
Overview

Overview

1 / 787

Overview
About This Course

About This Course

2 / 787

Overview
About This Course

Styles

This is a definition
this/is/a.path
code is highlighted
commands are emphasised --like-this

Warning
This is a warning

Note
This is an important piece of info

Tip
This is a tip

3 / 787

Overview
A Little History

A Little History

4 / 787

Overview
A Little History

The Name

First called DoD-1

Augusta Ada Byron, "first programmer"
Lord Byron's daughter
Planned to calculate Bernouilli's numbers
First computer program
On Babbage's Analytical Engine

International Standards Organization standard
Updated about every 10 years

Writing ADA is like writing CPLUSPLUS

5 / 787

Overview
A Little History

Ada Evolution Highlights

Ada 83 Abstract Data Types
Modules
Concurrency
Generics
Exceptions

Ada 95 OOP
Child Packages
Annexes

Ada 2005 Multiple Inheritance
Containers
Ravenscar

Ada 2012 Contracts
Iterators
Flexible Expressions

Ada 2022 'Image for all types
Declare expression

6 / 787

Overview
Big Picture

Big Picture

7 / 787

Overview
Big Picture

Language Structure (Ada95 and Onward)

Required Core implementation
Reference Manual (RM) sections 1 → 13
Predefined Language Environment (Annex A)
Interface to Other Languages (Annex B)
Obsolescent Features (Annex J)

Optional Specialized Needs Annexes
No additional syntax
Systems Programming (C)
Real-Time Systems (D)
Distributed Systems (E)
Information Systems (F)
Numerics (G)
High-Integrity Systems (H)

8 / 787

Overview
Big Picture

Core Language Content

Ada is a compiled, multi-paradigm language
With a static and strong type model
Language-defined types,
including string
User-defined types
Overloading procedures and
functions
Compile-time visibility
control
Abstract Data Types (ADT)

Exceptions
Generic units
Dynamic memory
management
Low-level programming
Object-Oriented
Programming (OOP)
Concurrent programming
Contract-Based
Programming

9 / 787

Overview
Big Picture

The Type Model Saves Money

Shifts fixes and costs to early phases

Cheaper
Cost of an error during a flight?

10 / 787

Overview
Big Picture

Subprograms

Syntax differs between values and actions
function for a value

function Is_Leaf (T : Tree) return Boolean

procedure for an action

procedure Split (T : in out Tree;
Left : out Tree;
Right : out Tree)

Specification ̸= Implementation

function Is_Leaf (T : Tree) return Boolean;
function Is_Leaf (T : Tree) return Boolean is
begin
...
end Is_Leaf;

11 / 787

Overview
Big Picture

Dynamic Memory Management

Raw pointers are error-prone

Ada access types abstract facility
Static memory
Allocated objects
Subprograms

Accesses are checked
Unless unchecked mode is used

Supports user-defined storage managers
Storage pools

12 / 787

Overview
Big Picture

Packages

Grouping of related entities
Subsystems like Fire Control and Navigation
Common processing like HMI and Operating System

Separation of concerns
Specification ̸= Implementation
Single definition by designer
Multiple use by users

Information hiding
Compiler-enforced visibility
Powerful privacy system

13 / 787

Overview
Big Picture

Exceptions

Dealing with errors, unexpected events

Separate error-handling code from logic

Some flexibility
Re-raising
Custom messages

14 / 787

Overview
Big Picture

Generic Units
Code Templates

Subprograms
Packages

Parameterization
Strongly typed
Expressive syntax

15 / 787

Overview
Big Picture

Object-Oriented Programming

Inheritance
Run-time polymorphism
Dynamic dispatching
Abstract types and subprograms
Interface for multiple inheritance

16 / 787

Overview
Big Picture

Contract-Based Programming

Pre- and post-conditions

Formalizes specifications

procedure Pop (S : in out Stack) with
Pre => not S.Empty, -- Requirement
Post => not S.Full; -- Guarantee

Type invariants

type Table is private with Invariant => Sorted (Table); -- Guarantee

17 / 787

Overview
Big Picture

Language-Based Concurrency

Expressive
Close to problem-space
Specialized constructs
Explicit interactions

Run-time handling
Maps to OS primitives
Several support levels (Ravenscar...)

Portable
Source code
People
OS & Vendors

18 / 787

Overview
Big Picture

Low Level Programming

Representation clauses

Bit-level layouts

Storage pools definition
With access safeties

Foreign language integration
C
C++
Assembly
etc...

Explicit specifications
Expressive
Efficient
Reasonably portable
Abstractions preserved

19 / 787

Overview
Big Picture

Standard Language Environment

Standardized common API
Types

Integer
Floating-point
Fixed-point
Boolean
Characters, Strings,
Unicode
etc...

Math
Trigonometric
Complexes

Pseudo-random number
generators

I/O
Text
Binary (direct /
sequential)
Files
Streams

Exceptions
Call-stack

Command-line arguments
Environment variables
Containers

Vector
Map

20 / 787

Overview
Big Picture

Language Examination Summary

Unique capabilities

Three main goals
Reliability, maintainability
Programming as a human activity
Efficiency

Easy-to-use
...and hard to misuse
Very few pitfalls and exceptions

21 / 787

Overview
Big Picture

So Why Isn't Ada Used Everywhere?
"... in all matters of opinion
our adversaries are insane"

Mark Twain

22 / 787

Overview
Setup

Setup

23 / 787

Overview
Setup

Canonical First Program

1 with Ada.Text_IO;
2 -- Everyone's first program
3 procedure Say_Hello is
4 begin
5 Ada.Text_IO.Put_Line ("Hello, World!");
6 end Say_Hello;

Line 1 - with - Package dependency
Line 2 - -- - Comment
Line 3 - Say_Hello - Subprogram name
Line 4 - begin - Begin executable code
Line 5 - Ada.Text_IO.Put_Line () - Subprogram call
(cont) - "Hello, World!" - String literal (type-checked)

24 / 787

Overview
Setup

"Hello World" Lab - Command Line

Use an editor to enter the program shown on the previous slide
Use your favorite editor or just gedit/notepad/etc.

Save and name the file say_hello.adb exactly

In a command prompt shell, go to where the new file is located and
issue the following command:

gprbuild say_hello

In the same shell, invoke the resulting executable:
say_hello (Windows)
./say_hello (Linux/Unix)

25 / 787

Overview
Setup

"Hello World" Lab - GNAT Studio

Start GNAT Studio from the command-line (gnatstudio) or
Start Menu

Create new project

Select Simple Ada Project and click Next
Fill in a location to to deploy the project
Set main name to say_hello and click Apply

Expand the src level in the Project View and double-click
say_hello.adb

Replace the code in the file with the program shown on the
previous slide

Execute the program by selecting Build → Project →
Build & Run → say_hello.adb

Shortcut is the ▶ in the icons bar

Result should appear in the bottom pane labeled Run:
say_hello.exe

26 / 787

Overview
Setup

Note on GNAT File Naming Conventions

GNAT compiler assumes one compilable entity per file
Package specification, subprogram body, etc
So the body for say_hello should be the only thing in the file

Filenames should match the name of the compilable entity
Replacing "." with "-"
File extension is ".ads" for specifications and ".adb" for bodies
So the body for say_hello will be in say_hello.adb

If there was a specification for the subprogram, it would be in
say_hello.ads

This is the default behavior. There are ways around both of these
rules

For further information, see Section 3.3 File Naming Topics and
Utilities in the GNAT User's Guide

27 / 787

Declarations

Declarations

28 / 787

Declarations
Introduction

Introduction

29 / 787

Declarations
Introduction

Ada Type Model

Each object is associated a type

Static Typing
Object type cannot change
... but run-time polymorphism available (OOP)

Strong Typing
Compiler-enforced operations and values
Explicit conversions for "related" types
Unchecked conversions possible

Predefined types

Application-specific types
User-defined
Checked at compilation and run-time

30 / 787

Declarations
Introduction

Declarations

Declaration associates a name to an entity
Objects
Types
Subprograms
et cetera

In a declarative part

Example: N : Type := Value;

N is usually an identifier

Declaration must precede use

Some implicit declarations
Standard types and operations
Implementation-defined

31 / 787

Declarations
Identifiers and Comments

Identifiers and Comments

32 / 787

Declarations
Identifiers and Comments

Identifiers

Legal identifiers
Phase2
A
Space_Person

Not legal identifiers
Phase2__1
A_
_space_person

Character set Unicode 4.0

Case not significant
SpacePerson ⇐⇒ SPACEPERSON
but different from Space_Person

Reserved words are forbidden
33 / 787

Declarations
Identifiers and Comments

Reserved Words

abort else null reverse
abs elsif of select
abstract (95) end or separate
accept entry others some (2012)
access exception out subtype
aliased (95) exit overriding (2005) synchronized (2005)
all for package tagged (95)
and function parallel (2022) task
array generic pragma terminate
at goto private then
begin if procedure type
body in protected (95) until (95)
case interface (2005) raise use
constant is range when
declare limited record while
delay loop rem with
delta mod renames xor
digits new requeue (95)
do not return

34 / 787

Declarations
Identifiers and Comments

Comments

Terminate at end of line (i.e., no comment terminator sequence)

-- This is a multi-
-- line comment
A : B; -- this is an end-of-line comment

35 / 787

Declarations
Identifiers and Comments

Declaring Constants / Variables (simplified)

An expression is a piece of Ada code that returns a value.

<identifier> : constant := <expression>;
<identifier> : <type> := <expression>;
<identifier> : constant <type> := <expression>;

36 / 787

Declarations
Identifiers and Comments

Quiz

Which statement(s) is (are) legal?

A. Function : constant := 1;
B. Fun_ction : constant := 1;
C. Fun_ction : constant := --initial value-- 1;
D. Integer Fun_ction;

Explanations

A. function is a reserved word
B. Correct
C. Cannot have inline comments
D. C-style declaration not allowed

37 / 787

Declarations
Identifiers and Comments

Quiz

Which statement(s) is (are) legal?

A. Function : constant := 1;
B. Fun_ction : constant := 1;
C. Fun_ction : constant := --initial value-- 1;
D. Integer Fun_ction;

Explanations

A. function is a reserved word
B. Correct
C. Cannot have inline comments
D. C-style declaration not allowed

37 / 787

Declarations
Literals

Literals

38 / 787

Declarations
Literals

String Literals

A literal is a textual representation of a value in the code

A_Null_String : constant String := "";
-- two double quotes with nothing inside

String_Of_Length_One : constant String := "A";
Embedded_Single_Quotes : constant String

:= "Embedded 'single' quotes";
Embedded_Double_Quotes : constant String

:= "Embedded ""double"" quotes";

39 / 787

Declarations
Literals

Decimal Numeric Literals

Syntax

decimal_literal ::=
numeral [.numeral] E [+numeral|-numeral]

numeral ::= digit {['_'] digit}

Underscore is not significant

E (exponent) must always be integer

Examples

12 0 1E6 123_456
12.0 0.0 3.14159_26 2.3E-4

40 / 787

Declarations
Literals

Based Numeric Literals

based_literal ::= base # numeral [.numeral] # exponent
numeral ::= base_digit { '_' base_digit }

Base can be 2 .. 16

Exponent is always a base 10 integer

16#FFF# => 4095
2#1111_1111_1111# => 4095 -- With underline
16#F.FF#E+2 => 4095.0
8#10#E+3 => 4096 (8 * 8**3)

41 / 787

Declarations
Literals

Comparison to C's Based Literals

Design in reaction to C issues

C has limited bases support
Bases 8, 10, 16
No base 2 in standard

Zero-prefixed octal 0nnn

Hard to read
Error-prone

42 / 787

Declarations
Literals

Quiz

Which statement(s) is (are) legal?

A. I : constant := 0_1_2_3_4;
B. F : constant := 12.;
C. I : constant := 8#77#E+1.0;
D. F : constant := 2#1111;

Explanations

A. Underscores are not significant - they can be anywhere (except
first and last character, or next to another underscore)

B. Must have digits on both sides of decimal
C. Exponents must be integers
D. Missing closing #

43 / 787

Declarations
Literals

Quiz

Which statement(s) is (are) legal?

A. I : constant := 0_1_2_3_4;
B. F : constant := 12.;
C. I : constant := 8#77#E+1.0;
D. F : constant := 2#1111;

Explanations

A. Underscores are not significant - they can be anywhere (except
first and last character, or next to another underscore)

B. Must have digits on both sides of decimal
C. Exponents must be integers
D. Missing closing #

43 / 787

Declarations
Object Declarations

Object Declarations

44 / 787

Declarations
Object Declarations

Object Declarations

An object is either variable or constant

Basic Syntax

<name> : <subtype> [:= <initial value>];
<name> : constant <subtype> := <initial value>;

Constant should have a value
Except for privacy (seen later)

Examples

Z, Phase : Analog;
Max : constant Integer := 200;
-- variable with a constraint
Count : Integer range 0 .. Max := 0;
-- dynamic initial value via function call
Root : Tree := F(X);

45 / 787

Declarations
Object Declarations

Multiple Object Declarations

Allowed for convenience

A, B : Integer := Next_Available (X);

Identical to series of single declarations

A : Integer := Next_Available (X);
B : Integer := Next_Available (X);

Warning
May get different value!
T1, T2 : Time := Current_Time;

46 / 787

Declarations
Object Declarations

Predefined Declarations

Implicit declarations

Language standard

Annex A for Core
Package Standard

Standard types and operators

Numerical
Characters

About half the RM in size

"Specialized Needs Annexes" for optional

Also, implementation specific extensions

47 / 787

Declarations
Object Declarations

Implicit Vs Explicit Declarations

Explicit → in the source

type Counter is range 0 .. 1000;

Implicit → automatically by the compiler

function "+" (Left, Right : Counter) return Counter;
function "-" (Left, Right : Counter) return Counter;
function "*" (Left, Right : Counter) return Counter;
function "/" (Left, Right : Counter) return Counter;
...

Compiler creates appropriate operators based on the underlying type

Numeric types get standard math operators
Array types get concatenation operator
Most types get assignment operator

48 / 787

Declarations
Object Declarations

Elaboration

Elaboration has several facets:
Initial value calculation

Evaluation of the expression
Done at run-time (unless static)

Object creation
Memory allocation
Initial value assignment (and type checks)

Runs in linear order
Follows the program text
Top to bottom

declare
First_One : Integer := 10;
Next_One : Integer := First_One;
Another_One : Integer := Next_One;

begin
...

49 / 787

Declarations
Object Declarations

Quiz

Which block(s) is (are) legal?

A. A, B, C : Integer;

B. Integer : Standard.Integer;

C. Null : Integer := 0;

D. A : Integer := 123;
B : Integer := A * 3;

Explanations

A. Multiple objects can be created in one statement
B. Integer is predefined so it can be overridden
C. null is reserved so it can not be overridden
D. Elaboration happens in order, so B will be 369

50 / 787

Declarations
Object Declarations

Quiz

Which block(s) is (are) legal?

