-considered later

• Same parameter values will be used on the queue

entry Extract (Qty : Integer) when True is

begin

 if not Try_Extract (Qty) then

 requeue Extract;

 end if;

end Extract;

Slide: 25Copyright © 2013 AdaCore

Abort Statements

• All tasks can be abruptly aborted

• Abortion may stop the task almost anywhere in

the assembly code

• Highly unsafe – should be used only as last resort

procedure Main is

 task T;

 task T is

 begin

 loop

 delay 1.0;

 Put_Line ("A");

 end loop;

 end T;

begin

 delay 10.0;

 abort T;

end;

Slide: 26Copyright © 2013 AdaCore

Quiz

Slide: 27Copyright © 2013 AdaCore

Does this code compile? (1/8)

protected O is

 function Get return Integer;

 procedure Set (V : Integer);

private

 Val : Integer;

 Access_Count : Integer := 0;

end O;

protected body O is

 function Get return Integer is

 begin

 Access_Count := Access_Count + 1;

 return Val;

 end Get;

 procedure Set (V : Integer) is

 begin

 Val := V;

 end Set;

end O;

Slide: 28Copyright © 2013 AdaCore

What is the output of this code? (2/8)

procedure Main is

 task T is

 entry A;

 end T;

 task body T is

 begin

 select

 accept A;

 or

 terminate;

 end select;

 Put_Line ("Terminated");

 end T;

begin

 null;

end Main;

Slide: 29Copyright © 2013 AdaCore

What is the output of this code? (3/8)

procedure Main is

begin

 select

 delay 2.0;

 then abort

 loop

 delay 1.5;

 Put_Line ("A");

 end loop;

 end select;

 Put_Line ("B");

end Main;

Slide: 30Copyright © 2013 AdaCore

Does this code compile? (4/8)

task T is

 entry Remove_Items (Nb : Integer);

 entry Replenish;

end T;

task body T is

 Nb_Items : Integer := 100;

begin

 loop

 select

 accept Remove_Items (Nb : Integer) do

 if Nb_Items < Nb then

 requeue Replenish;

 else

 Nb_Items := Nb_Items – Nb;

 end if;

 end Remove_Items;

 or

 accept Replenish do

 Nb_Items := Nb_Items + 100;

 end Replenish;

 end select;

 end loop;

end T;

Slide: 31Copyright © 2013 AdaCore

What’s the output of this code? (5/8)

task body T2

begin

 loop

 select

 T1.A;

 else

 delay 1.0;

 end select;

 end loop;

end T2;

task body T1 is

begin

 loop

 select

 accept A;

 Put_Line ("SELECT TASK");

 else

 delay 1.0;

 Put_Line ("ELSE TASK");

 end select;

 end loop;

end T1;

Slide: 32Copyright © 2013 AdaCore

Does this code compile? (6/8)

task body T2

begin

 select

 T1.E1;

 or

 T1.E2;

 end select;

end T2;

task T1 is

 entry E1;

 entry E2;

end T1;

Slide: 33Copyright © 2013 AdaCore

Does this code terminate? (7/8)

procedure Main is

 Ok : Boolean := False;

 protected O is

 entry P;

 end O;

 protected body O is

 begin

 entry P when Ok is

 Put_Line ("OK");

 end P;

 end O;

 task T;

 task body T is

 begin

 delay 1.0;

 Ok := True;

 end T;

begin

 O.P;

end;

Slide: 34Copyright © 2013 AdaCore

Does this code terminate? (8/8)

procedure Main is

 Ok : Boolean := False;

 protected O is

 entry P;

 procedure P2;

 end O;

 protected body O is

 entry P when Ok is

 begin

 Put_Line ("OK");

 end P;

 procedure P2 is

 begin

 null;

 end P2;

 end O;

 task T;

 task body T is

 begin

 delay 1.0;

 Ok := True;

 O.P2;

 end T;

begin

 O.P;

end;

