A Brief Overview of Ada and SPARK

All the Essentials, None of the Overwhelm

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Core Language Content

* Ada is a compiled, multi-paradigm language
* Exceptions
* Generic units
 Dynamic memory management
* Low-level programming
* Object-Oriented Programming (OOP)
* Concurrent programming
* Contract-Based Programming

* With a static and strong type model

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Declarations

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

|dentifiers

* Syntax

identifier ::= letter {[underline] letter or digit}
* Character set Unicode 4.0
* 8,16, 32 bit-wide characters

* Case not significant
 SpacePerson & SPACEPERSON
* but different from Space_Person

* Reserved words are forbidden

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Comments

* Terminate at end of line (i.e., no comment terminator sequence)

—— This 1s a multi-
—— Jline comment
A : B; —— this 1s an end-of-1line comment

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Decimal Numeric Literals

* Syntax
decimal literal ::=
numeral [.num] E [+numeral|-numeral]
numeral ::= digit {[underline] digit}

* Underscore is not significant
* E (exponent) must always be integer

* Examples
12 0 1E6 123 456
12.0 0.0 3.14159 26 2.3E-4

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Based Numeric Literals

based literal ::= base # numeral [.numeral] #
exponent

numeral ::= base digit { ' ' base digit }
* Basecanbe2..16
* Exponentis always a base 10 integer

Lo#FEFEH# => 4095

2#1111 1111 1111# => 4095 -- With underline
16#F.FF#E+2 => 4095.0

8#10#E+3 => 4096 (8 * 8**3)

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Object Declarations

* Variables and constants
* Basic Syntax

<name> : subtype indication [:= <initial value>];
* Examples

Z, Phase : Analog;

Max : constant Integer := 200;

-— variable with a constraint

Count : Integer range 0O .. Max := 0;

—— dynamic 1initial value via function call

Root : Tree := F(X);

-— Will call G(X) twice, once per variable

A, B : Integer := G(X);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Basic Types

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Ada Type Model

» Static Typing
* Object type cannot change

* Strong Typing
* By name
 Compiler-enforced operations and values
* Explicit conversion for “related” types
* Unchecked conversions possible

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Ada “Named Typing”

* Name differentiate types

* Structure does not

* |dentical structures may not be interoperable

type Yen is range O .. 100 000 000;
type Kilometers is range O .. 100 000 000;

Money : Yen;
Distance : Kilometers;

Money := Distance; - not legal

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Attributes

* Functions associated with a type
* May take input parameters

* Some are language-defined
* May be implementation-defined
* Built-in
 Cannot be user-defined
 Some can be overridden

* Examples

Typemark'Size
Integer'Max (A, B);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Numeric Types

AdaCore

https://public-training.adaco

re.com/2024-10-21.html

https://www.adacore.com/

Signhed Integer Types

* Range of sighed whole numbers
* Symmetric about zero (-0 = +0)

* Syntax
type <identifier> is range <lower> .. <upper>;

* Implicit numeric operators
-— 12-bit device
type Analog Conversions 1is range O .. 4095;
Count : Analog Conversions;

begin
Count := Count + 1;

end;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Range Attributes For All Scalars

*T'First
* First (smallest) value of type T
*T'Last
* Last (greatest) value of type T
* T'Range
e ShorthandforT'First .. T'Last
type Signed T 1is range -99 .. 100;
Smallest : Signed T := Signed T'First; - -99
Largest : Signed T := Signed T'Last; —-- 100

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Declaring Floating Point Types

* Syntax

type <identifier> 1is
digits <expression> [range constraint];

* digits - minimum number of significant digits
* Decimal digits, not bits

* Compiler choses representation
* From available floating point types
* May be more accurate, but not less
* [f none available — declaration is rejected

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Enumeration Types

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Enumeration Types

* Enumeration of logical values
* Integer value is an implementation detail

* Syntax
type <identifiler> is (<identifier-1list>) ;

* Literals
* Distinct, ordered
* Can be in multiple enumerations
type Colors is (Red, Orange, Yellow, Green, Blue, Violet);

type Stop Light is (Red, Yellow, Green);

—-— Red a member of both Colors and Stop Light
Shade : Colors := Red;
Light : Stop Light := Red;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Enumeration Type Operations

* Assignment, relationals

* Not numeric quantities
* Possible with attributes
* Notrecommended

type Directions is (North, South, East, West);
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

Heading : Directions;

Today, Tomorrow : Days;

Today := Mon;

Today := North; -- compile error
Heading := South;

Heading := East + 1; —-—- compile error

if Today < Tomorrow then

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Statements

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Assignment Statements

* Syntax
<variable> := <expression>;

* Value of expression is copied to target variable

* The type of the RHS must be same as the LHS
* Rejected at compile-time otherwise

type Miles T is range O .. Max Miles;

type Km T is range O .. Max Kilometers

M : Miles T := 2; -- universal integer legal for any integer
K : Km T := 2; -- universal integer legal for any integer

M := K; —-- compile error

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Assignment Statements, Not Expressions

* Separate from expressions
* No Ada equivalent for these:

int a =b =c¢ = 1;
while (line = readline(file))
{ ...do something with line... }

* No assignment in conditionals
*Eg.if (a == 1) comparedtoif (a = 1)

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Implicit Range Constraint Checking

* The following code
procedure Demo is
K : Integer;

P : Integer range O .. 100;
begin
P := K;

end Demo;

* Generates assignment checks similar to
if K < 0 or K > 100 then
raise Constraint Error;
else
P := K;
end if;

* Run-time performance impact

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Procedure Calls

* Procedure calls are statements as shown here
* More details in “Subprograms” section

procedure Activate (This : 1n out Foo;
Wait : in Boolean);

* Traditional call notation
Activate (Idle, True) ;

» “Distinguished Receiver” notation
* For taggedtypes

Idle.Activate (True) ;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Block Statements

begin
Get (V)
Get (U);
if U > V then -- swap them
Swap: declare
Temp : Integer;
begin
Temp := Uy
U :=V;
V := Temp;
end Swap;
-—- Temp does not exist here
end if;
Print (U);
Print (V);
end;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Conditional Statements

