
GNAT SAS Overview

GNAT SAS Overview

1 / 332

GNAT SAS Overview
About This Course

About This Course

2 / 332

GNAT SAS Overview
About This Course

Styles

This is a definition
this/is/a.path
code is highlighted
commands are emphasised --like-this

3 / 332

GNAT SAS Overview
GNAT Static Analysis Suite (GNAT SAS)

GNAT Static Analysis Suite (GNAT SAS)

4 / 332

GNAT SAS Overview
GNAT Static Analysis Suite (GNAT SAS)

What Is Static Analysis?

Symbolic interpretation of source code
Find what could go wrong
No execution

Formally verifying high level or abstract properties
Strong guarantees

May be exhaustive
All possible errors are reported
No false negatives; there may be false positives

If the analyzer does not report a problem, there is no problem

5 / 332

GNAT SAS Overview
GNAT Static Analysis Suite (GNAT SAS)

How Does Static Analysis Save Money?

Costs shift
From later, expensive phases
To earlier, cheaper phases

6 / 332

GNAT SAS Overview
GNAT Static Analysis Suite (GNAT SAS)

What Is GNAT SAS?

Set of analysis engines with complementary capabilities
Able to detect range of issues spanning from breaking coding style
standards to deep logic errors
Designed to support large systems and to detect wide range of
programming errors such as

Misuse of pointers
Indexing out of arrays
Buffer overflows
Numeric overflows
Numeric wraparounds
Improper use of Application Programming Interfaces (APIs)
and more

7 / 332

GNAT SAS Overview
GNAT Static Analysis Suite (GNAT SAS)

What Does GNAT SAS Do?

Pinpoints root cause of each error to the source line of code
Analyzes partial or full systems to produce reports
Maintains history to compare current results to a baseline

8 / 332

GNAT Metrics Tool

GNAT Metrics Tool

9 / 332

GNAT Metrics Tool
Introduction

Introduction

10 / 332

GNAT Metrics Tool
Introduction

Overview of GNAT Metrics Tool gnatmetric

Utility for computing various program metrics
Select desired metrics from:

Lines
Complexity
Contract
Syntax elements (e.g. nesting levels, number of parameters)
Coupling

Configurable scope of analysis
Current file
Current project
Current project and subprojects

GNAT Studio provides a GUI interface
Selecting the metrics to compute
Selecting the scope of analysis
Displaying the results

11 / 332

GNAT Metrics Tool
Introduction

Invoking From GNAT Studio
Start analysis

Select options and perform analysis

12 / 332

GNAT Metrics Tool
Introduction

Invoking From the Command Line

Command line help (partial output)
gnatmetric --help

usage: gnatmetric [options] {filename}
options:
--version - Display version and exit
--help - Display usage and exit

-Pproject - Use project file project. Only one such switch can be used
-U - process all sources of the argument project
-U main - process the closure of units rooted at unit main
--no-subprojects - Process sources of root project only
-Xname=value - specify an external reference for argument project file
--subdirs=dir - specify subdirectory to place the result files into
-eL - follow all symbolic links when processing project files

--verbose - verbose mode
--quiet - quiet mode

Command line invocation
gnatmetric -P sdc.gpr -U --lines-all --complexity-all --syntax-all --coupling-all

13 / 332

GNAT Metrics Tool
Introduction

Useful Command Line Options

--help Display usage and exit
-Pproject Use project file project. Only one such switch can be used
-U main Process the closure of units rooted at unit main
--contract-all All contract metrics
--complexity-all All complexity metrics
--lines-all All line metrics
--syntax-all All syntax element metrics
--coupling-all All coupling metrics

14 / 332

GNAT Metrics Tool
Output Control

Output Control

15 / 332

GNAT Metrics Tool
Output Control

Generated Outputs

gnatmetric has three types of outputs

Execution log
Text output from command

Command results
Text files for each unit processed
<ada-filename>.metrix

Complete results
XML file containing results for all units processed
metrix.xml

16 / 332

GNAT Metrics Tool
Output Control

Controlling Output Generation

From GNAT Studio
Execution log generated and stored in
gnathub/logs/gnatmetric.log in object file folder

Command results generated and stored in object file folder
Complete results generated and stored in object file folder

From the command line
When setting switch --no-text-output

Execution log not generated
Command results not generated
Complete results generated and stored in object file folder

Without switch --no-text-output
Execution log displayed on console
Command results generated and stored in object file folder
Complete results only generated if switches
--generate-xml-output or --generate-xml-schema

specified
17 / 332

GNAT Metrics Tool
Output Control

Execution Log

gnatmetric -P default.gpr -U --lines-all

Line metrics summed over 11 units
all lines : 141
code lines : 118
comment lines : 1
end-of-line comments : 0
comment percentage : 0.84
blank lines : 22

Average lines in body: 7.33

18 / 332

GNAT Metrics Tool
Output Control

Command Results
gnatmetric -P default.gpr -U --lines-all

Metrics computed for src\line_metrics_example.adb
containing package body Line_Metrics_Example

=== Code line metrics ===
all lines : 19
code lines : 15
comment lines : 1
end-of-line comments: 0
comment percentage : 6.25
blank lines : 3

Average lines in body: 6.00

Line_Metrics_Example (package body - library item at lines 2: 19)

=== Code line metrics ===
all lines : 18
code lines : 14
comment lines : 1
end-of-line comments: 0
comment percentage : 6.66
blank lines : 3

Internal (procedure body at lines 4: 7)

=== Code line metrics ===
all lines : 4
code lines : 4
comment lines : 0
end-of-line comments: 0
comment percentage : 0.00
blank lines : 0

Example (procedure body at lines 10: 17)

=== Code line metrics ===
all lines : 8
code lines : 8
comment lines : 0
end-of-line comments: 0
comment percentage : 0.00
blank lines : 0

19 / 332

GNAT Metrics Tool
Output Control

Complete Results
gnatmetric -P default.gpr -U --lines-all --generate-xml-output

(partial file)

<file name="C:\temp\gnatmetric\src\line_metrics_example.adb">
<metric name="all_lines">19</metric>
<metric name="code_lines">15</metric>
<metric name="comment_lines">1</metric>
<metric name="eol_comments">0</metric>
<metric name="comment_percentage">6.25</metric>
<metric name="blank_lines">3</metric>
<metric name="average_lines_in_bodies">6.00</metric>
<unit name="Line_Metrics_Example" kind="package body" line="2" col="1">

<metric name="all_lines">18</metric>
<metric name="code_lines">14</metric>
<metric name="comment_lines">1</metric>
<metric name="eol_comments">0</metric>
<metric name="comment_percentage">6.66</metric>
<metric name="blank_lines">3</metric>
<unit name="Internal" kind="procedure body" line="4" col="4">

<metric name="all_lines">4</metric>
<metric name="code_lines">4</metric>
<metric name="comment_lines">0</metric>
<metric name="eol_comments">0</metric>
<metric name="comment_percentage">0.00</metric>
<metric name="blank_lines">0</metric>

</unit>
<unit name="Example" kind="procedure body" line="10" col="4">

<metric name="all_lines">8</metric>
<metric name="code_lines">8</metric>
<metric name="comment_lines">0</metric>
<metric name="eol_comments">0</metric>
<metric name="comment_percentage">0.00</metric>
<metric name="blank_lines">0</metric>

</unit>
</unit>

</file>

20 / 332

GNAT Metrics Tool
Output Control

A Little More on Controlling Output Generation

Some more switches to control output generation

output-dir=dirname Store <ada-filename>.metrix into dirname
generate-xml-output Generate XML output
generate-xml-schema Generate XML output and corresponding schema file
no-text-output No <ada-filename>.metrix or log files
output-suffix=file-suffix Add file-suffix to end of filename for file results

Add "." if you want it to be a file extension
global-file-name=filename Full path to the executable log file
xml-file-name=filename Full path to the XML file
short-file-names Use short source file names in output

21 / 332

GNAT Metrics Tool
Exploring the Results

Exploring the Results

22 / 332

GNAT Metrics Tool
Exploring the Results

Line Metrics Explained

Average Lines In Body Average number of code lines in subprogram
bodies, task bodies, entry bodies and
package body executable code

All Lines Total number of lines in file(s)
Blank Lines Total number of blank in file(s)
Code Lines Total lines of code in file(s)
Comment Lines Total lines of comments in file(s)
Comment Percentage Comment lines divided by total of code lines

and comment lines
End-Of-Line Comments Count of code lines that also contain

comments

Code line is a non-blank line that is not a comment
23 / 332

GNAT Metrics Tool
Exploring the Results

Line Metrics Code Example

1 with Ada.Text_IO; use Ada.Text_IO;
2 package body Line_Metrics_Example is
3

4 procedure Internal (C : Character) is
5 begin
6 Put (C);
7 end Internal;
8

9 -- Print the prompt
10 procedure Example (S1, S2 : String) is
11 S : constant String := S1 & S2;
12 begin
13 for C of S loop
14 Internal (C);
15 end loop;
16 New_Line;
17 end Example;
18

19 end Line_Metrics_Example;
24 / 332

GNAT Metrics Tool
Exploring the Results

Line Metrics Output
gnatmetric -Pdefault.gpr --lines-all line_metrics_example.adb

line_metrics_example.metrix

=== Code line metrics ===
all lines : 19
code lines : 15
comment lines : 1
end-of-line comments: 0
comment percentage : 6.25
blank lines : 3

Average lines in body: 6.00

Line_Metrics_Example (package body - library item at lines 2: 19)

=== Code line metrics ===
all lines : 18
code lines : 14
comment lines : 1
end-of-line comments: 0
comment percentage : 6.66
blank lines : 3

Internal (procedure body at lines 4: 7)

=== Code line metrics ===
all lines : 4
code lines : 4
comment lines : 1
end-of-line comments: 0
comment percentage : 0.00
blank lines : 0

Example (procedure body at lines 10: 17)

=== Code line metrics ===
all lines : 8
code lines : 8
comment lines : 0
end-of-line comments: 0
comment percentage : 0.00
blank lines : 0

25 / 332

GNAT Metrics Tool
Exploring the Results

Syntax Element Metrics Explained

All Declarations Total number of objects declared
All Statements Total number of statements in file(s)
All Subprogram Bodies Total number of subprograms in file(s)
All Type Definitions Total number of types in file(s)
Logical SLOC Total of declarations plus statements
Public Subprograms Count of subprograms declared in

visible part of package
Public Types Count of types (not subtypes) declared in

the visible part of a package plus in
the visible part of a generic nested package

Maximal Construct Nesting Maximal nesting level of composite
syntactic constructs

Maximum Unit Nesting Maximal static nesting level of inner
program units

26 / 332

GNAT Metrics Tool
Exploring the Results

Syntax Element Metrics Code Example
1 package body Syntax_Metrics_Example is
2

3 function "&"
4 (L, R : String_T)
5 return String_T is
6 (From_String (To_String (L) & To_String (R)));
7

8 function To_String
9 (S : String_T)

10 return String is
11 (S.Text (1 .. S.Length));
12

13 function From_String
14 (S : String)
15 return String_T is
16 L : constant Natural
17 := Integer'Min (S'Length, Maximum_Length);
18 Retval : String_T;
19 begin
20 Retval.Length := L;
21 Retval.Text (1 .. L) := S (S'First .. S'First + L - 1);
22 return Retval;
23 end From_String;
24

25 end Syntax_Metrics_Example;

27 / 332

GNAT Metrics Tool
Exploring the Results

Syntax Element Metrics Output
gnatmetric -Pdefault.gpr --syntax-all syntax_metrics_example.adb

syntax_metrics_example.metrix

Syntax_Metrics_Example (package body - library item at lines 1: 25)

=== Element metrics ===
all subprogram bodies : 1
all statements : 3
all declarations : 9
logical SLOC : 12
maximal unit nesting : 1
maximal construct nesting: 2

"&" (expression function at lines 3: 6)

=== Element metrics ===
all statements : 0
all declarations : 2
logical SLOC : 2
maximal construct nesting: 1
all parameters : 2
IN parameters : 2
OUT parameters : 0
IN OUT parameters : 0

To_String (expression function at lines 8: 11)

=== Element metrics ===
all statements : 0
all declarations : 2
logical SLOC : 2
maximal construct nesting: 1
all parameters : 1
IN parameters : 1
OUT parameters : 0
IN OUT parameters : 0

From_String (function body at lines 13: 23)

=== Element metrics ===
all statements : 3
all declarations : 4
logical SLOC : 7
maximal construct nesting: 1

28 / 332

GNAT Metrics Tool
Exploring the Results

Complexity Metrics Explained

Average Complexity Total Cyclomatic Complexity divided by
total number of subprograms

Cyclomatic Complexity McCabe cyclomatic complexity (number of
independent paths in the control flow graph)

Essential Complexity McCabe essential complexity (cyclomatic
complexity after removing blocks with single
entry/exit points)

Expression Complexity Complexity introduced by short-circuit
control forms only

Maximum Loop Nesting Maximum depth of nested loops
Statement Complexity Complexity introduced by control statements

only, without taking into account
short-circuit forms

29 / 332

GNAT Metrics Tool
Exploring the Results

Understanding McCabe Complexity

http://www.mccabe.com/pdf/mccabe-nist235r.pdf

Given a control flow graph of a program
E - number of edges
N - number of nodes
P - number of connected components (exit nodes)

The complexity v(G) is computed by:

v(G) = E − N + 2 ∗ P

Aimed a measuring the complexity of execution paths
Needs to be adapted for each language

30 / 332

GNAT Metrics Tool
Exploring the Results

McCabe Example

if A then
Put_Line ("A");

else
Put_Line ("!A");

end if;

if B or else C then
Put_Line ("BC");

end if;

9 edges - 7 nodes + 2 * 1 exit =
complexity 4

31 / 332

GNAT Metrics Tool
Exploring the Results

Complexity Metrics Code Example

1 package body Complexity_Metrics_Example is
2

3 procedure Example (S : in out String) is
4 Retval : String (S'First .. S'Last);
5 Next : Integer := S'First;
6 procedure Set (C : Character) is
7 begin
8 Retval (Next) := C;
9 Next := Next + 1;

10 end Set;
11 begin
12 if S'Length > 0 then
13 for C of reverse S loop
14 Set (C);
15 end loop;
16 end if;
17 end Example;
18

19 end Complexity_Metrics_Example;
32 / 332

GNAT Metrics Tool
Exploring the Results

Complexity Metrics Output
gnatmetric -Pdefault.gpr --complexity-all complexity_metrics_example.adb

complexity_metrics_example.metrix

Complexity_Metrics_Example (package body - library item at lines 1: 19)

Example (procedure body at lines 3: 17)

=== Complexity metrics ===
statement complexity : 3
expression complexity : 0
cyclomatic complexity : 3
essential complexity : 1
maximum loop nesting : 1
extra exit points : 0

Set (procedure body at lines 6: 10)

=== Complexity metrics ===
statement complexity : 1
expression complexity : 0
cyclomatic complexity : 1
essential complexity : 1
maximum loop nesting : 0
extra exit points : 0

=== Average complexity metrics ===
statement_complexity : 2.00
expression_complexity : 0.00
cyclomatic_complexity : 2.00
essential_complexity : 1.00
max_loop_nesting : 1.00

33 / 332

GNAT Metrics Tool
Exploring the Results

Coupling Metrics Explained

Measures dependencies between given entity and other entities in
the program

High coupling may signal potential issues with maintainability

Metrics computed:

Object-oriented coupling Classes in traditional object-oriented sense
Unit coupling All units making up a program
Control coupling Dependencies between unit and other units

that contain subprograms

34 / 332

GNAT Metrics Tool
Exploring the Results

Coupling Metrics

Uses Ada's approach to definition of class, but only for
polymorphic classes:

Tagged types declared within packages
Interface types declared within packages

Two kinds of coupling computed:

Fan-out coupling Number of classes given class depends on
Fan-in coupling Number of classes that depend on given class

Package bodies and specs for classes are both considered when
computing dependencies

35 / 332

GNAT Metrics Tool
Exploring the Results

Coupling Metrics Code Example
package Coupling_Metrics_Dependency is

type Record_T is tagged private;
function Set (A, B : Integer) return Record_T;
function Get (A : Record_T) return Integer;
function Add (A, B : Record_T) return Record_T;

private
type Record_T is tagged record

Field1, Field2 : Integer;
end record;

end Coupling_Metrics_Dependency;

with Coupling_Metrics_Dependency;
use Coupling_Metrics_Dependency;
package Coupling_Metrics_Example is

procedure Example (L, R : Record_T);
end Coupling_Metrics_Example;

with Coupling_Metrics_Dependency;
use Coupling_Metrics_Dependency;
with Coupling_Metrics_Example;
procedure Main is

A : constant Record_T := Set (1, 2);
B : constant Record_T := Set (30, 40);

begin
Coupling_Metrics_Example.Example (A, B);

end Main;

36 / 332

GNAT Metrics Tool
Exploring the Results

Coupling Metrics Output

gnatmetric -Pdefault.gpr -U --coupling-all
Coupling metrics:
=================

Unit Coupling_Metrics_Dependency (coupling_metrics_dependency.ads)
tagged fan-out coupling : 0
hierarchy fan-out coupling: 0
tagged fan-in coupling : 0
hierarchy fan-in coupling : 0
control fan-out coupling : 0
control fan-in coupling : 2
unit fan-out coupling : 0
unit fan-in coupling : 2

Unit Coupling_Metrics_Example (coupling_metrics_example.ads)
control fan-out coupling : 1
control fan-in coupling : 1
unit fan-out coupling : 1
unit fan-in coupling : 1

Unit Main (main.adb)
control fan-out coupling : 2
control fan-in coupling : 0
unit fan-out coupling : 2
unit fan-in coupling : 0

37 / 332

GNAT Metrics Tool
Lab

Lab

38 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab Setup

Copy the tutorial folder from the course materials location
Contents of the tutorial folder:

sdc.gpr - project file
common - source directory
struct - source directory
obj - object file (and metrics results) directory

From a command prompt, type gnatmetric --help to verify
your path is set correctly

If not, add the appropriate bin directory to your path
Typically (for Windows), this is located in
C:\GNATSAS\<version>\bin

39 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - GUI Part 1

Use GNAT Studio to open the project sdc.gpr
Select instructions.adb in the struct folder
Perform metrics analysis to get all line metrics on this file

Analyze -> Metrics -> Compute Metrics on Current File
Select All line metrics and press Execute

Question 1
How many lines in the file?
In subprogram Process?

59 lines in the file
20 lines in Process

Question 2
Is there any information for
the package spec?

No - Current File means actual
file, not package

40 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - GUI Part 1

Use GNAT Studio to open the project sdc.gpr
Select instructions.adb in the struct folder
Perform metrics analysis to get all line metrics on this file

Analyze -> Metrics -> Compute Metrics on Current File
Select All line metrics and press Execute

Question 1
How many lines in the file?
In subprogram Process?

59 lines in the file
20 lines in Process

Question 2
Is there any information for
the package spec?

No - Current File means actual
file, not package

40 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - GUI Part 1

Use GNAT Studio to open the project sdc.gpr
Select instructions.adb in the struct folder
Perform metrics analysis to get all line metrics on this file

Analyze -> Metrics -> Compute Metrics on Current File
Select All line metrics and press Execute

Question 1
How many lines in the file?
In subprogram Process?

59 lines in the file
20 lines in Process

Question 2
Is there any information for
the package spec?

No - Current File means actual
file, not package

40 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - GUI Part 1

Use GNAT Studio to open the project sdc.gpr
Select instructions.adb in the struct folder
Perform metrics analysis to get all line metrics on this file

Analyze -> Metrics -> Compute Metrics on Current File
Select All line metrics and press Execute

Question 1
How many lines in the file?
In subprogram Process?

59 lines in the file
20 lines in Process

Question 2
Is there any information for
the package spec?

No - Current File means actual
file, not package

40 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - GUI Part 2

Perform metrics analysis to get all complexity metrics in the project

Analyze -> Metrics -> Compute Metrics on Current Project
Select All complexity metrics and press Execute

Question 1
What is the average
complexity for the project?
stack.adb?

2.3
1.7

Question 2
Which file has an essential
complexity of 1?

sdc.adb

41 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - GUI Part 2

Perform metrics analysis to get all complexity metrics in the project

Analyze -> Metrics -> Compute Metrics on Current Project
Select All complexity metrics and press Execute

Question 1
What is the average
complexity for the project?
stack.adb?

2.3
1.7

Question 2
Which file has an essential
complexity of 1?

sdc.adb

41 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - GUI Part 2

Perform metrics analysis to get all complexity metrics in the project

Analyze -> Metrics -> Compute Metrics on Current Project
Select All complexity metrics and press Execute

Question 1
What is the average
complexity for the project?
stack.adb?

2.3
1.7

Question 2
Which file has an essential
complexity of 1?

sdc.adb

41 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - GUI Part 2

Perform metrics analysis to get all complexity metrics in the project

Analyze -> Metrics -> Compute Metrics on Current Project
Select All complexity metrics and press Execute

Question 1
What is the average
complexity for the project?
stack.adb?