A. A, B, C : Integer;

B. Integer : Standard.Integer;

C. Null : Integer := 0;

D. A : Integer := 123;
B : Integer := A * 3;

Explanations

A. Multiple objects can be created in one statement
B. Integer is predefined so it can be overridden
C. null is reserved so it can not be overridden
D. Elaboration happens in order, so B will be 369

50 / 787

Declarations
Universal Types

Universal Types

51 / 787

Declarations
Universal Types

Universal Types

Implicitly defined

Entire classes of numeric types
universal_integer
universal_real
universal_fixed (not seen here)

Match any integer / real type respectively
Implicit conversion, as needed

X : Integer64 := 2;
Y : Integer8 := 2;
F : Float := 2.0;
D : Long_Float := 2.0;

52 / 787

Declarations
Universal Types

Numeric Literals Are Universally Typed

No need to type them
e.g 0UL as in C

Compiler handles typing
No bugs with precision

X : Unsigned_Long := 0;
Y : Unsigned_Short := 0;

53 / 787

Declarations
Universal Types

Literals Must Match "Class" of Context

universal_integer literals → Integer

universal_real literals → fixed or floating point

Legal

X : Integer := 2;
Y : Float := 2.0;

Not legal

X : Integer := 2.0;
Y : Float := 2;

54 / 787

Declarations
Named Numbers

Named Numbers

55 / 787

Declarations
Named Numbers

Named Numbers

Associate a name with an expression
Used as constant
universal_integer, or universal_real
compatible with integer / real respectively
Expression must be static

Syntax

<name> : constant := <static_expression>;

Example

Pi : constant := 3.141592654;
One_Third : constant := 1.0 / 3.0;

56 / 787

Declarations
Named Numbers

A Sample Collection of Named Numbers

package Physical_Constants is
Polar_Radius : constant := 20_856_010.51;
Equatorial_Radius : constant := 20_926_469.20;
Earth_Diameter : constant :=

2.0 * ((Polar_Radius + Equatorial_Radius)/2.0);
Gravity : constant := 32.1740_4855_6430_4;
Sea_Level_Air_Density : constant :=

0.002378;
Altitude_Of_Tropopause : constant := 36089.0;
Tropopause_Temperature : constant := -56.5;

end Physical_Constants;

57 / 787

Declarations
Named Numbers

Named Number Benefit

Evaluation at compile time
As if used directly in the code
Perfect accuracy

Named_Number : constant := 1.0 / 3.0;
Typed_Constant : constant Float := 1.0 / 3.0;

Object Named_Number Typed_Constant

F32 : Float_32; 3.33333E-01 3.33333E-01
F64 : Float_64; 3.33333333333333E-01 3.333333_43267441E-01
F128 : Float_128; 3.33333333333333333E-01 3.333333_43267440796E-01

58 / 787

Declarations
Scope and Visibility

Scope and Visibility

59 / 787

Declarations
Scope and Visibility

Scope and Visibility

Scope of a name

Where the name is potentially available
Determines lifetime
Scopes can be nested

Visibility of a name

Where the name is actually available
Defined by visibility rules
Hidden → in scope but not directly visible

60 / 787

Declarations
Scope and Visibility

Introducing Block Statements

Sequence of statements
Optional declarative part
Can be nested
Declarations can hide outer variables

Syntax
[<block-name> :] declare

<declarative part>
begin

<statements>
end [block-name];

Example
Swap: declare

Temp : Integer;
begin

Temp := U;
U := V;
V := Temp;

end Swap;

61 / 787

Declarations
Scope and Visibility

Scope and "Lifetime"

Object in scope → exists

No scoping keywords
C's static, auto etc...

62 / 787

Declarations
Scope and Visibility

Name Hiding

Caused by homographs
Identical name
Different entity

declare
M : Integer;

begin
M := 123;
declare

M : Float;
begin

M := 12.34; -- OK
M := 0; -- compile error: M is a Float

end;
M := 0.0; -- compile error: M is an Integer
M := 0; -- OK

end;
63 / 787

Declarations
Scope and Visibility

Overcoming Hiding

Add a prefix
Needs named scope

Homographs are a code smell
May need refactoring...

Outer : declare
M : Integer;

begin
M := 123;
declare

M : Float;
begin

M := 12.34;
Outer.M := Integer (M); -- reference "hidden" Integer M

end;
end Outer;

64 / 787

Declarations
Scope and Visibility

Quiz
What output does the following code
produce? (Assume Print prints the
current value of its argument)

1 declare
2 M : Integer := 1;
3 begin
4 M := M + 1;
5 declare
6 M : Integer := 2;
7 begin
8 M := M + 2;
9 Print (M);

10 end;
11 Print (M);
12 end;

A. 2, 2
B. 2, 4
C. 4, 4
D. 4, 2

Explanation
Inner M gets printed first. It
is initialized to 2 and
incremented by 2
Outer M gets printed second.
It is initialized to 1 and
incremented by 1

65 / 787

Declarations
Scope and Visibility

Quiz
What output does the following code
produce? (Assume Print prints the
current value of its argument)

1 declare
2 M : Integer := 1;
3 begin
4 M := M + 1;
5 declare
6 M : Integer := 2;
7 begin
8 M := M + 2;
9 Print (M);

10 end;
11 Print (M);
12 end;

A. 2, 2
B. 2, 4
C. 4, 4
D. 4, 2

Explanation
Inner M gets printed first. It
is initialized to 2 and
incremented by 2
Outer M gets printed second.
It is initialized to 1 and
incremented by 1

65 / 787

Declarations
Aspects

Aspects

66 / 787

Declarations
Aspects

Pragmas
Originated as a compiler directive for things like

Specifying the type of optimization

pragma Optimize (Space);

Inlining of code

pragma Inline (Some_Procedure);

Properties (aspects) of an entity

Appearance in code
Unrecognized pragmas

pragma My_Own_Pragma;

No effect
Cause warning (standard mode)

Must follow correct syntax

pragma Page; -- parameterless
pragma Optimize (Off); -- with parameter

Warning
Malformed pragmas are illegal
pragma Illegal One; -- compile error

67 / 787

Declarations
Aspects

Aspect Clauses

Define additional properties of an entity
Representation (eg. with Pack)
Operations (eg. Inline)
Can be standard or implementation-defined

Usage close to pragmas
More explicit, typed
Recommended over pragmas

Syntax

with aspect_mark [=> expression]
{, aspect_mark [=> expression] }

Note
Aspect clauses always part of a declaration

68 / 787

Declarations
Aspects

Aspect Clause Example: Objects

Updated object syntax

<name> : <subtype_indication> [:= <initial value>]
with aspect_mark [=> expression]
{, aspect_mark [=> expression] };

Usage

CR1 : Control_Register with
Size => 8,
Address => To_Address (16#DEAD_BEEF#);

-- Prior to Ada 2012
-- using *representation clauses*
CR2 : Control_Register;
for CR2'Size use 8;
for CR2'Address use To_Address (16#DEAD_BEEF#);

69 / 787

Declarations
Aspects

Boolean Aspect Clauses

Boolean aspects only

Longhand

procedure Foo with Inline => True;

Aspect name only → True

procedure Foo with Inline; -- Inline is True

No aspect → False

procedure Foo; -- Inline is False

Original form!

70 / 787

Declarations
Summary

Summary

71 / 787

Declarations
Summary

Summary

Declarations of a single type, permanently
OOP adds flexibility

Named-numbers
Infinite precision, implicit conversion

Elaboration concept
Value and memory initialization at run-time

Simple scope and visibility rules
Prefixing solves hiding problems

Pragmas, Aspects

Detailed syntax definition in Annex P (using BNF)
72 / 787

Basic Types

Basic Types

73 / 787

Basic Types
Introduction

Introduction

74 / 787

Basic Types
Introduction

Strong Typing

Definition of type
Applicable values
Applicable primitive operations

Compiler-enforced
Check of values and operations
Easy for a computer
Developer can focus on earlier phase: requirement

75 / 787

Basic Types
Introduction

Strongly-Typed Vs Weakly-Typed Languages

Weakly-typed:
Conversions are unchecked
Type errors are easy

typedef enum {north, south, east, west} direction;
typedef enum {sun, mon, tue, wed, thu, fri, sat} days;
direction heading = north;

heading = 1 + 3 * south/sun;// what?

Strongly-typed:
Conversions are checked
Type errors are hard

type Directions is (North, South, East, West);
type Days is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
Heading : Directions := North;
...
Heading := 1 + 3 * South/Sun; -- Compile Error

76 / 787

Basic Types
Introduction

A Little Terminology

Declaration creates a type name

type <name> is <type definition>;

Type-definition defines its structure
Characteristics, and operations
Base "class" of the type

type Type_1 is digits 12; -- floating-point
type Type_2 is range -200 .. 200; -- signed integer
type Type_3 is mod 256; -- unsigned integer

Representation is the memory-layout of an object of the type

77 / 787

Basic Types
Introduction

Abstract Data Types (ADT)

Variables of the type encapsulate the state

Classic definition of an ADT
Set of values
Set of operations
Hidden compile-time representation

Compiler-enforced
Check of values and operation
Easy for a computer
Developer can focus on earlier phase: requirements

78 / 787

Basic Types
Introduction

Ada "Named Typing"

Name differentiate types

Structure does not

Identical structures may not be interoperable

type Yen is range 0 .. 100_000_000;
type Ruble is range 0 .. 100_000_000;
Mine : Yen;
Yours : Ruble;
...
Mine := Yours; -- not legal

79 / 787

Basic Types
Introduction

Categories of Types

80 / 787

Basic Types
Introduction

Scalar Types

Indivisible: No components

Relational operators defined (<, =, ...)
Ordered

Have common attributes

Discrete Types
Integer
Enumeration

Real Types
Floating-point
Fixed-point

81 / 787

Basic Types
Introduction

Discrete Types

Individual ("discrete") values
1, 2, 3, 4 ...
Red, Yellow, Green

Integer types
Signed integer types

Modular integer types

Unsigned
Wrap-around semantics
Bitwise operations

Enumeration types
Ordered list of logical values

82 / 787

Basic Types
Introduction

Attributes
Properties of entities that can be queried like a function

May take input parameters

Defined by the language and/or compiler
Language-defined attributes found in RM K.2

May be implementation-defined

GNAT-defined attributes found in GNAT Reference Manual

Cannot be user-defined

Attribute behavior is generally pre-defined
Type_T'Digits gives number of digits used in Type_T definition

Some attributes can be modified by coding behavior
Typemark'Size gives the size of Typemark

Determined by compiler OR by using a representation clause
Object'Image gives a string representation of Object

Default behavior which can be replaced by aspect Put_Image

Examples

J := Object'Size;
K := Array_Object'First(2);

83 / 787

Basic Types
Introduction

Type Model Run-Time Costs

Checks at compilation and run-time

Same performance for identical programs
Run-time type checks can be disabled
Compile-time check is free

C
int X;
int Y; // range 1 .. 10
...
if (X > 0 && X < 11)

Y = X;
else

// signal a failure

Ada
X : Integer;
Y, Z : Integer range 1 .. 10;
...
Y := X;
Z := Y; -- no check required

84 / 787

Basic Types
Discrete Numeric Types

Discrete Numeric Types

85 / 787

Basic Types
Discrete Numeric Types

Signed Integer Types

Range of signed whole numbers
Symmetric about zero (-0 = +0)

Syntax

type <identifier> is range <lower> .. <upper>;

Implicit numeric operators

-- 12-bit device
type Analog_Conversions is range 0 .. 4095;
Count : Analog_Conversions := 0;
...
begin

...
Count := Count + 1;
...

end;
86 / 787

Basic Types
Discrete Numeric Types

Signed Integer Bounds

Must be static
Compiler selects base type
Hardware-supported integer type
Compilation error if not possible

87 / 787

Basic Types
Discrete Numeric Types

Predefined Signed Integer Types

Integer >= 16 bits wide

Other probably available
Long_Integer, Short_Integer, etc.
Guaranteed ranges: Short_Integer <= Integer <=
Long_Integer
Ranges are all implementation-defined

Portability not guaranteed
But may be difficult to avoid

88 / 787

Basic Types
Discrete Numeric Types

Operators for Signed Integer Type

By increasing precedence

relational operator = | /= | < | <= | > | >=

binary adding operator + | -

unary adding operator + | -

multiplying operator * | / | mod | rem

highest precedence operator ** | abs

Note: for exponentiation **

Result will be a signed integer
So power must be Integer >= 0

Division by zero → Constraint_Error

89 / 787

Basic Types
Discrete Numeric Types

Signed Integer Overflows

Finite binary representation
Common source of bugs

K : Short_Integer := Short_Integer'Last;
...
K := K + 1;

2#0111_1111_1111_1111# = (2**16)-1

+ 1

=======================
2#1000_0000_0000_0000# = -32,768

90 / 787

Basic Types
Discrete Numeric Types

Signed Integer Overflow: Ada Vs Others

Ada
Constraint_Error standard exception
Incorrect numerical analysis

Java
Silently wraps around (as the hardware does)

C/C++
Undefined behavior (typically silent wrap-around)

91 / 787

Basic Types
Discrete Numeric Types

Modular Types

Integer type

Unsigned values

Adds operations and attributes
Typically bit-wise manipulation

Syntax

type <identifier> is mod <modulus>;

Modulus must be static

Resulting range is 0 .. modulus - 1

type Unsigned_Word is mod 2**16; -- 16 bits, 0..65535
type Byte is mod 256; -- 8 bits, 0..255

92 / 787

Basic Types
Discrete Numeric Types

Modular Type Semantics

Standard Integer operators

Wraps-around in overflow
Like other languages' unsigned types
Attributes 'Pred and 'Succ

Additional bit-oriented operations are defined
and, or, xor, not
Bit shifts
Values as bit-sequences

93 / 787

Basic Types
Discrete Numeric Types

Predefined Modular Types

In Interfaces package
Need explicit import

Fixed-size numeric types

Common name format
Unsigned_n
Integer_n

type Integer_8 is range -2 ** 7 .. 2 ** 7 - 1;
type Integer_16 is range -2 ** 15 .. 2 ** 15 - 1;
...
type Unsigned_8 is mod 2 ** 8;
type Unsigned_16 is mod 2 ** 16;

94 / 787

Basic Types
Discrete Numeric Types

String Attributes for All Scalars

T'Image (input)

Converts T → String

T'Value (input)

Converts String → T

Number : Integer := 12345;
Input : String (1 .. N);
...
Put_Line (Integer'Image (Number));
...
Get (Input);
Number := Integer'Value (Input);

95 / 787

Basic Types
Discrete Numeric Types

Range Attributes for All Scalars

T'First
First (smallest) value of type T

T'Last
Last (greatest) value of type T

T'Range
Shorthand for T'First .. T'Last

type Signed_T is range -99 .. 100;
Smallest : Signed_T := Signed_T'First; -- -99
Largest : Signed_T := Signed_T'Last; -- 100

96 / 787

Basic Types
Discrete Numeric Types

Neighbor Attributes for All Scalars

T'Pred (Input)

Predecessor of specified value
Input type must be T

T'Succ (Input)

Successor of specified value
Input type must be T

type Signed_T is range -128 .. 127;
type Unsigned_T is mod 256;
Signed : Signed_T := -1;
Unsigned : Unsigned_T := 0;
...
Signed := Signed_T'Succ (Signed); -- Signed = 0
...
Unsigned := Unsigned_T'Pred (Unsigned); -- Signed = 255

97 / 787

Basic Types
Discrete Numeric Types

Min/Max Attributes for All Scalars

T'Min (Value_A, Value_B)
Lesser of two T

T'Max (Value_A, Value_B)
Greater of two T

Safe_Lower : constant := 10;
Safe_Upper : constant := 30;
C : Integer := 15;
...
C := Integer'Max (Safe_Lower, C - 1);
...
C := Integer'Min (Safe_Upper, C + 1);

98 / 787

Basic Types
Discrete Numeric Types

Quiz
What happens when you try to compile/run this code?