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore com

https://www.adacore.com/

“If-then-elsif” Statements

* Sequential choice with alternatives

* Avoids i f nesting

* elsif alternatives, tested in textual order
* else part still optional

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

“If-then-elsif” Example

if valve (N) /= Closed then if vValve (N) /= Closed then

Isolate (Valve (N)) ; Isolate (Valve (N)) ;
Failure (Valve (N)) ; Failure (Valve (N)) ;
else elsif System = Off then
if System = Off then Fallure (Valve (N));

Failure (Valve (N)):; end if;
end if;
end 1if;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

“case” Statements

type Directions is (Forward, Backward, Left, Right);
Direction : Directions;

case Direction is
when Forward =>
Set Mode (Drive);
Go Forward (1);
when Backward =>
Set Mode (Backup);
Go Backward (1);
when Left =>
Go Left (1);
when Right =>
Go Right (1);
end case;

Note: No fall-through between cases

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Loop Statements

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Basic Loops

* All kind of loops can be expressed
* Optional iteration controls
* Optional exit statements

* Example

Wash Hair : loop
Lather (Hair);
Rinse (Hair);

end loop Wash Hair;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

“while-loop” Statements

* Syntax
while boolean expression loop
sequence of statements
end loop;

* ldenticalto
loop
exit when not boolean expression;
sequence of statements

end loop;
* Example
while Count < Largest loop
Count := Count + 2;
Display (Count);
end loop;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

“for-in” Statements

* Successive values of a discrete type
* eg. enumerations values

* Example

for Day in Days T loop
Refresh Planning (Day);
end loop;

for Idx in reverse 1 .. 10 loop
Countdown (Idx):;
end loop;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Array Types

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Terminology

* Index Type
* Specifies the values to be used to access the array components

* Component Type
* Specifies the type of values contained by objects of the array type
* All components are of this same type

type Array T 1s array (Index T) of Component T;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Array Type Index Constraints

* Must be of an integer or enumeration type
* Default to predefined Integer

* Allowed to be null range
* Defines an empty array

type Schedule is array (Days range Mon .. Fri) of Float;

type Flags T is array (-10 .. 10) of Boolean;

type Dynamic is array (1 .. N) of Integer; —-- can be null range
subtype Line is String (1 .. 80);

subtype Translation is Matrix (1..3, 1..3);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Run-Time Index Checking

* Array indices are checked at run-time as needed
* Invalid index values resultin Constraint Error
procedure Test 1s B
type Int Arr 1is array (1..10) of Integer;
A : Int Arr;
K : Integer;

begin
A := (others => 0);
K := Foo;
A (K) := 42; -- runtime error 1f Foo returns < 1 or > 10

Put Line (A (K) 'Image);
end Test;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Unconstrained Array Types

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore com

https://www.adacore.com/

Unconstrained Array Type Declarations

* Do not specify bounds for objects
* Thus different objects of the same type may have different bounds

* Bounds cannot change once set

* Example

type Index is range 1 .. Integer'Last;
type Char Arr 1s array (Index range <>)

of Character;
S1 : Char Arr(1..10);
S2 : Char Arr := ('A', 'B', 'C");

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

“String” Types

* Language-defined unconstrained array types
* Always have a character component type
* Always one-dimensional

* Language defines various types

e String, with Character as component

subtype Positive is Integer range |1 .. Integer'Last;
type String is array (Positive range <>) of Character;

* Wide_String, with Wide_Character as component
* Wide_Wide_String, with Wide_Wide_Character as component

* Can create your own

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Aggregates

AdaCore

https://www.adacore.com/

Aggregate “Positional” Form

* Specifies array component values explicitly

* Uses implicit ascending index values
type Days 1is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;
Week : Working;

—-— Saturday and Sunday are False, everything else true
Week := (True, True, True, True, True, False, False);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Aggregate “Named” Form

* Explicitly specifies both index and corresponding component
values

* Allows any order to be specified

* Ranges and choice lists are allowed (like case choices)
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;

Week : Working;

Week := (Sat => False, Sun => False, Mon..Fri => True):;
Week := (Sat | Sun => False, Mon..Fri => True);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

* Indicates all components not yet assignhed a value

* All remaining components get this single value
* Similar to case statement's others

* Can be used to apply defaults too

type Schedule 1is array (Days) of Float;

Work : Schedule;

Normal : constant Schedule := (8.0, 8.0, 8.0, 8.0, 8.0,
others => 0.0);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Record Types

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Syntax and Examples

* Syntax (simplified)
type T is record
Component Name : Type [:= Default Value];

end record;

type T Empty is null record;

* Example
type Recordl T is record
Fieldl : integer;
Field2 : boolean;
end record;

* Records can be discriminated as well
type T (Size : Natural := 0) is record
Text : String (1 .. Size);
end record;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Dot Notation for Component Reference

type Months T is (January, February, ..., December);
type Date is record
Day : Integer range 1 .. 31;
Month : Months T;
Year : Integer range O .. 2099;
end record;
Arrival : Date;
Arrival.Day := 27; —-- components referenced by name
Arrival.Month := November;
Arrival.Year := 1990;
* Canreference nested components
Employee
.Birth Date
.Month := March;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Aggregates

AdaCore

https://www.adacore.com/

Aggregates

* Literal values for composite types

* As for arrays
e Default value / selector: <>, others

* Can use both named and positional
* Unambiguous

* Example:
(Pos 1 Value,
Pos 2 Value,
Component 3 => Pos 3 Value,
Component 4 => <>,
others => Remalning Value)

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Record Aggregate Examples

type Color T is (Red);
type Car T is record

Color : Color T;
Plate No : String (1 .. 6);
Year : Natural;

end record;

type Complex T is record
Real : Float;
Imaginary : Float;

end record;

declare
Car : Car T := (Red, "ABCI123", Year => 2 022);
Phase : Complex T := (1.2, 3.4);

begin
Phase := (Real => 5.6, Imaginary => 7.8);

end;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Default Values

AdaCore

https://public-training.adaco

re.com/2024-10-21.html

https://www.adacore.com/

Component Default Values

type Complex 1is
record
Real : Float := 0.0;
Imaginary : Float :=
end record;
—-— all components use defaults

0.0;

Phasor : Complex;
—-— all components must be specified
I : constant Complex := (0.0, 1.0);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Defaults Within Record Aggregates

* Specified via the box notation

* Value for the component is thus taken as for a stand-alone object declaration
* Sothere may or may not be a defined default!