2.3
1.7

Question 2
Which file has an essential
complexity of 1?

sdc.adb

41 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - GUI Part 2

Perform metrics analysis to get all complexity metrics in the project

Analyze -> Metrics -> Compute Metrics on Current Project
Select All complexity metrics and press Execute

Question 1
What is the average
complexity for the project?
stack.adb?

2.3
1.7

Question 2
Which file has an essential
complexity of 1?

sdc.adb

41 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - GUI Part 2

Perform metrics analysis to get all complexity metrics in the project

Analyze -> Metrics -> Compute Metrics on Current Project
Select All complexity metrics and press Execute

Question 1
What is the average
complexity for the project?
stack.adb?

2.3
1.7

Question 2
Which file has an essential
complexity of 1?

sdc.adb

41 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - CLI Part 1

Use the command line to generate syntax elements metrics for the
project

gnatmetric -Psdc.gpr -U --syntax-all

Question 1
How many total statements
and declarations in the
project?

Statements - 160
Declarations - 195

Question 2
What are the number of
statements and declarations
for procedure Push in
package Stack?

Statements - 5
Declarations - 2
You need to open the file
obj\stack.adb.metrix to get
the data

42 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - CLI Part 1

Use the command line to generate syntax elements metrics for the
project

gnatmetric -Psdc.gpr -U --syntax-all

Question 1
How many total statements
and declarations in the
project?

Statements - 160
Declarations - 195

Question 2
What are the number of
statements and declarations
for procedure Push in
package Stack?

Statements - 5
Declarations - 2
You need to open the file
obj\stack.adb.metrix to get
the data

42 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - CLI Part 1

Use the command line to generate syntax elements metrics for the
project

gnatmetric -Psdc.gpr -U --syntax-all

Question 1
How many total statements
and declarations in the
project?

Statements - 160
Declarations - 195

Question 2
What are the number of
statements and declarations
for procedure Push in
package Stack?

Statements - 5
Declarations - 2
You need to open the file
obj\stack.adb.metrix to get
the data

42 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - CLI Part 1

Use the command line to generate syntax elements metrics for the
project

gnatmetric -Psdc.gpr -U --syntax-all

Question 1
How many total statements
and declarations in the
project?

Statements - 160
Declarations - 195

Question 2
What are the number of
statements and declarations
for procedure Push in
package Stack?

Statements - 5
Declarations - 2
You need to open the file
obj\stack.adb.metrix to get
the data

42 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - CLI Part 2

Generate a local version of the combined XML metrics file for coupling
metrics without generating any of the text files

gnatmetric -Psdc.gpr -U --coupling-all --no-text-output
--xml-file-name=.\local.xml

Question
How many total lines in the
generated XML file?

118

43 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - CLI Part 2

Generate a local version of the combined XML metrics file for coupling
metrics without generating any of the text files

gnatmetric -Psdc.gpr -U --coupling-all --no-text-output
--xml-file-name=.\local.xml

Question
How many total lines in the
generated XML file?

118

43 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - CLI Part 2

Generate a local version of the combined XML metrics file for coupling
metrics without generating any of the text files

gnatmetric -Psdc.gpr -U --coupling-all --no-text-output
--xml-file-name=.\local.xml

Question
How many total lines in the
generated XML file?

118

43 / 332

GNAT Metrics Tool
Lab

GNATmetric Lab - CLI Part 2

Generate a local version of the combined XML metrics file for coupling
metrics without generating any of the text files

gnatmetric -Psdc.gpr -U --coupling-all --no-text-output
--xml-file-name=.\local.xml

Question
How many total lines in the
generated XML file?

118

43 / 332

GNAT Metrics Tool
Summary

Summary

44 / 332

GNAT Metrics Tool
Summary

Closing Remarks

See the GNAT User's Guide for further details of all the switches
gnatmetric switches can be specified in a GPR file via the
"Metrics" package
gnatmetric is based on the LKQL library

Allows tool to parse files that may not actually compile

45 / 332

GNATcheck

GNATcheck

46 / 332

GNATcheck
Introduction

Introduction

47 / 332

GNATcheck
Introduction

GNATcheck Is...

An automated coding standards checker
Capable of expressing a variety of rules

GNAT compiler warnings and style checks
Language-defined and GNAT-defined restrictions
Complexity metrics
Specific GNATcheck rules

Qualified to DO-178 in several programs
Integrated in GNAT Studio

48 / 332

GNATcheck
Introduction

Required by DO-178

49 / 332

GNATcheck
Introduction

Conformance to Standards Requirement - DO-178
6.3.4 Reviews and Analyses of the Source Code

d. Conformance to standards

The objective is to ensure that the Software Code Standards
were followed during the development of the code, especially
complexity restrictions and code constraints that would be
consistent with the system safety objectives.

Complexity includes the degree of coupling between software
components, the nesting levels for control structures, and the
complexity of logical or numeric expressions.

This analysis also ensures that deviations to the standards are
justified.

50 / 332

GNATcheck
Introduction

GNATcheck Input Requirements

Can analyze sources that are not legal
But may result in false negatives due to missing/incorrect semantic
information
Switch check-semantic can check if sources are legal

Can analyze standalone files
But will not parse dependencies
Use a GNAT Project File as input for better analysis

51 / 332

Getting Started

Getting Started

52 / 332

Getting Started
Basic Usage

Basic Usage

53 / 332

Getting Started
Basic Usage

Command Line Invocation
gnatcheck [options] filename -files=filename [-cargs gcc_switches] -rules rule_switches

Argument Description
{filename} File to analyze (wildcards allowed)
{files=filename} filename specifies text file containing list of files to analyze
-rules rule_switches Rules to apply for analysis

Where rule_switches can be any combination of the following:

Switch Explanation
-from=filename read rule options from filename
+R<rule_id>[:param] turn ON a given rule [with given parameter]
-R<rule_id> turn OFF a given rule
-R<rule_id>:param turn OFF some of the checks for a given rule,

depending on the specified parameter

54 / 332

Getting Started
Basic Usage

Command Line Example Run

gnatcheck -P simple.gpr -rules -from=coding_standard.rules

chop.adb:14:11: PIck_Up does not have casing specified (mixed)
chop.ads:11:18: Stick does not start with subtype prefix T_
phil.adb:21:11: Think_Times does not start with subtype prefix T_
phil.adb:33:05: "Who_Am_I" is not modified, could be declared constant
phil.ads:12:03: violation of restriction "No_Tasking"
phil.ads:12:13: Philosopher does not start with subtype prefix T_
phil.ads:12:26: My_ID does not have casing specified (mixed)
phil.ads:19:08: States does not end with type suffix _Type
phil.ads:19:08: States does not start with subtype prefix T_
random_generic.ads:5:08: Result_Subtype does not end with type suffix _Type
random_generic.ads:5:08: Result_Subtype does not start with subtype prefix T_
room.adb:19:03: violation of restriction "No_Tasking"
room.adb:19:23: anonymous subtype
...
These messages are coming from rules specified in coding_standard.rules

55 / 332

Getting Started
Basic Usage

GNATcheck From GNAT Studio Main Menu

Analyze → Coding Standard → Check Root Project

56 / 332

Getting Started
Basic Usage

GNATcheck From GNAT Studio Right-Click
Right-click on project in Project pane

Right-click on folder in Project pane

Right-click on file in Project pane

Right-click in source file editor window

57 / 332

Getting Started
Basic Usage

GUI Example Run

58 / 332

Getting Started
Basic Usage

Specifying Rules File

Rules file can be specified on command line
gnatcheck -rules -from=coding_standard.rules ...

But more commonly defined in project file
project Simple is

for Source_Dirs use ("./include", "./src");
for Main use ("diners");
for Object_Dir use "./obj";
package Check is

for Default_Switches ("ada") use
("-rules", "-from=coding_standard.rules");

end Check;
end Simple;

Edit → Project Properties → Switches →

GNATcheck

59 / 332

Getting Started
Lab

Lab

60 / 332

Getting Started
Lab

GNATcheck Getting Started Lab

Copy the getting_started folder from the course materials
location
Contents of the folder:

simple.gpr - project file
include - source directory
src - source directory
coding_standard.rules - GNATcheck rules to apply during

analysis

61 / 332

Getting Started
Lab

Preparing the Command Line

1 Open a command prompt window and navigate to the
getting_started folder

2 Type gnatcheck and press Enter to verify tool is on your path

If you see gnatcheck: No existing file to process , you
can go to the next step

If you see something like
’gnatcheck’ is not recognized as an internal or external command

Add the appropriate folder to your path (On Windows, typically
C:\GNATSAS\<version>\bin where version is the GNAT SAS
version number)

set PATH=C:\GNATSAS\24.0\bin;%PATH%

3 Type gnatcheck -h and press Enter to show list of predefined
rules

Examine the output to see what kinds of rules are available
The keyword at the end (Easy, Medium, Major) indicates the
difficulty in remediating the issue

62 / 332

Getting Started
Lab

Running From the Command Line

1 Perform gnatcheck on a single file in the src folder

gnatcheck src\room.adb -rules -from=coding_standard.rules

Examine the output to see what parts of the code failed analysis

2 Add the switch to indicate which rule caused the message

gnatcheck src\room.adb --show-rule -rules -from=coding_standard.rules

Note the actual rule now appears at the end of the message

63 / 332

Getting Started
Lab

Preparing the GUI

1 Use GNAT Studio to open the project simple.gpr

2 Set the coding standards for the project to
coding_standard.rules

Edit -> Project Properties -> Switches -> GNATcheck

64 / 332

Getting Started
Lab

Running From the GUI

1 Perform Coding Analysis on
the project

Analyze ->
Coding Standard ->
Check Root Project

2 Double-click on any source
line in the Locations window
to go to the problematic code

Try fixing the problem and
re-running the analysis

65 / 332

Getting Started
Summary

Summary

66 / 332

Getting Started
Summary

Closing Remarks

GNATcheck is a coding standards checker
Rules are how the tool decides what is the "standard"

Rules are broken down into two categories:
Predefined rules - over 200 rules built into the tool
User-defined rules - ability for user to write their own rules

67 / 332

Predefined Rules

Predefined Rules

68 / 332

Predefined Rules
Introduction

Introduction

69 / 332

Predefined Rules
Introduction

Accessing Predefined Rules

Over 200 predefined rules within GNATcheck
Can be found via command gnatcheck -h

Rules have been developed over many years for many uses
May have very specialized use cases
Some rules may contradict other rules

Rules can be specified on the command line or via a file
Rule on the command line:
gnatcheck screen.adb -rules +Runnamed_exits

Apply unnamed_exits rule (unnamed exit statement) in analysis
of file screen.adb
Rules file:
gnatcheck screen.adb -rules -from=coding_standard.rules -ROTHERS_In_Aggregates

Apply rules from coding_standard.rules except for rule
OTHERS_In_Aggregates

70 / 332

Predefined Rules
Introduction

Rules with Parameters

Some rules have parameters

Too_Many_Primitives

Flag any tagged type declaration that has more than N
user-defined primitive operations

To specify a parameter, the value comes immediately after the rule
separated only by a colon (:)

Incorrect

gnatcheck screen.adb -rules +RToo_Many_Primitives

gnatcheck: (too_many_primitives) parameter is
required for +R

Correct

gnatcheck screen.adb -rules +RToo_Many_Primitives:3

Note: Some parameters are optional
71 / 332

Predefined Rules
Predefined Rules Categories

Predefined Rules Categories

72 / 332

Predefined Rules
Predefined Rules Categories

Style-Related Rules
Tasking Example

Volatile_Objects_Without_Address_Clauses
Flag each volatile object without an address specification

Object Orientation Example

Visible_Components
Flag type declarations located in visible part of a library package
or a library generic package that can declare visible component

Portability Example

Forbidden_Pragmas
Flag each use of the specified pragmas

Program Structure Example

Local_Packages
Flag local packages declared in package and generic package
spec

Programming Practice Example

Anonymous_Array
Flag all anonymous array type definitions

Readability Example

Style_Checks
Flags violations of the source code presentation and formatting
rules according to the rule parameter(s) specified

73 / 332

Predefined Rules
Predefined Rules Categories

Feature Usage Rules

Examples

Abort_Statements
Flag abort statements

Numeric_Literals
Flag each use of a numeric literal except for those matching
certain requirements

74 / 332

Predefined Rules
Predefined Rules Categories

Metrics-Related Rules

Examples

Metrics_Cyclomatic_Complexity
Flag program units whose executable body exceeds the speci-
fied limit

Metrics_LSLOC
Flag program units that exceed the specified limit

75 / 332

Predefined Rules
Predefined Rules Categories

SPARK Rules

Examples

Overloaded_Operators
Flag each function declaration that overloads an operator
symbol

Slices
Flag all uses of array slicing

76 / 332

Writing Your Own Rules

Writing Your Own Rules

77 / 332

Writing Your Own Rules
Introduction

Introduction

78 / 332

Writing Your Own Rules
Introduction

Libadalang

Libadalang (LAL) - library for parsing and semantic analysis of
Ada code

Meant as building block for integration into other tools (IDE, static
analyzers, etc.)

Provides mainly
Complete syntactic analysis with error recovery

Precise syntax tree when source is correct, OR
Best effort tree when the source is incorrect

Semantic queries on top of the syntactic tree such as
Resolution of references (what a reference corresponds to)
Resolution of types (what is the type of an expression)
General cross references queries (find all references to this entity)

79 / 332

Writing Your Own Rules
Introduction

LangKit Query Language

LKQL (LangKit Query Language) - query language enabling users
to run queries on top of source code

Based on langkit technology
Currently hardwired for Ada (and LAL)

Purely functional, high level, dynamically typed language with
general purpose and tree query subsets
Designed to be simple and concise
Has a reference manual

Having GNATcheck rules expressed with a high level interpreted
language such as LKQL allows users to write their own rules and test
them quickly

80 / 332

https://github.com/AdaCore/langkit
https://docs.adacore.com/live/wave/lkql/html/gnatcheck_rm/gnatcheck_rm/lkql_language_reference.html

Writing Your Own Rules
LKQL

LKQL

81 / 332

Writing Your Own Rules
LKQL

LKQL Features (General Purpose Subset)
You can easily define a function in LKQL

All functions are first class citizens

fun add(x, y) = x * y
fun sub(x, y) = x - y
fun apply(f, x, y) = f(x, y)

print(apply(add, 40, 2))
print(apply((x, y) => x * y), 40, 2)

You can also define anonymous functions

LKQL supports list comprehensions with the same syntax as
Python

val odds = [num for num in [1, 2, 3, 4, 5] if is_odd(num)]
val ids = [node for node in nodes if node is Identifier]

You can use LKQL block expressions to declare local values and
add some sequentiality

val complex = {
val part = 40;
val other_part = 2;
print("LOGGING");
part * other_part

}
82 / 332

Writing Your Own Rules
LKQL

LKQL Features (Query Subset)
LKQL allows you to write queries to fetch all nodes which satisfy a
given pattern

LKQL also provides selector operations (e.g. any children)

val ids = from nodes select Identifier
val if_id_child = select IfStmt(any children is Identifier)

You can define a selector to express a tree traversal logic and use
it later as a function or in a pattern

This will yield every child but will not recurse for the if statement
children:

selector children_until_if
| IfStmt => this
| AdaNode => rec *this.children
| * => ()

LKQL patterns use the LAL API to express any filtering logic in a
simple and expressive way

For more information see the LKQL reference manual

val test = select b@BinOp(f_op is OpEq)
when b.f_left.text == "0" and

b.f_right is Identifier
83 / 332

Writing Your Own Rules
LKQL

LKQL API References

LKQL API can be found at
https://docs.adacore.com/live/wave/lkql/html/gnatcheck_rm/gnatcheck_rm/lkql_language_reference.html#lkql-api

Contains sections on
Libadalang API (found at
https://docs.adacore.com/live/wave/libadalang/html/libadalang_ug/python_api_ref.html)

Includes definitions of all functions like IfStmt that we saw above
Standard library

Includes definitions of typical functions like print and children

84 / 332

Writing Your Own Rules
LKQL

Testing LKQL with Its REPL

LKQL has an interactive REPL (Read-Eval-Print-Loop)
Test your ideas and explore available properties and node kinds with
auto-completion

Start the LKQL REPL on a project named example.gpr by
running the Python script lkql_repl.py

lkql_repl.py -P example.gpr

Then you can run any LKQL expression or declaration and
immediately see the result
> select AdaNode # Get the list of all Ada nodes in your project
[...]
> val ids = select Identifiers # Assign "ids" value
()
> fun test(nodes) = [n for n in nodes if n.text = "Hello"] # Define a function
()
> test(ids) # Call previously defined function with the previously assigned value
[...]

85 / 332

Writing Your Own Rules
LKQL

Mapping Python API to LKQL API

Can also refer to Libadalang Python API Reference

For example, we can find in the Python API documentation:

class libadalang.Expr:
subclass of AdaNode
Base class for expressions

...

property p_expression_type:
Return the declaration corresponding to the type
of this expression after name resolution.

Thus we know that LKQL has a Expr node kind and we can call
the p_expression_type on this kind of node

So we can do

val expr_types = [node.p_expression_type() for node in select Expr]

In the future LKQL will have its own LAL API documentation.
86 / 332

https://docs.adacore.com/live/wave/libadalang/html/libadalang_ug/python_api_ref.html

Writing Your Own Rules
LKQL

Integrating LKQL in GNATcheck

GNATcheck embeds an LKQL engine to execute rules semantics

All GNATcheck rules are expressed using LKQL

You can make a custom rule written in
my_rules/custom_rule.lkql available to GNATcheck with
a command line option

--rules-dir=my_rules

Option will trigger the loading of all .lkql files in the provided
directory
Makes their associated rules available

Example of a GNATcheck call to load rules inside the
my_rules folder and apply the custom_rule rule

gnatcheck -P prj.gpr --rules-dir=my_rules/ -rules +Rcustom_rule
87 / 332

Writing Your Own Rules
Rules

Rules

88 / 332

Writing Your Own Rules
Rules

Boolean Rules

Defined by function which takes a node as first parameter
Returns a boolean indicating if given node should be flagged by
GNATcheck
Called on every node of LAL AST
To define custom boolean rule

Create an LKQL function annotated with @check
Function name should be same as LKQL file name
Custom boolean rule which flags every BodyNode in Ada sources

Function should be in bodies.lkql
@check
fun bodies(node) = node is BodyNode

89 / 332

Writing Your Own Rules
Rules

Example of Boolean Rules
Flag every goto and if statemnt
@check
fun goto_and_if(node) =

match node
| GotoStmt => true
| IfStmt => true
| * => false

Flag every Identifier called dummy
(case-insensitive)
@check
fun dummy_id(node) =

node is id@Identifier
when id.p_name_is("dummy")

Flags every Binary Operator with any child a
Numeric Literal
@check
fun op_with_num(node) =

node is BinOp(any children
is NumLiteral)

1 procedure Test is
2 My_Int : Integer := 10 * 5;
3 Dummy : String := "Hello World!";
4 begin
5 if My_Int = 15 then
6 Put_Line (Dummy);
7 else
8 Goto label;
9 end if;

10 <<label>>
11 end Test;

Running GNATcheck with these rules on this Ada source
will produce:

test.adb:02:24: op_with_num
test.adb:03:04: dummy_id
test.adb:05:04: goto_and_if
test.adb:05:07: op_with_num
test.adb:06:17: dummy_id
test.adb:08:07: goto_and_if

90 / 332

Writing Your Own Rules
Rules

Unit Rules

Defined by function which takes an analysis unit as its first
parameter
Return list of LKQL objects containing message and location
Called on every LAL analysis unit
Meant to be more flexible than boolean rules

Fulfill needs that the latter cannot express
Example: emitting multiple messages for the same node

To create custom unit rule
Create an LKQL function annotated with @unit_check
Function name should be the same as the LKQL file name (same as
@check)

91 / 332

Writing Your Own Rules
Rules

Example of Unit Rules
Flag every goto statement and give target label line in associated
message

@unit_check
fun goto_line(unit) = [

{message: "go to line " &
img(node.f_label_name

.p_referenced_decl()

.token_start()

.start_line),
loc: node}

for node in (from unit.root select GotoStmt)
]

1 procedure Test is
2 begin
3 <<start>>
4 goto label;
5 <<label>>
6

7 goto start;
8 end Test;

Running GNATcheck with this rule will produce:

test.adb:04:04: go to line 5 [goto_line]
test.adb:07:04: go to line 3 [goto_line]

92 / 332

Writing Your Own Rules
Rules

Rule Arguments

You configure an LKQL rule behavior with annotation arguments

message Message of the rule
(boolean rules only)

help Help message for the rule usage
follow_generic_instantiations Whether to follow generic instantiations in Ada sources

(boolean rules only)
category / subcategory Category and subcategory of a rule
remediation Mediation complexity for technical debt computation

Example of an LKQL rule with rule arguments

@check(
message: "There is a body node",
help: "This rule flags all body nodes",
follow_generic_instantiations: false,
remediation: "EASY"

)
fun bodies(node) = node is BodyNode

93 / 332

Writing Your Own Rules
Rules

Rule Function Parameters

LKQL rule (boolean or unit) is defined by a function

Rule function can have more than one parameter
Allows GNATcheck rule arguments being forwarded

Rule function parameter must have a default value
In case none is provided

You can configure the rule below with the threshold argument
when running it with GNATcheck:

Flag all Identifier nodes with too many characters according to
given threshold

@check
fun too_long_id(node, threshold=15) =

node is Identifier
when node.text.length >= threshold

Flag all Identifier nodes with more than 42 characters using
too_long_id rule

gnatcheck -P prj.gpr --rules-dir=. -rules +Rtoo_long_id:42

94 / 332

Writing Your Own Rules
Rules

Configuring a GNATcheck Run with LKQL

You can configure GNATcheck run with an LKQL file
Chooses rules you want to run (with arguments)
Possible alias
Whether to run them on Ada code, SPARK code or both

Example LKQL configuration file

val rules = @{
identifier_suffixes: [

{access_suffix: "_PTR",
type_suffix: "_T",
constant_suffix: "_C",
interrupt_suffix: "_Hdl"},

{access_suffix: "_A",
alias_name: "other_convention"}

]
}
val ada_rules = @{ goto_statements }
val spark_rules = @{ recursive_subprograms }

Example GNATcheck call configured via config.lkql

gnatcheck -P prj.gpr -rules -from-lkql=config.lkql

95 / 332

Writing Your Own Rules
Lab

Lab

96 / 332

Writing Your Own Rules
Lab

GNATcheck LKQL Lab

This lab is a hands-on walkthrough of creating your own LKQL rule for
use with GNATcheck. You can use any text editor to create this rule
file.