C1 : constant := 2 ** 1024;
C2 : constant := 2 ** 1024 + 10;
C3 : constant := C1 - C2;
V : Integer := C1 - C2;

A. Compile error
B. Run-time error
C. V is assigned to -10
D. Unknown - depends on the compiler

Explanations

21024 too big for most runtimes BUT

C1, C2, and C3 are named numbers, not typed constants
Compiler uses unbounded precision for named numbers
Large intermediate representation does not get stored in object code

For assignment to V, subtraction is computed by compiler
V is assigned the value -10

99 / 787

Basic Types
Discrete Numeric Types

Quiz
What happens when you try to compile/run this code?

C1 : constant := 2 ** 1024;
C2 : constant := 2 ** 1024 + 10;
C3 : constant := C1 - C2;
V : Integer := C1 - C2;

A. Compile error
B. Run-time error
C. V is assigned to -10
D. Unknown - depends on the compiler

Explanations

21024 too big for most runtimes BUT

C1, C2, and C3 are named numbers, not typed constants
Compiler uses unbounded precision for named numbers
Large intermediate representation does not get stored in object code

For assignment to V, subtraction is computed by compiler
V is assigned the value -10

99 / 787

Basic Types
Enumeration Types

Enumeration Types

100 / 787

Basic Types
Enumeration Types

Enumeration Types

Enumeration of logical values
Integer value is an implementation detail

Syntax

type <identifier> is (<identifier-list>) ;

Literals
Distinct, ordered
Can be in multiple enumerations

type Colors is (Red, Orange, Yellow, Green, Blue, Violet);
type Stop_Light is (Red, Yellow, Green);
...
-- Red both a member of Colors and Stop_Light
Shade : Colors := Red;
Light : Stop_Light := Red;

101 / 787

Basic Types
Enumeration Types

Enumeration Type Operations

Assignment, relationals

Not numeric quantities
Possible with attributes
Not recommended

type Directions is (North, South, East, West);
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
Heading : Directions;
Today, Tomorrow : Days;
...
Today := Mon;
Today := North; -- compile error
Heading := South;
Heading := East + 1; -- compile error
if Today < Tomorrow then ...

102 / 787

Basic Types
Enumeration Types

Character Types

Literals
Enclosed in single quotes eg. 'A'
Case-sensitive

Special-case of enumerated type
At least one character enumeral

System-defined Character

Can be user-defined

type EBCDIC is (nul, ..., 'a' , ..., 'A', ..., del);
Control : EBCDIC := 'A';
Nullo : EBCDIC := nul;

103 / 787

Basic Types
Enumeration Types

Language-Defined Type Boolean

Enumeration

type Boolean is (False, True);

Supports assignment, relational operators, attributes

A : Boolean;
Counter : Integer;
...
A := (Counter = 22);

Logical operators and, or, xor, not

A := B or (not C); -- For A, B, C boolean

104 / 787

Basic Types
Enumeration Types

Why Boolean Isn't Just an Integer?
Example: Real-life error

HETE-2 satellite attitude
control system software
(ACS)
Written in C

Controls four "solar paddles"
Deployed after launch

105 / 787

Basic Types
Enumeration Types

Why Boolean Isn't Just an Integer!

Initially variable with paddles' state
Either all deployed, or none deployed

Used int as a boolean

if (rom->paddles_deployed == 1)
use_deployed_inertia_matrix();

else
use_stowed_inertia_matrix();

Later paddles_deployed became a 4-bits value
One bit per paddle
0 → none deployed, 0xF → all deployed

Then, use_deployed_inertia_matrix() if only first paddle is
deployed!

Better: boolean function paddles_deployed()

Single line to modify
106 / 787

Basic Types
Enumeration Types

Boolean Operators' Operand Evaluation

Evaluation order not specified
May be needed

Checking value before operation
Dereferencing null pointers
Division by zero

if Divisor /= 0 and K / Divisor = Max then ... -- Problem!

107 / 787

Basic Types
Enumeration Types

Short-Circuit Control Forms

Short-circuit → fixed evaluation order

Left-to-right

Right only evaluated if necessary
and then: if left is False, skip right

Divisor /= 0 and then K / Divisor = Max

or else: if left is True, skip right

Divisor = 0 or else K / Divisor = Max

108 / 787

Basic Types
Enumeration Types

Quiz

type Enum_T is (Able, Baker, Charlie);

Which statement(s) is (are) legal?

A. V1 : Enum_T := Enum_T'Value ("Able");
B. V2 : Enum_T := Enum_T'Value ("BAKER");
C. V3 : Enum_T := Enum_T'Value (" charlie ");
D. V4 : Enum_T := Enum_T'Value ("Able Baker Charlie");

Explanations

A. Legal
B. Legal - conversion is case-insensitive
C. Legal - leading/trailing blanks are ignored
D. Value tries to convert entire string, which will fail at run-time

109 / 787

Basic Types
Enumeration Types

Quiz

type Enum_T is (Able, Baker, Charlie);

Which statement(s) is (are) legal?

A. V1 : Enum_T := Enum_T'Value ("Able");
B. V2 : Enum_T := Enum_T'Value ("BAKER");
C. V3 : Enum_T := Enum_T'Value (" charlie ");
D. V4 : Enum_T := Enum_T'Value ("Able Baker Charlie");

Explanations

A. Legal
B. Legal - conversion is case-insensitive
C. Legal - leading/trailing blanks are ignored
D. Value tries to convert entire string, which will fail at run-time

109 / 787

Basic Types
Real Types

Real Types

110 / 787

Basic Types
Real Types

Real Types

Approximations to continuous values
1.0, 1.1, 1.11, 1.111 ... 2.0, ...
Finite hardware → approximations

Floating-point
Variable exponent
Large range
Constant relative precision

Fixed-point
Constant exponent
Limited range
Constant absolute precision
Subdivided into Binary and Decimal

Class focuses on floating-point

111 / 787

Basic Types
Real Types

Real Type (Floating and Fixed) Literals

Must contain a fractional part
No silent promotion

type Phase is digits 8; -- floating-point
OK : Phase := 0.0;
Bad : Phase := 0 ; -- compile error

112 / 787

Basic Types
Real Types

Declaring Floating Point Types

Syntax

type <identifier> is
digits <expression> [range constraint];

digits → minimum number of significant digits
Decimal digits, not bits

Compiler choses representation
From available floating point types
May be more accurate, but not less
If none available → declaration is rejected

System.Max_Digits - constant specifying maximum digits of
precision available for runtime

type Very_Precise_T is digits System.Max_Digits;

Need to do with System; to get visibility
113 / 787

Basic Types
Real Types

Predefined Floating Point Types

Type Float >= 6 digits

Additional implementation-defined types
Long_Float >= 11 digits

General-purpose

Best to avoid predefined types
Loss of portability
Easy to avoid

114 / 787

Basic Types
Real Types

Floating Point Type Operators

By increasing precedence

relational operator = | /= | < | >= | > | >=

binary adding operator + | -

unary adding operator + | -

multiplying operator * | /

highest precedence operator ** | abs

Note on floating-point exponentiation **

Power must be Integer

Not possible to ask for root
X**0.5 → sqrt (x)

115 / 787

Basic Types
Real Types

Floating Point Type Attributes

Core attributes

type My_Float is digits N; -- N static

My_Float'Digits

Number of digits requested (N)

My_Float'Base'Digits

Number of actual digits

My_Float'Rounding (X)

Integral value nearest to X
Note Float'Rounding (0.5) = 1 and
Float'Rounding (-0.5) = -1

Model-oriented attributes
Advanced machine representation of the floating-point type
Mantissa, strict mode

116 / 787

Basic Types
Real Types

Numeric Types Conversion

Ada's integer and real are numeric
Holding a numeric value

Special rule: can always convert between numeric types
Explicitly
Float → Integer causes rounding

declare
N : Integer := 0;
F : Float := 1.5;

begin
N := Integer (F); -- N = 2
F := Float (N); -- F = 2.0

117 / 787

Basic Types
Real Types

Quiz
What is the output of this code?

declare
F : Float := 7.6;
I : Integer := 10;

begin
F := Float (Integer (F) / I);
Put_Line (Float'Image (F));

end;

A. 7.6
B. Compile Error
C. 8.0
D. 0.0

Explanations

A. Result of F := F / Float (I);
B. Result of F := F / I;
C. Result of F := Float (Integer (F)) / Float (I);
D. Integer value of F is 8. Integer result of dividing that by 10 is 0.

Converting to float still gives us 0

118 / 787

Basic Types
Real Types

Quiz
What is the output of this code?

declare
F : Float := 7.6;
I : Integer := 10;

begin
F := Float (Integer (F) / I);
Put_Line (Float'Image (F));

end;

A. 7.6
B. Compile Error
C. 8.0
D. 0.0

Explanations

A. Result of F := F / Float (I);
B. Result of F := F / I;
C. Result of F := Float (Integer (F)) / Float (I);
D. Integer value of F is 8. Integer result of dividing that by 10 is 0.

Converting to float still gives us 0
118 / 787

Basic Types
Miscellaneous

Miscellaneous

119 / 787

Basic Types
Miscellaneous

Checked Type Conversions

Between "closely related" types
Numeric types
Inherited types
Array types

Illegal conversions rejected
Unsafe Unchecked_Conversion available

Called as if it was a function
Named using destination type name

Target_Float := Float (Source_Integer);

Implicitly defined

Must be explicitly called
120 / 787

Basic Types
Miscellaneous

Default Value

Not defined by language for scalars

Can be done with an aspect clause
Only during type declarations
<value> must be static

type Type_Name is <type_definition>
with Default_Value => <value>;

Example

type Tertiary_Switch is (Off, On, Neither)
with Default_Value => Neither;

Implicit : Tertiary_Switch; -- Implicit = Neither
Explicit : Tertiary_Switch := Neither;

121 / 787

Basic Types
Miscellaneous

Simple Static Type Derivation

New type from an existing type
Limited form of inheritance: operations
Not fully OOP
More details later

Strong type benefits
Only explicit conversion possible
eg. Meters can't be set from a Feet value

Syntax

type identifier is new Base_Type [<constraints>]

Example

type Measurement is digits 6;
type Distance is new Measurement

range 0.0 .. Measurement'Last;
122 / 787

Basic Types
Subtypes

Subtypes

123 / 787

Basic Types
Subtypes

Subtype

May constrain an existing type

Still the same type

Syntax

subtype Defining_Identifier is Type_Name [constraints];

Type_Name is an existing type or subtype

If no constraint → type alias

124 / 787

Basic Types
Subtypes

Subtype Example

Enumeration type with range constraint

type Days is (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);
subtype Weekdays is Days range Mon .. Fri;
Workday : Weekdays; -- type Days limited to Mon .. Fri

Equivalent to anonymous subtype

Same_As_Workday : Days range Mon .. Fri;

125 / 787

Basic Types
Subtypes

Kinds of Constraints

Range constraints on scalar types

subtype Positive is Integer range 1 .. Integer'Last;
subtype Natural is Integer range 0 .. Integer'Last;
subtype Weekdays is Days range Mon .. Fri;
subtype Symmetric_Distribution is

Float range -1.0 .. +1.0;

Other kinds, discussed later

Constraints apply only to values

Representation and set of operations are kept

126 / 787

Basic Types
Subtypes

Subtype Constraint Checks

Constraints are checked
At initial value assignment
At assignment
At subprogram call
Upon return from subprograms

Invalid constraints
Will cause Constraint_Error to be raised

May be detected at compile time

If values are static
Initial value → error
... else → warning

Max : Integer range 1 .. 100 := 0; -- compile error
...
Max := 0; -- run-time error

127 / 787

Basic Types
Subtypes

Performance Impact of Constraints Checking

Constraint checks have run-time performance impact

The following code

procedure Demo is
K : Integer := F;
P : Integer range 0 .. 100;

begin
P := K;

Generates assignment checks similar to

if K < 0 or K > 100 then
raise Constraint_Error;

else
P := K;

end if;

These checks can be disabled with -gnatp
128 / 787

Basic Types
Subtypes

Optimizations of Constraint Checks

Checks happen only if necessary

Compiler assumes variables to be initialized

So this code generates no check

procedure Demo is
P, K : Integer range 0 .. 100;

begin
P := K;
-- But K is not initialized!

129 / 787

Basic Types
Subtypes

Range Constraint Examples

subtype Proper_Subset is Positive range 1 .. 10;
subtype Same_Constraints is Positive

range 1 .. Integer'Last;
subtype Letter is Character range 'A' .. 'z';
subtype Upper_Case is Letter range 'A' .. 'Z';
subtype Lower_Case is Letter range 'a' .. 'z';
subtype Null_Range is Integer

range 1 .. 0; -- silly when hard-coded...
-- evaluated when subtype defined, not when object declared
subtype Dynamic is Integer range Lower .. Upper;

130 / 787

Basic Types
Subtypes

Quiz

type Enum_T is (Sat, Sun, Mon, Tue, Wed, Thu, Fri);
subtype Enum_Sub_T is Enum_T range Mon .. Fri;

Which subtype definition is valid?

A. subtype A is Enum_Sub_T range Enum_Sub_T'Pred
(Enum_Sub_T'First) .. Enum_Sub_T'Last;

B. subtype B is range Sat .. Mon;
C. subtype C is Integer;
D. subtype D is digits 6;

Explanations

A. This generates a run-time error because the first enumeral
specified is not in the range of Enum_Sub_T

B. Compile error - no type specified
C. Correct - standalone subtype
D. Digits 6 is used for a type definition, not a subtype

131 / 787

Basic Types
Subtypes

Quiz

type Enum_T is (Sat, Sun, Mon, Tue, Wed, Thu, Fri);
subtype Enum_Sub_T is Enum_T range Mon .. Fri;

Which subtype definition is valid?