* Can only be used with “named association” form
* But can mix forms, unlike array aggregates

type Complex 1is

record
Real : Float := 0.0;
Imaginary : Float := 0.0;
end record;
Phase := (42.0, Imaginary => <>);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Subprograms

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Introduction

* Are syntactically distinguished as function and procedure
* Functions represent values
* Procedures represent actions
function Is Leaf (T : Tree) return Boolean
procedure Split (T : in out Tree;
Left : out Tree;
Right : out Tree)

* Provide direct syntactic support for separation of specification from implementation

function Is Leaf (T : Tree) return Boolean;
function Is Leaf (T : Tree) return Boolean is
begin

end Is Leaf;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Parameters

Adacore https://public-training.adaco

re.com/2024-10-21.html

https://www.adacore.com/

Parameter Associations In Calls

* Associate formal parameters with actuals
* Both positional and named association allowed

Something (ActualX, Formal2 => Actualy)
Ssomething (FormalZ2 => Actualy,
Formall => ActualX);

* Having named followed by positional is forbidden

—-— Compilation Error
Something (Formall => ActualX, Actualy);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Parameter Modes and Return

Mode in
* Actual parameteris constant
 Can have default, used when no value is provided
procedure P (N : in Integer := 1; M : in Positive);

P (M => 2);

Mode out
* Writing is expected
* Readingis allowed
* Actual must be a writable object

Mode in out
* Actualis expected to be both read and written
* Actual must be a writable object

Function return
* Must always be handled

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Nested Subprograms

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Nested Subprogram Example

procedure Main is

function Read (Prompt : String) return Types.Line T is
begin

Put ("> ");

return Types.Line T'Value (Get Line);

end Read;
Lines : Types.Lines T (1 .. 10);
begin
for J in Lines'Range loop
Lines (J) := Read ("Line " & J'Image)
end loop;

end Main;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Packages

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Declarations

Adacore https://public-training.adaco

re.com/2024-10-21.html

https://www.adacore.com/

Package Declarations

* Requiredin all cases
* Cannot have a package without the declaration

* Describe the client's interface
* Declarations are exported to clients
* Effectively the “pin-outs” for the black-box

* When changed, requires client's recompilation
* The “pin-outs” have changed
package Float Stack is
Max : constant := 100;
procedure Push (X : in Float);
procedure Pop (X : out Float);
end Float Stack;

package Data is
Object : integer;
end Data;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Compile-Time Visibility Control

* [tems in the declaration are visible to users
package Some Package 1is
—-— exported declarations of
—= types, variables, subprograms
end Some Package;

* I[tems in the body are never externally visible
« Compiler prevents external references
package body Some Package 1is
—— hidden declarations of
—= types, variables, subprograms
—-— Implementations of exported subprograms etc.
end Some Package;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Example of Exporting To Clients

* Variables, types, exception, subprograms, etc.
* The primary reason for separate subprogram declarations
package P 1is
procedure This Is Exported;
end P;

package body P 1is
procedure Not Exported 1is

procedure This Is Exported 1is

end P;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Referencing Exported ltems

* Achieved via “dot notation”

* Package Specification
package Float Stack is
Max : constant := 100;
procedure Push (X : in Float);
procedure Pop (X : out Float);
end Float Stack;

* Package Reference

with Float Stack;

procedure Test 1is
X : Float;

begin
Float Stack.Pop (X);
Float Stack.Push (12.0);
if Count < Float Stack.Max then

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

“use” Clauses

* Provide direct visibility into packages' exported items
* Direct Visibility - as if object was referenced from within package being used

* May still use expanded name
package Ada.Text IO is
procedure Put Line(...);
procedure New Line(...);

end Ada.Text IO;

with Ada.Text IO;
procedure Hello is
use Ada.Text IO;
begin
Put Line ("Hello World");
New Line (3);
Ada.Text IO.Put Line ("Good bye");
end Hello;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Private Types

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Implementing Abstract Data
Types via Views

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore com

https://www.adacore.com/

Declaring Private Types for Views

* Partial syntax
type defining identifier is private;
* Private type declaration must occur in visible part
e Partial View

¢ Only partialinformation on the type
* Users canreference the type name

* Full type declaration must appear in private part
e Completionis the Full View
* Never visible to users
* Notvisible to designer until reached
package Bounded Stacks is

type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);

private
type Stack is record

Top : Positive;

end Bounded Stacks;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Users Declare Objects of the Type

X, Y, 4 : Stack;
Push (42, X);
if Empty (Y) then

Pop (Counter, 2);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Compile-Time Visibility Protection

* No type representation details available outside the package
* Therefore users cannot compile code referencing representation

* This does not compile

with Bounded Stacks;
procedure User 1is
S : Bounded Stacks.Stack;
begin
S.Top := 1; —-- Top 1s not visible
end User;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Program Structure

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Hierarchical Library Units

* Address extensibility issue
« Can extend packages with
visibility to parent private part

I I |
. . Library Unit Library Unit Library Unit
* Extensions do not require
. . A.B A.C A.D
recompilation of parent unit
* Visibility of parent's private part Library Unit
Is protected A.C.E

* Directly support subsystems Library Unit

* Extensions all have the same Il ACF
ancestor root name

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Programming By Extension

¢ Parent unit
package Complex is
type Number is private;
function "*" (Left, Right : Number
function "/" (Left, Right : Number
function "+" (Left, Right : Number
function "-" (Left, Right : Number

) return Number;
) return Number;
) return Number;
) return Number;
private

type Number is record

Real Part, Imaginary Part : Float;

end record;

end Complex;

* Extension created to work with parent unit
package Complex.Utils is
procedure Put (C : in Number) ;
function As String (C : Number) return String;

end Complex.Utils;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Extension Can See Private Section

* With certain limitations
with Ada.Text IO;
package body Complex.Utils is
procedure Put (C : in Number) is
begin
Ada.Text IO.Put(As String(C));
end Put;

function As String(C : Number)

return String is
begin

—-— Real Part and Imaginary Part are
-—- visible to child's body

return " (" & Float'Image (C.Real Part) & ", " &

14
Float'Image (C.Imaginary Part) & ")";
end As String;

end Complex.Utils;