We want to create a rule that will flag all integer types that could be
replaced by an enumeration type. To flag those type declarations we
must define a criteria list:

No use of any arithmetic or bitwise operator on the type
No type conversion from or to the type
No subtype definition
No type derivation
No reference to the type in generic instantiations

We're going to see how to express those criteria using LKQL.

97 / 332

Writing Your Own Rules
Lab

Source Code Specification
with Ada.Text_IO;
package Test_Pkg is

type Good_Candidate is range 0 .. 100;
function Supplier1 (X : Good_Candidate) return Good_Candidate;

type Operator_T is range 0 .. 100;
function Supplier2 (X : Operator_T) return Operator_T;

type Conversion_Tgt_T is range 0 .. 100;
function Supplier3 (X : Integer) return Conversion_Tgt_T;

type Conversion_Source_T is range 0 .. 100;
function Supplier4 (X : Conversion_Source_T) return Integer;

type Subtype_Parent_T is range 0 .. 100;
subtype Subtype_T is Subtype_Parent_T range 1 .. Subtype_Parent_T'Last;
function Supplier5 (X : Subtype_T) return Subtype_T;

type Derived_Parent_T is range 0 .. 100;
type Derived_T is new Derived_Parent_T range 1 .. Derived_Parent_T'Last;
function Supplier6 (X : Derived_T) return Derived_T;

type Generic_Instantiaion_T is range 0 .. 100;
package IO is new Ada.Text_IO.Integer_IO (Generic_Instantiaion_T);

end Test_Pkg;

98 / 332

Writing Your Own Rules
Lab

Source Code Body

package body Test_Pkg is

function Supplier1 (X : Good_Candidate) return Good_Candidate is
(X);

function Supplier2 (X : Operator_T) return Operator_T is
(X + 1);

function Supplier3 (X : Integer) return Conversion_Tgt_T is
(Conversion_Tgt_T (X));

function Supplier4 (X : Conversion_Source_T) return Integer is
(Integer (X));

function Supplier5 (X : Subtype_T) return Subtype_T is
(X);

function Supplier6 (X : Derived_T) return Derived_T is
(X);

end Test_Pkg;
99 / 332

Writing Your Own Rules
Lab

Step 1 - Flag All Integers

1 Create rule enum_for_integer
a. In file enum_for_integer.lkql
b. Use @check annotation

2 Flag all integers
a. Look for p_is_int_type LAL property using a node kind pattern

@check
fun enum_for_integer(node) = node is TypeDecl(p_is_int_type() is true)

3 Test it out - see what happens when you run the rule:

gnatcheck -P prj.gpr --rules-dir=. -rules +Renum_for_integer

This gives us the output:

test_pkg.ads:4:09: enum_for_integer
test_pkg.ads:9:09: enum_for_integer
test_pkg.ads:14:09: enum_for_integer
test_pkg.ads:19:09: enum_for_integer
test_pkg.ads:24:09: enum_for_integer
test_pkg.ads:30:09: enum_for_integer
test_pkg.ads:36:09: enum_for_integer

All integer types are reported - we need to add filters
100 / 332

Writing Your Own Rules
Lab

Step 2 - Improve Message

Default message for boolean rules is just the name of the rule:

test_pkg.ads:4:09: enum_for_integer

To improve message, add message attribute to @check token

@check(message="Integer type could be replaced by an enumeration")
fun enum_for_integer(node) =

node is TypeDecl(p_is_int_type() is true)

Gives much more information:

test_pkg.ads:4:09: Integer type could be replaced by an enumeration
test_pkg.ads:9:09: Integer type could be replaced by an enumeration
test_pkg.ads:14:09: Integer type could be replaced by an enumeration
test_pkg.ads:19:09: Integer type could be replaced by an enumeration
test_pkg.ads:24:09: Integer type could be replaced by an enumeration
test_pkg.ads:30:09: Integer type could be replaced by an enumeration
test_pkg.ads:31:09: Integer type could be replaced by an enumeration
test_pkg.ads:36:09: Integer type could be replaced by an enumeration

101 / 332

Writing Your Own Rules
Lab

Step 3 - Implement First Criteria

1 Implement the first criteria: No use of any arithmetic or bitwise
operator on the type.

a. Need to fetch all operators - use global select with BinOp and
UnOp node kind patterns. (Field f_op contains the kind of the
operator.)

select BinOp(f_op is OpDiv or OpMinus or OpMod or OpMult or OpPlus or
OpPow or OpRem or OpXor or OpAnd or OpOr) or

UnOp(f_op is OpAbs or OpMinus or OpPlus or OpNot)

b. select returns list of BinOp and UnOp
Both inherit from the Expr node - so we use p_expression_type
property to retrieve TypeDecl node associated with expression's
actual type.

2 Implement function named arithmetic_ops to return the list of
TypeDecl used in arithmetic and logical operations

fun arithmetic_ops() =
[op.p_expression_type()
for op in select

BinOp(f_op is OpDiv or OpMinus or OpMod or OpMult or OpPlus or
OpPow or OpRem or OpXor or OpAnd or OpOr) or

UnOp(f_op is OpAbs or OpMinus or OpPlus or OpNot)].to_list
102 / 332

Writing Your Own Rules
Lab

Step 4 - Use First Criteria in Rule

1 Update enum_for_integer function to filter integer type
declarations by excluding all TypeDecl used in operators

@check
fun enum_for_integer(node) =

node is TypeDecl(p_is_int_type() is true)
when not [t for t in arithmetic_ops() if t == node]

2 Test it out - see what happens when you run the rule:

gnatcheck -P prj.gpr --rules-dir=. -rules +Renum_for_integer

This gives us the output:

test_pkg.ads:4:09: Integer type could be replaced by an enumeration
test_pkg.ads:14:09: Integer type could be replaced by an enumeration
test_pkg.ads:19:09: Integer type could be replaced by an enumeration
test_pkg.ads:24:09: Integer type could be replaced by an enumeration
test_pkg.ads:30:09: Integer type could be replaced by an enumeration
test_pkg.ads:31:09: Integer type could be replaced by an enumeration
test_pkg.ads:36:09: Integer type could be replaced by an enumeration

Note we are no longer reporting on the type at line 9
103 / 332

Writing Your Own Rules
Lab

Step 5 - Implement Second Criteria

Criteria: No type conversion from or to the type
In the LAL tree type conversions appear as CallExpr whose
referenced declaration is a TypeDecl

1 Implement new function types to return list of TypeDecl used as
target type in a conversion

fun types() =
[c.p_referenced_decl()
for c in select CallExpr(p_referenced_decl() is TypeDecl)].to_list

to_list member is necessary if we want to combine lists later

2 Add our new filtering function in the rule body.

@check
fun enum_for_integer(node) =

node is TypeDecl(p_is_int_type() is true)
when not [t for t in arithmetic_ops() if t == node] and

not [t for t in types() if t == node]

This version of types only returns TypeDecl used as target in
conversions - we also want to filter out source of conversions

104 / 332

Writing Your Own Rules
Lab

Step 6 - Improve Types Filter
1 Update the types function to also return types used as source type

in conversions
LAL field f_suffix

Returns ParamAssocList with a single element - source expression
Use on type conversion nodes to get source of conversions

fun types() =
concat ([[c.p_referenced_decl(), c.f_suffix[1].f_r_expr.p_expression_type()]

for c in select CallExpr(p_referenced_decl() is TypeDecl)].to_list)

concat function takes a list of lists and returns the one-dimensional
result of concatenation of all lists.

2 Test it out - see what happens when you run the rule:

gnatcheck -P prj.gpr --rules-dir=. -rules +Renum_for_integer

This gives us the output:

test_pkg.ads:4:09: Integer type could be replaced by an enumeration
test_pkg.ads:24:09: Integer type could be replaced by an enumeration
test_pkg.ads:30:09: Integer type could be replaced by an enumeration
test_pkg.ads:31:09: Integer type could be replaced by an enumeration
test_pkg.ads:36:09: Integer type could be replaced by an enumeration

List of integers that meet our criteria is shrinking!
105 / 332

Writing Your Own Rules
Lab

Step 7 - Implement Third Criteria

Criteria: No subtype definition

1 We can use global select with list comprehension filtering

[s.f_subtype.f_name.p_referenced_decl() for s in select SubtypeDecl]

Expression gives list of subtype TypeDecl. We can now add it to
the result of the types function.

fun types() =
concat ([[c.p_referenced_decl(), c.f_suffix[1].f_r_expr.p_expression_type()]

for c in select CallExpr(p_referenced_decl() is TypeDecl)].to_list) &
[s.f_subtype.f_name.p_referenced_decl() for s in select SubtypeDecl].to_list

2 And once again test it out

gnatcheck -P prj.gpr --rules-dir=. -rules +Renum_for_integer
This gives us the output:

test_pkg.ads:4:09: Integer type could be replaced by an enumeration
test_pkg.ads:30:09: Integer type could be replaced by an enumeration
test_pkg.ads:31:09: Integer type could be replaced by an enumeration
test_pkg.ads:36:09: Integer type could be replaced by an enumeration

Even fewer integers meet our criteria
106 / 332

Writing Your Own Rules
Lab

Step 8 - Implement Fourth Criteria

Criteria: No type derivation

1 We can implement this similar to the subtype check using
[c.f_type_def.f_subtype_indication.f_name.p_referenced_decl()
for c in select TypeDecl(f_type_def is DerivedTypeDef)].to_list

2 Add this expression to the types function
fun types() =

concat([[c.p_referenced_decl(), c.f_suffix[1].f_r_expr.p_expression_type()]
for c in select CallExpr(p_referenced_decl() is TypeDecl)].to_list) &

[s.f_subtype.f_name.p_referenced_decl() for s in select SubtypeDecl] &
[c.f_type_def.f_subtype_indication.f_name.p_referenced_decl()
for c in select TypeDecl(f_type_def is DerivedTypeDef)].to_list

107 / 332

Writing Your Own Rules
Lab

Step 9 - Implement Final Criteria

Criteria: No reference to the type in generic instantiations

1 Look in every each generic instantiation for identifiers referring to
the type

from (select GenericInstantiation) select Identifier

Gives list of each Identifier used in GenericInstantiation
Use p_referenced_decl property we to get associated declaration
(that may be a TypeDecl

2 Express our query as a function

fun instantiations() =
[id.p_referenced_decl()
for id in from select GenericInstantiation select Identifier].to_list

3 Add to enum_for_integer function to finalize filtering

@check
fun enum_for_integer(node) =

node is TypeDecl(p_is_int_type() is true)
when not [t for t in arithmetic_ops() if t == node] and

not [t for t in types() if t == node] and
not [t for t in instantiations() if t == node]

108 / 332

Writing Your Own Rules
Lab

Complete Rules File
Here is the final view of our enum_for_integer.lkql file.

fun arithmetic_ops() =
[op.p_expression_type()
for op in select

BinOp(f_op is OpDiv or OpMinus or OpMod or OpMult or OpPlus or
OpPow or OpRem or OpXor or OpAnd or OpOr) or

UnOp(f_op is OpAbs or OpMinus or OpPlus or OpNot)].to_list

fun instantiations() =
[id.p_referenced_decl()

for id in from select GenericInstantiation select Identifier].to_list

fun types() =
concat ([[c.p_referenced_decl(), c.f_suffix[1].f_r_expr.p_expression_type()]

for c in select CallExpr(p_referenced_decl() is TypeDecl)].to_list) &
[s.f_subtype.f_name.p_referenced_decl() for s in select SubtypeDecl].to_list &
[c.f_type_def.f_subtype_indication.f_name.p_referenced_decl()
for c in select TypeDecl(f_type_def is DerivedTypeDef)].to_list

@check(message="Integer type could be replaced by an enumeration")
fun enum_for_integer(node) =

node is TypeDecl(p_is_int_type() is true)
when not [t for t in arithmetic_ops() if t == node]
and not [t for t in types() if t == node]
and not [t for t in instantiations() if t == node]

109 / 332

Writing Your Own Rules
Lab

Final Result

One more run to get the "correct" result

gnatcheck -P prj.gpr --rules-dir=. -rules +Renum_for_integer

This gives us the output
test_pkg.ads:4:09: Integer type could be replaced by an enumeration
test_pkg.ads:31:09: Integer type could be replaced by an enumeration

110 / 332

Writing Your Own Rules
Lab

Improving the Behavior Part 1

Speed of the rule as written is slow
Repeated calls to global select query in arithmentic_ops, types,
instantiations

Query functions can be instructed to cached their results
Use @memoized attribute

@memoized
fun arithmetic_ops() =

[op.p_expression_type()
for op in select

BinOp(f_op is OpDiv or OpMinus or OpMod or OpMult or OpPlus or
OpPow or OpRem or OpXor or OpAnd or OpOr) or

UnOp(f_op is OpAbs or OpMinus or OpPlus or OpNot)].to_list

111 / 332

Writing Your Own Rules
Lab

Improving the Behavior Part 2

Take advantage of conditional short circuiting
Typically more arithmentic/logical operations than conversions,
subtypes, instantiations
Swap filtering order to check for those last

@check(message="integer type may be replaced by an enumeration")
fun enum_for_integer(node) =

node is TypeDecl(p_is_int_type() is true)
when not [t for t in types() if t == node] and

not [t for t in instantiations() if t == node] and
not [t for t in arithmetic_ops() if t == node]

112 / 332

Writing Your Own Rules
Summary

Summary

113 / 332

Writing Your Own Rules
Summary

Future Evolutions of LKQL

Adding a custom LAL API documentation for LKQL (for now user
can rely on the LAL Python API documentation)
Support of the LAL rewriting API to express code transformation
Adding a static type system to improve performance and
debugging processes
Making LKQL available for all Langkit defined languages

114 / 332

GNAT Static Analysis Suite (GNAT SAS)

GNAT Static Analysis Suite (GNAT SAS)

115 / 332

GNAT Static Analysis Suite (GNAT SAS)
Advanced Static Analysis

Advanced Static Analysis

116 / 332

GNAT Static Analysis Suite (GNAT SAS)
Advanced Static Analysis

What Is Static Analysis?

Symbolic interpretation of source code
Find what could go wrong
No execution

Formally verifying high level or abstract properties
Strong guarantees

May be exhaustive
All possible errors are reported
No false negatives; there may be false positives
If the analyzer does not report a problem, there is no problem

117 / 332

GNAT Static Analysis Suite (GNAT SAS)
Advanced Static Analysis

Why Static Analysis Saves Money

Costs shift
From later, expensive phases
To earlier, cheaper phases

118 / 332

GNAT Static Analysis Suite (GNAT SAS)
Advanced Static Analysis

Why Use GNAT SAS?

Efficient automated code reviewer
Identifies run-time errors with a level of certainty

E.g. buffer overflows, division by zero
Flags legal but suspect code

Typically logic errors
Detailed subprograms analysis
Can analyze existing code bases

Detect and remove latent bugs
Legacy code
Code from external sources

119 / 332

GNAT Static Analysis Suite (GNAT SAS)
Advanced Static Analysis

Detailed Subprogram Analysis

Explicit specification
Written in the code
Types
Contracts
Assertions
etc...

Implicit specification
Assumptions by GNAT SAS
Deduced preconditions

120 / 332

GNAT SAS Overview

GNAT SAS Overview

121 / 332

GNAT SAS Overview
What Is GNAT SAS?

What Is GNAT SAS?

122 / 332

GNAT SAS Overview
What Is GNAT SAS?

GNAT SAS in a Nutshell (1/2)

GNAT SAS is a static analysis tool
Provides feedback before execution and test
Provides as-built documentation for code reviews

Helps identify and eliminate vulnerabilities and bugs early
Modular

Analyze entire project or a single file
Configure for speed or depth

Review of analysis report
Filtering messages by category, severity, package...
Comparative analysis between runs
Maintain historical comments

123 / 332

GNAT SAS Overview
What Is GNAT SAS?

GNAT SAS in a Nutshell (2/2)

Large Ada support
Usable with Ada83 through Ada2022
Compiler agnostic

Supports GNAT, Apex, GHS, ObjectAda, VADS
Bundled with a Coding Standards Checker and a Metrics
Calculation Tool

GNATcheck and GNATmetric
Detects runtime and logic errors

Initialization errors, run-time errors and assertion failures
Race condition errors: unprotected access to globals

Warns on dead or suspicious code

124 / 332

GNAT SAS Overview
What Is GNAT SAS?

GNAT SAS Integration

Output: textual, XML, CSV, HTML, SARIF, CodeClimate
Integrated with GPRbuild

Tool configuration can be source controlled
Scriptable command-line tool for easy deployment in CI/CD
technologies (e.g. GitLab, Jenkins)
Interactive use in GNAT Studio
Integration with SonarQube (continuous inspection of code
quality)

125 / 332

GNAT SAS Overview
What Is GNAT SAS?

Integrated Analysis Engines

Inspector
Excels in detecting possibly failing run-time checks as well as wide
range of logical errors
Determines preconditions on the inputs necessary to preclude
run-time failures
Makes presumptions about return values of external subprograms
Identifies postconditions that characterize the range of outputs

Infer
https://fbinfer.com/
Specialized to Ada by AdaCore
Fast analysis with low false positive rate
Especially good in detecting problems occurring for certain
execution paths, such as null-pointer dereferences or memory leaks

GNAT Warnings
Provides warning issued by GNAT compiler frontend
Detects things like suspicious constructs and warnings when the
compiler is sure an exception will be raised at run-time

GNATcheck
Tool used to check for suspicious code constructs and compliance
with specified coding standard rules
Fully integrated with GNAT SAS

126 / 332

https://fbinfer.com/

GNAT SAS Overview
What Is GNAT SAS?