A. subtype A is Enum_Sub_T range Enum_Sub_T'Pred
(Enum_Sub_T'First) .. Enum_Sub_T'Last;

B. subtype B is range Sat .. Mon;
C. subtype C is Integer;
D. subtype D is digits 6;

Explanations

A. This generates a run-time error because the first enumeral
specified is not in the range of Enum_Sub_T

B. Compile error - no type specified
C. Correct - standalone subtype
D. Digits 6 is used for a type definition, not a subtype

131 / 787

Basic Types
Lab

Lab

132 / 787

Basic Types
Lab

Basic Types Lab

Create types to handle the following concepts
Determining average test score

Number of tests taken
Total of all test scores

Number of degrees in a circle

Collection of colors

Create objects for the types you've created
Assign initial values to the objects
Print the values of the objects

Modify the objects you've created and print the new values
Determine the average score for all the tests
Add 359 degrees to the initial circle value
Set the color object to the value right before the last possible value

133 / 787

Basic Types
Lab

Using the "Prompts" Directory

Course material should have a link to a Prompts folder
Folder contains everything you need to get started on the lab

GNAT Studio project file default.gpr
Annotated / simplified source files

Source files are templates for lab solutions
Files compile as is, but don't implement the requirements
Comments in source files give hints for the solution

To load prompt, either
From within GNAT Studio, select File → Open Project and
navigate to and open the appropriate default.gpr OR
From a command prompt, enter
gnastudio -P <full path to GPR file>

If you are in the appropriate directory, and there is only one GPR
file, entering gnatstudio will start the tool and open that project

These prompt folders should be available for most labs
134 / 787

Basic Types
Lab

Basic Types Lab Hints

Understand the properties of the types
Do you need fractions or just whole numbers?
What happens when you want the number to wrap?

Predefined package Ada.Text_IO is handy...
Procedure Put_Line takes a String as the parameter

Remember attribute 'Image returns a String

<typemark>'Image (Object)
Object'Image

135 / 787

Basic Types
Lab

Basic Types Lab Solution - Declarations

1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Main is
3

4 type Number_Of_Tests_T is range 0 .. 100;
5 type Test_Score_Total_T is digits 6 range 0.0 .. 10_000.0;
6

7 type Degrees_T is mod 360;
8

9 type Cymk_T is (Cyan, Magenta, Yellow, Black);
10

11 Number_Of_Tests : Number_Of_Tests_T;
12 Test_Score_Total : Test_Score_Total_T;
13

14 Angle : Degrees_T;
15

16 Color : Cymk_T;
136 / 787

Basic Types
Lab

Basic Types Lab Solution - Implementation
18 begin
19

20 -- assignment
21 Number_Of_Tests := 15;
22 Test_Score_Total := 1_234.5;
23 Angle := 180;
24 Color := Magenta;
25

26 Put_Line (Number_Of_Tests'Image);
27 Put_Line (Test_Score_Total'Image);
28 Put_Line (Angle'Image);
29 Put_Line (Color'Image);
30

31 -- operations / attributes
32 Test_Score_Total := Test_Score_Total / Test_Score_Total_T (Number_Of_Tests);
33 Angle := Angle + 359;
34 Color := Cymk_T'Pred (Cymk_T'Last);
35

36 Put_Line (Test_Score_Total'Image);
37 Put_Line (Angle'Image);
38 Put_Line (Color'Image);
39

40 end Main;
137 / 787

Basic Types
Lab

Basic Types Extra Credit

See what happens when your data is invalid / illegal
Number of tests = 0
Assign a very large number to the test score total
Color type only has one value
Add a number larger than 360 to the circle value

138 / 787

Basic Types
Summary

Summary

139 / 787

Basic Types
Summary

Benefits of Strongly Typed Numerics

Prevent subtle bugs

Cannot mix Apples and Oranges

Force to clarify representation needs
eg. constant with or with fractional part

type Yen is range 0 .. 1_000_000;
type Ruble is range 0 .. 1_000_000;
Mine : Yen := 1;
Yours : Ruble := 1;
Mine := Yours; -- illegal

140 / 787

Basic Types
Summary

User-Defined Numeric Type Benefits

Close to requirements
Types with explicit requirements (range, precision, etc.)
Best case: Incorrect state not possible

Either implemented/respected or rejected
No run-time (bad) suprise

Portability enhanced
Reduced hardware dependencies

141 / 787

Basic Types
Summary

Summary

User-defined types and strong typing is good
Programs written in application's terms
Computer in charge of checking constraints
Security, reliability requirements have a price
Performance identical, given same requirements

User definitions from existing types can be good

Right trade-off depends on use-case
More types → more precision → less bugs
Storing both feet and meters in Float has caused bugs
More types → more complexity → more bugs
A Green_Round_Object_Altitude type is probably never
needed

Default initialization is possible
Use sparingly

142 / 787

Statements

Statements

143 / 787

Statements
Introduction

Introduction

144 / 787

Statements
Introduction

Statement Kinds

Simple
null
A := B (assignments)
exit
goto
delay
raise
P (A, B) (procedure calls)
return
Tasking-related: requeue, entry call T.E (A, B), abort

Compound
if
case
loop (and variants)
declare
Tasking-related: accept, select

Tasking-related are seen in the tasking chapter
145 / 787

Statements
Introduction

Procedure Calls (Overview)

Procedures must be defined before they are called

procedure Activate (This : in out Foo;
Flag : Boolean);

Procedure calls are statements
Traditional call notation

Activate (Idle, True);

"Distinguished Receiver" notation

Idle.Activate (True);

More details in "Subprograms" section

146 / 787

Statements
Block Statements

Block Statements

147 / 787

Statements
Block Statements

Block Statements

Local scope

Optional declarative part

Used for
Temporary declarations
Declarations as part of statement sequence
Local catching of exceptions

Syntax

[block-name :]
[declare <declarative part>]
begin

<statements>
end [block-name];

148 / 787

Statements
Block Statements

Block Statements Example

begin
Get (V);
Get (U);
if U > V then -- swap them

Swap: declare
Temp : Integer;

begin
Temp := U;
U := V;
V := Temp;

end Swap;
-- Temp does not exist here

end if;
Print (U);
Print (V);

end;
149 / 787

Statements
Null Statements

Null Statements

150 / 787

Statements
Null Statements

Null Statements

Explicit no-op statement

Constructs with required statement

Explicit statements help compiler
Oversights
Editing accidents

case Today is
when Monday .. Thursday =>

Work (9.0);
when Friday =>

Work (4.0);
when Saturday .. Sunday =>

null;
end case;

151 / 787

Statements
Assignment Statements

Assignment Statements

152 / 787

Statements
Assignment Statements

Assignment Statements

Syntax

<variable> := <expression>;

Value of expression is copied to target variable

The type of the RHS must be same as the LHS
Rejected at compile-time otherwise

declare
type Miles_T is range 0 .. Max_Miles;
type Km_T is range 0 .. Max_Kilometers

M : Miles_T := 2; -- universal integer legal for any integer
K : Km_T := 2; -- universal integer legal for any integer

begin
M := K; -- compile error

153 / 787

Statements
Assignment Statements

Assignment Statements, Not Expressions

Separate from expressions
No Ada equivalent for these:

int a = b = c = 1;
while (line = readline(file))

{ ...do something with line... }

No assignment in conditionals
E.g. if (a == 1) compared to if (a = 1)

154 / 787

Statements
Assignment Statements

Assignable Views

A view controls the way an entity can be treated
At different points in the program text

The named entity must be an assignable variable
Thus the view of the target object must allow assignment

Various un-assignable views
Constants
Variables of limited types
Formal parameters of mode in

Max : constant Integer := 100;
...
Max := 200; -- illegal

155 / 787

Statements
Assignment Statements

Aliasing the Assignment Target
Ada 2022

C allows you to simplify assignments when the target is used in the
expression. This avoids duplicating (possibly long) names.

total = total + value;
// becomes
total += value;

Ada 2022 implements this by using the target name symbol @

Total := Total + Value;
-- becomes
Total := @ + Value;

Benefit
Symbol can be used multiple times in expression

Value := (if @ > 0 then @ else -(@));

Limitation
Symbol is read-only (so it can't change during evaluation)

function Update (X : in out Integer) return Integer;
function Increment (X: Integer) return Integer;

13 Value := Update (@);
14 Value := Increment (@);

example.adb:13:21: error: actual for "X" must be a
variable

156 / 787

Statements
Assignment Statements

Quiz
type One_T is range 0 .. 100;
type Two_T is range 0 .. 100;
A : constant := 100;
B : constant One_T := 99;
C : constant Two_T := 98;
X : One_T := 0;
Y : Two_T := 0;

Which block(s) is (are) legal?
A. X := A;

Y := A;
B. X := B;

Y := C;
C. X := One_T(X + C);
D. X := One_T(Y);

Y := Two_T(X);

Explanations
A. Legal - A is an untyped constant
B. Legal - B, C are correctly typed
C. Illegal - No such "+" operator: must

convert operand individually
D. Legal - Correct conversion and types

157 / 787

Statements
Assignment Statements

Quiz
type One_T is range 0 .. 100;
type Two_T is range 0 .. 100;
A : constant := 100;
B : constant One_T := 99;
C : constant Two_T := 98;
X : One_T := 0;
Y : Two_T := 0;

Which block(s) is (are) legal?
A. X := A;

Y := A;
B. X := B;

Y := C;
C. X := One_T(X + C);
D. X := One_T(Y);

Y := Two_T(X);
Explanations

A. Legal - A is an untyped constant
B. Legal - B, C are correctly typed
C. Illegal - No such "+" operator: must

convert operand individually
D. Legal - Correct conversion and types

157 / 787

Statements
Conditional Statements

Conditional Statements

158 / 787

Statements
Conditional Statements

If-then-else Statements

Control flow using Boolean expressions

Syntax

if <boolean expression> then -- No parentheses
<statements>;

[else
<statements>;]

end if;

At least one statement must be supplied
null for explicit no-op

159 / 787

Statements
Conditional Statements

If-then-elsif Statements

Sequential choice with alternatives
Avoids if nesting
elsif alternatives, tested in textual order
else part still optional

1 if Valve (N) /= Closed then
2 Isolate (Valve (N));
3 Failure (Valve (N));
4 else
5 if System = Off then
6 Failure (Valve (N));
7 end if;
8 end if;

1 if Valve (N) /= Closed then
2 Isolate (Valve (N));
3 Failure (Valve (N));
4 elsif System = Off then
5 Failure (Valve (N));
6 end if;

160 / 787

Statements
Conditional Statements

Case Statements

Exclusionary choice among alternatives

Syntax

case <expression> is
when <choice> => <statements>;
{ when <choice> => <statements>; }

end case;

choice ::= <expression> | <discrete range>
| others { "|" <other choice> }

161 / 787

Statements
Conditional Statements

Simple "case" Statements

type Directions is (Forward, Backward, Left, Right);
Direction : Directions;
...
case Direction is

when Forward =>
Set_Mode (Forward);
Move (1);

when Backward =>
Set_Mode (Backup);
Move (-1);

when Left =>
Turn (1);

when Right =>
Turn (-1);

end case;

Note: No fall-through between cases
162 / 787

Statements
Conditional Statements

Case Statement Rules

More constrained than a if-elsif structure

All possible values must be covered
Explicitly
... or with others keyword

Choice values cannot be given more than once (exclusive)
Must be known at compile time

163 / 787

Statements
Conditional Statements

Others Choice

Choice by default
"everything not specified so far"

Must be in last position

case Today is -- work schedule
when Monday =>

Go_To (Work, Arrive=>Late, Leave=>Early);
when Tuesday | Wednesday | Thursday => -- Several choices

Go_To (Work, Arrive=>Early, Leave=>Late);
when Friday =>

Go_To (Work, Arrive=>Early, Leave=>Early);
when others => -- weekend

Go_To (Home, Arrive=>Day_Before, Leave=>Day_After);
end case;

164 / 787

Statements
Conditional Statements

Case Statements Range Alternatives

case Altitude_Ft is
when 0 .. 9 =>

Set_Flight_Indicator (Ground);
when 10 .. 40_000 =>

Set_Flight_Indicator (In_The_Air);
when others => -- Large altitude

Set_Flight_Indicator (Too_High);
end case;

165 / 787

Statements
Conditional Statements

Dangers of Others Case Alternative

Maintenance issue: new value requiring a new alternative?
Compiler won't warn: others hides it

type Agencies_T is (NASA, ESA, RFSA); -- could easily grow
Bureau : Agencies_T;
...
case Bureau is

when ESA =>
Set_Region (Europe);

when NASA =>
Set_Region (America);

when others =>
Set_Region (Russia); -- New agencies will be Russian!

end case;

166 / 787

Statements
Conditional Statements

Quiz

A : Integer := 100;
B : Integer := 200;

Which choice needs to be modified to make a valid if block

A. if A == B and then A != 0 then
A := Integer'First;
B := Integer'Last;

B. elsif A < B then
A := B + 1;

C. elsif A > B then
B := A - 1;

D. end if;

Explanations

A uses the C-style equality/inequality operators
D is legal because else is not required

167 / 787

Statements
Conditional Statements

Quiz

A : Integer := 100;
B : Integer := 200;

Which choice needs to be modified to make a valid if block

A. if A == B and then A != 0 then
A := Integer'First;
B := Integer'Last;

B. elsif A < B then
A := B + 1;

C. elsif A > B then
B := A - 1;

D. end if;

Explanations

A uses the C-style equality/inequality operators
D is legal because else is not required

167 / 787

Statements
Conditional Statements

Quiz

type Enum_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
A : Enum_T;

Which choice needs to be modified to make a valid case block

case A is

A. when Sun =>
Put_Line ("Day Off");

B. when Mon | Fri =>
Put_Line ("Short Day");

C. when Tue .. Thu =>
Put_Line ("Long Day");

D. end case;

Explanations

Ada requires all possibilities to be covered
Add when others or when Sat

168 / 787

Statements
Conditional Statements

Quiz

type Enum_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
A : Enum_T;

Which choice needs to be modified to make a valid case block

case A is

A. when Sun =>
Put_Line ("Day Off");

B. when Mon | Fri =>
Put_Line ("Short Day");

C. when Tue .. Thu =>
Put_Line ("Long Day");

D. end case;

Explanations

Ada requires all possibilities to be covered
Add when others or when Sat

168 / 787

Statements
Loop Statements

Loop Statements

169 / 787

Statements
Loop Statements

Basic Loops and Syntax

All kind of loops can be expressed
Optional iteration controls
Optional exit statements

Syntax

[<name> :] [iteration_scheme] loop
<statements>

end loop [<name>];

iteration_scheme ::= while <boolean expression>
| for <loop_parameter_specification>
| for <loop_iterator_specification>

Example

Wash_Hair : loop
Lather (Hair);
Rinse (Hair);

end loop Wash_Hair;
170 / 787

Statements
Loop Statements

Loop Exit Statements

Leaves innermost loop
Unless loop name is specified

Syntax

exit [<loop name>] [when <boolean expression>];

exit when exits with condition

loop
...
-- If it's time to go then exit
exit when Time_to_Go;
...

end loop;

171 / 787

Statements
Loop Statements

Exit Statement Examples

Equivalent to C's do while

loop
Do_Something;
exit when Finished;

end loop;