Adacore https://public-training.adacore.com/2024-10-21.html

@ adacore.com

https://www.adacore.com/

Predefined Hierarchies

» Standard library facilities are children of Ada
 Ada.Text_IO
 Ada.Calendar
« Ada.Command_Line
 Ada.Exceptions
» et cetera

* Other root packages are also predefined
* Interfaces.C

Interfaces.Fortran

System.Storage_Pools

System.Storage_Elements

et cetera

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Genericity

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

The Notion of a Pattern

* Sometimes algorithms can be abstracted from types and subprograms
procedure Swap Int (Left, Right : in out Integer) is

V : Integer := Left;
begin
Left := Right;
Right := V;

end Swap Int;

procedure Swap Bool (Left, Right : in out Boolean) is

V : Boolean := Left;
begin

Left := Right;

Right := V;

end Swap Bool;

* Itwould be nice to extract these properties in some common pattern, and then just replace the parts that need to be replaced

procedure Swap (Left, Right : in out (Integer | Boolean)) is
V : (Integer | Boolean) := Left;
begin
Left := Right;
Right := V;
end Swap;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Ada Generic Compared to C++ Template

Ada Generic C++ Template
-— specification // prototype
generic template <class T>
type T is private; void Swap (T & L, T & R);

procedure Swap (L, R : in out T);
// implementation

template <class T>

-— Iimplementation

procedure Swap (L, R : in out T) is void Swap (T & L, T & R) {
Tmp : T = L; T Tmp = L;

begin L = R;
L := R; R = Tmp;
R := Tmp; }

end Swap;
// 1instance
—-— instance int x, vy,

procedure Swap F is new Swap (Float); Swap<int>(x,vy);

Works for Ada packages as well (similar to templates for C++ classes)

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Generic Contracts

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Definitions

* Aformal generic parameter is a template

* Properties are either Constraints or Capabilities
* Expressedfrom the body point of view
¢ Constraints: e.g. unconstrained, 1imited
* Capabilities: e.g. tagged, primitives

generic
type Pv is private; -- allocation, copy, assignment, '"="
with procedure Sort (T : Pv); -- primitive of Pv
type Unc (<>) is private; -— allocation require a value
type Lim is limited private; - no copy or comparison
type Disc is (<>); -- 'First, ordering

package Generic Pkg is [...]

* Actual parameter may require constraints, and must provide capabilities
package Pkg is new Generic Pkg (

Pv => Integer, —-- has capabilities of private

Sort => Sort -- procedure Sort (T : Integer)

Unc => String, -- uses "unconstrained" constraint
Lim => Float, -— does not use "limited" constraint
Disc => Boolean, —-- has capability of discrete

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Generic Formal Data

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Constants and Variables Parameters

* Variables can be specified on generic
the generic contract type T is private;
X1 : Integer; —-- constant
* The mode specifies the way X2 : in out T; -- variable
the variable can be used: procedure FP;
* 1n —readonly V : Float:

* in out — read write
procedure P I is new P

° Generlc variables can be (T —> Float,
defined after generic types X1 => 42,
X2 => V) ;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Generic Subprogram Parameters

* Subprograms can be defined in the generic contract

* Must be introduced by with to differ from the generic unit

generic
with procedure Callback;
procedure P;
procedure P 1is
begin
Callback;
end P;
procedure Something;
procedure P I is new P (Something);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Ada Contracts

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Design-By-Contract

* Source code acting in roles of client and supplier under a binding
contract

 Contract specifies requirements or guarantees

“A specification of a software element that affects its use by potential clients.”
(Bertrand Meyer)

 Supplier provides services
* Guarantees specific functional behavior
* Has requirements for guarantees to hold
e Client utilizes services

* Guarantees supplier's conditions are met
* Requires result to follow the subprogram's guarantees

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Assertion

* Boolean expression expected to be True

* Said to hold when True

pragma Assert (not Full (Stack));
-— stack 1s not full
pragma Assert (Stack Length = 0,
Message => '"stack was not empty");
—-— stack 1s empty

* Raises language-defined Assertion Error exception if
expression does not hold

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Defensive Programming

¢ Should be replaced by subprogram contracts when possible
procedure Push (S : Stack) is

Entry Length : constant Positive := Length (S);
begin

pragma Assert (not Is Full (S)); -- entry condition

[...]

pragma Assert (Length (S) = Entry Length + 1); -- exit condition
end Push;

* Subprogram contracts are an assertion mechanism
* Notadrop-inreplacement for all defensive code
procedure Force Acquire (P : Peripheral) is

begin
if not Available (P) then
-— Corrective action
Force Release (P);
pragma Assert (Available (P));
end if;
Acquire (P);
end;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Preconditions and
Postconditions

AdaCore

https://www.adacore.com/

Subprogram-based Assertions

Explicit part of a subprogram's specification
* Unlike defensive code

Precondition
* Assertion expected to hold prior to subprogram call

Postcondition
* Assertion expected to hold after subprogram return

Requirements and guarantees on both supplier and client

Syntax uses aspects
procedure Push (This : in out Stack T;

Value : Content T)

with Pre => not Full (This),
Post => not Empty (This)

and Top (This) =

Value;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Postcondition ' O1d Attribute

* Values as they were just before the call

* Uses language-defined attribute '01d

* Can be applied to most any visible object
* limitedtypes are forbidden
* May be expensive
* Expression can be arbitrary
* Typically out, in out parameters and globals
procedure Increment (This : in out Integer) with

Pre => This < Integer'Last,
Post => This = This'Old + 1;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Function Postcondition ' Resul t Attribute

* function result can be manipulated with 'Result

function Greatest Common Denominator
(A, B : Integer)
return Integer with
Pre => A > 0 and B > 0,
Post => 1Is GCD
(A, B,
Greatest Common Denominator'Result) ;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Type Invariants

AdaCore

https://public-training.adaco

re.com/2024-10-21.html

https://www.adacore.com/

Strong Typing

Ada supports strong typing

type Small Integer T is range -1 000 .. 1 000;
type Enumerated T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
type Array T is array (1 .. 3) of Boolean;

What if we need stronger enforcement?
e Number must be even
* Subset of non-consecutive enumerals
* Array should always be sorted

Type Invariant
* Property of type that is always true on external reference
* Guarantee to client, similar to subprogram postcondition

Subtype Predicate
* Property of type that is always true, unconditionally
* Can add arbitrary constraints to a type, unlike the “basic” type system

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Example Type Invariant

* A bank account balance must always be consistent
* Consistent Balance: Total Deposits - Total Withdrawals = Balance

package Bank 1is
type Account 1is private with
Type Invariant => Consistent Balance (Account);

—-— Called automatically for all Account objects
function Consistent Balance (Thilis : Account)
return Boolean;

private

end Bank;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Invariants Don't Apply Internally

* No checking within supplier package
* Otherwise there would be no way to implement anything!