Typical Users and Use Cases

Developers, during code-writing
Fix (local) problems before integration

Reviewers
Annotate code with analysis of potential problems
Analyse specific CWE issues

Project managers and quality engineers
Track reported vulnerabilities regularly
Identify new issues quickly

Software auditors
Identify overall vulnerabilities or hot spots
Verify compliance to quality standards

127 / 332

Analyzing Code

Analyzing Code

128 / 332

Analyzing Code
Running GNAT SAS

Running GNAT SAS

129 / 332

Analyzing Code
Running GNAT SAS

Running the Analysis

When running the analysis, the tool maintains data files to store
messages, including history and user reviews

SAM file Static Analysis Messages file containing messages
generated by analysis engines

SAR file Static Analysis Review file containing user-specified
message reviews

130 / 332

Analyzing Code
Running GNAT SAS

Running From the Command Line

This command only performs the analysis (typically used for simple
testing or automation)

gnatsas analyze -Psdc

To view results of analysis, you need to generate a report

gnatsas report -Psdc

More information in next section

131 / 332

Analyzing Code
Running GNAT SAS

Running From the GUI
From GNAT Studio

GNATSAS → Analyze All

Report automatically displayed based on user-specified filters
Message Ranking controls level of messages displayed
Other filters control types of messages and categories

Report with Low, Medium, and High ranking messages
132 / 332

Analyzing Code
Analysis

Analysis

133 / 332

Analyzing Code
Analysis

Analysis Modes

Deals solely with Inspector engine
Fast mode

Analyze each library unit separately
Allows for incremental analysis

Only units that change will be re-inspected
Deep mode

Analyzes groups of unit
Partitioning options to determine size of group

Analysis always starts from scratch
Each mode has its own baseline

134 / 332

Analyzing Code
Analysis

Timelines

Default: Separate baselines for comparing deep or fast runs
Custom timelines available

timeline <name> switch to create custom baseline
First execution becomes baseline for that name
Allows creating specialized timelines based on switches

Such as no-subprojects which might drastically change number
of messages

135 / 332

Analyzing Code
Settings

Settings

136 / 332

Analyzing Code
Settings

Analysis Settings

Filters can remove uninteresting messages
e.g. show to control messages to be displayed

Skip problematic source files
Excluded_Source_Files project attribute
pragma Annotate (GNATSAS, Skip_Analysis); embedded in
code

137 / 332

Analyzing Code
Settings

Performance Settings

Simplistic methods
Disable specific analysis engine(s)
-j0 jobs switch

High-performance machines (multiple cores, etc)
Identifying problematic units

For Inspector, examine output for units taking a long time
analyzed main.scil in 0.05 seconds
analyzed main__body.scil in 620.31 seconds ←
analyzed pack1__body.scil in 20.02 seconds
analyzed pack2__body.scil in 5.13 seconds
For Infer, use progress bar to see where the process is slow
-Q --progress-bar-style multiline

138 / 332

Viewing Results

Viewing Results

139 / 332

Viewing Results
Report Command

Report Command

140 / 332

Viewing Results
Report Command

Generating a Report

To view results, you must generate a report
From the command line
gnatsas report -Psdc.gpr

Default output format (text), written to standard output

gnatsas report csv -Psdc.gpr --out report.csv
Generate a comma-separated values file, save in report.csv

141 / 332

Viewing Results
Report Command

Available Output Formats

text Compiler-like listing of messages

html HTML output generated by gnathub. Output always
stored in index.html in gnathub/html-report
subfolder of object directory

csv Comma-separated values, useful for input into third-party
tools like spreadsheets

security HTML report focusing on certain vulnerabilities

code-climate JSON output useful with tools such as BitBucket and
Gitlab

sarif Output for integration with any SARIF viewer tool

exit-code Number of messages (up to 255) will be returned as the
report exit code. Useful for automation processes

For more information, refer to GNAT SAS User's Guide Section 5.4 -
Report Formats in Detail

142 / 332

Viewing Results
Report Command

Selecting Results to Display

gnatsas report always displays results of last run (regardless
of run's switches)
To generate report for other runs

Specify a timeline
gnatsas report text -P sdc.gpr --timeline <timeline>

Specify a SAM file
gnatsas report text <sam-file>

143 / 332

Viewing Results
Report Command

Message Kinds

Message kinds fall into one of the following categories
Warning - compilation warnings issued by GNAT front end
Check - possible run-time check failures
Informational - extra information about a message
Race Condition - messages about synchronization objects
Annotation - Information about a subprogram determined by
analysis

Each of these categories has multiple messages
GNAT SAS reporting can call out message kinds by category or
individual kind

See section 10 GNAT SAS Messages Reference of the documentation
for more detailed information

144 / 332

Viewing Results
Report Command

Message Categories

Messages can be grouped by category. These categories can be used to
determine which messages are displayed in the report.

Age Compared to the previous run, is this message the same, new, or no longer there
Kind Kind of message (category (e.g. check) or kind (e.g. range_check)
Rank Severity - likelihood that message identifies a defect that could lead to incorrect results
Tool Which analysis engine generated the message
CWE Common Weakness Enumeration
Review Status Actual status of message review (see section on Message Review)
Review Kind Category of review status (see section on Message Review)
Project Project containing source file with the message
File Specific file containing message

145 / 332

Viewing Results
Report Command

Filtering Messages by Category

Use show switch to add or remove messages from report

gnatsas report --show [category_constraint]*

where category_constraint can be specified as

<category>=<constraint> Restrict report to messages that match constraint
<category>+<constraint> Add to report messages that match constraint
<category>-<constraint> Remove from report messages that match constraint

146 / 332

Viewing Results
Report Command

Switches for Filtering Messages by Category

gnatsas report -P sdc.gpr --show <filter=value>

Filter Value Choices

default Default categories with constraints
all Only specified categories with constraints
age unchanged, added, removed
kind Message kind (category or individual kind)
rank info, low, medium, high
tool inspector, infer, gnatcheck, gnat
cwe Specific CWE or "none"
review_status Any review statuses or "none"
review_kind not_a_bug, pending, bug, uncategorized, none
prj runtime or project base name, or relative paths
file Source filename basename or relative path

Note: none matches those messages that do not have corresponding
information attached (e.g., no CWE or no review)

147 / 332

Viewing Results
Comparing GNAT SAS Runs

Comparing GNAT SAS Runs

148 / 332

Viewing Results
Comparing GNAT SAS Runs

Using History Data

Baseline run is first run performed at appropriate mode
fast and deep have different baselines

Report indicates if message is new, unchanged, or removed relative
to baseline
Can change baseline with gnatsas baseline command:

bump-baseline switch sets last analysis run as a baseline
set-baseline <sam-file> switch sets specified SAM file to be

the baseline
To compare different runs without updating baseline, use
gnatsas report --compare-with <sam-file>

Current run will be compared to specified run without impacting
baseline

149 / 332

Viewing Results
Comparing GNAT SAS Runs

Classifying Message Changes

In determining if message is unchanged, added, or removed even
when surrounding source changes, GNAT SAS checks for:

Full name of procedure where message was generated
Analysis engine that emitted message
Kind of message
Selected content within the message (depending on kind)

If all the above matches multiple messages, GNAT SAS uses
order of appearance in code

Note: default behavior is to not mention removed messages and to call
out specifically new messages

150 / 332

Viewing Results
GUI Reports

GUI Reports

151 / 332

Viewing Results
GUI Reports

Viewing Reports Via GNAT Studio

To view report from within GNAT Studio
Perform analyis (GNATSAS → Analyze All)

Report appears when analysis completes
GNATSAS → Display Code Review

Will open report if analysis has ever been done
GNATSAS → Advanced → Regenerate Report

Brings up dialog for report generation
Allows user to specify options such as compare-with or show

152 / 332

Viewing Results
GUI Reports

GNAT Studio Analysis Report

Baseline / Current run SAM file
Hover over these filenames gives switches used in run

Filters
Control which messages appear in report table/locations view

Locations View
Click on any message to go to appropriate source line
Click on pencil icon to add review/annotion

153 / 332

Reviewing Results and Improving Code

Reviewing Results and Improving Code

154 / 332

Reviewing Results and Improving Code
Reviewing Messages

Reviewing Messages

155 / 332

Reviewing Results and Improving Code
Reviewing Messages

Documenting Review Comments

GNAT SAS generates many messages
Sometimes the code is OK as-is
Sometimes we might want to say we'll worry about it later

Two methods of documenting human response to the message
Interactive review via

GNAT Studio
CSV import

Code-based review via pragma Annotate
Benefits of interactive review

No source code modification
Can be performed by non-Ada reviewers
Additional review statuses available

Benefits of code-based review
Review appears with source code
Review less likely to be affected by other source changes
Editing/Source code control can be used to manage review

156 / 332

Reviewing Results and Improving Code
Reviewing Messages

Review Actions

Left-click pencil icon in Locations window to get review choices

157 / 332

Reviewing Results and Improving Code
Reviewing Messages

Manual Review

Manual review brings up dialog to add review comments

Annotate inserts pragma Annotate after source code
Reviewer updates <insert review> text

pragma Annotate
(CodePeer, False_Positive, "array index check", "<insert review>");

158 / 332

Reviewing Results and Improving Code
Reviewing Messages

Default Review Statuses

GNAT SAS groups statuses into three categories
Pending
Not a bug
Bug
By default, GNAT Studio does not show messages in category
Not a bug

GNAT SAS predefines the following review statuses
Uncategorized
Pending
Not a bug
Bug
False positive
Intentional
Note that False positive and Intentional fall into the Not a
bug category

For pragma Annotate, only False_Positive and Intentional
are allowed

159 / 332

Reviewing Results and Improving Code
Reviewing Messages

Custom Review Statuses

It is possible to create your own statuses for the Manual review dialog
Edit → Edit Project Properties → GNATSAS project Sdc is

package Analyzer is
for Pending_Status use ("Don't Know",

"To do");
for Not_A_Bug_Status use ("Don't care",

"To be dealt with later");
for Bug_Status use ("Problem",

"To be fixed ASAP");
end Analyzer;

Resulting in an updated Manual review dialog

160 / 332

Reviewing Results and Improving Code
Code Annotations Via GNAT Studio

Code Annotations Via GNAT Studio

161 / 332

Reviewing Results and Improving Code
Code Annotations Via GNAT Studio

Understanding Code Annotations

The Inspector engine generates documentation for each analyzed
subprogram

Appears as virtual comments in GNAT Studio source editor
General reasoning behind analysis that caused message to appear

Pre Requirements subprogram imposes on inputs
Presumption Presumptions about results of external subprogram

(when code is unavailable or in separate partition)
Post Behavior of subprogram in terms of outputs
Unanalyzed External subprograms that are unanalyzed

(Participate in determination of presumptions)
Global inputs All global objects referenced by subprogram
Global outputs All global objects and components modified by subprogram
New Objects List of heap-allocated objects created but not reclaimed

162 / 332

Reviewing Results and Improving Code
Code Annotations Via GNAT Studio

Annotation Example

163 / 332

Reviewing Results and Improving Code
Code Annotations Via GNAT Studio

Annotation Syntax Explanations

-- Post: On completion of the subprogram
-- stack.pop'Result = Tab(Last'Old) The return value will be the value in Tab at the location

specified by Last on entry into the subprogram
-- stack.pop'Result /= null The return value will not be null
-- Last = Last'Old - 1 Last will be its value on entry minus 1
-- Last <= 199 Last will be less than 200

-- Pre: On entry into the subprogram
-- V.E'Initialized V.E has been initialized
-- Tab(Last) /= null Tab(Last) is not null
-- Last in 1..200 Last is in range 1 .. 200

-- Global_outputs: List of global objects modified
-- Last

-- Global_inputs: List of global objects read
-- Last, Tab, Tab(1..200)

-- Presumption: Presumptions about Image call in To_String
-- 'Image'Result@44'Last in 1..1_234
-- 'Image'Result@44'First = 1

For more information about annotation syntax, refer to Inspector
Annotations chapter in GNAT SAS User's Guide

164 / 332

GNAT SAS Tutorial - Step by Step

GNAT SAS Tutorial - Step by Step

165 / 332

GNAT SAS Tutorial - Step by Step
Introduction

Introduction

166 / 332

GNAT SAS Tutorial - Step by Step
Introduction

Getting Started

This module is a lab-based version of the GNAT SAS Tutorial
found here
Copy the tutorial folder from the course materials location
Contents of the tutorial folder:

sdc.gpr - project file
common - source directory
struct - source directory
obj - object file (and metrics results) directory

167 / 332

https://docs.adacore.com/live/wave/gnatsas/html/tutorial/index.html

GNAT SAS Tutorial - Step by Step
Introduction

Starting GNAT Studio

From a command prompt, type gnatsas --help to verify your
path is set correctly

If not, add the appropriate bin directory to your path
Typically (for Windows), this is located in
C:\GNATSAS\<version>\bin

Start GNAT Studio and open the sdc.gpr project file by one
of these methods:

From the application library, select GNAT Studio and use File
→ Open Project to navigate to and open sdc.gpr

From the command prompt navigate to the tutorial directory
and enter gnatstudio sdc.gpr to open the project

You don't actually need sdc.gpr - GNAT Studio will
automatically open a GPR file if it is the only GPR file in the folder

168 / 332

GNAT SAS Tutorial - Step by Step
Running GNAT SAS

Running GNAT SAS

169 / 332

GNAT SAS Tutorial - Step by Step
Running GNAT SAS

First Analysis

Perform a deep static analysis on the project

GNATSAS → Analyze
Set Analysis mode to deep
Press Execute

170 / 332

GNAT SAS Tutorial - Step by Step
Running GNAT SAS

First Analysis

Perform a deep static analysis on the project

GNATSAS → Analyze
Set Analysis mode to deep
Press Execute

170 / 332

GNAT SAS Tutorial - Step by Step
Running GNAT SAS

Filter Messages by Rank

In the GNATSAS Report, note the count of High, Medium, and
Low messages

In the Locations window, note the actual messages displayed

Check/uncheck the Medium and Low items in Message ranking
Note the Locations window content changes based on which
messages are displayed

171 / 332

GNAT SAS Tutorial - Step by Step
Running GNAT SAS

Filter Messages by Rank

In the GNATSAS Report, note the count of High, Medium, and
Low messages

In the Locations window, note the actual messages displayed

Check/uncheck the Medium and Low items in Message ranking
Note the Locations window content changes based on which
messages are displayed

171 / 332

GNAT SAS Tutorial - Step by Step
Check Messages

Check Messages

172 / 332

GNAT SAS Tutorial - Step by Step
Check Messages

Finding a Check Message

In the Locations window, click on
the medium message for line 26 of
tokens.adb

Click the triangle next to
tokens.adb to show all
the messages
Select the medium message
for line 26

Note that the file appears and the
line is highlighted

173 / 332

GNAT SAS Tutorial - Step by Step
Check Messages

Finding a Check Message

In the Locations window, click on
the medium message for line 26 of
tokens.adb

Click the triangle next to
tokens.adb to show all
the messages
Select the medium message
for line 26

Note that the file appears and the
line is highlighted

173 / 332

GNAT SAS Tutorial - Step by Step
Check Messages

Understanding a Check Message

17 Read_A_Valid_Token : declare
18 Word : String := Input.Next_Word;
19

20 begin
21 -- Figure out which kind of token we have from the first
22 -- character and delegate the full token recognition to
23 -- the Read routine in the appropriate Instruction, Values
24 -- or Values.Operations package.
25

26 case Word (Word'First) is

Message Part Description
tokens.adb:26:18 Source location
medium Message ranking
array index check [CWE 120] (Inspector) Short description of message
requires (Input.Next_Word'First) <= (Input.Next_Word'Last) Explanation / possible remediation

GNATsas is warning that line 26 indexes into array* Word
without ever checking if the array is not empty, possibly raising a
Constraint_Error

So we need to investigate how Word is initialized, so we will look at
Input.Next_Word

174 / 332

GNAT SAS Tutorial - Step by Step
Check Messages

Determining Cause of Message
To investigate the behavior of Input.Next_Word, right-click on it
and select Go to Body or Full Declaration

This brings us to the implementation, including the GNATsas
annotations

180 ---------------
181 -- Next_Word --
182 ---------------

--
-- Subprogram: input.next_word
--
-- Post:
-- possibly_updated(input.next_word'Result(1..2_147_483_647))
-- possibly_updated(Line(1..1_024))
-- input.next_word'Result'Last in 0..1_023
-- input.next_word'Result'First <= 1_024
-- Line_Num'Initialized
-- Last_Char /= 0
-- First_Char <= 1_024
-- First_Char - input.next_word'Result'First in 0..1_023
--

184 function Next_Word return String is

175 / 332

GNAT SAS Tutorial - Step by Step
Check Messages

Interpreting Annotations

Our interest here is in the result of the call, so we're looking at the
postconditions as determined by GNATsas

-- input.next_word'Result'Last in 0..1_023
-- input.next_word'Result'First <= 1_024

This is indicating that for the result (return value) of
Input.Next_Word, 'Last can be 0 to 1023, and 'First just has
to be less than 1024

This means the last index can be less than the first index, which, in
Ada, is an indication of a 0-length array

176 / 332

GNAT SAS Tutorial - Step by Step
Check Messages

Fixing Our Problem

So we need to add a check in Tokens.Next to deal with this issue
On line 25, add the following code:
if Word = "" then

declare
Temp : Token := (Kind => Val,

Val => Values.Read (""));
begin

return Temp;
end;

end if;
Rerun the analysis, and see that the totals changed, and the check
message is no longer there

177 / 332

GNAT SAS Tutorial - Step by Step
Warnings

Warnings

178 / 332

GNAT SAS Tutorial - Step by Step
Warnings

Potential Logic Errors

In the Locations window, click on the message for line 41 of
stack.adb

stack.adb:41:4: medium warning: suspicious precondition (Inspector): precondition for Last
does not have a contiguous range of values

1 -- Subprogram: stack.push
2 --
3 -- Post:
4 -- Tab(1..198 | 200) = One-of{V, Tab(1..198 | 200)'Old}
5 -- Last in (1..198 | 200)
6 -- Last = Last'Old - 1
7 --
8 -- Pre:
9 -- V.E'Initialized

10 -- V /= null
11 -- Last in (2..199 | 201)
12 --
13 -- Global_outputs:
14 -- Last, Tab(1..198 | 200)

The non-contiguous values on line 4, 5, 11, and 14 indicate a
possible issue

179 / 332

GNAT SAS Tutorial - Step by Step
Warnings

Determining Cause of Message
Precondition of -- Last in (2..199 | 201) indicates that
199 and 201 are legal, but 200 is not

200 is an interesting number - it happens to be the length of Tab
What happens in the code when Last is 199, 200, or 201?

41 procedure Push (V : Value) is
42 begin
43 if Last = Tab'Last then
44 raise Overflow;
45 end if;
46

47 Screen_Output.Debug_Msg ("Pushing -> " & Values.To_String (V));
48

49 Last := Last - 1;
50 Tab (Last) := V;
51 end Push;

If Last is 199, the if statement is False, and we assign Tab(198)
to V
If Last is 201, the if statement is False, and we assign Tab(200)
to V
If Last is 200, the if statement is True, and we raise an overflow
exception

If this is a Push routine, why are we decrementing Last?

Fix the issue, and re-run the analysis.

180 / 332

GNAT SAS Tutorial - Step by Step
Warnings

Determining Cause of Message
Precondition of -- Last in (2..199 | 201) indicates that
199 and 201 are legal, but 200 is not

200 is an interesting number - it happens to be the length of Tab
What happens in the code when Last is 199, 200, or 201?

41 procedure Push (V : Value) is
42 begin
43 if Last = Tab'Last then
44 raise Overflow;
45 end if;
46

47 Screen_Output.Debug_Msg ("Pushing -> " & Values.To_String (V));
48

49 Last := Last - 1;
50 Tab (Last) := V;
51 end Push;

If Last is 199, the if statement is False, and we assign Tab(198)
to V
If Last is 201, the if statement is False, and we assign Tab(200)
to V
If Last is 200, the if statement is True, and we raise an overflow
exception

If this is a Push routine, why are we decrementing Last?

Fix the issue, and re-run the analysis.
180 / 332

GNAT SAS Tutorial - Step by Step
False Positive

False Positive

181 / 332

GNAT SAS Tutorial - Step by Step
False Positive

Messages for Something That Is Correct

Not all messages reported by GNAT SAS are actual errors
False positive - result of performing static analysis on complex

code

In the Locations window, click on the message for line 191 of
input.adb

input.adb:191:13: low: array index check [CWE 120]
(Inspector): requires First_Char <= 1_024

Why is this a false positive?

Skip_Spaces uses Get_Char to get the next printable character
Get_Char increments First_Char to a maximum of
Line'Last + 1
Skip_Spaces calls Unread_Char to decrement First_Char
So First_Char will never be greater than Line'Last

182 / 332

GNAT SAS Tutorial - Step by Step
False Positive

Messages for Something That Is Correct

Not all messages reported by GNAT SAS are actual errors
False positive - result of performing static analysis on complex

code

In the Locations window, click on the message for line 191 of
input.adb

input.adb:191:13: low: array index check [CWE 120]
(Inspector): requires First_Char <= 1_024

Why is this a false positive?

Skip_Spaces uses Get_Char to get the next printable character
Get_Char increments First_Char to a maximum of
Line'Last + 1
Skip_Spaces calls Unread_Char to decrement First_Char
So First_Char will never be greater than Line'Last

182 / 332

GNAT SAS Tutorial - Step by Step
False Positive

Review Message

In the Locations window, click on the message for line 191 of
input.adb
Click then pencil icon next to the message and select
Manual Review
Set the status to False positive and press OK
Rerun the analysis

Note the number of messages decreased
To include the message in the report, select False positive from
the Message review status filter

183 / 332

GNAT SAS Tutorial - Step by Step
Running GNAT SAS Again

Running GNAT SAS Again

184 / 332

GNAT SAS Tutorial - Step by Step
Running GNAT SAS Again

Comparing to Baseline

Note that each of the previous runs have new timestamps (upper
right corner of GNATSAS Report tab), but our baseline hasn't
changed (upper left corner)

Messages removed by fixing code are still in the history
Select removed in Message history filter to see old messages

Old messages appear in Locations window in italics

added displays messages added since baseline run
unchanged displays messages in baseline and also in current run

185 / 332

GNAT SAS Tutorial - Step by Step
Running GNAT SAS Again

Resetting Baseline

To set current state to be baseline
GNATSAS → Baseline → Bump Baseline to Current Run

History is lost
All future runs will be compared to this new baseline

Note: You can also use the timeline switch when comparing runs.
See the Timelines chapter in the GNAT SAS User's Guide

186 / 332

GNAT DAS Overview

GNAT DAS Overview

187 / 332

GNAT DAS Overview
About This Course

About This Course

188 / 332

GNAT DAS Overview
About This Course

Styles

This is a definition
this/is/a.path
code is highlighted
commands are emphasised --like-this

189 / 332

GNAT DAS Overview
GNAT Dynamic Analysis Suite (GNAT DAS)

GNAT Dynamic Analysis Suite (GNAT DAS)

190 / 332

GNAT DAS Overview
GNAT Dynamic Analysis Suite (GNAT DAS)

What Is Dynamic Analysis?