Nested named loops and exit

Outer : loop
Do_Something;
Inner : loop

...
exit Outer when Finished; -- will exit all the way out
...

end loop Inner;
end loop Outer;

172 / 787

Statements
Loop Statements

While-loop Statements

Syntax

while boolean_expression loop
sequence_of_statements

end loop;

Identical to

loop
exit when not boolean_expression;
sequence_of_statements

end loop;

Example

while Count < Largest loop
Count := Count + 2;
Display (Count);

end loop;
173 / 787

Statements
Loop Statements

For-loop Statements

One low-level form
General-purpose (looping, array indexing, etc.)
Explicitly specified sequences of values
Precise control over sequence

Two high-level forms
Ada 2012
Focused on objects
Seen later with Arrays

174 / 787

Statements
Loop Statements

For in Statements

Successive values of a discrete type
eg. enumerations values

Syntax

for name in [reverse] discrete_subtype_definition loop
...
end loop;

Example

for Day in Days_T loop
Refresh_Planning (Day);

end loop;

175 / 787

Statements
Loop Statements

Variable and Sequence of Values

Variable declared implicitly by loop statement
Has a view as constant
No assignment or update possible

Initialized as 'First, incremented as 'Succ

Syntactic sugar: several forms allowed

-- All values of a type or subtype
for Day in Days_T loop
for Day in Days_T range Mon .. Fri -- anonymous subtype
-- Constant and variable range
for Day in Mon .. Fri loop
Today, Tomorrow : Days_T;
...
for Day in Today .. Tomorrow loop

176 / 787

Statements
Loop Statements

Low-Level For-loop Parameter Type
The type can be implicit

As long as it is clear for the compiler
Warning: same name can belong to several enums

1 procedure Main is
2 type Color_T is (Red, White, Blue);
3 type Rgb_T is (Red, Green, Blue);
4 begin
5 for Color in Red .. Blue loop -- which Red and Blue?
6 null;
7 end loop;
8 for Color in Rgb_T'(Red) .. Blue loop -- OK
9 null;

10 end loop;

main.adb:5:21: error: ambiguous bounds in range of iteration
main.adb:5:21: error: possible interpretations:
main.adb:5:21: error: type "Rgb_T" defined at line 3
main.adb:5:21: error: type "Color_T" defined at line 2
main.adb:5:21: error: ambiguous bounds in discrete range

If bounds are universal_integer, then type is Integer unless
otherwise specified

for Idx in 1 .. 3 loop -- Idx is Integer

for Idx in Short range 1 .. 3 loop -- Idx is Short
177 / 787

Statements
Loop Statements

Null Ranges

Null range when lower bound > upper bound
1 .. 0, Fri .. Mon
Literals and variables can specify null ranges

No iteration at all (not even one)

Shortcut for upper bound validation

-- Null range: loop not entered
for Today in Fri .. Mon loop

178 / 787

Statements
Loop Statements

Reversing Low-Level Iteration Direction

Keyword reverse reverses iteration values
Range must still be ascending
Null range still cause no iteration

for This_Day in reverse Mon .. Fri loop

179 / 787

Statements
Loop Statements

For-Loop Parameter Visibility

Scope rules don't change

Inner objects can hide outer objects

Block: declare
Counter : Float := 0.0;

begin
-- For_Loop.Counter hides Block.Counter
For_Loop : for Counter in Integer range A .. B loop
...
end loop;

end;

180 / 787

Statements
Loop Statements

Referencing Hidden Names

Must copy for-loop parameter to some other object if needed after
the loop exits
Use dot notation with outer scope name when hiding occurs

Foo:
declare

Counter : Float := 0.0;
begin

...
for Counter in Integer range 1 .. Number_Read loop

-- set declared "Counter" to loop counter
Foo.Counter := Float (Counter);
...

end loop;
...

end Foo;
181 / 787

Statements
Loop Statements

Iterations Exit Statements

Early loop exit

Syntax

exit [<loop_name>] [when <condition>]

No name: Loop exited entirely
Not only current iteration

for K in 1 .. 1000 loop
exit when K > F(K);

end loop;

With name: Specified loop exited

for J in 1 .. 1000 loop
Inner: for K in 1 .. 1000 loop

exit Inner when K > F(K);
end loop;

end loop;
182 / 787

Statements
Loop Statements

For-Loop with Exit Statement Example

-- find position of Key within Table
Found := False;
-- iterate over Table
Search : for Index in Table'Range loop

if Table (Index) = Key then
Found := True;
Position := Index;
exit Search;

elsif Table (Index) > Key then
-- no point in continuing
exit Search;

end if;
end loop Search;

183 / 787

Statements
Loop Statements

Quiz
A, B : Integer := 123;

Which loop block(s) is (are) legal?

A. for A in 1 .. 10 loop
A := A + 1;

end loop;

B. for B in 1 .. 10 loop
Put_Line (Integer'Image (B));

end loop;

C. for C in reverse 1 .. 10 loop
Put_Line (Integer'Image (C));

end loop;

D. for D in 10 .. 1 loop
Put_Line (Integer'Image (D));

end loop;

Explanations

A. Cannot assign to a loop parameter
B. Legal - 10 iterations
C. Legal - 10 iterations
D. Legal - 0 iterations

.
184 / 787

Statements
Loop Statements

Quiz
A, B : Integer := 123;

Which loop block(s) is (are) legal?

A. for A in 1 .. 10 loop
A := A + 1;

end loop;

B. for B in 1 .. 10 loop
Put_Line (Integer'Image (B));

end loop;

C. for C in reverse 1 .. 10 loop
Put_Line (Integer'Image (C));

end loop;

D. for D in 10 .. 1 loop
Put_Line (Integer'Image (D));

end loop;

Explanations

A. Cannot assign to a loop parameter
B. Legal - 10 iterations
C. Legal - 10 iterations
D. Legal - 0 iterations

.
184 / 787

Statements
GOTO Statements

GOTO Statements

185 / 787

Statements
GOTO Statements

GOTO Statements

Syntax

goto_statement ::= goto label;
label ::= << identifier >>

Rationale
Historic usage
Arguably cleaner for some situations

Restrictions
Based on common sense
Example: cannot jump into a case statement

186 / 787

Statements
GOTO Statements

GOTO Use

Mostly discouraged
May simplify control flow
For example in-loop continue construct

loop
-- lots of code
...
goto continue;
-- lots more code
...
<<continue>>

end loop;

As always maintainability beats hard set rules

187 / 787

Statements
Lab

Lab

188 / 787

Statements
Lab

Statements Lab

Requirements
Create a simple algorithm to count number of hours worked in a
week

Use Ada.Text_IO.Get_Line to ask user for hours worked on each
day
Any hours over 8 gets counted as 1.5 times number of hours (e.g.
10 hours worked will get counted as 11 hours towards total)
Saturday hours get counted at 1.5 times number of hours
Sunday hours get counted at 2 times number of hours

Print total number of hours "worked"

Hints
Use for loop to iterate over days of week
Use if statement to determine overtime hours
Use case statement to determine weekend bonus

189 / 787

Statements
Lab

Statements Lab Extra Credit

Use an inner loop when getting hours worked to check validity
Less than 0 should exit outer loop
More than 24 should not be allowed

190 / 787

Statements
Lab

Statements Lab Solution
1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Main is
3 type Days_Of_Week_T is
4 (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday);
5 type Hours_Worked is digits 6;
6

7 Total_Worked : Hours_Worked := 0.0;
8 Hours_Today : Hours_Worked;
9 Overtime : Hours_Worked;

10 begin
11 Day_Loop :
12 for Day in Days_Of_Week_T loop
13 Put_Line (Day'Image);
14 Input_Loop :
15 loop
16 Hours_Today := Hours_Worked'Value (Get_Line);
17 exit Day_Loop when Hours_Today < 0.0;
18 if Hours_Today > 24.0 then
19 Put_Line ("I don't believe you");
20 else
21 exit Input_Loop;
22 end if;
23 end loop Input_Loop;
24 if Hours_Today > 8.0 then
25 Overtime := Hours_Today - 8.0;
26 Hours_Today := Hours_Today + 0.5 * Overtime;
27 end if;
28 case Day is
29 when Monday .. Friday => Total_Worked := Total_Worked + Hours_Today;
30 when Saturday => Total_Worked := Total_Worked + Hours_Today * 1.5;
31 when Sunday => Total_Worked := Total_Worked + Hours_Today * 2.0;
32 end case;
33 end loop Day_Loop;
34

35 Put_Line (Total_Worked'Image);
36 end Main;

191 / 787

Statements
Summary

Summary

192 / 787

Statements
Summary

Summary

Assignments must satisfy any constraints of LHS
Invalid assignments don't alter target

Intent to do nothing must be explicitly specified

Case statements alternatives don't fall through

Any kind of loop can be expressed with building blocks

193 / 787

Expressions

Expressions

194 / 787

Expressions
Introduction

Introduction

195 / 787

Expressions
Introduction

Advanced Expressions

Different categories of expressions above simple assignment and
conditional statements

Constraining types to sub-ranges to increase readability and
flexibility

Allows for simple membership checks of values

Embedded conditional assignments

Equivalent to C's A ? B : C and even more elaborate

196 / 787

Expressions
Membership Tests

Membership Tests

197 / 787

Expressions
Membership Tests

"Membership" Operation

Syntax

simple_expression [not] in membership_choice_list
membership_choice_list ::= membership_choice

{ | membership_choice}
membership_choice ::= expression | range | subtype_mark

Acts like a boolean function

Usable anywhere a boolean value is allowed

X : Integer := ...
B : Boolean := X in 0..5;
C : Boolean := X not in 0..5; -- also "not (X in 0..5)"

198 / 787

Expressions
Membership Tests

Testing Constraints Via Membership

type Calendar_Days is
(Mon, Tues, Wed, Thur, Fri, Sat, Sun);

subtype Weekdays is Calendar_Days range Mon .. Fri;
Day : Calendar_Days := Today;
...
if Day in Mon .. Fri then ...
if Day in Weekdays then ... -- same as above

199 / 787

Expressions
Membership Tests

Testing Non-Contiguous Membership

Uses vertical bar "choice" syntax

declare
M : Month_Number := Month (Clock);

begin
if M in 9 | 4 | 6 | 11 then

Put_Line ("31 days in this month");
elsif M = 2 then

Put_Line ("It's February, who knows?");
else

Put_Line ("30 days in this month");
end if;

200 / 787

Expressions
Membership Tests

Quiz

type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Weekdays_T is Days_T range Mon .. Fri;
Today : Days_T;

Which condition(s) is (are) legal?

A. if Today = Mon or Wed or Fri then
B. if Today in Days_T then
C. if Today not in Weekdays_T then
D. if Today in Tue | Thu then

Explanations

A. To use or, both sides of the comparison must be duplicated (e.g.
Today = Mon or Today = Wed)

B. Legal - should always return True
C. Legal - returns True if Today is Sat or Sun
D. Legal - returns True if Today is Tue or Thu

201 / 787

Expressions
Membership Tests

Quiz

type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Weekdays_T is Days_T range Mon .. Fri;
Today : Days_T;

Which condition(s) is (are) legal?

A. if Today = Mon or Wed or Fri then
B. if Today in Days_T then
C. if Today not in Weekdays_T then
D. if Today in Tue | Thu then

Explanations

A. To use or, both sides of the comparison must be duplicated (e.g.
Today = Mon or Today = Wed)

B. Legal - should always return True
C. Legal - returns True if Today is Sat or Sun
D. Legal - returns True if Today is Tue or Thu

201 / 787

Expressions
Qualified Names

Qualified Names

202 / 787

Expressions
Qualified Names

Qualification

Explicitly indicates the subtype of the value

Syntax

qualified_expression ::= subtype_mark'(expression) |
subtype_mark'aggregate

Similar to conversion syntax
Mnemonic - "qualification uses quote"

Various uses shown in course
Testing constraints
Removing ambiguity of overloading
Enhancing readability via explicitness

203 / 787

Expressions
Qualified Names

Testing Constraints Via Qualification

Asserts value is compatible with subtype
Raises exception Constraint_Error if not true

subtype Weekdays is Days range Mon .. Fri;
This_Day : Days;
...
case Weekdays'(This_Day) is -- run-time error if out of range

when Mon =>
Arrive_Late;
Leave_Early;

when Tue .. Thur =>
Arrive_Early;
Leave_Late;

when Fri =>
Arrive_Early;
Leave_Early;

end case; -- no 'others' because all subtype values covered
204 / 787

Expressions
Conditional Expressions

Conditional Expressions

205 / 787

Expressions
Conditional Expressions

Conditional Expressions

Ultimate value depends on a controlling condition

Allowed wherever an expression is allowed
Assignment RHS, formal parameters, aggregates, etc.

Similar intent as in other languages
Java, C/C++ ternary operation A ? B : C
Python conditional expressions
etc.

Two forms:
If expressions
Case expressions

206 / 787

Expressions
Conditional Expressions

If Expressions

Syntax looks like an if statement without end if

if_expression ::=
(if condition then dependent_expression
{elsif condition then dependent_expression}
[else dependent_expression])

condition ::= boolean_expression

The conditions are always Boolean values

(if Today > Wednesday then 1 else 0)

207 / 787

Expressions
Conditional Expressions

Result Must Be Compatible with Context

The dependent_expression parts, specifically

X : Integer :=
(if Day_Of_Week (Clock) > Wednesday then 1 else 0);

208 / 787

Expressions
Conditional Expressions

"If Expression" Example

declare
Remaining : Natural := 5; -- arbitrary

begin
while Remaining > 0 loop

Put_Line ("Warning! Self-destruct in" &
Remaining'Image &
(if Remaining = 1 then " second" else " seconds"));

delay 1.0;
Remaining := Remaining - 1;

end loop;
Put_Line ("Boom! (goodbye Nostromo)");

209 / 787

Expressions
Conditional Expressions

Boolean "If Expressions"

Return a value of either True or False
(if P then Q) - assuming P and Q are Boolean
"If P is True then the result of the if expression is the value of Q"

But what is the overall result if all conditions are False?

Answer: the default result value is True
Why?

Consistency with mathematical proving

210 / 787

Expressions
Conditional Expressions

The "else" Part When Result Is Boolean

Redundant because the default result is True
(if P then Q else True)

So for convenience and elegance it can be omitted
Acceptable : Boolean := (if P1 > 0 then P2 > 0 else True);
Acceptable : Boolean := (if P1 > 0 then P2 > 0);

Use else if you need to return False at the end

211 / 787

Expressions
Conditional Expressions

Rationale for Parentheses Requirement

Prevents ambiguity regarding any enclosing expression

Problem:

X : Integer := if condition then A else B + 1;

Does that mean
If condition, then X := A + 1, else X := B + 1 OR
If condition, then X := A, else X := B + 1

But not required if parentheses already present
Because enclosing construct includes them

Subprogram_Call (if A then B else C);

212 / 787

Expressions
Conditional Expressions

When to Use If Expressions

When you need computation to be done prior to sequence of
statements

Allows constants that would otherwise have to be variables

When an enclosing function would be either heavy or redundant
with enclosing context

You'd already have written a function if you'd wanted one

Preconditions and postconditions
All the above reasons
Puts meaning close to use rather than in package body

Static named numbers
Can be much cleaner than using Boolean'Pos (Condition)

213 / 787

Expressions
Conditional Expressions

"If Expression" Example for Constants
Starting from

End_of_Month : array (Months) of Days
:= (Sep | Apr | Jun | Nov => 30,

Feb => 28,
others => 31);

begin
if Leap (Today.Year) then -- adjust for leap year

End_of_Month (Feb) := 29;
end if;
if Today.Day = End_of_Month (Today.Month) then

...