* Only matters when clients can observe state

procedure Open (This : in out Account;
Name : in String;
Initial Deposit : in Currency) 1is
begin
This.Owner := To Unbounded String (Name);
This.Current Balance := Initial Deposit;
—— 1invariant would be false here!
This.Withdrawals := Transactions.Empty List;
This.Deposits := Transactions.Empty List;

This.Deposits.Append (Initial Deposit);
—-— 1invariant 1s now true
end Open;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Subtype Predicates

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Predicates

* Assertion expected to hold for all objects of given type

* Expressed as any legal boolean expression in Ada
* Quantified and conditional expressions
* Boolean function calls

* Two forms in Ada

e Static Predicates
* Specified via aspectnamed Static Predicate

* Dynamic Predicates
* Specified via aspect named Dynamic Predicate

* Can apply to type or subtype

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Subtype Predicate Examples

* Dynamic Predicate

subtype Even 1s Integer with Dynamic Predicate =>
Even mod 2 = 0; —-- Boolean expression
—-— (Even 1ndicates "current instance')

» Static Predicate

type Serial Baud Rate 1is range 110 .. 115200
with Static Predicate => Serial Baud Rate in

—-— Non-contiguous range
110 | 300 | 600 | 1200 | 2400 | 4800 |

9600 | 14400 | 19200 | 28800 | 38400 | 56000 |
570600 | 115200;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Predicate Checking

* Calls inserted automatically by compiler

* Violations raise exception Assertion Error
* When predicate does not hold (evaluates to False)

* Checks are done before value change
 Same as language-defined constraint checks

* Associated variable is unchanged when violation is detected

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Tasking

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

A Simple Task

* Concurrent code executionvia task
procedure Main is
task type Put T;
task body Put T is
begin
loop
delay 1.0;
Put Line ("T");
end loop;
end Put T;

T : Put T;
begin -- Main task body
loop
delay 1.0;
Put Line ("Main");
end loop;
end;

* Ataskis started when its declaration scope is elaborated
* Its enclosing scope exits when all tasks have finished

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Two Synchronization Models

* Active
* Rendezvous
* Client/ Server model
* Server entries
* Client entry calls

* Passive
* Protected objects model
 Concurrency-safe semantics

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Tasks

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Rendezvous Definitions

* Serverdeclares severalentry
* Clientcalls entries like subprograms
* Serveraccept the client calls

* Ateach standalone accept, servertask blocks
* Untilaclient calls the related entry
task type Msg Box T is
entry Start;
entry Receive Message (S : String);
end Msg Box T;

task body Msg Box T is
begin
loop
accept Start;
Put Line ("start");

accept Receive Message (S : String) do
Put Line (8);
end Receive Message;
end loop;
end Msg Box T;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Rendezvous Entry Calls

* Uponcallingan entry, client blocks

* Until serverreaches end of its accept block
T : Msg Box T;

Put Line ("calling start");
T.Start;

Put Line ("calling receilve 1");
T.Recelve Message ("1");

Put Line ("calling receilve 2");
T.Receive Message ("2");

* May be executed as follows:
calling start
start -—- May switch place with line below
calling receive 1 —-- May switch place with line above
Receive 1
calling receive 2
—-— Blocked until another task calls Start

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Accepting a Rendezvous

°* accept statement
* Wait on single entry
* |f entry call waiting: Server handles it
* Else: Server waits for an entry call

°* select statement
 Several entries accepted at the same time
 Can time-out on the wait
* Can be not blocking if no entry call waiting
 Can terminate if no clients can possibly make entry call
* Can conditionally accept a rendezvous based on a guard expression

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Protected Objects

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Protected Objects

* Multitask-safe accessors to get and set state
* No direct state manipulation
* No concurrent modifications

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Protected Objects Example

protected type Some Value 1is protected body Some Value is
procedure Set procedure Set
(V : Integer); (V : Integer) 1is
function Get begin
return Integer; Value := V;
private end Set;
Value : Integer;
end Some Value; function Get
return Integer is
begin
return Value;
end Get;

end Some Value;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Protected: Functions and Procedures

* A function can get the state
* Protected data is read-only
 Concurrent callto functionis allowed
* No concurrent callto procedure

* Aprocedure can set the state
* No concurrent call to either procedure or function

* In case of concurrency, other callers get blocked
* Until call finishes

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Delays

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Delay keyword

delay keyword part of tasking
Blocks for a time
Relative: Blocks for at least Duration
Absolute: Blocks until a given Calendar.Time orReal Time.Time
procedure Mailin 1s B
Relative : Duration := 1.0;
Absolute : Calendar.Time
:= Calendar.Time Of (2030, 10, 01);
begin
delay Relative;
delay until Absolute;
end Main;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Access Types

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Access Types Design

* Memory-addressed objects are called Access Types
o C++
int *P C =
malloc (sizeof (int));
int *P CPP = new 1int;
int *G C = &Some Int;

* Ada

type Integer General Access
is access all Integer;
G : aliased Integer;
G A : Integer General Access := G'access;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Null Values

* A pointer that does not point to any actual data hasanull value
* Access types have default value of null

* null can be used in assignments and comparisons
declare

type Acc 1s access all Integer;
V :© Accy
begin
if V = null then
-— will go here

end if
V := new Integer' (0);
V := null; -- semantically correct, but memory leak

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Dereferencing Access Types

* .all doesthe access dereference
* Letsyou access the object pointed to by the pointer

* .allisoptionalfor
* Access onacomponent of an array
* Accessonacomponentof arecord
type Record T is record