Process of testing and evaluating an application while it is running
Dynamic analysis finds properties that hold for one or more
executions

Can't prove a program satisfies a particular property
But can detect violations and provide useful information

191 / 332

GNAT DAS Overview
GNAT Dynamic Analysis Suite (GNAT DAS)

What Is GNAT DAS?

Two tools that can work together to analyze code execution
GNATcoverage

Indicates which lines/decisions/branches have been reached during
execution

GNATtest
Creates framework to build software tests for your codebase

192 / 332

GNATcoverage

GNATcoverage

193 / 332

GNATcoverage
Introduction

Introduction

194 / 332

GNATcoverage
Introduction

GNATcoverage

Provides range of coverage analysis facilities with support for
Variety of measurement methods, coverage criteria and output
formats
Consolidation features to report across multiple program executions

Sometimes, we only want coverage on certain units
Referred to as Units of Interest
Typically new/modified units
Usually excludes any units used for testing

195 / 332

GNATcoverage
Introduction

Coverage Data Gathering

Coverage computed from two kinds of trace files
Binary traces

Produced by instrumented execution environment with unmodifed
version of program.
Traces contain low level information about executed blocks of
machine instructions

Source traces
Produced by modified version of program
Original source instrumented to generate coverage data

Note: This course will focus on Source Traces coverage

196 / 332

GNATcoverage
Coverage Types

Coverage Types

197 / 332

GNATcoverage
Coverage Types

Statement Coverage
Each executed line gets flagged as covered

Including object initialization

Call Test_Statement with (1, 2, Integer'Last)

Congratulations: 100% Statement Coverage! But...

We have not tested C <= 0
Which is a problem because we don't assign Z in this case

We cannot tell if Z := Local + C * 1_000; raised an exception
Statement coverage shows we reached a line, not that it executed
successfully

198 / 332

GNATcoverage
Coverage Types

Statement Coverage
Each executed line gets flagged as covered

Including object initialization

Call Test_Statement with (1, 2, Integer'Last)

Congratulations: 100% Statement Coverage! But...

We have not tested C <= 0
Which is a problem because we don't assign Z in this case

We cannot tell if Z := Local + C * 1_000; raised an exception
Statement coverage shows we reached a line, not that it executed
successfully

198 / 332

GNATcoverage
Coverage Types

Decision Coverage

Adds evaluation of boolean expressions to statement coverage
Not just branches - boolean objects as well

Call Test_Decision with (0, 0, 0) and
(1, 1, Integer'Last)

Congratulations: 100% Decision Coverage! But...

Check can be True or False without ever examining C**2 > 0
False when A <= 0
True when A > 0 and B >= 1

199 / 332

GNATcoverage
Coverage Types

Decision Coverage

Adds evaluation of boolean expressions to statement coverage
Not just branches - boolean objects as well

Call Test_Decision with (0, 0, 0) and
(1, 1, Integer'Last)

Congratulations: 100% Decision Coverage! But...

Check can be True or False without ever examining C**2 > 0
False when A <= 0
True when A > 0 and B >= 1

199 / 332

GNATcoverage
Coverage Types

Modified Condition/Decision Coverage
Decision Coverage plus Unique-Cause verification
Independent Influence For each subcondition, changing just the

subcondition can change the expression result
Simple example: A and then (B or else C)

Row A B C Result
1) F F F F
2) F F T F
3) F T F F
4) F T T F
5) T F F F
6) T F T T
7) T T F T
8) T T T T

Note that rows 2 and 6 show that, if B is False and C is True,
changing A changes the result

Similarly for rows 5 and 7 for B and rows 5 and 6 for C
There can be multiple pairs of rows depending on the expression

So, to prove MCDC for subcondition A, coverage results must
show that both rows 2 and 6 have been executed
Note that there are two types of MCDC coverage implementations

Unique Cause MCDC, where every subcondition must be shown to
affect the outcome of the result
Masking MCDC, which allows conditions to be grouped, necessary
with coupled conditions

200 / 332

GNATcoverage
Coverage Types

Modified Condition/Decision Coverage Example

Call Test_Mcdc with (1, 0, 0), (0, 1, 0), and (1, 1, 0)

Better test results, but we need more tests
In general, if there are N subconditions, need N+1 sets of data to
get complete MCDC coverage

201 / 332

Basic Workflow

Basic Workflow

202 / 332

Basic Workflow
Workflow Overview

Workflow Overview

203 / 332

Basic Workflow
Workflow Overview

General Process

1 Set up instrumentation runtime
2 Instrument sources for coverage
3 Build the executable from the instrumented sources
4 Run the executable

Possibly many times
5 Generate and analyze code coverage reports

204 / 332

Basic Workflow
A Simple Example

A Simple Example

205 / 332

Basic Workflow
A Simple Example

Unit of Interest
We want to get code coverage on this unit

package Ops is
type Op_Kind is (Increment, Decrement, Double, Half);

procedure Apply
(Op : Op_Kind;
X : in out Integer);

end Ops;

package body Ops is
procedure Apply

(Op : Op_Kind;
X : in out Integer) is

begin
case Op is

when Increment => X := X + 1;
when Decrement => X := X - 1;
when Double => X := X * 2;
when Half => X := X / 2;

end case;
exception

when others =>
null;

end Apply;
end Ops;

206 / 332

Basic Workflow
A Simple Example

Supplying an Execution Context

Sometimes, we have an application for which we want coverage
But more often, we want coverage on a package or collection of
packages

In our example, we have a package, so we need to create a main
program to run

with Ada.Text_IO; use Ada.Text_IO;
with Ops;
procedure Test_Driver is

procedure Run_One
(Kind : Ops.Op_Kind;
Value : Integer) is
X : Integer := Value;

begin
Ops.Apply (Kind, X);
Put_Line ("Before:" & Value'Image & " After:" & X'Image);

end Run_One;
begin

Run_One (Ops.Increment, 4);
end Test_Driver;

207 / 332

Basic Workflow
A Simple Example

Setup

First need to verify our project builds cleanly

gprbuild -P default.gpr

Then we need to install the instrumentation context, giving a
directory (prefix) where the data will be stored

gnatcov setup --prefix=.\gnatcov-rts

We need to update the environment variable GPR_PROJECT_PATH
to add this context:
set GPR_PROJECT_PATH=%GPR_PROJECT_PATH%;\path\to\gnatcov-rts\share\gpr

OR

export GPR_PROJECT_PATH=$GPR_PROJECT_PATH:/path/to/gnatcov-rts/share/gpr

208 / 332

Basic Workflow
A Simple Example

Instrument

We now need to add the instrumentation to the source code that will
collect data

gnatcov instrument -Pdefault.gpr --level=stmt

level is the type of coverage information you will gather

stmt Statement coverage
stmt+decision Statement and decision coverage
stmt+mcdc Statement and Masking MCDC
stmt+uc_mcdc Statement and Unique Cause MCDC

209 / 332

Basic Workflow
A Simple Example

Build

To build the instrumented executable, we just need some extra
switches
gprbuild -f -p -Pdefault.gpr --src-subdirs=gnatcov-instr --implicit-with=gnatcov_rts.gpr

where

-f Force recompilation

-p Create missing object (and library/executable) directories

--src-subdirs Instruct the builder to search for the instrumented
versions of the sources

--implicit-with Provide visibility to the builder over the coverage
runtime referenced by the instrumented sources

210 / 332

Basic Workflow
A Simple Example

Execute

We can now execute the test program as we would normally

obj\test_driver.exe

Before: 4 After: 5

This generates a source trace file in the working directory that
looks like test-driver.exe-<stamp>.srctrace

stamp will be a unique identifier to prevent clashes from multiple
executions

211 / 332

Basic Workflow
A Simple Example

Analyze

Analysis of coverage is done by processing the source trace file(s)
generated
gnatcov coverage --level=stmt --annotate=xcov test_driver*.srctrace -Pdefault.gpr

where

--level=stmt indicates we are looking for statement coverage

--annotate=xcov indicates we want an annotated source report in text
format

-Pdefault.gpr indicates we want the report for all units for the
executable in the project

This generates *.xcov files in the obj directory for each unit in
the project

212 / 332

Basic Workflow
A Simple Example

Viewing the Report
The report file (for package body ops) looks like:
C:\temp\gnatcov\src\ops.adb:
33% of 6 lines covered
33% statement coverage (2 out of 6)

Coverage level: stmt
1 .: package body Ops is
2 .: procedure Apply
3 .: (Op : Op_Kind;
4 .: X : in out Integer) is
5 .: begin
6 +: case Op is
7 +: when Increment => X := X + 1;
8 -: when Decrement => X := X - 1;
9 -: when Double => X := X * 2;

10 -: when Half => X := X / 2;
11 .: end case;
12 .: exception
13 .: when others =>
14 -: null;
15 .: end Apply;
16 .: end Ops;

Coverage information appears after the line number, where

. indicates uncoverable line

+ means covered line

- means uncovered line
213 / 332

Basic Workflow
Lab

Lab

214 / 332

Basic Workflow
Lab

Basic Workflow Lab

We are going to get 100% Statement Coverage on the example
from the module
Copy the cover_020_basic_workflow lab from the course
materials location
Contents of the folder:

default.gpr - project file
src - source directory

Note: Many of the following pages use animation to first give you a
task and then show you how to do it. Page Down does not always go
to the next page!

215 / 332

Basic Workflow
Lab

Preparing the Command Line
1 Open a command prompt window and navigate to the directory

containing default.gpr

2 Type gprbuild -Pdefault.gpr and press Enter to verify tool
is on your path and you can build an executable

You can even run the executable (obj\test_driver.exe on
Windows or obj/test_driver on Linux) to see what happens
when you run Increment

3 Prepare the coverage libraries
Windows

gnatcov setup --prefix=.\gnatcov-rts

Linux

gnatcov setup --prefix=./gnatcov-rts

This creates the gnatcov-rts folder containing the coverage
libraries

4 Add the coverage project to the GPR_PROJECT_PATH environment
variable

Windows

set GPR_PROJECT_PATH=%GPR_PROJECT_PATH%;\path\to\gnatcov-rts\share\gpr

Linux (bash)

export GPR_PROJECT_PATH=$GPR_PROJECT_PATH:/path/to/gnatcov-rts/share/gpr

216 / 332

Basic Workflow
Lab

Instrument, Build, and Execute

1 Perform statement instrumentation on your source code

gnatcov instrument -Pdefault.gpr --level=stmt

2 Then build the instrumented executable

gprbuild -f -p -Pdefault.gpr --src-subdirs=gnatcov-instr
--implicit-with=gnatcov_rts.gpr

3 And then run it

Windows

obj\test_driver.exe

Linux

obj/test_driver

If you did this correctly, there should be a *.srctrace file

217 / 332

Basic Workflow
Lab

Instrument, Build, and Execute

1 Perform statement instrumentation on your source code

gnatcov instrument -Pdefault.gpr --level=stmt

2 Then build the instrumented executable

gprbuild -f -p -Pdefault.gpr --src-subdirs=gnatcov-instr
--implicit-with=gnatcov_rts.gpr

3 And then run it

Windows

obj\test_driver.exe

Linux

obj/test_driver

If you did this correctly, there should be a *.srctrace file

217 / 332

Basic Workflow
Lab

Instrument, Build, and Execute

1 Perform statement instrumentation on your source code

gnatcov instrument -Pdefault.gpr --level=stmt

2 Then build the instrumented executable

gprbuild -f -p -Pdefault.gpr --src-subdirs=gnatcov-instr
--implicit-with=gnatcov_rts.gpr

3 And then run it

Windows

obj\test_driver.exe

Linux

obj/test_driver

If you did this correctly, there should be a *.srctrace file

217 / 332

Basic Workflow
Lab

Instrument, Build, and Execute

1 Perform statement instrumentation on your source code

gnatcov instrument -Pdefault.gpr --level=stmt

2 Then build the instrumented executable

gprbuild -f -p -Pdefault.gpr --src-subdirs=gnatcov-instr
--implicit-with=gnatcov_rts.gpr

3 And then run it

Windows

obj\test_driver.exe

Linux

obj/test_driver

If you did this correctly, there should be a *.srctrace file
217 / 332

Basic Workflow
Lab

Viewing Coverage
1 Add the coverage information into the project

gnatcov coverage --level=stmt --annotate=xcov test_driver*.srctrace -Pdefault.gpr

2 Examine the coverage data for the ops unit by viewing the file
ops.adb.xcov in the obj folder

33% of 6 lines covered
33% statement coverage (2 out of 6)

Coverage level: stmt
1 .: package body Ops is
2 .: procedure Apply
3 .: (Op : Op_Kind;
4 .: X : in out Integer) is
5 .: begin
6 +: case Op is
7 .: when Increment =>
8 +: X := X + 1;
9 .: when Decrement =>

10 -: X := X - 1;
11 .: when Double =>
12 -: X := X * 2;
13 .: when Half =>
14 -: X := X / 2;
15 .: end case;
16 .: exception
17 .: when others =>
18 -: null;
19 .: end Apply;
20 .: end Ops;

218 / 332

Basic Workflow
Lab

Viewing Coverage
1 Add the coverage information into the project

gnatcov coverage --level=stmt --annotate=xcov test_driver*.srctrace -Pdefault.gpr

2 Examine the coverage data for the ops unit by viewing the file
ops.adb.xcov in the obj folder

33% of 6 lines covered
33% statement coverage (2 out of 6)

Coverage level: stmt
1 .: package body Ops is
2 .: procedure Apply
3 .: (Op : Op_Kind;
4 .: X : in out Integer) is
5 .: begin
6 +: case Op is
7 .: when Increment =>
8 +: X := X + 1;
9 .: when Decrement =>

10 -: X := X - 1;
11 .: when Double =>
12 -: X := X * 2;
13 .: when Half =>
14 -: X := X / 2;
15 .: end case;
16 .: exception
17 .: when others =>
18 -: null;
19 .: end Apply;
20 .: end Ops;

218 / 332

Basic Workflow
Lab

Improving Coverage

Two ways of getting more coverage
1 Modify test_driver to test a different value for Ops.Apply Op

parameter
When you run the executable to generate coverage, you will get a
srctrace file with a different timestamp to analyze

2 Expand test_driver to test all values for Ops.Apply Op
parameter in one execution

When you run the executable to generate coverage, you will get a
srctrace containing all the coverage information

Using whichever method you want, get 100% statement coverage
One possible solution on next page

219 / 332

Basic Workflow
Lab

Possible Solution
with Ada.Text_IO; use Ada.Text_IO;
with Ops;
procedure Test_Driver is

procedure Run_One
(Kind : Ops.Op_Kind;
Value : Integer) is
X : Integer := Value;

begin
Ops.Apply (Kind, X);
Put_Line ("Before:" & Value'Image & " After:" & X'Image);

end Run_One;
begin

for Op in Ops.Op_Kind loop
Run_One (Op, 4);

end loop;
Run_One (Ops.Increment, Integer'Last);

end Test_Driver;

Hints

Whenever you update your source code, you need to re-instrument
your project

If you modify your source code, previous srctrace files will be
out-of-date, generating a message like:

warning: traces for body of test_driver (from test_driver.exe-65ba6772-4f18-65baa1dd.srctrace)
are inconsistent with the corresponding Source Instrumentation Data

220 / 332

Basic Workflow
Lab

Possible Solution
with Ada.Text_IO; use Ada.Text_IO;
with Ops;
procedure Test_Driver is

procedure Run_One
(Kind : Ops.Op_Kind;
Value : Integer) is
X : Integer := Value;

begin
Ops.Apply (Kind, X);
Put_Line ("Before:" & Value'Image & " After:" & X'Image);

end Run_One;
begin

for Op in Ops.Op_Kind loop
Run_One (Op, 4);

end loop;
Run_One (Ops.Increment, Integer'Last);

end Test_Driver;

Hints

Whenever you update your source code, you need to re-instrument
your project

If you modify your source code, previous srctrace files will be
out-of-date, generating a message like:

warning: traces for body of test_driver (from test_driver.exe-65ba6772-4f18-65baa1dd.srctrace)
are inconsistent with the corresponding Source Instrumentation Data

220 / 332

Advanced GNATcoverage Capabilities

Advanced GNATcoverage Capabilities

221 / 332

Advanced GNATcoverage Capabilities
Introduction

Introduction

222 / 332

Advanced GNATcoverage Capabilities
Introduction

More Options and Capabilities

Various options exist to include/exclude instrumentation for
Subprojects
Specific units
Specific files
Parts of a file

In addition, the coverage report mechanism allows
Multiple output formats
Control over what information is reported
Coverage on instances of generics or the generics themselves
Plus more

223 / 332

Advanced GNATcoverage Capabilities
Project-Based Instrumentation Control

Project-Based Instrumentation Control

224 / 332

Advanced GNATcoverage Capabilities
Project-Based Instrumentation Control

Simple Instrumentation

As we saw before, it is easy to instrument a simple project

project Default is
for Source_Dirs use ("src");
for Object_Dir use "obj";
for Main use ("test_driver.adb");

end Default;

gnatcov instrument -Pdefault.gpr --level=stmt

But what happens in a more complicated build environment with
multiple projects?

with "io/io.gpr";
with "utils/utils.gpr";
project Sdc is

for Languages use ("ada");
for Source_Dirs use ("src");
for Object_Dir use "obj";
for Main use ("sdc.adb");

end Sdc;
225 / 332

Advanced GNATcoverage Capabilities
Project-Based Instrumentation Control

Multiple Projects - Simple Case

As we would expect, the simple case (we want to instrument the
entire application) works the same way:

gnatcov instrument -Psdc.gpr --level=stmt

This will instrument all source files within the src folder, plus
any source files from projects io and utils

226 / 332

Advanced GNATcoverage Capabilities
Project-Based Instrumentation Control

Indicating Projects of Interest

But what if we don't want coverage on a particular subproject?
Might be externally built
Might be a re-used project that we don't need coverage for

Specifying projects of interest is handled by the instrumentation
command

We build the command using the following options
--no-subprojects tells the instrumenter to only process the root
project
--projects=utils tells the instrumenter to only process the
utils project

You can combine the options for better control
Root project only
gnatcov instrument -Psdc.gpr --no-subprojects --level=stmt

Subproject utils only (not sdc)
gnatcov instrument -Psdc.gpr --no-subprojects --projects=utils --level=stmt

Root project and subproject io
gnatcov instrument -Psdc.gpr --projects=sdc --projects=io --level=stmt

227 / 332

Advanced GNATcoverage Capabilities
Project-Based Instrumentation Control

Indicating Units of Interest Within Projects

By default, all units within project(s) of interest are considered
units of interest

We can control units of interest from the project file's Coverage
package

package Coverage is
for Units use ("instructions", "tokens");

end Coverage;

Note that units refer to the Ada name, not the source file name
So package Naming would have no affect

The four keywords to control units of interest

units List of units to instrument
units_list Filename containing list of units to instrument
excluded_units List of units not to instrument
excluded_units_list Filename containing list of units not to instrument

228 / 332

Advanced GNATcoverage Capabilities
Project-Based Instrumentation Control

What About Separates?
Sometimes you build your application using a separate body for
a package or subprogram

package body Input is
procedure Read_New_Line is separate;

end Input;

Useful when your build process wants a different body based on
various situations

package Naming is
case Build is

when "DEBUG" =>
for Body ("input.read_new_line")

use "read_new_line_from_console.adb";
when "PRODUCTION" =>

for Body ("input.read_new_line")
use "read_new_line_from_file.adb";

end case;
end Naming;

As a separate is not a unit, how do we prevent instrumentation
of this subprogram when DEBUG is set?

package Coverage is
for Ignored_Source_Files use ("input-*.adb");
for Ingored_Source_Files_List use "files_to_skip.txt";

end Coverage;

229 / 332

Advanced GNATcoverage Capabilities
Project-Based Instrumentation Control

Units of Interest and Their Dependents

In a large project, we might want coverage on a unit PLUS every
unit it calls

Analyzing the entire project is overkill, but we don't want to find all
the units that our unit needs