Using if expression to call Leap (Year) as needed

End_Of_Month : constant array (Months) of Days
:= (Sep | Apr | Jun | Nov => 30,

Feb => (if Leap (Today.Year)
then 29 else 28),

others => 31);
begin

if Today.Day /= End_of_Month (Today.Month) then
...

214 / 787

Expressions
Conditional Expressions

Case Expressions

Syntax similar to case statements
Lighter: no closing end case
Commas between choices

Same general rules as if expressions
Parentheses required unless already present
Type of "result" must match context

Advantage over if expressions is completeness checked by compiler
Same as with case statements (unless others is used)

-- compile error if not all days covered
Hours : constant Integer :=

(case Day_of_Week is
when Mon .. Thurs => 9,
when Fri => 4,
when Sat | Sun => 0);

215 / 787

Expressions
Conditional Expressions

"Case Expression" Example

Leap : constant Boolean :=
(Today.Year mod 4 = 0 and Today.Year mod 100 /= 0)
or else
(Today.Year mod 400 = 0);

End_Of_Month : array (Months) of Days;
...
-- initialize array
for M in Months loop

End_Of_Month (M) :=
(case M is
when Sep | Apr | Jun | Nov => 30,
when Feb => (if Leap then 29 else 28),
when others => 31);

end loop;
216 / 787

Expressions
Conditional Expressions

Quiz

function Sqrt (X : Float) return Float;
F : Float;
B : Boolean;

Which statement(s) is (are) legal?

A. F := if X < 0.0 then Sqrt (-1.0 * X) else Sqrt (X);
B. F := Sqrt (if X < 0.0 then -1.0 * X else X);
C. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0 else

True);
D. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0);

Explanations

A. Missing parentheses around expression
B. Legal - Expression is already enclosed in parentheses so you don't

need to add more
C. Legal - else True not needed but is allowed
D. Legal - B will be True if X >= 0.0

217 / 787

Expressions
Conditional Expressions

Quiz

function Sqrt (X : Float) return Float;
F : Float;
B : Boolean;

Which statement(s) is (are) legal?

A. F := if X < 0.0 then Sqrt (-1.0 * X) else Sqrt (X);
B. F := Sqrt (if X < 0.0 then -1.0 * X else X);
C. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0 else

True);
D. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0);

Explanations

A. Missing parentheses around expression
B. Legal - Expression is already enclosed in parentheses so you don't

need to add more
C. Legal - else True not needed but is allowed
D. Legal - B will be True if X >= 0.0

217 / 787

Expressions
Lab

Lab

218 / 787

Expressions
Lab

Expressions Lab

Requirements
Allow the user to fill a list with dates

After the list is created, create functions to print True/False if ...

Any date is not legal (taking into account leap years!)
All dates are in the same calendar year

Use expression functions for all validation routines

Hints
Use subtype membership for range validation

You will need conditional expressions in your functions

You can use component-based iterations for some checks

But you must use indexed-based iterations for others
219 / 787

Expressions
Lab

Expressions Lab Solution - Checks
4 subtype Year_T is Positive range 1_900 .. 2_099;
5 subtype Month_T is Positive range 1 .. 12;
6 subtype Day_T is Positive range 1 .. 31;
7

8 type Date_T is record
9 Year : Positive;

10 Month : Positive;
11 Day : Positive;
12 end record;
13

14 List : array (1 .. 5) of Date_T;
15 Item : Date_T;
16

17 function Is_Leap_Year (Year : Positive)
18 return Boolean is
19 (Year mod 400 = 0 or else (Year mod 4 = 0 and Year mod 100 /= 0));
20

21 function Days_In_Month (Month : Positive;
22 Year : Positive)
23 return Day_T is
24 (case Month is when 4 | 6 | 9 | 11 => 30,
25 when 2 => (if Is_Leap_Year (Year) then 29 else 28), when others => 31);
26

27 function Is_Valid (Date : Date_T)
28 return Boolean is
29 (Date.Year in Year_T and then Date.Month in Month_T
30 and then Date.Day <= Days_In_Month (Date.Month, Date.Year));
31

32 function Any_Invalid return Boolean is
33 begin
34 for Date of List loop
35 if not Is_Valid (Date) then
36 return True;
37 end if;
38 end loop;
39 return False;
40 end Any_Invalid;
41

42 function Same_Year return Boolean is
43 begin
44 for Index in List'Range loop
45 if List (Index).Year /= List (List'First).Year then
46 return False;
47 end if;
48 end loop;
49 return True;
50 end Same_Year;

220 / 787

Expressions
Lab

Expressions Lab Solution - Main
52 function Number (Prompt : String)
53 return Positive is
54 begin
55 Put (Prompt & "> ");
56 return Positive'Value (Get_Line);
57 end Number;
58

59 begin
60

61 for I in List'Range loop
62 Item.Year := Number ("Year");
63 Item.Month := Number ("Month");
64 Item.Day := Number ("Day");
65 List (I) := Item;
66 end loop;
67

68 Put_Line ("Any invalid: " & Boolean'Image (Any_Invalid));
69 Put_Line ("Same Year: " & Boolean'Image (Same_Year));
70

71 end Main;
221 / 787

Expressions
Summary

Summary

222 / 787

Expressions
Summary

Summary

Conditional expressions are allowed wherever expressions are
allowed, but beware over-use

Especially useful when a constant is intended
Especially useful when a static expression is required

223 / 787

Array Types

Array Types

224 / 787

Array Types
Introduction

Introduction

225 / 787

Array Types
Introduction

Introduction

Traditional array concept supported to any dimension

declare
type Hours is digits 6;
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Schedule is array (Days) of Hours;
Workdays : Schedule;

begin
...
Workdays (Mon) := 8.5;

226 / 787

Array Types
Introduction

Terminology

Index type
Specifies the values to be used to access the array components

Component type
Specifies the type of values contained by objects of the array type
All components are of this same type

type Array_T is array (Index_T) of Component_T;

227 / 787

Array Types
Introduction

Array Type Index Constraints

Must be of an integer or enumeration type

May be dynamic

Default to predefined Integer
Same rules as for-loop parameter default type

Allowed to be null range
Defines an empty array
Meaningful when bounds are computed at run-time

Used to define constrained array types

type Schedule is array (Days range Mon .. Fri) of Float;
type Flags_T is array (-10 .. 10) of Boolean;

Or to constrain unconstrained array types

subtype Line is String (1 .. 80);
subtype Translation is Matrix (1..3, 1..3);

228 / 787

Array Types
Introduction

Run-Time Index Checking

Array indices are checked at run-time as needed
Invalid index values result in Constraint_Error

procedure Test is
type Int_Arr is array (1..10) of Integer;
A : Int_Arr;
K : Integer;

begin
A := (others => 0);
K := FOO;
A (K) := 42; -- run-time error if Foo returns < 1 or > 10
Put_Line (A(K)'Image);

end Test;

229 / 787

Array Types
Introduction

Kinds of Array Types

Constrained Array Types
Bounds specified by type declaration
All objects of the type have the same bounds

Unconstrained Array Types
Bounds not constrained by type declaration
Objects share the type, but not the bounds
More flexible

type Unconstrained is array (Positive range <>)
of Integer;

U1 : Unconstrained (1 .. 10);
S1 : String (1 .. 50);
S2 : String (35 .. 95);

230 / 787

Array Types
Constrained Array Types

Constrained Array Types

231 / 787

Array Types
Constrained Array Types

Constrained Array Type Declarations

Syntax

constrained_array_definition ::=
array index_constraint of subtype_indication

index_constraint ::= (discrete_subtype_definition
{, discrete_subtype_indication})

discrete_subtype_definition ::=
discrete_subtype_indication | range

subtype_indication ::= subtype_mark [constraint]
range ::= range_attribute_reference |

simple_expression .. simple_expression

Examples

type Full_Week_T is array (Days) of Float;
type Work_Week_T is array (Days range Mon .. Fri) of Float;
type Weekdays is array (Mon .. Fri) of Float;
type Workdays is array (Weekdays'Range) of Float;

232 / 787

Array Types
Constrained Array Types

Multiple-Dimensioned Array Types
Declared with more than one
index definition

Constrained array types
Unconstrained array types

Components accessed by
giving value for each index

type Three_Dimensioned is
array (

Boolean,
12 .. 50,
Character range 'a' .. 'z')
of Integer;

TD : Three_Dimensioned;
...

begin
TD (True, 42, 'b') := 42;
TD (Flag, Count, Char) := 42;

233 / 787

Array Types
Constrained Array Types

Tic-Tac-Toe Winners Example

-- 9 positions on a board
type Move_Number is range 1 .. 9;
-- 8 ways to win
type Winning_Combinations is

range 1 .. 8;
-- need 3 positions to win
type Required_Positions is

range 1 .. 3;
Winning : constant array (

Winning_Combinations,
Required_Positions)
of Move_Number := (1 => (1,2,3),

2 => (1,4,7),
...

1 X 2 X 3 X
4 5 6
7 8 9

1 X 2 3
4 X 5 6
7 X 8 9

1 X 2 3
4 5 X 6
7 8 9 X

234 / 787

Array Types
Constrained Array Types

Quiz

type Array1_T is array (1 .. 8) of Boolean;
type Array2_T is array (0 .. 7) of Boolean;
X1, Y1 : Array1_T;
X2, Y2 : Array2_T;

Which statement(s) is (are) legal?
A. X1 (1) := Y1 (1);
B. X1 := Y1;
C. X1 (1) := X2 (1);
D. X2 := X1;

Explanations
A. Legal - elements are Boolean
B. Legal - object types match
C. Legal - elements are Boolean
D. Although the sizes are the

same and the elements are
the same, the type is
different

235 / 787

Array Types
Constrained Array Types

Quiz

type Array1_T is array (1 .. 8) of Boolean;
type Array2_T is array (0 .. 7) of Boolean;
X1, Y1 : Array1_T;
X2, Y2 : Array2_T;

Which statement(s) is (are) legal?
A. X1 (1) := Y1 (1);
B. X1 := Y1;
C. X1 (1) := X2 (1);
D. X2 := X1;

Explanations
A. Legal - elements are Boolean
B. Legal - object types match
C. Legal - elements are Boolean
D. Although the sizes are the

same and the elements are
the same, the type is
different

235 / 787

Array Types
Unconstrained Array Types

Unconstrained Array Types

236 / 787

Array Types
Unconstrained Array Types

Unconstrained Array Type Declarations

Do not specify bounds for objects

Thus different objects of the same type may have different bounds

Bounds cannot change once set

Syntax (with simplifications)

unconstrained_array_definition ::=
array (index_subtype_definition

{, index_subtype_definition})
of subtype_indication

index_subtype_definition ::= subtype_mark range <>

Examples

type Index is range 1 .. Integer'Last;
type Char_Arr is array (Index range <>) of Character;

237 / 787

Array Types
Unconstrained Array Types

Supplying Index Constraints for Objects

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Schedule is array (Days range <>) of Float;

Bounds set by:
Object declaration

Weekdays : Schedule(Mon..Fri);

Object (or constant) initialization

Weekend : Schedule := (Sat => 4.0, Sun => 0.0);

Further type definitions (shown later)

Actual parameter to subprogram (shown later)

Once set, bounds never change

Weekdays(Sat) := 0.0; -- Compiler error
Weekend(Mon) := 0.0; -- Compiler error

238 / 787

Array Types
Unconstrained Array Types

Bounds Must Satisfy Type Constraints

Must be somewhere in the range of possible values specified by the
type declaration
Constraint_Error otherwise

type Index is range 1 .. 100;
type Char_Arr is array (Index range <>) of Character;
...
Wrong : Char_Arr (0 .. 10); -- run-time error
OK : Char_Arr (50 .. 75);

239 / 787

Array Types
Unconstrained Array Types

Null Index Range

When 'Last of the range is smaller than 'First

Array is empty - no elements

When using literals, the compiler will allow out-of-range numbers
to indicate empty range

Provided values are within the index's base type

type Index_T is range 1 .. 100;
-- Index_T'Size = 8

type Array_T is array (Index_T range <>) of Integer;

Typical_Empty_Array : Array_T (1 .. 0);
Weird_Empty_Array : Array_T (123 .. -5);
Illegal_Empty_Array : Array_T (999 .. 0);

When the index type is a single-valued enumerated type, no empty
array is possible

240 / 787

Array Types
Unconstrained Array Types

"String" Types

Language-defined unconstrained array types
Allow double-quoted literals as well as aggregates
Always have a character component type
Always one-dimensional

Language defines various types
String, with Character as component

subtype Positive is Integer range 1 .. Integer'Last;
type String is array (Positive range <>) of Character;

Wide_String, with Wide_Character as component

Wide_Wide_String, with Wide_Wide_Character as component

Ada 2005 and later

Can be defined by applications too
241 / 787

Array Types
Unconstrained Array Types

Application-Defined String Types

Like language-defined string types
Always have a character component type
Always one-dimensional

Recall character types are enumeration types with at least one
character literal value

type Roman_Digit is ('I', 'V', 'X', 'L', 'C', 'D', 'M');
type Roman_Number is array (Positive range <>)

of Roman_Digit;
Orwellian : constant Roman_Number := "MCMLXXXIV";

242 / 787

Array Types
Unconstrained Array Types

Specifying Constraints Via Initial Value

Lower bound is Index_subtype'First
Upper bound is taken from number of items in value

subtype Positive is Integer range 1 .. Integer'Last;
type String is array (Positive range <>)

of Character;
...
M : String := "Hello World!";
-- M'First is Positive'First (1)

type Another_String is array (Integer range <>)
of Character;

...
M : Another_String := "Hello World!";
-- M'First is Integer'First

243 / 787

Array Types
Unconstrained Array Types

Indefinite Types

Indefinite types do not provide enough information to be
instantiated

Size
Representation

Unconstrained arrays types are indefinite
They do not have a definite 'Size

Other indefinite types exist (seen later)

244 / 787

Array Types
Unconstrained Array Types

No Indefinite Component Types

Arrays: consecutive elements of the exact same type

Component size must be defined
No indefinite types
No unconstrained types
Constrained subtypes allowed

type Good is array (1 .. 10) of String (1 .. 20); -- OK
type Bad is array (1 .. 10) of String; -- Illegal

245 / 787

Array Types
Unconstrained Array Types

Arrays of Arrays

Allowed (of course!)
As long as the "component" array type is constrained

Indexed using multiple parenthesized values
One per array

declare
type Array_of_10 is array (1..10) of Integer;
type Array_of_Array is array (Boolean) of Array_of_10;
A : Array_of_Array;

begin
...
A (True)(3) := 42;

246 / 787

Array Types
Unconstrained Array Types

Quiz

type Array_T is array (Integer range <>) of Integer;
subtype Array1_T is Array_T (1 .. 4);
subtype Array2_T is Array_T (0 .. 3);
X : Array_T := (1, 2, 3, 4);
Y : Array1_T := (1, 2, 3, 4);
Z : Array2_T := (1, 2, 3, 4);

Which statement(s) is (are) legal?
A. X (1) := Y (1);
B. Y (1) := Z (1);
C. Y := X;
D. Z := X;

Explanations
A. Array_T starts at

Integer'First not 1
B. OK, both in range
C. OK, same type and size
D. OK, same type and size

247 / 787

Array Types
Unconstrained Array Types

Quiz

type Array_T is array (Integer range <>) of Integer;
subtype Array1_T is Array_T (1 .. 4);
subtype Array2_T is Array_T (0 .. 3);
X : Array_T := (1, 2, 3, 4);
Y : Array1_T := (1, 2, 3, 4);
Z : Array2_T := (1, 2, 3, 4);

Which statement(s) is (are) legal?
A. X (1) := Y (1);
B. Y (1) := Z (1);
C. Y := X;
D. Z := X;

Explanations
A. Array_T starts at

Integer'First not 1
B. OK, both in range
C. OK, same type and size
D. OK, same type and size

247 / 787

Array Types
Unconstrained Array Types

Quiz

type My_Array is array (Boolean range <>) of Boolean;

O : My_Array (False .. False) := (others => True);

What is the value of O (True)?