Fl, F2 : Integer;
end record;
type Integer Access T is access Integer;
type String Access T is access all String;
type Record Access T is access all Record T;

Integer Access : Integer Access T := new Integer;

String Access : String Access T := new String' ("abc");
Record Access : Record Access T := new R;

Integer Access.all := 123;

String Access (1) = =",

Record Access.F1 := 4567

Record Access.all := (7, 8);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

General Access Types

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore com

https://www.adacore.com/

General Access Types

* Can point to any pool (including stack)

type T is [...]
type T Access 1s access all T;
V. : T Access := new T;

» Still distinct type

* Conversions are possible

type T Access 2 1is access all T;
V2 : T Access 2 := T Access 2 (V); -- legal

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Allocations

* Objects are created with the new reserved word

* The created object must be constrained

* The constraint is given during the allocation
V : String Access := new String (1 .. 10);

* The object can be created by copying an existing object - using a
qualifier

V : String Access :=
new String' ("This 1s a String");

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Deallocations

* Deallocations are unsafe
* Multiple deallocations problems
* Memory corruptions
* Access to deallocated objects

* As soon as you use them, you lose the safety of your access

* But sometimes, you have to do what you have to do ...
* There's no simple way of doing it
* Ada provides Ada.Unchecked_Deallocation
* Has to be instantiated (it's a generic)
* Must work on an object, reset to null afterwards

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Referencing The Stack

* By default, stack-allocated objects cannot be referenced - and
can even be optimized into a register by the compiler

* aliaseddeclares an object to be referenceable through an
access value
V : aliased Integer;

* 'Access attribute gives a reference to the object

A : Int Access := V'Access;
* 'Unchecked Access does itwithout checks

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Tagged Types

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Derivation Ada vs C++

type Tl is tagged record class T1 {
Memberl : Integer; public:
end record; int Memberl;
virtual void Attr F(void);
procedure Attr F (This : T1); } s
type T2 is new Tl class T2 : public T1 {
with record public:
Member?2 : Integer; int Member?2;
end record; virtual void Attr F(void);
virtual void Attr F2(void);
overriding Y
procedure Attr F
(This : T2);
procedure Attr F2
(This : T2);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Tagged Derivation

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Difference with Simple Derivation

* Tagged derivation can change the structure of a type
* Keywords tagged recordandwith record

type Root 1s tagged record
F1 : Integer;
end record;

type Child is new Root with record
F2 : Integer;
end record;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Type Extension

* Atagged derivation has to be a type extension
* Usewith null recordifthere are no additional components
type Child is new Root with null record;
type Child is new Root; —-- illegal
* Conversion is only allowed from child to parent

V1 : Root;
V2 : Child;

V1 := Root (V2);
V2 := Child (V1),;, -- 1llegal

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Prefix Notation

* Tagged types primitives can be called as usual

* The call can use prefixed notation
* If the first argument is a controlling parameter

* No need foruse oruse type forvisibility
-— Priml visible even without *use Pkg*

X.Priml;
declare

use Pkg;
begin

Priml (X);

end;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Interfacing with C

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Import / Export

AdaCore

https://public-training.adaco

re.com/2024-10-21.html

https://www.adacore.com/

Import / Export Aspects (1/2)

* Aspect Import allows a C implementation to complete an Ada specification

* Adaview
procedure C Proc
with Import,
Convention => C,
External Name => "c proc'";

* Cimplementation
void SomeProcedure (void) {
// some code

}

* AspectExport allows an Ada implementation to complete a C specification

* Adaimplementation
procedure Some Procedure
with Export,
Convention => C,
External Name => "ada some procedure");

procedure Some Procedure is
begin
-— some code
end Some Procedure;
* Cview
extern void ada some procedure (void);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Import / Export Aspects (2/2)

* You can also import/export variables
* Variables imported won't be initialized

e Ada view

My Var : Integer Type
with Import,
Convention => C,
External Name => "my var'");

* C implementation

int my var;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Parameter Passing

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Passing Scalar Data as Parameters

* Ctypes are defined by the standard
* Adatypes are implementation-defined

* GNAT standard types are compatible with C types
* Implementation choice, use carefully

* Attheinterface level, scalar types must be either constrained with representation clauses, or coming from Interfaces.C

* Adaview
with Interfaces.C;
function C Proc (I : Interfaces.C.Int)
return Interfaces.C.Int
with Import,
Convention => C,
External Name => "c proc'");
* Cview

int ¢ proc (int i) {
/* some code */

}

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Passing Structures as Parameters

* An Ada record thatis mapping on a C struct must:
 Be marked as convention C to enforce a C-like memory layout
* Contain only C-compatible types

* CView
enum Enum {E1, E2, E3};
struct Rec {

int A, B;
Fnum C;
s
 Ada View

type Enum is (E1, E2, E3) with Convention => C;
type Rec is record

A, B : int;

C : Enum;
end record with Convention => C;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Parameter modes

* in scalar parameters passed by copy

* out and in out scalars passed using temporary pointer on C
side

* By default, composite types passed by reference on all modes

except when the type is marked C Pass By Copy
* Be very careful with records - some C ABI pass small structures by copy!

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Polymorphism

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Classes

* In Ada, a Class denotes an inheritance subtree
* Classof Tisthe class of T and all its children

* Type T'Class can designate any object typed after type of class of T
type Root is tagged null record;

type Childl is new Root with null record;

type Child2 is new Root with null record;

type Grand Childl is new Childl with null record;

-— Root'Class = {Root, Childl, Child2, Grand Childl}
—— Childl'Class = {Childl, Grand Childl}

—— Child2'Class = {ChildZ2}

—-— Grand Childl'Class = {Grand Childl}

* Objects of type T'Class have at least the properties of T
* Fieldsof T
* Primitivesof T

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Abstract Types

* Atagged type can be declared abstract

* Then, abstract taggedtypes:
* cannot be instantiated
* can have abstract subprograms (with no implementation)

* Non-abstract derivation of an abstract type must override and implement
abstract subprograms

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

'Class and Prefix Notation

Prefix notation rules apply when the first parameter is of a class wide type
type Root 1s tagged null record;

procedure P (V : Root'Class);
type Child is new Root with null record;

V1 : Root;
V2 : Root'Class := Root' (others => <>);

P (V1);
P (V2);
V1.P;
V2.P;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Dispatching and Redispatching

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore com

https://www.adacore.com/

Calls on class-wide types (1/2)

* Any subprogram expecting a T object can be called witha T'Class object
type Root 1s tagged null record;

procedure P (V : Root);

type Child is new Root with null record;
procedure P (V : Child);

V1 : Root'Class := [...]