When instrumenting files, GNATcoverage creates an obligation
file (file extension .sid)

This file contains information regarding all the dependents for the
unit

To get coverage on a unit and all its dependents, use the --sid
option for the unit(s) you want

Use the unit name for individual files, or @<filename> to specify
a file containing a list
gnatcov coverage -Pdefault.gpr --level=stmt --sid=tokens.sid --sid=@sidfiles.lst

230 / 332

Advanced GNATcoverage Capabilities
Source-Based Instrumentation Control

Source-Based Instrumentation Control

231 / 332

Advanced GNATcoverage Capabilities
Source-Based Instrumentation Control

Coverage Exemptions

Sometimes there are blocks of code for which you do not want
coverage reporting

Typically for defensive coding purposes

1 function My_New return Access_T is
2 Retval : Access_T;
3 begin
4 Retval := new Record_T;
5 if Retval = null then
6 raise Program_Error;
7 end if;
8 return Retval;
9 end My_New;

The likelihood of line 5 being True should be small, so we don't
want the False branch (and the raise statement) to reduce our
coverage totals

232 / 332

Advanced GNATcoverage Capabilities
Source-Based Instrumentation Control

Coverage Exemption Region

We need to modify the My_New subprogram to indicate where we
do not want coverage

Use pragma Annotate to indicate source that should not be
tracked

1 function My_New return Access_T is
2 Retval : Access_T;
3 begin
4 Retval := new Record_T;
5 pragma Annotate (Xcov, Exempt_On, "justification");
6 if Retval = null then
7 raise Program_Error;
8 end if;
9 pragma Annotate (Xcov, Exempt_Off);

10 return Retval;
11 end My_New;

Note that we are turning on/off the exemption, not the
instrumentation

That's why we start the block with Exempt_On on line 5 and end
with Exempt_Off on line 9

233 / 332

Advanced GNATcoverage Capabilities
Source-Based Instrumentation Control

Coverage Exemption Reporting

Coverage reports can be generated in multiple ways

gnatcov coverage --level=stmt+decision
--annotate=<form>*trace* -P default.gpr

where <form> is one of the following:

report Summary that lists all coverage violations

xcov For each source file, the xcov file contains a global
summary of assessment results followed by annotated
source lines

xcov+ Same as xcov except it provides extra details below lines
with improperly satisfied obligations

html Web-based reporting mechanism to show coverage data
for the project

xml XML database containing all necessary coverage
information

234 / 332

Advanced GNATcoverage Capabilities
Source-Based Instrumentation Control

xcov Output File

utils.adb.xcov
Without exemptions :
60% of 5 lines covered
80% statement coverage (4 out of 5)
0% decision coverage (0 out of 1)

Coverage level: stmt+decision
1 .: package body Utils is
2 .:
3 .: function My_New return Access_T is
4 +: Retval : Access_T;
5 .: begin
6 +: Retval := new Record_T;
7 !: if Retval = null then
8 -: raise Program_Error;
9 .: end if;

10 +: return Retval;
11 .: end My_New;
12 .:
13 .: end Utils;

With exemptions
60% of 5 lines covered
60% statement coverage (3 out of 5)
0% decision coverage (0 out of 1)

Coverage level: stmt+decision
1 .: package body Utils is
2 .:
3 .: function My_New return Access_T is
4 +: Retval : Access_T;
5 .: begin
6 +: Retval := new Record_T;
7 *: pragma Annotate (Xcov,
8 *: Exempt_On,
9 *: "justification");

10 *: if Retval = null then
11 *: raise Program_Error;
12 *: end if;
13 *: pragma Annotate (Xcov,
14 .: Exempt_Off);
15 +: return Retval;
16 .: end My_New;
17 .:
18 .: end Utils;

Note different coverage indicator for exempted code

235 / 332

Advanced GNATcoverage Capabilities
Source-Based Instrumentation Control

report Output File
Exemptions appear in the coverage summary report

gnatcov coverage --level=stmt+decision
--annotate=report *trace* -P default.gpr

** COVERAGE REPORT **
===========================
== 1. ASSESSMENT CONTEXT ==
===========================
Date and time of execution: 2024-02-21 15:08:45 -05:00
Tool version: XCOV 24.0 (20231011)
Command line:
C:\GNATPRO\24.0\bin\gnatcov.exe coverage --level=stmt+decision --annotate=report main.exe-65d6573e-9358-65d65741.srctrace -P default.gpr
Coverage level: stmt+decision
Trace files:
main.exe-65d6573e-9358-65d65741.srctrace

kind : source
program : C:\temp\temp\obj\main.exe
date : 2024-02-21 15:04:17 -05:00
tag :

===
== 2. NON-EXEMPTED COVERAGE VIOLATIONS ==
===
2.1. STMT COVERAGE

No violation.
2.2. DECISION COVERAGE

No violation.
=========================
== 3. EXEMPTED REGIONS ==
=========================
utils.adb:7:7-13:7: 2 exempted violations, justification:
"justification"
Exempted violations:
utils.adb:10:10: decision outcome TRUE never exercised
utils.adb:11:10: statement not executed
1 exempted region, 2 exempted violations.
=========================
== 4. ANALYSIS SUMMARY ==
=========================
No non-exempted STMT violation.
No non-exempted DECISION violation.
1 exempted region, 2 exempted violations.
** END OF REPORT **

236 / 332

Advanced GNATcoverage Capabilities
Lab

Lab

237 / 332

Advanced GNATcoverage Capabilities
Lab

Advanced Topics Lab

We are going to demonstrate different ways of controlling coverage
information on the supplied base project

Which happens to include subprojects
Copy the cover_030_advanced_topics lab from the course
materials location

This is basically a copy of the Tutorial example from the GNAT
distribution

Directories in the folder:
io - I/O support subproject
utils - Utilities subproject
sdc - base project

Each directory contains a project file and src directory

Note: Many of the following pages use animation to first give you a
task and then show you how to do it. Page Down does not always go
to the next page!

238 / 332

Advanced GNATcoverage Capabilities
Lab

Quick Note on the Application
SDC stands for Simple Desktop Calculator

The input is a list of operands an operators in programmatic order,
not mathematic

The calculator does have a simple memory

Example: To add 11 to 22 you would enter 11 22 +

To multiply that by 10, the next line might be 10 *

In additon to numbers, you have the commands Clear, Print, and
Quit

Example run sdc.exe

Display Description
Welcome to SDC. Go ahead type your commands ...
100 20 + User Input
100 20 + Command echo
3 + User Input
3 + Command echo
print User Input
print Command echo
-> 123 Result of Print
quit User Input
quit Command echo
Thank you for using SDC.

239 / 332

Advanced GNATcoverage Capabilities
Lab

Initialization

Make sure your project builds

cd /path/to/sdc.gpr
gprbuild -P sdc.gpr

Prepare the coverage libraries

gnatcov setup --prefix=.\gnatcov-rts

OR

gnatcov setup --prefix=./gnatcov-rts

Don't forget to set the environment variable GPR_PROJECT_PATH to
point to the folder containing the gnatcov_rts.gpr file

240 / 332

Advanced GNATcoverage Capabilities
Lab

Initialization

Make sure your project builds

cd /path/to/sdc.gpr
gprbuild -P sdc.gpr

Prepare the coverage libraries

gnatcov setup --prefix=.\gnatcov-rts

OR

gnatcov setup --prefix=./gnatcov-rts

Don't forget to set the environment variable GPR_PROJECT_PATH to
point to the folder containing the gnatcov_rts.gpr file

240 / 332

Advanced GNATcoverage Capabilities
Lab

Initialization

Make sure your project builds

cd /path/to/sdc.gpr
gprbuild -P sdc.gpr

Prepare the coverage libraries

gnatcov setup --prefix=.\gnatcov-rts

OR

gnatcov setup --prefix=./gnatcov-rts

Don't forget to set the environment variable GPR_PROJECT_PATH to
point to the folder containing the gnatcov_rts.gpr file

240 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow One - Coverage on Base Project

Typically we only care about coverage on the project we are
working with

We know we won't get 100% coverage on things like utility
packages, so we don't want to instrument them

Instrument the sdc project for statement and decision coverage
without instrumenting the utils or io projects

Two ways to do this
Method 1 - focus only on base project

gnatcov instrument -Psdc.gpr --no-subprojects
--level=stmt+decision

Method 2 - specify particular project

gnatcov instrument -Psdc.gpr --projects=sdc
--level=stmt+decision

241 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow One - Coverage on Base Project

Typically we only care about coverage on the project we are
working with

We know we won't get 100% coverage on things like utility
packages, so we don't want to instrument them

Instrument the sdc project for statement and decision coverage
without instrumenting the utils or io projects

Two ways to do this
Method 1 - focus only on base project

gnatcov instrument -Psdc.gpr --no-subprojects
--level=stmt+decision

Method 2 - specify particular project

gnatcov instrument -Psdc.gpr --projects=sdc
--level=stmt+decision

241 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow One Continued

Build your application

gprbuild -f -p -Psdc.gpr --src-subdirs=gnatcov-instr
--implicit-with=gnatcov_rts.gpr

Run your application and add the coverage to the project

obj/sdc

Add the coverage to the project

gnatcov coverage --level=stmt+decision --annotate=xcov
*.srctrace -Psdc.gpr

Inspect the coverage

It should be in the obj/*.xcov files

242 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow One Continued

Build your application

gprbuild -f -p -Psdc.gpr --src-subdirs=gnatcov-instr
--implicit-with=gnatcov_rts.gpr

Run your application and add the coverage to the project

obj/sdc

Add the coverage to the project

gnatcov coverage --level=stmt+decision --annotate=xcov
*.srctrace -Psdc.gpr

Inspect the coverage

It should be in the obj/*.xcov files

242 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow One Continued

Build your application

gprbuild -f -p -Psdc.gpr --src-subdirs=gnatcov-instr
--implicit-with=gnatcov_rts.gpr

Run your application and add the coverage to the project

obj/sdc

Add the coverage to the project

gnatcov coverage --level=stmt+decision --annotate=xcov
*.srctrace -Psdc.gpr

Inspect the coverage

It should be in the obj/*.xcov files

242 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow One Continued

Build your application

gprbuild -f -p -Psdc.gpr --src-subdirs=gnatcov-instr
--implicit-with=gnatcov_rts.gpr

Run your application and add the coverage to the project

obj/sdc

Add the coverage to the project

gnatcov coverage --level=stmt+decision --annotate=xcov
*.srctrace -Psdc.gpr

Inspect the coverage

It should be in the obj/*.xcov files

242 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow One Continued

Build your application

gprbuild -f -p -Psdc.gpr --src-subdirs=gnatcov-instr
--implicit-with=gnatcov_rts.gpr

Run your application and add the coverage to the project

obj/sdc

Add the coverage to the project

gnatcov coverage --level=stmt+decision --annotate=xcov
*.srctrace -Psdc.gpr

Inspect the coverage

It should be in the obj/*.xcov files

242 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow Two - Excluding Source Files
We only want coverage on package bodies

Modify the base project file to ignore all *.ads files

We need to add the following to sdc.gpr

package Coverage is
for Ignored_Source_Files use ("*.ads");

end Coverage;

You could also use for Ignored_Source_Files_List use
("list.txt"); where list.txt lists all the spec files

Instrument the base project, run the executable, and analyze the
coverage data

gnatcov instrument -Psdc.gpr --level=stmt
gprbuild -f -p -Psdc.gpr --src-subdirs=gnatcov-instr --implicit-with=gnatcov_rts.gpr
obj/sdc
gnatcov coverage --level=stmt --annotate=xcov *.srctrace -Psdc.gpr

When looking for *.xcov files, note they exist only for *.adb
files

Note the warning that no information was found for unit Except

Because it's only a package spec

243 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow Two - Excluding Source Files
We only want coverage on package bodies

Modify the base project file to ignore all *.ads files

We need to add the following to sdc.gpr

package Coverage is
for Ignored_Source_Files use ("*.ads");

end Coverage;

You could also use for Ignored_Source_Files_List use
("list.txt"); where list.txt lists all the spec files

Instrument the base project, run the executable, and analyze the
coverage data

gnatcov instrument -Psdc.gpr --level=stmt
gprbuild -f -p -Psdc.gpr --src-subdirs=gnatcov-instr --implicit-with=gnatcov_rts.gpr
obj/sdc
gnatcov coverage --level=stmt --annotate=xcov *.srctrace -Psdc.gpr

When looking for *.xcov files, note they exist only for *.adb
files

Note the warning that no information was found for unit Except

Because it's only a package spec

243 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow Two - Excluding Source Files
We only want coverage on package bodies

Modify the base project file to ignore all *.ads files

We need to add the following to sdc.gpr

package Coverage is
for Ignored_Source_Files use ("*.ads");

end Coverage;

You could also use for Ignored_Source_Files_List use
("list.txt"); where list.txt lists all the spec files

Instrument the base project, run the executable, and analyze the
coverage data

gnatcov instrument -Psdc.gpr --level=stmt
gprbuild -f -p -Psdc.gpr --src-subdirs=gnatcov-instr --implicit-with=gnatcov_rts.gpr
obj/sdc
gnatcov coverage --level=stmt --annotate=xcov *.srctrace -Psdc.gpr

When looking for *.xcov files, note they exist only for *.adb
files

Note the warning that no information was found for unit Except

Because it's only a package spec
243 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow Three - Excluding Source Code

We do not want coverage on any exception processing in unit Sdc

Use pragma Annotate to turn off coverage in the exception blocks

34 pragma Annotate (Xcov, Exempt_On, "Exception Handler");
35 exception
36 when Stack.Underflow =>
37 Error_Msg ("Not enough values in the Stack.");
38

39 when Stack.Overflow =>
40 null;
41 pragma Annotate (Xcov, Exempt_Off);

Now run your code and generate a summary report

244 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow Three - Excluding Source Code

We do not want coverage on any exception processing in unit Sdc

Use pragma Annotate to turn off coverage in the exception blocks

34 pragma Annotate (Xcov, Exempt_On, "Exception Handler");
35 exception
36 when Stack.Underflow =>
37 Error_Msg ("Not enough values in the Stack.");
38

39 when Stack.Overflow =>
40 null;
41 pragma Annotate (Xcov, Exempt_Off);

Now run your code and generate a summary report

244 / 332

Advanced GNATcoverage Capabilities
Lab

Workflow Three - Exemption Reporting
When you look look at sdc.adb.xcov you'll notice the
exempted lines are marked with *

29 .: begin
30 .:
31 +: Process (Next);
32 .: -- Read the next Token from the input and process it.
33 .:
34 *: pragma Annotate (Xcov, Exempt_On, "Exception Handler");
35 *: exception
36 *: when Stack.Underflow =>
37 *: Error_Msg ("Not enough values in the Stack.");
38 *:
39 *: when Stack.Overflow =>
40 *: null;
41 *: pragma Annotate (Xcov, Exempt_Off);
42 .: end;

While the summary report contains a description of the exemption
region

=========================
== 3. EXEMPTED REGIONS ==
=========================

sdc.adb:34:7-41:7: 2 exempted violations, justification:
"Exception Handler"

Exempted violations:
sdc.adb:37:13: statement not executed
sdc.adb:40:13: statement not executed

1 exempted region, 2 exempted violations.

245 / 332

GNATcoverage From GNAT Studio

GNATcoverage From GNAT Studio

246 / 332

GNATcoverage From GNAT Studio
Introduction

Introduction

247 / 332

GNATcoverage From GNAT Studio
Introduction

Coverage Integrated with IDE

Benefits of using GNAT Studio for coverage processing
One click to instrument, build, run, analyze
Color-coded coverage view
Edit source code from coverage view

248 / 332

GNATcoverage From GNAT Studio
Generating Coverage From GNAT Studio

Generating Coverage From GNAT Studio

249 / 332

GNATcoverage From GNAT Studio
Generating Coverage From GNAT Studio

Setting Coverage Type
On the command line, we used --level=stmt for each step to
specify coverage type

This allows us to generate a Statement report even if we've
instrumented for Statement and Decision

For GNAT Studio, we simplify by using the same coverage type
for all steps

Edit → Project Properties

250 / 332

GNATcoverage From GNAT Studio
Generating Coverage From GNAT Studio

One-Click Coverage

Once the coverage type is set, you can use the menu or shortcut
icon to instrument, build, and execute

Analyze → Coverage → GNATcoverage Source Traces →
Run All Actions

251 / 332

GNATcoverage From GNAT Studio
Generating Coverage From GNAT Studio

Viewing Coverage

Coverage report is displayed after execution

Benefits from running coverage from GNAT Studio
Coverage report is graphical and interactive
Annotated source code view

252 / 332

GNATcoverage From GNAT Studio
Generating Coverage From GNAT Studio

Coverage Report

Coverage report default view Coverage report with units
expanded (shows subprograms)

Shows all source within project(s)
Numeric percentage of coverage
Graphical representation of coverage

Click on column title to sort by
Unit name (Entities)
Absolute coverage numbers (Coverage)
Relative coverage numbers (%)

253 / 332

GNATcoverage From GNAT Studio
Generating Coverage From GNAT Studio

Annotated Source Code
Double-click on row in Entities column to show annotated code

Unit or subprogram

Selecting row in report vs unit in project view
Double-clicking row in report always brings up annotated view

Selecting unit in project view will
Open normal source view if unit not already displayed
Switch to displayed unit if tab already open (normal or annotated)

These are different views of the same file
So edits in one view automatically appear in other view
(That's why you don't have two tabs open!)

254 / 332

GNATcoverage From GNAT Studio
Updating Code with Coverage

Updating Code with Coverage

255 / 332

GNATcoverage From GNAT Studio
Updating Code with Coverage

Typical Development Process

During development (typically called Code and Test) you
Write your code
Run simple tests to make sure things don't blow up
Make sure all paths through your code are tested

How does this process integrate with coverage instrumentation?

256 / 332

GNATcoverage From GNAT Studio
Updating Code with Coverage

Updating Coverage When Code Changes

Coverage executable is different from normal executable
Changes to code need to be added to coverage information

Only one executable is maintained
So if you build your normal executable, you need to rebuild the
instrumented one to get coverage

Simplest method of re-running to get updated coverage data
One-click method

Run GNATcoverage... icon
Analyze → Coverage → GNATcoverage Source Traces →
Run All Actions

Or manually do each step in the menu
Setup
Instrumentation
Build
Run
Generate Report

257 / 332

GNATcoverage From GNAT Studio
Lab

Lab

258 / 332

GNATcoverage From GNAT Studio
Lab

GNATcoverage From GNAT Studio

We are going to get 100% Statement Coverage on the example
from the module

But now we're doing it from the IDE!

Copy the cover_040_gnatstudio lab from the course materials
location

Contents of the folder:
default.gpr - project file
src - source directory

Note: Many of the following pages use animation to first give you a
task and then show you how to do it. Page Down does not always go
to the next page!

259 / 332

GNATcoverage From GNAT Studio
Lab

Start GNAT Studio

Start GNAT Studio and open project default.gpr

From the Start Menu or Application Launcher

Then File → Open Project and navigate to the file

From a command prompt

gnatstudio -P /path/to/default.gpr OR
gnatstudio if default.gpr is the only project in the current

directory

260 / 332

GNATcoverage From GNAT Studio
Lab

Instrument Your Project

Always best to make sure your code compiles first
Build → Project → Build All OR

Build target Build All icon

Set the coverage type to Stmt

Edit → Project Properties → Coverage

Instrument the project

Analyze → Coverage → GNATcoverage Source Traces →
Run All Actions OR

Run GNATCoverage with instrumentation test_driver.adb* icon

Your coverage report should be displayed

261 / 332

GNATcoverage From GNAT Studio
Lab

Instrument Your Project

Always best to make sure your code compiles first
Build → Project → Build All OR

Build target Build All icon

Set the coverage type to Stmt

Edit → Project Properties → Coverage

Instrument the project

Analyze → Coverage → GNATcoverage Source Traces →
Run All Actions OR

Run GNATCoverage with instrumentation test_driver.adb* icon

Your coverage report should be displayed

261 / 332

GNATcoverage From GNAT Studio
Lab

Instrument Your Project

Always best to make sure your code compiles first
Build → Project → Build All OR

Build target Build All icon

Set the coverage type to Stmt

Edit → Project Properties → Coverage

Instrument the project

Analyze → Coverage → GNATcoverage Source Traces →
Run All Actions OR

Run GNATCoverage with instrumentation test_driver.adb* icon

Your coverage report should be displayed

261 / 332

GNATcoverage From GNAT Studio
Lab

Navigating the Coverage Report

Experiment with the coverage report
Click on column titles to change order
Click expansion triangle to see coverage per subprogram
Double-click on an entity to see annotated coverage

Next, edit the test driver to test more subprograms and run the
new driver

If you clicked your normal Build & Run test_driver.adb icon,
coverage didn't update!