A. False
B. True
C. None: Compilation error
D. None: Run-time error

True is not a valid index for O.

NB: GNAT will emit a warning by default.

248 / 787

Array Types
Unconstrained Array Types

Quiz

type My_Array is array (Boolean range <>) of Boolean;

O : My_Array (False .. False) := (others => True);

What is the value of O (True)?

A. False
B. True
C. None: Compilation error
D. None: Run-time error

True is not a valid index for O.

NB: GNAT will emit a warning by default.

248 / 787

Array Types
Unconstrained Array Types

Quiz

type My_Array is array (Positive range <>) of Boolean;

O : My_Array (0 .. -1) := (others => True);

What is the value of O'Length?

A. 1
B. 0
C. None: Compilation error
D. None: Run-time error

When the second index is less than the first index, this is an empty array.
For empty arrays, the index can be out of range for the index type.

249 / 787

Array Types
Unconstrained Array Types

Quiz

type My_Array is array (Positive range <>) of Boolean;

O : My_Array (0 .. -1) := (others => True);

What is the value of O'Length?

A. 1
B. 0
C. None: Compilation error
D. None: Run-time error

When the second index is less than the first index, this is an empty array.
For empty arrays, the index can be out of range for the index type.

249 / 787

Array Types
Attributes

Attributes

250 / 787

Array Types
Attributes

Array Attributes

Return info about array index bounds

O'Length number of array components

O'First value of lower index bound

O'Last value of upper index bound

O'Range another way of saying T'First .. T'Last

Meaningfully applied to constrained array types
Only constrained array types provide index bounds
Returns index info specified by the type (hence all such objects)

Meaningfully applied to array objects
Returns index info for the object
Especially useful for objects of unconstrained array types

251 / 787

Array Types
Attributes

Attributes' Benefits

Allow code to be more robust
Relationships are explicit
Changes are localized

Optimizer can identify redundant checks

declare
type Int_Arr is array (5 .. 15) of Integer;
Vector : Int_Arr;

begin
...
for Idx in Vector'Range loop

Vector (Idx) := Idx * 2;
end loop;

Compiler understands Idx has to be a valid index for Vector, so
no run-time checks are necessary

252 / 787

Array Types
Attributes

Nth Dimension Array Attributes

Attribute with parameter

T'Length (n)
T'First (n)
T'Last (n)
T'Range (n)

n is the dimension
defaults to 1

type Two_Dimensioned is array
(1 .. 10, 12 .. 50) of T;

TD : Two_Dimensioned;

TD'First (2) = 12
TD'Last (2) = 50
TD'Length (2) = 39
TD'First = TD'First (1) = 1

253 / 787

Array Types
Attributes

Quiz

subtype Index1_T is Integer range 0 .. 7;
subtype Index2_T is Integer range 1 .. 8;
type Array_T is array (Index1_T, Index2_T) of Integer;
X : Array_T;

Which comparison is False?

A. X'Last (2) = Index2_T'Last
B. X'Last (1)*X'Last (2) = X'Length (1)*X'Length (2)
C. X'Length (1) = X'Length (2)
D. X'Last (1) = 7

Explanations

A. 8 = 8
B. 7*8 /= 8*8
C. 8 = 8
D. 7 = 7

254 / 787

Array Types
Attributes

Quiz

subtype Index1_T is Integer range 0 .. 7;
subtype Index2_T is Integer range 1 .. 8;
type Array_T is array (Index1_T, Index2_T) of Integer;
X : Array_T;

Which comparison is False?

A. X'Last (2) = Index2_T'Last
B. X'Last (1)*X'Last (2) = X'Length (1)*X'Length (2)
C. X'Length (1) = X'Length (2)
D. X'Last (1) = 7

Explanations

A. 8 = 8
B. 7*8 /= 8*8
C. 8 = 8
D. 7 = 7

254 / 787

Array Types
Operations

Operations

255 / 787

Array Types
Operations

Object-Level Operations

Assignment of array objects

A := B;

Equality and inequality

if A = B then

Conversions

C := Foo (B);

Component types must be the same type
Index types must be the same or convertible
Dimensionality must be the same
Bounds must be compatible (not necessarily equal)

256 / 787

Array Types
Operations

Extra Object-Level Operations

Only for 1-dimensional arrays!

Concatenation

type String_Type is array
(Integer range <>) of Character;

A : constant String_Type := "foo";
B : constant String_Type := "bar";
C : constant String_Type := A & B;
-- C now contains "foobar"

Comparison (for discrete component types)
Not for all scalars

Logical (for Boolean component type)

Slicing
Portion of array

257 / 787

Array Types
Operations

Slicing

Contiguous subsection of an array
On any one-dimensional array type

Any component type

procedure Test is
S1 : String (1 .. 9) := "Hi Adam!!";
S2 : String := "We love !";

begin
S2 (9..11) := S1 (4..6);
Put_Line (S2);

end Test;

Result: We love Ada!

258 / 787

Array Types
Operations

Example: Slicing with Explicit Indexes

Imagine a requirement to have a ISO date
Year, month, and day with a specific format

declare
Iso_Date : String (1 .. 10) := "2024-03-27";

begin
Put_Line (Iso_Date);
Put_Line (Iso_Date (1 .. 4)); -- year
Put_Line (Iso_Date (6 .. 7)); -- month
Put_Line (Iso_Date (9 .. 10)); -- day

259 / 787

Array Types
Operations

Idiom: Named Subtypes for Indexes

Subtype name indicates the slice index range
Names for constraints, in this case index constraints

Enhances readability and robustness

procedure Test is
subtype Iso_Index is Positive range 1 .. 10;
subtype Year is Iso_Index

range Iso_Index'First .. Iso_Index'First + 3;
subtype Month is Iso_Index

range Year'Last + 2 .. Year'Last + 3;
subtype Day is Iso_Index

range Month'Last + 2 .. Month'Last + 3;
Iso_Date : String (Iso_Index) := "2024-03-27";

begin
Put_Line (Iso_Date (Year)); -- 2024
Put_Line (Iso_Date (Month)); -- 03
Put_Line (Iso_Date (Day)); -- 27

260 / 787

Array Types
Operations

Dynamic Subtype Constraint Example

Useful when constraints not known at compile-time
Example: remove file name extension

File_Name
(File_Name'First
..
Index (File_Name, '.', Direction => Backward));

261 / 787

Array Types
Operations

Quiz

type Index_T is range 1 .. 10;
type OneD_T is array (Index_T) of Boolean;
type ThreeD_T is array (Index_T, Index_T, Index_T) of OneD_T;
A : ThreeD_T;
B : OneD_T;

Which statement(s) is (are) legal?

A. B(1) := A(1,2,3)(1) or A(4,3,2)(1);
B. B := A(2,3,4) and A(4,3,2);
C. A(1,2,3..4) := A(2,3,4..5);
D. B(3..4) := B(4..5)

Explanations

A. All three objects are just Boolean values
B. An element of A is the same type as B
C. No slicing of multi-dimensional arrays
D. Slicing allowed on single-dimension arrays

262 / 787

Array Types
Operations

Quiz

type Index_T is range 1 .. 10;
type OneD_T is array (Index_T) of Boolean;
type ThreeD_T is array (Index_T, Index_T, Index_T) of OneD_T;
A : ThreeD_T;
B : OneD_T;

Which statement(s) is (are) legal?

A. B(1) := A(1,2,3)(1) or A(4,3,2)(1);
B. B := A(2,3,4) and A(4,3,2);
C. A(1,2,3..4) := A(2,3,4..5);
D. B(3..4) := B(4..5)

Explanations

A. All three objects are just Boolean values
B. An element of A is the same type as B
C. No slicing of multi-dimensional arrays
D. Slicing allowed on single-dimension arrays

262 / 787

Array Types
Operations Added for Ada2012

Operations Added for Ada2012

263 / 787

Array Types
Operations Added for Ada2012

Default Initialization for Array Types

Supports constrained and unconstrained array types

Supports arrays of any dimensionality
No matter how many dimensions, there is only one component type

Uses aspect Default_Component_Value

type Vector is array (Positive range <>) of Float
with Default_Component_Value => 0.0;

Note that creating a large object of type Vector might incur a
run-time cost during initialization

264 / 787

Array Types
Operations Added for Ada2012

Two High-Level For-Loop Kinds

For arrays and containers
Arrays of any type and form

Iterable containers

Those that define iteration (most do)
Not all containers are iterable (e.g., priority queues)!

For iterator objects
Known as "generalized iterators"
Language-defined, e.g., most container data structures

User-defined iterators too

We focus on the arrays/containers form for now

265 / 787

Array Types
Operations Added for Ada2012

Array/Container For-Loops

Work in terms of elements within an object

Syntax hides indexing/iterator controls

for name of [reverse] array_or_container_object loop
...
end loop;

Starts with "first" element unless you reverse it

Loop parameter name is a constant if iterating over a constant, a
variable otherwise

266 / 787

Array Types
Operations Added for Ada2012

Array Component For-Loop Example

Given an array

type T is array (Positive range <>) of Integer;
Primes : T := (2, 3, 5, 7, 11);

Component-based looping would look like

for P of Primes loop
Put_Line (Integer'Image (P));

end loop;

While index-based looping would look like

for P in Primes'Range loop
Put_Line (Integer'Image (Primes (P)));

end loop;

267 / 787

Array Types
Operations Added for Ada2012

For-Loops with Multidimensional Arrays
Same syntax, regardless of
number of dimensions
As if a set of nested loops,
one per dimension

Last dimension is in
innermost loop, so changes
fastest

In low-level format looks like
for each row loop

for each column loop
print Identity (

row, column)
end loop

end loop

declare
subtype Rows is Positive;
subtype Columns is Positive;
type Matrix is array

(Rows range <>,
Columns range <>) of Float;

Identity : constant Matrix
(1..3, 1..3) :=

((1.0, 0.0, 0.0),
(0.0, 1.0, 0.0),
(0.0, 0.0, 1.0));

begin
for C of Identity loop

Put_Line (Float'Image (C));
end loop;

268 / 787

Array Types
Operations Added for Ada2012

Quiz
declare

type Array_T is array (1..3, 1..3) of Integer
with Default_Component_Value => 1;

A : Array_T;
begin

for I in 2 .. 3 loop
for J in 2 .. 3 loop

A (I, J) := I * 10 + J;
end loop;

end loop;
for I of reverse A loop

Put (I'Image);
end loop;

end;
Which output is correct?

A. 1 1 1 1 22 23 1 32 33
B. 33 32 1 23 22 1 1 1 1
C. 0 0 0 0 22 23 0 32 33
D. 33 32 0 23 22 0 0 0 0

Explanations
A. There is a reverse
B. Yes
C. Default value is 1
D. No

NB: Without Default_Component_Value, init. values are random
269 / 787

Array Types
Operations Added for Ada2012

Quiz
declare

type Array_T is array (1..3, 1..3) of Integer
with Default_Component_Value => 1;

A : Array_T;
begin

for I in 2 .. 3 loop
for J in 2 .. 3 loop

A (I, J) := I * 10 + J;
end loop;

end loop;
for I of reverse A loop

Put (I'Image);
end loop;

end;
Which output is correct?