V2 : Child'Class := [...]
begin

P (V1) ;

P (V2);

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Calls on class-wide types (2/2)

* The actual type of the object is not known at compile time

* Theright type will be selected at runtime

Ada C++
declare Root * V1 = new Root ()
V1l : Root'Class := Root * VZ2 = new Child ()
Root' (others => <>); V1->P () ;
V2 : Root'Class := V2->P ();
Child' (others => <>);
begin
V1.P; —-- calls P of Root
V2.P; —-- calls P of Child

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Low Level Programming

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Data Representation

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Data Representation vs Requirements

* Developer usually defines requirements on a type
type My Int is range 1 .. 10;

* The compiler then generates a representation for this type that can
accommodate requirements

* In GNAT, can be consulted using —-gnatR2 switch
type Ada2012 Int is range 1 .. 10
with Object Size => 8,
Value Size => 4,
Alignment => 1;

* These values can be explicitly set, the compiler will check their consistency

* They can be queried as attributes if needed
X : Integer := My Int'Alignment;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Value Size/ Size

* Value_Size (or Size in the Ada Reference Manual) is the minimal
number of bits required to represent data
* Forexample, Boolean'Size = 1

* The compiler is allowed to use larger size to represent an actual
object, but will check that the minimal size is enough

type Tl is range 1 .. 4
with Size => 3;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Alignment

* Number of bytes on which the type has to be aligned

* Some alignment may be more efficient than others in terms of
speed (e.g. boundaries of words (4, 8))

* Some alignment may be more efficient than others in terms of
memory usage

type Tl is range 1 .. 4
with Size => 4,
Alignment => &;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Pack Aspect

* pack aspect applies to composite types (record and array)
* Compiler optimizes data for size no matter performance impact

* Unpacked
type Enum is (El1, E2, E3);
type Rec is record
A : Integer;
B : Boolean;
C : Enum;
end record;
type Ar is array (1 .. 1000) of Boolean;
-— Rec'Size 1is 48, Ar'Size 1is 8000

* Packed
type Enum is (E1, E2, E3);
type Rec is record
A : Integer;
B : Boolean;
C : Enum;
end record with Pack;
type Ar is array (1 .. 1000) of Boolean;
pragma Pack (Ar);
-— Rec'Size is 35, Ar'Size is 1000

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Record Representation Clauses

* Exact mapping between a record type Recl is record
and its binary representation A : Integer range 0 .. 4;
Optimi . hard B Boolean;
(]
ptlmlzatlon purposes, or hardware C . Integer;
requirements D : Enum;

* Driver mapped on the address space, end record;

communication protocol... for Recl use record

* Fields represented as A at 0 range 0 .. 2;
<name> at <byte> range B at 0 range 3 .. 3;
<starting-bit> .. C at 0 range 4 .. 35;
<ending-bit> —-— unused space here

D at 5 range O .. 2;

end record;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Array Representation Clauses

* Component Size forarray's component's size

type Ar2 is array (1 .. 1000) of Boolean
with Component Size => Z;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Address Clauses and Overlays

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore com

https://www.adacore.com/

Address Clauses

* Ada allows specifying the address of an entity
Var : Unsigned 32 with Address => 16#1234 ABCD#;

* Very useful to declare I/0O registers

* Forthat purpose, the object should be declared volatile:
Var : Unsigned 32 with Volatile;

* Useful to read a value anywhere
function Get Byte (Addr : Address) return Unsigned 8 is
V : Unsigned 8 with Volatile, Address => Addr;
begin
return V;
end;
* |n particular the address doesn't need to be constant
* But must match alignment

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Unchecked Conversion

* Unchecked Conversion allows an unchecked bitwise conversion of data
between two types

* Needs to be explicitly instantiated
type Bitfield is array (1 .. Integer'Size) of Boolean;
function To Bitfilield is new
Ada.Unchecked Conversion (Integer, Bitfield);
V ¢ Integer;
V2 : Bitfield := To Bitfield (V);

* Avoid conversion if the sizes don't match
* Not defined by the standard
* Many compilers will warn if the type sizes do not match

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Inline Assembly

Adacore https://public-training.adacore.com/2024-10-21.html

https://www.adacore.com/

Simple Statement

* Instruction without inputs/outputs

Asm ("halt", Volatile => True) ;
* You may specify Volatile to avoid compiler optimizations

* |n general, keep it False unless it created issues
* You can group several instructions

Asm ("nop" & ASCITI.LF & ASCII.HT
& "nop'", Volatile => True);
Asm ("nop; nop", Volatile => True);
* The compiler doesn't check the assembly, only the assembler will
* Error message might be difficult to read

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

Instruction Counter Example (x86)

with System.Machine Code; use System.Machine Code;

with Ada.Text IO; use Ada.Text IO;
with Interfaces; use Interfaces;
procedure Main is

Low : Unsigned 32;

High : Unsigned 32;
Value : Unsigned 64;
use ASCII;
begin
Asm ("rdtsc" & LF,
Outputs =>

(Unsigned 32'Asm Output ("=g", Low),
Unsigned 32'Asm Output ("=a'", High)),
Volatile => True) ;
Values := Unsigned 64 (Low) +
(

Unsigned 64 (High) * 2 ** 32;
Put Line (Values'Image);
end Main;

Adacore https://public-training.adacore.com/2024-10-21.html @ adacore.com

https://www.adacore.com/

	Overview
	Slide 1: A Brief Overview of Ada and SPARK
	Slide 2: Core Language Content

	Declarations
	Slide 3: Declarations
	Slide 4: Identifiers
	Slide 5: Comments
	Slide 6: Decimal Numeric Literals
	Slide 7: Based Numeric Literals
	Slide 8: Object Declarations