You need to rebuild the coverage to get the updated code

262 / 332

GNATcoverage From GNAT Studio
Lab

Navigating the Coverage Report

Experiment with the coverage report
Click on column titles to change order
Click expansion triangle to see coverage per subprogram
Double-click on an entity to see annotated coverage

Next, edit the test driver to test more subprograms and run the
new driver

If you clicked your normal Build & Run test_driver.adb icon,
coverage didn't update!

You need to rebuild the coverage to get the updated code

262 / 332

GNATtest

GNATtest

263 / 332

GNATtest
Introduction

Introduction

264 / 332

GNATtest
Introduction

Why Automate the Process?

Developing tests is labor-intensive
Much of the effort is not specific to the tests

Developing the harness and driver
How to test generic units, etc.

Verifying output is as expected
Maintenance and update when new units to be tested

Ideally developers should concentrate on the high-value part: the
test cases themselves
GNATtest makes that ideal possible

265 / 332

GNATtest
Introduction

What Can Be Automated?

266 / 332

GNATtest
Introduction

GNATtest

Tool to create unit test framework
Creates skeleton for each visible subprogram in packages under
consideration

Automatic unit test infrastructure generation including
Test harness
Stub generation
Aggregates results from multiple test drivers

267 / 332

GNATtest
Introduction

Legal Ada Code

Sources must be compilable
Warnings issued otherwise
If not, GNATtest will skip it and continue to any others

All source dependencies must be available
Those units named in with clauses, transitively
Whether or not they are to be analyzed themselves

268 / 332

GNATtest
Introduction

Based on AUnit

Unit test framework based on CppUnit for C++
Generates the boilerplate code for test harnesses, suites, and cases
needed to use the framework
For more information on AUnit view the series of tutorials created
by Daniel Bigelow

http://www.youtube.com/user/DanielRBigelow

269 / 332

Usage

Usage

270 / 332

Usage
Overview

Overview

271 / 332

Usage
Overview

Test Generation Methods

Framework Generation Mode
Used to generate framework for writing individual unit tests

Test drivers, stubs, etc

Creates one executable to run all tests

Test Execution Mode
Used to generate a driver to call individual test executables

272 / 332

Usage
Simple Test Generation

Simple Test Generation

273 / 332

Usage
Simple Test Generation

Building a Test Harness

Build test harness for a simple project

gnattest --harness-dir=driver -P default.gpr

Where --harness-dir=driver creates the test harness in a folder
called driver inside the obj directory

To run the driver, build and run the executable in the
obj/driver folder

cd obj/driver
gprbuild -P test_driver
test_runner

Gives the result:

simple.ads:3:4: error: corresponding test FAILED: Test not implemented. (simple-test_data-tests.adb:44)
simple.ads:7:4: error: corresponding test FAILED: Test not implemented. (simple-test_data-tests.adb:65)
2 tests run: 0 passed; 2 failed; 0 crashed.

Note that the tests fail!
We have only built a harness - it's up to the tester to implement
the test

274 / 332

Usage
Simple Test Generation

Test Data Structure

GNATtest builds a child package for each unit (e.g. Simple) to
test called Simple.Test_Data which contains

Type Test to contain test information
Extensible by tester if necessary

Set_Up/Tear_Down procedures to call before/after test execution
Useful for initialize and verify global data

GNATtest also builds child package
Simple.Test_Data.Tests containing test driver for each visible
subprogram

Test_XXXX_YYYY where XXXX is the subprogram name and
YYYY is a unique identifier (prevents overloading/scoping issues)
Implementation seeded with failure case ("Test not implemented") -
should be replaced with test implementation

When editing generated files, make sure not to edit between begin
read only and end read only comments

Anywhere else will remain when test harness is regenerated
275 / 332

Usage
Simple Test Generation

Test Case Format
Test example

33 -- begin read only
34 procedure Test_Inc (Gnattest_T : in out Test);
35 procedure Test_Inc_4f8b9f (Gnattest_T : in out Test) renames Test_Inc;
36 -- id:2.2/4f8b9f38b0ce8c74/Inc/1/0/
37 procedure Test_Inc (Gnattest_T : in out Test) is
38 -- simple.ads:3:4:Inc
39 -- end read only
40

41 pragma Unreferenced (Gnattest_T);
42

43 begin
44

45 AUnit.Assertions.Assert
46 (Gnattest_Generated.Default_Assert_Value,
47 "Test not implemented.");
48

49 -- begin read only
50 end Test_Inc;
51 -- end read only

Line 33-39 - test declaration (do not modify)
Line 41 - suppress unused parameter warning (if necessary)
Line 45-47 - Test assertion (if first parameter is False, test fails -
print second parameter)
Line 49-51 - end of test (do not modify)

By default, Default_Assert_Value is False, so that
unimplemented tests fail

It is possible to change the value to True so that unimplemented
tests do not clutter report

276 / 332

Usage
Simple Test Generation

Test Implementation

For Test_Inc, we modify the test to verify that Increment
succeeded

45 AUnit.Assertions.Assert
46 (Inc(1) = 2,
47 "Incrementation failed");

Then we rerun the test
gprbuild -P test_driver
test_runner

Giving the result:

simple.ads:3:4: info: corresponding test PASSED
simple.ads:7:4: error: corresponding test FAILED: Test not implemented. (simple-test_data-tests.adb:66)
2 tests run: 1 passed; 1 failed; 0 crashed.

277 / 332

Usage
Lab

Lab

278 / 332

Usage
Lab

Usage Lab

Test a simplistic stack

package Simple_Stack is

procedure Push (Item : Integer);
function Pop return Integer;
function Empty return Boolean;
function Full return Boolean;
function Top return Integer;
function Count return Natural;

procedure Reset;

end Simple_Stack;

There is a bug in the code - your testing should find it!

Copy the test_020_usage lab from the course materials
location

Note: Many of the following pages use animation to first give you a
task and then show you how to do it. Page Down does not always go
to the next page!

279 / 332

Usage
Lab

Initialization

Build a test harness for the project

One possible command

gnattest -P default.gpr --harness-dir=my_test

If you do not specify --harness-dir=<dir> the harness goes in
obj/gnattest/harness

Build and run the test driver

cd obj/my_test
gprbuild -P test_driver
test_runner

For each subprogram in Stack, you should get a line like

simple_stack.ads:3:4: error: corresponding test FAILED:
Test not implemented.
(simple_stack-test_data-tests.adb:44)

With a summary line like

7 tests run: 0 passed; 7 failed; 0 crashed.

280 / 332

Usage
Lab

Initialization

Build a test harness for the project

One possible command

gnattest -P default.gpr --harness-dir=my_test

If you do not specify --harness-dir=<dir> the harness goes in
obj/gnattest/harness

Build and run the test driver

cd obj/my_test
gprbuild -P test_driver
test_runner

For each subprogram in Stack, you should get a line like

simple_stack.ads:3:4: error: corresponding test FAILED:
Test not implemented.
(simple_stack-test_data-tests.adb:44)

With a summary line like

7 tests run: 0 passed; 7 failed; 0 crashed.

280 / 332

Usage
Lab

Initialization

Build a test harness for the project

One possible command

gnattest -P default.gpr --harness-dir=my_test

If you do not specify --harness-dir=<dir> the harness goes in
obj/gnattest/harness

Build and run the test driver

cd obj/my_test
gprbuild -P test_driver
test_runner

For each subprogram in Stack, you should get a line like

simple_stack.ads:3:4: error: corresponding test FAILED:
Test not implemented.
(simple_stack-test_data-tests.adb:44)

With a summary line like

7 tests run: 0 passed; 7 failed; 0 crashed.
280 / 332

Usage
Lab

Build Your First Test

Build a test to prove that Push works
Criteria would be that, after the call:

Empty should be False
Count should be 1
Top should be whatever was pushed

Hint: the filename you're looking for is in the Test not
implemented message

Next page for example solutions

Build and run the test harness to verify your test passes

gprbuild -P test_driver.gpr
test_runner

Note indication that test passed

281 / 332

Usage
Lab

Build Your First Test

Build a test to prove that Push works
Criteria would be that, after the call:

Empty should be False
Count should be 1
Top should be whatever was pushed

Hint: the filename you're looking for is in the Test not
implemented message

Next page for example solutions

Build and run the test harness to verify your test passes

gprbuild -P test_driver.gpr
test_runner

Note indication that test passed
281 / 332

Usage
Lab

Example Tests
Solution 1 - one check

declare
Pushed : constant integer := 123;

begin
Push (Pushed);
AUnit.Assertions.Assert ((not Empty) and then Top = Pushed and then Count = 1,

"Push test failed");
end;

Solution 2 - multiple checks

declare
Pushed : constant integer := 123;

begin
Push (Pushed);
AUnit.Assertions.Assert (not Empty,

"Test failed - stack empty");
AUnit.Assertions.Assert (Top = Pushed,

"Test failed - Top /= pushed value");
AUnit.Assertions.Assert (Count = 1,

"Test failed - count incorrect");
end;

Note that when multiple assertions are used, the test stops on the first
failed assertion

282 / 332

Usage
Lab

Improve First Test

We want to know what happens when Push pushes to a full stack

Add a second part of the testcase to test this
Push inside a loop is easiest

while not Full loop
Push (234);

end loop;
Push (345);
AUnit.Assertions.Assert (Full and then Top = 234,

"Push to a full stack failed");

283 / 332

Usage
Lab

Improve First Test

We want to know what happens when Push pushes to a full stack

Add a second part of the testcase to test this
Push inside a loop is easiest

while not Full loop
Push (234);

end loop;
Push (345);
AUnit.Assertions.Assert (Full and then Top = 234,

"Push to a full stack failed");

283 / 332

Usage
Lab

Test Remaining Subprograms

Test all remaining subprograms
Criteria should be based on what should happen

Not what does happen

Remember - there is a bug in the code!
If a test fails - recheck your assertions

If your assertions are correct - then check the code

Feel free to fix the code or leave the failure
Both are common practices

Hint: Only one execution, so global state is remembered

Call Reset to reset the stack data

284 / 332

Usage
Lab

Test Remaining Subprograms

Test all remaining subprograms
Criteria should be based on what should happen

Not what does happen

Remember - there is a bug in the code!
If a test fails - recheck your assertions

If your assertions are correct - then check the code

Feel free to fix the code or leave the failure
Both are common practices

Hint: Only one execution, so global state is remembered

Call Reset to reset the stack data

284 / 332

Usage
Lab

Test Remaining Subprograms

Test all remaining subprograms
Criteria should be based on what should happen

Not what does happen

Remember - there is a bug in the code!
If a test fails - recheck your assertions

If your assertions are correct - then check the code

Feel free to fix the code or leave the failure
Both are common practices

Hint: Only one execution, so global state is remembered

Call Reset to reset the stack data

284 / 332

Usage
Lab

Sample Answers

These answers assume the bug in the code is fixed

Bug is in Pop - should be

function Pop return Integer is
begin

if not Empty then
Next_Available := Next_Available - 1;

end if;
return Stack (Next_Available);

end Pop;

Answers on next pages

285 / 332

Usage
Lab

Sample Answers

These answers assume the bug in the code is fixed

Bug is in Pop - should be

function Pop return Integer is
begin

if not Empty then
Next_Available := Next_Available - 1;

end if;
return Stack (Next_Available);

end Pop;

Answers on next pages

285 / 332

Usage
Lab

Answers (1/2)
-- Push
Reset;
declare

Pushed : constant integer := 123;
begin

Push (Pushed);
AUnit.Assertions.Assert ((not Empty) and then Top = Pushed and then Count = 1,

"Push test failed");
end;

while not Full loop
Push (234);

end loop;
Push (345);
AUnit.Assertions.Assert (Full and then Top = 234,

"Push to a full stack failed");

-- Pop
Reset;
declare

Pushed : constant integer := 234;
Popped : integer;

begin
Push (Pushed);

Popped := Pop;
AUnit.Assertions.Assert (Pushed = Popped and then Empty and then Count = 0,

"Pop test failed");
end;

286 / 332

Usage
Lab

Answers (2/2)
-- Empty
Reset;
AUnit.Assertions.Assert (Empty, "Stack not empty");

-- Full
while not Full loop

Push (567);
end loop;
Push (999);
AUnit.Assertions.Assert (Full and then Top = 567,

"Full check failed");

-- Top
Reset;
declare

Pushed : constant integer := 234;
begin

Push (Pushed);
AUnit.Assertions.Assert (Pushed = Top,

"Top test failed");
end;

-- Count
Reset;
Push (111);
AUnit.Assertions.Assert (Count = 1,

"Count test failed");

-- Reset
Reset;
AUnit.Assertions.Assert (Count = 0 and then Empty,

"Reset test failed");

287 / 332

Controlling GNATtest

Controlling GNATtest

288 / 332

Controlling GNATtest
Overview

Overview

289 / 332

Controlling GNATtest
Overview

Controlling Test Behavior

Two ways to affect test behavior
Internally
Externally

Internal control comes from modifying the original source or the
test driver

External control comes from modifying the switches used to create
or run the harness

290 / 332

Controlling GNATtest
Source-based Test Control

Source-based Test Control

291 / 332

Controlling GNATtest
Source-based Test Control

Global Data

Many subprograms require global data initialization
Memory allocation
State values

Test pass/fail criteria can depend on global state values

Could build these into each individual test
But what if the values are common across multiple tests?

292 / 332

Controlling GNATtest
Source-based Test Control

Common Pre-/Post-Test Behavior

Unit's test data package (e.g. Simple.Test_Data) contains two
visible subprograms

Set_Up is called before every test case is run
Allows initialization of global state

Tear_Down is called after every test case is run
Allows adding checks for global state

Found in <unit>-test_data.adb

procedure Set_Up (Gnattest_T : in out Test) is
pragma Unreferenced (Gnattest_T);

begin
-- Clear stack before running test
Simple_Stack.Reset;

end Set_Up;

procedure Tear_Down (Gnattest_T : in out Test) is
pragma Unreferenced (Gnattest_T);

begin
Ada.Text_IO.Put_Line ("Count:" & Simple.Stack.Count'Image);

end Tear_Down;
293 / 332

Controlling GNATtest
Source-based Test Control

Passing Data Between Tests

Notice that Set_Up and Tear_Down (in addition to each Test
procedure) pass parameter Gnattest_T of type Test

Defined in <unit>.Test_Data

package Simple_Stack.Test_Data is

-- begin read only
type Test is new AUnit.Test_Fixtures.Test_Fixture

-- end read only
with null record;

Note that the completion of the record type is outside of the read
only block allowing you to modify it as you see fit

Parameter of type Test is passed to Set_Up and Tear_Down and
every test

Allows passing of any user-defined data
294 / 332

Controlling GNATtest
Source-based Test Control

Changes to Original Source Code

What happens when testing finds a bug?
Your source code needs to be modified
But does the test infrastructure need to be updated?

GNATtest can be run multiple times on a project
Any existing test will not be modified as long as

Subprogram name is the same
Full Ada names and order of parameters are the same
Test's begin/end read only comments are intact

Any added subprogram will get a new driver

295 / 332

Controlling GNATtest
Test Harness File Structure

Test Harness File Structure

296 / 332

Controlling GNATtest
Test Harness File Structure

Default File Structure

By default, two folders are created in project's object directory
driver contains the main driver for the test runner

Not for modification by the user

gnattest contains the modifiable test harness

But do not edit inside the begin/end read only comments!

GNAT typically puts all files it generates in the project's object
directory

So we tend to set up source code control to ignore the object
directory

But we do want to control the tests we've created

297 / 332

Controlling GNATtest
Test Harness File Structure

Controlling Test Harness Location
driver folder is always auto-generated - do not want to save it

gnattest folder contains our test cases - do want to save it

Three (mutually exclusive) ways to control this
--tests-dir=dirname

Put all tests in dirname

--tests-root=dirname

dirname will mirror the source directory hierarchy
Tests for units in each source directory go in the corresponding
directory within dirname

--subdirs=dirname

dirname will be created inside each appropriate source directory
Tests for units in source directory go in dirname subdirectory

Notes
If dirname is relative, it will be relative to the object directory

If your GPR file uses source_dir/**, you should not use
subdirs

And if using the other options, do not put them in your source
folders

298 / 332

Controlling GNATtest
External Test Control (Switches)

External Test Control (Switches)

299 / 332

Controlling GNATtest
External Test Control (Switches)

Default Test Behavior

Default test behavior is to fail on an unimplemented test
Value of Default_Assert_Value is set to True

Can be controlled at generation or execution

--skeleton-default=xxxx (where xxxx is pass or fail)
When used during build
(gnattest --skeleton-default=pass)
Default_Assert_Value is initialized based on value
When used during execution
(test_runner --skeleton-default=pass)
Default_Assert_Value is set based on value

300 / 332

Controlling GNATtest
External Test Control (Switches)

Common Switches

-U <source file> Only build tests for source file and any of its
dependents

--no-subprojects Only process base project

--files=<filename> Process files listed in filename (switch may
appear multiple times)

--ignore=<filename> Ignore files listed in filename

--passed-tests=val val can be either show or hide to either
display (or not display) passed tests

--separate-drivers[=val] Generate separate test driver for each
unit or test. (val can be either unit or test, defaulting to
unit)

301 / 332

Controlling GNATtest
Lab

Lab

302 / 332

Controlling GNATtest
Lab

Controlling GNATtest Lab

We are going to use the same code as the previous lab
But clean up our test code
And try some GNATtest switches

Copy the test_030_controlling_gnattest lab from the
course materials location

Put it in a new directory so you can refer back to the Usage Lab
answers

Note: Many of the following pages use animation to first give you a
task and then show you how to do it. Page Down does not always go
to the next page!

303 / 332

Controlling GNATtest
Lab

Build Harness for One Unit

Build a test harness only for the Simple_Stack unit

gnattest -P default.gpr --harness-dir=my_test -U simple_stack.ads

Note the unit specifier is a filename, not Ada name. (Also, spec or
body filename is allowed)

Run all the tests to get the not implemented message

cd obj/my_test
gprbuild -P test_driver
test_runner
...
7 tests run: 0 passed; 7 failed; 0 crashed.

Now run the tests with not implemented tests indicating passed

cd obj/my_test
gprbuild -P test_driver
test_runner --skeleton-default=pass
...
7 tests run: 7 passed; 0 failed; 0 crashed.

304 / 332

Controlling GNATtest
Lab

Build Harness for One Unit

Build a test harness only for the Simple_Stack unit

gnattest -P default.gpr --harness-dir=my_test -U simple_stack.ads

Note the unit specifier is a filename, not Ada name. (Also, spec or
body filename is allowed)

Run all the tests to get the not implemented message

cd obj/my_test
gprbuild -P test_driver
test_runner
...
7 tests run: 0 passed; 7 failed; 0 crashed.

Now run the tests with not implemented tests indicating passed

cd obj/my_test
gprbuild -P test_driver
test_runner --skeleton-default=pass
...
7 tests run: 7 passed; 0 failed; 0 crashed.

304 / 332

Controlling GNATtest
Lab

Build Harness for One Unit

Build a test harness only for the Simple_Stack unit

gnattest -P default.gpr --harness-dir=my_test -U simple_stack.ads

Note the unit specifier is a filename, not Ada name. (Also, spec or
body filename is allowed)

Run all the tests to get the not implemented message

cd obj/my_test
gprbuild -P test_driver
test_runner
...
7 tests run: 0 passed; 7 failed; 0 crashed.

Now run the tests with not implemented tests indicating passed

cd obj/my_test
gprbuild -P test_driver
test_runner --skeleton-default=pass
...
7 tests run: 7 passed; 0 failed; 0 crashed.

304 / 332

Controlling GNATtest
Lab

Build Harness for One Unit

Build a test harness only for the Simple_Stack unit

gnattest -P default.gpr --harness-dir=my_test -U simple_stack.ads

Note the unit specifier is a filename, not Ada name. (Also, spec or
body filename is allowed)

Run all the tests to get the not implemented message

cd obj/my_test
gprbuild -P test_driver
test_runner
...
7 tests run: 0 passed; 7 failed; 0 crashed.

Now run the tests with not implemented tests indicating passed

cd obj/my_test
gprbuild -P test_driver
test_runner --skeleton-default=pass
...
7 tests run: 7 passed; 0 failed; 0 crashed.