	Basic Types
	Slide 9: Basic Types
	Slide 10: Ada Type Model
	Slide 11: Ada “Named Typing”
	Slide 12: Attributes
	Slide 13: Numeric Types
	Slide 14: Signed Integer Types
	Slide 15: Range Attributes For All Scalars
	Slide 16: Declaring Floating Point Types
	Slide 17: Enumeration Types
	Slide 18: Enumeration Types
	Slide 19: Enumeration Type Operations

	Statements
	Slide 20: Statements
	Slide 21: Assignment Statements
	Slide 22: Assignment Statements, Not Expressions
	Slide 23: Implicit Range Constraint Checking
	Slide 24: Procedure Calls
	Slide 25: Block Statements
	Slide 26: Conditional Statements
	Slide 27: “If-then-elsif” Statements
	Slide 28: “If-then-elsif” Example
	Slide 29: “case” Statements
	Slide 30: Loop Statements
	Slide 31: Basic Loops
	Slide 32: “while-loop” Statements
	Slide 33: “for-in” Statements

	Array Types
	Slide 34: Array Types
	Slide 35: Terminology
	Slide 36: Array Type Index Constraints
	Slide 37: Run-Time Index Checking
	Slide 38: Unconstrained Array Types
	Slide 39: Unconstrained Array Type Declarations
	Slide 40: “String” Types
	Slide 41: Aggregates
	Slide 42: Aggregate “Positional” Form
	Slide 43: Aggregate “Named” Form
	Slide 44: “Others”

	Record Types
	Slide 45: Record Types
	Slide 46: Syntax and Examples
	Slide 47: Dot Notation for Component Reference
	Slide 48: Aggregates
	Slide 49: Aggregates
	Slide 50: Record Aggregate Examples
	Slide 51: Default Values
	Slide 52: Component Default Values
	Slide 53: Defaults Within Record Aggregates

	Subprograms
	Slide 54: Subprograms
	Slide 55: Introduction
	Slide 56: Parameters
	Slide 57: Parameter Associations In Calls
	Slide 58: Parameter Modes and Return
	Slide 59: Nested Subprograms
	Slide 60: Nested Subprogram Example

	Packages
	Slide 61: Packages
	Slide 62: Declarations
	Slide 63: Package Declarations
	Slide 64: Compile-Time Visibility Control
	Slide 65: Example of Exporting To Clients
	Slide 66: Referencing Exported Items
	Slide 67: “use” Clauses

	Private Types
	Slide 68: Private Types
	Slide 69: Implementing Abstract Data Types via Views
	Slide 70: Declaring Private Types for Views
	Slide 71: Users Declare Objects of the Type
	Slide 72: Compile-Time Visibility Protection

	Program Structure
	Slide 73: Program Structure
	Slide 74: Hierarchical Library Units
	Slide 75: Programming By Extension
	Slide 76: Extension Can See Private Section
	Slide 77: Predefined Hierarchies

	Genericity
	Slide 78: Genericity
	Slide 79: The Notion of a Pattern
	Slide 80: Ada Generic Compared to C++ Template
	Slide 81: Generic Contracts
	Slide 82: Definitions
	Slide 83: Generic Formal Data
	Slide 84: Constants and Variables Parameters
	Slide 85: Generic Subprogram Parameters

	Ada Contracts
	Slide 86: Ada Contracts
	Slide 87: Design-By-Contract
	Slide 88: Assertion
	Slide 89: Defensive Programming
	Slide 90: Preconditions and Postconditions
	Slide 91: Subprogram-based Assertions
	Slide 92: Postcondition 'Old Attribute
	Slide 93: Function Postcondition 'Result Attribute
	Slide 94: Type Invariants
	Slide 95: Strong Typing
	Slide 96: Example Type Invariant
	Slide 97: Invariants Don't Apply Internally
	Slide 98: Subtype Predicates
	Slide 99: Predicates
	Slide 100: Subtype Predicate Examples
	Slide 101: Predicate Checking

	Tasking
	Slide 102: Tasking
	Slide 103: A Simple Task
	Slide 104: Two Synchronization Models
	Slide 105: Tasks
	Slide 106: Rendezvous Definitions
	Slide 107: Rendezvous Entry Calls
	Slide 108: Accepting a Rendezvous
	Slide 109: Protected Objects
	Slide 110: Protected Objects
	Slide 111: Protected Objects Example
	Slide 112: Protected: Functions and Procedures
	Slide 113: Delays
	Slide 114: Delay keyword

	Access Types
	Slide 115: Access Types
	Slide 116: Access Types Design
	Slide 117: Null Values
	Slide 118: Dereferencing Access Types
	Slide 119: General Access Types
	Slide 120: General Access Types
	Slide 121: Allocations
	Slide 122: Deallocations
	Slide 123: Referencing The Stack

	Tagged Types
	Slide 124: Tagged Types
	Slide 125: Derivation Ada vs C++
	Slide 126: Tagged Derivation
	Slide 127: Difference with Simple Derivation
	Slide 128: Type Extension
	Slide 129: Prefix Notation

	Interfacing With C
	Slide 130: Interfacing with C
	Slide 131: Import / Export
	Slide 132: Import / Export Aspects (1/2)
	Slide 133: Import / Export Aspects (2/2)
	Slide 134: Parameter Passing
	Slide 135: Passing Scalar Data as Parameters
	Slide 136: Passing Structures as Parameters
	Slide 137: Parameter modes

	Polymorphism
	Slide 138: Polymorphism
	Slide 139: Classes
	Slide 140: Abstract Types
	Slide 141: 'Class and Prefix Notation
	Slide 142: Dispatching and Redispatching
	Slide 143: Calls on class-wide types (1/2)
	Slide 144: Calls on class-wide types (2/2)

	Low Level Programming
	Slide 145: Low Level Programming
	Slide 146: Data Representation
	Slide 147: Data Representation vs Requirements
	Slide 148: Value_Size / Size
	Slide 149: Alignment
	Slide 150: Pack Aspect
	Slide 151: Record Representation Clauses
	Slide 152: Array Representation Clauses
	Slide 153: Address Clauses and Overlays
	Slide 154: Address Clauses
	Slide 155: Unchecked Conversion
	Slide 156: Inline Assembly
	Slide 157: Simple Statement
	Slide 158: Instruction Counter Example (x86)