304 / 332

Controlling GNATtest
Lab

Create Tests
Re-write or copy the test answers from the Usage lab (or use these)

-- Push
Reset;
declare

Pushed : constant integer := 123;
begin

Push (Pushed);
AUnit.Assertions.Assert ((not Empty) and then Top = Pushed and then Count = 1,

"Push test failed");
end;

while not Full loop
Push (234);

end loop;
Push (345);
AUnit.Assertions.Assert (Full and then Top = 234,

"Push to a full stack failed");

-- Pop
Reset;
declare

Pushed : constant integer := 234;
Popped : integer;

begin
Push (Pushed);

Popped := Pop;
AUnit.Assertions.Assert (Pushed = Popped and then Empty and then Count = 0,

"Pop test failed");
end;

-- Empty
Reset;
AUnit.Assertions.Assert (Empty, "Stack not empty");

-- Full
while not Full loop

Push (567);
end loop;
Push (999);
AUnit.Assertions.Assert (Full and then Top = 567,

"Full check failed");

-- Top
Reset;
declare

Pushed : constant integer := 234;
begin

Push (Pushed);
AUnit.Assertions.Assert (Pushed = Top,

"Top test failed");
end;

-- Count
Reset;
Push (111);
AUnit.Assertions.Assert (Count = 1,

"Count test failed");

-- Reset
Reset;
AUnit.Assertions.Assert (Count = 0 and then Empty,

"Reset test failed");

305 / 332

Controlling GNATtest
Lab

Ensure Every Test Starts the Same

Previously, every test called Simple_Stack.Reset to ensure the
stack was initialized

Lots of redundant code

Remove calls to Simple_Stack.Reset and (re)run the tests

Answer

cd obj/my_test
gprbuild -P test_driver
test_runner
...
7 tests run: 2 passed; 5 failed; 0 crashed.

Rerun the tests but do not display the passed tests

Answer

test_runner --passed-tests=hide
...
7 tests run: 2 passed; 5 failed; 0 crashed.

Status is the same, we just do not see individual passed tests

306 / 332

Controlling GNATtest
Lab

Ensure Every Test Starts the Same

Previously, every test called Simple_Stack.Reset to ensure the
stack was initialized

Lots of redundant code

Remove calls to Simple_Stack.Reset and (re)run the tests

Answer

cd obj/my_test
gprbuild -P test_driver
test_runner
...
7 tests run: 2 passed; 5 failed; 0 crashed.

Rerun the tests but do not display the passed tests

Answer

test_runner --passed-tests=hide
...
7 tests run: 2 passed; 5 failed; 0 crashed.

Status is the same, we just do not see individual passed tests

306 / 332

Controlling GNATtest
Lab

Ensure Every Test Starts the Same

Previously, every test called Simple_Stack.Reset to ensure the
stack was initialized

Lots of redundant code

Remove calls to Simple_Stack.Reset and (re)run the tests

Answer

cd obj/my_test
gprbuild -P test_driver
test_runner
...
7 tests run: 2 passed; 5 failed; 0 crashed.

Rerun the tests but do not display the passed tests

Answer

test_runner --passed-tests=hide
...
7 tests run: 2 passed; 5 failed; 0 crashed.

Status is the same, we just do not see individual passed tests
306 / 332

Controlling GNATtest
Lab

Add "Global" Code

Add code to call Simple_Stack.Reset before every test case

simple_stack-test_data.adb

procedure Set_Up (Gnattest_T : in out Test) is
pragma Unreferenced (Gnattest_T);

begin
Reset;

end Set_Up;

For extra credit, add code to clear global data

simple_stack-test_data.adb

procedure Tear_Down (Gnattest_T : in out Test) is
pragma Unreferenced (Gnattest_T);

begin
Reset;

end Tear_Down;

This ensures the stack is reset when tests for other units are run

307 / 332

Controlling GNATtest
Lab

Add "Global" Code

Add code to call Simple_Stack.Reset before every test case

simple_stack-test_data.adb

procedure Set_Up (Gnattest_T : in out Test) is
pragma Unreferenced (Gnattest_T);

begin
Reset;

end Set_Up;

For extra credit, add code to clear global data

simple_stack-test_data.adb

procedure Tear_Down (Gnattest_T : in out Test) is
pragma Unreferenced (Gnattest_T);

begin
Reset;

end Tear_Down;

This ensures the stack is reset when tests for other units are run

307 / 332

Controlling GNATtest
Lab

Add "Global" Code

Add code to call Simple_Stack.Reset before every test case

simple_stack-test_data.adb

procedure Set_Up (Gnattest_T : in out Test) is
pragma Unreferenced (Gnattest_T);

begin
Reset;

end Set_Up;

For extra credit, add code to clear global data

simple_stack-test_data.adb

procedure Tear_Down (Gnattest_T : in out Test) is
pragma Unreferenced (Gnattest_T);

begin
Reset;

end Tear_Down;

This ensures the stack is reset when tests for other units are run
307 / 332

Advanced Testing Techniques

Advanced Testing Techniques

308 / 332

Advanced Testing Techniques
Overview

Overview

309 / 332

Advanced Testing Techniques
Overview

Improving Test Execution

By default, GNATtest builds a monolithic test driver
One executable to run all tests
Suitable for small to medium projects

But that has limitations
Every test runs in succession

No way to run multiple tests at once

Larger projects can create a massive test executable

GNATtest has a mechanism to build multiple executables
Tests grouped by unit or test

310 / 332

Advanced Testing Techniques
Overview

Control Over Dependent Units

When testing a unit, sometimes it is easier to test in isolation
Control over dependent unit calls

Verify data passed in
Control data being returned

GNATtest allows stubs to be created for dependent units
Add verification process to data passed in
Set output or return values

Stubs are used for all dependents of units being tested

311 / 332

Advanced Testing Techniques
Individual Test Drivers

Individual Test Drivers

312 / 332

Advanced Testing Techniques
Individual Test Drivers

Example Code

Main unit

package Simple is
function Inc (X : Integer) return Integer;
function Dec (X : Integer) return Integer;

end Simple;

Which depends on

package Dependent is
procedure Yes_Or_No (Aaa : in Integer;

Bbb : in out Integer;
Ccc : out Boolean);

end Dependent;

313 / 332

Advanced Testing Techniques
Individual Test Drivers

Building Multiple Test Harnesses

GNATtest can build multiple test harnesses
gnattest --separate-drivers=[unit|test]

unit Builds an executable for every package (for our
example, Simple and Dependent)

test Builds an executable for every test (for our example,
Inc, Dec, Yes_Or_No)

Then build the individual test drivers
gprbuild -P obj/gnattest/harness/test_drivers.gpr

314 / 332

Advanced Testing Techniques
Individual Test Drivers

Running Multiple Test Harnesses

gnattest <test_drivers.list>

Where test_drivers.list is a file containing a list of
executables

Default version of list is in
obj/gnattest/harness/test_drivers.list

Can be edited in-place or copied
dependent.ads:2:4: error: corresponding test FAILED: Test not implemented. (dependent-test_data-tests.adb:44)
simple.ads:7:4: error: corresponding test FAILED: Test not implemented. (simple-test_data-tests.adb:65)
simple.ads:3:4: error: corresponding test FAILED: Test not implemented. (simple-test_data-tests.adb:44)
3 tests run: 0 passed; 3 failed; 0 crashed.

315 / 332

Advanced Testing Techniques
Test Stubs

Test Stubs

316 / 332

Advanced Testing Techniques
Test Stubs

What Is a Stub?

Stub is a piece of code that replaces the actual body of a unit if
Unit has not been implemented yet

Unit is hardware-dependent and hardware is not available

Specific unit results are difficult to control
For when you need a specific value to test your code

Useful when you need to test one module without worrying about
dependencies

317 / 332

Advanced Testing Techniques
Test Stubs

Creating Stubs

gnattest --stub -P default.gpr

Creates stubs and drivers for all units

Every dependent of unit being tested is stubbed
Including generics

Stub harnesses are in gnattest_stub

Rather than gnattest
Both folders can exist!

Stubs are common across units
Mutiple test drivers call the same stub
Stub control handled by test

318 / 332

Advanced Testing Techniques
Test Stubs

Controlling Stubs

Setter routines for setting output/return values
Manipulate a global object containing stub information
Reside in package Dependent.Stub_Data
Typically called from test driver

Can edit stub implementation directly
Add assertions to verify data passed in is correct

In stubs subfolder in folder named for project

Can add your own processing
e.g. Raise an exception on a specific input or after some number of
calls

319 / 332

Advanced Testing Techniques
Example

Example

320 / 332

Advanced Testing Techniques
Example

Code to Be Tested
with Sensor;
package Simple is

procedure Check (Which : Sensor.Sensor_T;
Value : in out Integer;
Status : out Boolean);

end Simple;

with Logger;
package body Simple is

procedure Check (Which : Sensor.Sensor_T;
Value : in out Integer;
Status : out Boolean) is

begin
Value := Sensor.Read (Which);
Status := True;
case Which is

when Sensor.Speed =>
if Value < 0 or Value > 99 then

Status := False;
Logger.Log_Error ("Invalid Speed");

end if;
when others =>

null;
end case;

end Simple;

321 / 332

Advanced Testing Techniques
Example

Dependent Units

package Logger is
procedure Log_Error (Message : String);

end Logger;

package Sensor is
type Sensor_T is (Speed, Heading, Altitude);
function Read (Which : Sensor_T) return Integer;

end Sensor;

Implementation of these units is unimportant

322 / 332

Advanced Testing Techniques
Example

Building Tests
No matter how the dependent units are implemented, the tests
should be the same

simple-test_data-tests.adb

-- begin read only
procedure Test_Check (Gnattest_T : in out Test);
procedure Test_Check_0265af (Gnattest_T : in out Test) renames Test_Check;

-- id:2.2/0265af9a17cc096e/Check/1/0/
procedure Test_Check (Gnattest_T : in out Test) is
-- simple.ads:3:4:Check

-- end read only

pragma Unreferenced (Gnattest_T);

Value : Integer := 0;
Status : Boolean;

begin

-- Test 1
Check (Sensor.Speed, Value, Status);
AUnit.Assertions.Assert

(Value in 0..99 and Status,
"Valid speed not detected");

-- Test 2
Check (Sensor.Speed, Value, Status);
AUnit.Assertions.Assert

(not (Value in 0..99) and not Status,
"Invalid speed not detected");

-- begin read only
end Test_Check;

-- end read only

323 / 332

Advanced Testing Techniques
Example

Setting Stub Return Data
To make sure Check passes each test, we should stub Sensor

To control the value returned by Sensor.Read:

gnattest -P default.gpr --stub
gprbuild -P obj/gnattest_stub/harness/test_drivers.gpr

Method 1 - use the setter function with Test_Check

-- Test 1
Set_Stub_Read_cac9ed_9101fc (Read_Result => 12);
Check (Sensor.Speed, Value, Status);
AUnit.Assertions.Assert

(Value in 0..99 and Status,
"Valid speed not detected" & value'Image & " " & status'Image);

-- Test 2
Set_Stub_Read_cac9ed_9101fc (Read_Result => 234);
Check (Sensor.Speed, Value, Status);
AUnit.Assertions.Assert

(not (Value in 0..99) and not Status,
"Invalid speed not detected");

Method 2 - edit the stub directly
obj/gnattest_stub/stubs/default/sensor.adb

-- begin read only
function Read

(Which : Sensor_T) return Integer is
-- end read only
begin

Stub_Data_Read_cac9ed_9101fc.Stub_Counter := Stub_Data_Read_cac9ed_9101fc.Stub_Counter + 1;
if Stub_Data_Read_cac9ed_9101fc.Stub_Counter > 1 then

return -1;
else

return Stub_Data.Stub_Data_Read_cac9ed_9101fc.Read_Result;
end if;

-- begin read only
end Read;
-- end read only

324 / 332

Advanced Testing Techniques
Lab

Lab

325 / 332

Advanced Testing Techniques
Lab

Advanced Testing Lab

We will test a simplistic sensor read/write capability
Simple.Read reads a sensor and determines if the value is in range
Simple.Write writes to a sensor and reports if the write failed
Error messages are sent to an error logger

Copy the test_040_advanced_testing lab from the course
materials location

Note: Many of the following pages use animation to first give you a
task and then show you how to do it. Page Down does not always go
to the next page!

326 / 332

Advanced Testing Techniques
Lab

Create Test Harness

Build a test harness that enables stubbing and allows each test to
be run individually

gnattest --stub -P default.gpr --separate-drivers=test
--harness-dir=my_test

--stub enables stubbing

--separate-drivers=test builds an executable for each test

Stubbing always requires separate drivers
If not specified, an executable is built for each unit

--harness-dir=my_test puts the harness code in folder
my_test

327 / 332

Advanced Testing Techniques
Lab

Create Test Harness

Build a test harness that enables stubbing and allows each test to
be run individually

gnattest --stub -P default.gpr --separate-drivers=test
--harness-dir=my_test

--stub enables stubbing

--separate-drivers=test builds an executable for each test

Stubbing always requires separate drivers
If not specified, an executable is built for each unit

--harness-dir=my_test puts the harness code in folder
my_test

327 / 332

Advanced Testing Techniques
Lab

Build and Execute Test Harness

Built the test harness
Hint: This is slightly different than earlier labs due to
separate-drivers

cd obj/my_test
gprbuild -P test_drivers.gpr

Note the s at the end of driver

Now execute the test harness
Hint: This is quite different than earlier labs!

gnattest test_drivers.list

When running multiple test drivers, pass the list of drivers into
GNATtest

test_drivers.list is automatically created in my_test
Copy and/or edit it to control what tests get run
Unlike the monolithic driver, skipped tests are not reported

328 / 332

Advanced Testing Techniques
Lab

Build and Execute Test Harness

Built the test harness
Hint: This is slightly different than earlier labs due to
separate-drivers

cd obj/my_test
gprbuild -P test_drivers.gpr

Note the s at the end of driver

Now execute the test harness
Hint: This is quite different than earlier labs!

gnattest test_drivers.list

When running multiple test drivers, pass the list of drivers into
GNATtest

test_drivers.list is automatically created in my_test
Copy and/or edit it to control what tests get run
Unlike the monolithic driver, skipped tests are not reported

328 / 332

Advanced Testing Techniques
Lab

Build and Execute Test Harness

Built the test harness
Hint: This is slightly different than earlier labs due to
separate-drivers

cd obj/my_test
gprbuild -P test_drivers.gpr

Note the s at the end of driver

Now execute the test harness
Hint: This is quite different than earlier labs!

gnattest test_drivers.list

When running multiple test drivers, pass the list of drivers into
GNATtest

test_drivers.list is automatically created in my_test
Copy and/or edit it to control what tests get run
Unlike the monolithic driver, skipped tests are not reported

328 / 332

Advanced Testing Techniques
Lab

Build One Test with Stubs
Build and run test for Simple.Read that

Receives a good value from Sensor.Read
Verifies output parameter Value has the previously set result
Verifies output parameter Status is True
Hint: one mechanism to set stub return data is in the test case
skeleton

Test code inserted into simple-test_data-tests.adb

declare
Sensor_Value : constant := 12;
Result : Integer := 0;
Status : Boolean;

begin
Sensor.Stub_Data.Set_Stub_Read_cac9ed_9101fc(Read_Result => Sensor_Value);
Read (Sensor.Speed, Result, Status);
AUnit.Assertions.Assert

(Result = Sensor_Value and then Status,
"Read positive test failed");

end;

Execution command

gnattest test_drivers.list

329 / 332

Advanced Testing Techniques
Lab

Build One Test with Stubs
Build and run test for Simple.Read that

Receives a good value from Sensor.Read
Verifies output parameter Value has the previously set result
Verifies output parameter Status is True
Hint: one mechanism to set stub return data is in the test case
skeleton

Test code inserted into simple-test_data-tests.adb

declare
Sensor_Value : constant := 12;
Result : Integer := 0;
Status : Boolean;

begin
Sensor.Stub_Data.Set_Stub_Read_cac9ed_9101fc(Read_Result => Sensor_Value);
Read (Sensor.Speed, Result, Status);
AUnit.Assertions.Assert

(Result = Sensor_Value and then Status,
"Read positive test failed");

end;

Execution command

gnattest test_drivers.list
329 / 332

Advanced Testing Techniques
Lab

Build More Advanced Test
We want to test Simple.Read creates an error message. Criteria
would be that it

Receives a bad value from Sensor.Read

Verifies output parameter Status is False

Logger.Log_Error receives the appropriate message

Hint: You need to modify Logger to check for the error message
No mechanism to retrieve input to a stub

Test code inserted into simple-test_data-tests.adb

declare
Result : Integer := 0;
Status : Boolean;

begin
Sensor.Stub_Data.Set_Stub_Read_cac9ed_9101fc(Read_Result => 1234);
Read (Sensor.Speed, Result, Status);
AUnit.Assertions.Assert

(not Status,
"Read negative failed - status");

end;

Test code inserted into logger.adb

In /gnattest_stub/stubs/default folder

if Stub_Data_Log_Error_e35760_8432c2.Stub_Counter = 1 then
AUnit.Assertions.Assert

(Message = "Invalid Speed",
"Read negative failed - Log_Error");

end if;

There are more advanced ways of ensuring stub is checked for
appropriate text, but they're outside the scope of this class

330 / 332

Advanced Testing Techniques
Lab

Build More Advanced Test
We want to test Simple.Read creates an error message. Criteria
would be that it

Receives a bad value from Sensor.Read

Verifies output parameter Status is False

Logger.Log_Error receives the appropriate message

Hint: You need to modify Logger to check for the error message
No mechanism to retrieve input to a stub

Test code inserted into simple-test_data-tests.adb

declare
Result : Integer := 0;
Status : Boolean;

begin
Sensor.Stub_Data.Set_Stub_Read_cac9ed_9101fc(Read_Result => 1234);
Read (Sensor.Speed, Result, Status);
AUnit.Assertions.Assert

(not Status,
"Read negative failed - status");

end;

Test code inserted into logger.adb

In /gnattest_stub/stubs/default folder

if Stub_Data_Log_Error_e35760_8432c2.Stub_Counter = 1 then
AUnit.Assertions.Assert

(Message = "Invalid Speed",
"Read negative failed - Log_Error");

end if;

There are more advanced ways of ensuring stub is checked for
appropriate text, but they're outside the scope of this class

330 / 332

Advanced Testing Techniques
Lab

Finish Testing

Build as many more tests as you can in the remaining time
Experiment with both methods of setting return values

Setter subprogram
Edit stub directly

Extra credit: figure out a better way of checking which test case
called the stub

331 / 332

Advanced Testing Techniques
Lab

Extra Credit Answer

gnattest_stub/stubs/default/logger-stub_data.ads

type Caller_T is (Speed, Heading, Altitude, Unknown);
type Stub_Data_Type_Log_Error_e35760_8432c2 is record

Caller : Caller_T := Unknown;
Stub_Counter : Natural := 0;

end record;
Stub_Data_Log_Error_e35760_8432c2 : Stub_Data_Type_Log_Error_e35760_8432c2;

gnattest_stub/stubs/default/logger.adb

Stub_Data_Log_Error_e35760_8432c2.Stub_Counter :=
Stub_Data_Log_Error_e35760_8432c2.Stub_Counter + 1;

if Stub_Data_Log_Error_e35760_8432c2.Caller = Speed then
AUnit.Assertions.Assert

(Message = "Invalid Speed",
"Read negative failed - Log_Error");

end if;

simple-test_data-tests.adb

Sensor.Stub_Data.Set_Stub_Read_cac9ed_9101fc(Read_Result => 1234);
Logger.Stub_Data.Stub_Data_Log_Error_e35760_8432c2.Caller :=

Logger.Stub_Data.Speed;
332 / 332

	GNAT SAS Overview
	About This Course
	GNAT Static Analysis Suite (GNAT SAS)

	GNAT Metrics Tool
	Introduction
	Output Control
	Exploring the Results
	Lab
	Summary

	GNATcheck
	Introduction

	Getting Started
	Basic Usage
	Lab
	Summary

	Predefined Rules
	Introduction
	Predefined Rules Categories

	Writing Your Own Rules
	Introduction
	LKQL
	Rules
	Lab
	Summary

	GNAT Static Analysis Suite (GNAT SAS)
	Advanced Static Analysis

	GNAT SAS Overview
	What Is GNAT SAS?

	Analyzing Code
	Running GNAT SAS
	Analysis
	Settings

	Viewing Results
	Report Command
	Comparing GNAT SAS Runs
	GUI Reports

	Reviewing Results and Improving Code
	Reviewing Messages
	Code Annotations Via GNAT Studio

	GNAT SAS Tutorial - Step by Step
	Introduction
	Running GNAT SAS
	Check Messages
	Warnings
	False Positive
	Running GNAT SAS Again

	GNAT DAS Overview
	About This Course
	GNAT Dynamic Analysis Suite (GNAT DAS)

	GNATcoverage
	Introduction
	Coverage Types

	Basic Workflow
	Workflow Overview
	A Simple Example
	Lab

	Advanced GNATcoverage Capabilities
	Introduction
	Project-Based Instrumentation Control
	Source-Based Instrumentation Control
	Lab

	GNATcoverage From GNAT Studio
	Introduction
	Generating Coverage From GNAT Studio
	Updating Code with Coverage
	Lab

	GNATtest
	Introduction

	Usage
	Overview
	Simple Test Generation
	Lab

	Controlling GNATtest
	Overview
	Source-based Test Control
	Test Harness File Structure
	External Test Control (Switches)
	Lab

	Advanced Testing Techniques
	Overview
	Individual Test Drivers
	Test Stubs
	Example
	Lab