A. 1 1 1 1 22 23 1 32 33
B. 33 32 1 23 22 1 1 1 1
C. 0 0 0 0 22 23 0 32 33
D. 33 32 0 23 22 0 0 0 0

Explanations
A. There is a reverse
B. Yes
C. Default value is 1
D. No

NB: Without Default_Component_Value, init. values are random
269 / 787

Array Types
Aggregates

Aggregates

270 / 787

Array Types
Aggregates

Aggregates

Literals for composite types
Array types
Record types

Two distinct forms
Positional
Named

Syntax (simplified):

component_expr ::=
expression -- Defined value
| <> -- Default value

array_aggregate ::= (
{component_expr ,} -- Positional

| {discrete_choice_list => component_expr,}) -- Named
-- Default "others" indices
[others => expression]

271 / 787

Array Types
Aggregates

Aggregate "Positional" Form

Specifies array component values explicitly
Uses implicit ascending index values

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;
Week : Working;
...
-- Saturday and Sunday are False, everything else true
Week := (True, True, True, True, True, False, False);

272 / 787

Array Types
Aggregates

Aggregate "Named" Form

Explicitly specifies both index and corresponding component values
Allows any order to be specified
Ranges and choice lists are allowed (like case choices)

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;
Week : Working;
...
Week := (Sat => False, Sun => False, Mon..Fri => True);
Week := (Sat | Sun => False, Mon..Fri => True);

273 / 787

Array Types
Aggregates

Combined Aggregate Forms Not Allowed

Some cases lead to ambiguity, therefore never allowed for array
types
Are only allowed for record types (shown in subsequent section)

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;
Week : Working;
...
Week := (True, True, True, True, True, False, False);
Week := (Sat => False, Sun => False, Mon..Fri => True);
Week := (True, True, True, True, True,

Sat => False, Sun => False); -- invalid
Week := (Sat | Sun => False, Mon..Fri => True);

274 / 787

Array Types
Aggregates

Aggregates Are True Literal Values

Used any place a value of the type may be used

type Schedule is array (Mon .. Fri) of Float;
Work : Schedule;
Normal : constant Schedule := (8.0, 8.0, 8.0, 8.0, 8.0);
...
Work := (8.5, 8.5, 8.5, 8.5, 6.0);
...
if Work = Normal then
...
if Work = (10.0, 10.0, 10.0, 10.0, 0.0) then -- 4-day week

275 / 787

Array Types
Aggregates

Aggregate Consistency Rules

Must always be complete
They are literals, after all
Each component must be given a value
But defaults are possible (more in a moment)

Must provide only one value per index position
Duplicates are detected at compile-time

Compiler rejects incomplete or inconsistent aggregates

Week := (Sat => False,
Sun => False,
Mon .. Fri => True,
Wed => False);

276 / 787

Array Types
Aggregates

"Others"

Indicates all components not yet assigned a value
All remaining components get this single value
Similar to case statement's others
Can be used to apply defaults too

type Schedule is array (Days) of Float;
Work : Schedule;
Normal : constant Schedule := (8.0, 8.0, 8.0, 8.0, 8.0,

others => 0.0);

277 / 787

Array Types
Aggregates

Nested Aggregates

For multiple dimensions
For arrays of composite component types

type Matrix is array (Positive range <>,
Positive range <>) of Float;

Mat_4x2 : Matrix (1..4, 1..2) := (1 => (2.5, 3.0),
2 => (1.5, 0.0),
3 => (2.1, 0.0),
4 => (9.0, 0.0));

278 / 787

Array Types
Aggregates

Tic-Tac-Toe Winners Example

type Move_Number is range 1 .. 9;
-- 8 ways to win
type Winning_Combinations is range 1 .. 8;
-- need 3 places to win
type Required_Positions is range 1 .. 3;
Winning : constant array (Winning_Combinations,

Required_Positions) of
Move_Number := (-- rows

1 => (1, 2, 3),
2 => (4, 5, 6),
3 => (7, 8, 9),
-- columns
4 => (1, 4, 7),
5 => (2, 5, 8),
6 => (3, 6, 9),
-- diagonals
7 => (1, 5, 9),
8 => (3, 5, 7));

279 / 787

Array Types
Aggregates

Defaults Within Array Aggregates

Specified via the box notation

Value for component is thus taken as for stand-alone object
declaration

So there may or may not be a defined default!

Can only be used with "named association" form
But others counts as named form

Syntax

discrete_choice_list => <>

Example

type Int_Arr is array (1 .. N) of Integer;
Primes : Int_Arr := (1 => 2, 2 .. N => <>);

280 / 787

Array Types
Aggregates

Named Format Aggregate Rules

Bounds cannot overlap
Index values must be specified once and only once

All bounds must be static
Avoids run-time cost to verify coverage of all index values
Except for single choice format

type Float_Arr is array (Integer range <>) of Float;
Ages : Float_Arr (1 .. 10) := (1 .. 3 => X, 4 .. 10 => Y);
-- illegal: 3 and 4 appear twice
Overlap : Float_Arr (1 .. 10) := (1 .. 4 => X, 3 .. 10 => Y);
N, M, K, L : Integer;
-- illegal: cannot determine if
-- every index covered at compile time
Not_Static : Float_Arr (1 .. 10) := (M .. N => X, K .. L => Y);
-- This is legal
Values : Float_Arr (1 .. N) := (1 .. N => X);

281 / 787

Array Types
Aggregates

Quiz

type Array_T is array (1 .. 5) of Integer;
X : Array_T;
J : Integer := X'First;

Which statement is correct?

A. X := (1, 2, 3, 4 => 4, 5 => 5);
B. X := (1..3 => 100, 4..5 => -100, others => -1);
C. X := (J => -1, J + 1..X'Last => 1);
D. X := (1..3 => 100, 3..5 => 200);

Explanations

A. Cannot mix positional and named notation
B. Correct - others not needed but is allowed
C. Dynamic values must be the only choice. (This could be fixed by

making J a constant.)
D. Overlapping index values (3 appears more than once)

282 / 787

Array Types
Aggregates

Quiz

type Array_T is array (1 .. 5) of Integer;
X : Array_T;
J : Integer := X'First;

Which statement is correct?

A. X := (1, 2, 3, 4 => 4, 5 => 5);
B. X := (1..3 => 100, 4..5 => -100, others => -1);
C. X := (J => -1, J + 1..X'Last => 1);
D. X := (1..3 => 100, 3..5 => 200);

Explanations

A. Cannot mix positional and named notation
B. Correct - others not needed but is allowed
C. Dynamic values must be the only choice. (This could be fixed by

making J a constant.)
D. Overlapping index values (3 appears more than once)

282 / 787

Array Types
Aggregates

Aggregates in Ada 2022
Ada 2022

Ada 2022 allows us to use square brackets "[...]" in defining
aggregates

type Array_T is array (positive range <>) of Integer;

So common aggregates can use either square brackets or
parentheses

Ada2012 : Array_T := (1, 2, 3);
Ada2022 : Array_T := [1, 2, 3];

But square brackets help in more problematic situations
Empty array

Ada2012 : Array_T := (1..0 => 0);
Illegal : Array_T := ();
Ada2022 : Array_T := [];

Single element array

Ada2012 : Array_T := (1 => 5);
Illegal : Array_T := (5);
Ada2022 : Array_T := [5];

283 / 787

Array Types
Aggregates

Iterated Component Association
Ada 2022

With Ada 2022, we can create aggregates with iterators
Basically, an inline looping mechanism

Index-based iterator

type Array_T is array (positive range <>) of Integer;
Object1 : Array_T(1..5) := (for J in 1 .. 5 => J * 2);
Object2 : Array_T(1..5) := (for J in 2 .. 3 => J,

5 => -1,
others => 0);

Object1 will get initialized to the squares of 1 to 5
Object2 will give the equivalent of (0, 2, 3, 0, -1)

Component-based iterator

Object2 := [for Item of Object => Item * 2];

Object2 will have each element doubled
284 / 787

Array Types
Aggregates

More Information on Iterators
Ada 2022

You can nest iterators for multiple-dimensioned arrays

Matrix : array (1 .. 3, 1 .. 3) of Positive :=
[for J in 1 .. 3 =>

[for K in 1 .. 3 => J * 10 + K]];

You can even use multiple iterators for a single dimension array

Ada2012 : Array_T(1..5) :=
[for I in 1 .. 2 => -1,
for J in 4 ..5 => 1,
others => 0];

Restrictions
You cannot mix index-based iterators and component-based
iterators in the same aggregate
You still cannot have overlaps or missing values

285 / 787

Array Types
Aggregates

Delta Aggregates
Ada 2022

type Coordinate_T is array (1 .. 3) of Float;
Location : constant Coordinate_T := (1.0, 2.0, 3.0);

Sometimes you want to copy an array with minor modifications
Prior to Ada 2022, it would require two steps

declare
New_Location : Coordinate_T := Location;

begin
New_Location(3) := 0.0;
-- OR
New_Location := (3 => 0.0, others => <>);

end;

Ada 2022 introduces a delta aggregate
Aggregate indicates an object plus the values changed - the delta

New_Location : Coordinate_T := [Location with delta 3 => 0.0];

Notes
You can use square brackets or parentheses
Only allowed for single dimension arrays

This works for records as well (see that chapter)
286 / 787

Array Types
Detour - 'Image for Complex Types

Detour - 'Image for Complex Types

287 / 787

Array Types
Detour - 'Image for Complex Types

'Image Attribute
Ada 2022

Previously, we saw the string attribute 'Image is provided for
scalar types

e.g. Integer'Image(10+2) produces the string " 12"

Starting with Ada 2022, the Image attribute can be used for any
type

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

type Colors_T is (Red, Yellow, Green);
type Array_T is array (Colors_T) of Boolean;
Object : Array_T :=

(Green => False,
Yellow => True,
Red => True);

begin
Put_Line (Object'Image);

end Main;

Yields an output of

[TRUE, TRUE, FALSE]

288 / 787

Array Types
Detour - 'Image for Complex Types

Overriding the 'Image Attribute
Ada 2022

But we don't always want to rely on the compiler defining how we
print a complex object
So we now have the ability to define the 'Image functionality by
attaching a procedure to the Put_Image aspect

type Colors_T is (Red, Yellow, Green);
type Array_T is array (Colors_T) of Boolean with

Put_Image => Array_T_Image;

289 / 787

Array Types
Detour - 'Image for Complex Types

Defining the 'Image Attribute
Ada 2022

Then we need to declare the procedure

procedure Array_T_Image
(Output : in out Ada.Strings.Text_Buffers.Root_Buffer_Type'Class;
Value : Array_T);

Which uses the
Ada.Strings.Text_Buffers.Root_Buffer_Type as an output
buffer
(No need to go into detail here other than knowing you do
Output.Put to add to the buffer)

And then we define it

procedure Array_T_Image
(Output : in out Ada.Strings.Text_Buffers.Root_Buffer_Type'Class;
Value : Array_T) is

begin
for Color in Value'Range loop

Output.Put (Color'Image & "=>" & Value (Color)'Image & ASCII.LF);
end loop;

end Array_T_Image;
290 / 787

Array Types
Detour - 'Image for Complex Types

Using the 'Image Attribute
Ada 2022

Now, when we call Image we get our "pretty-print" version

with Ada.Text_IO; use Ada.Text_IO;
with Types; use Types;
procedure Main is

Object : Array_T := (Green => False,
Yellow => True,
Red => True);

begin
Put_Line (Object'Image);

end Main;

Generating the following output

RED=>TRUE

YELLOW=>TRUE

GREEN=>FALSE

Note this redefinition can be used on any type, even the scalars
that have always had the attribute

291 / 787

Array Types
Anonymous Array Types

Anonymous Array Types

292 / 787

Array Types
Anonymous Array Types

Anonymous Array Types
Array objects need not be of
a named type
A : array (1 .. 3) of B;
Without a type name, no
object-level operations

Cannot be checked for
type compatibility
Operations on components
are still ok if compatible

declare
-- These are not same type!

A, B : array (Foo) of Bar;
begin

A := B; -- illegal
B := A; -- illegal
-- legal assignment of values
A(J) := B(K);

end;

293 / 787

Array Types
Lab

Lab

294 / 787

Array Types
Lab

Array Lab

Requirements
Create an array type whose index is days of the week and each
element is a number

Create two objects of the array type, one of which is constant

Perform the following operations

Copy the constant object to the non-constant object
Print the contents of the non-constant object
Use an array aggregate to initialize the non-constant object
For each element of the array, print the array index and the value
Move part ("source") of the non-constant object to another part
("destination"), and then clear the source location
Print the contents of the non-constant object

Hints
When you want to combine multiple strings (which are arrays!) use
the concatenation operator (&)
Slices are how you access part of an array
Use aggregates (either named or positional) to initialize data

295 / 787

Array Types
Lab

Multiple Dimensions

Requirements
For each day of the week, you need an array of three strings
containing names of workers for that day
Two sets of workers: weekend and weekday, but the store is closed
on Wednesday (no workers)
Initialize the array and then print it hierarchically

296 / 787

Array Types
Lab

Array Lab Solution - Declarations

1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Main is
3

4 type Days_Of_Week_T is
5 (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
6 type Unconstrained_Array_T is
7 array (Days_Of_Week_T range <>) of Natural;
8

9 Const_Arr : constant Unconstrained_Array_T := (1, 2, 3, 4, 5, 6, 7);
10 Array_Var : Unconstrained_Array_T (Days_Of_Week_T);
11

12 type Name_T is array (1 .. 6) of Character;
13 Weekly_Staff : array (Days_Of_Week_T, 1 .. 3) of Name_T;

297 / 787

Array Types
Lab

Array Lab Solution - Implementation
15 begin
16 Array_Var := Const_Arr;
17 for Item of Array_Var loop
18 Put_Line (Item'Image);
19 end loop;
20 New_Line;
21

22 Array_Var :=
23 (Mon => 111, Tue => 222, Wed => 333, Thu => 444, Fri => 555, Sat => 666,
24 Sun => 777);
25 for Index in Array_Var'Range loop
26 Put_Line (Index'Image & " => " & Array_Var (Index)'Image);
27 end loop;
28 New_Line;
29

30 Array_Var (Mon .. Wed) := Const_Arr (Wed .. Fri);
31 Array_Var (Wed .. Fri) := (others => Natural'First);
32 for Item of Array_Var loop
33 Put_Line (Item'Image);
34 end loop;
35 New_Line;
36

37 Weekly_Staff := (Mon | Tue | Thu | Fri => ("Fred ", "Barney", "Wilma "),
38 Wed => ("closed", "closed", "closed"),
39 others => ("Pinky ", "Inky ", "Blinky"));
40

41 for Day in Weekly_Staff'Range (1) loop
42 Put_Line (Day'Image);
43 for Staff in Weekly_Staff'Range (2) loop
44 Put_Line (" " & String (Weekly_Staff (Day, Staff)));
45 end loop;
46 end loop;
47 end Main;

298 / 787

Array Types
Summary

Summary

299 / 787

Array Types
Summary

Final Notes on Type String

Any single-dimensioned array of some character type is a
string type

Language defines types String, Wide_String, etc.

Just another array type: no null termination

Language-defined support defined in Appendix A
Ada.Strings.*
Fixed-length, bounded-length, and unbounded-length
Searches for pattern strings and for characters in program-specified
sets
Transformation (replacing, inserting, overwriting, and deleting of
substrings)
Translation (via a character-to-character mapping)

300 / 787

Array Types
Summary

Summary

Any dimensionality directly supported

Component types can be any (constrained) type

Index types can be any discrete type
Integer types
Enumeration types

Constrained array types specify bounds for all objects

Unconstrained array types leave bounds to the objects
Thus differently-sized objects of the same type

Default initialization for large arrays may be expensive!

Anonymously-typed array objects used in examples for brevity but
that doesn't mean you should in real programs

301 / 787

Record Types

Record Types

302 / 787

Record Types
Introduction

Introduction

303 / 787

Record Types
Introduction

Syntax and Examples

Syntax (simplified)

type T is record
Component_Name : Type [:= Default_Value];
...

end record;

type T_Empty is null record;

Example

type Record1_T is record
Field1 : Integer;
Field2 : Boolean;

end record;

Records can be discriminated as well

type T (Size : Natural := 0) is record
Text : String (1 .. Size);

end record;
304 / 787

Record Types
Components Rules

Components Rules

305 / 787

Record Types
Components Rules

Characteristics of Components
Heterogeneous types allowed

Referenced by name

May be no components, for empty records

No anonymous types (e.g., arrays) allowed

type Record_1 is record
This_Is_Not_Legal : array (1 .. 3) of Integer;

end record;

No constant components

type Record_2 is record
This_Is_Not_Legal : constant Integer := 123;

end record;

No recursive definitions

type Record_3 is record
This_Is_Not_Legal : Record_3;

end record;

No indefinite types

type Record_5 is record
This_Is_Not_Legal : String;
But_This_Is_Legal : String (1 .. 10);

end record;

306 / 787

Record Types
Components Rules

Multiple Declarations

Multiple declarations are allowed (like objects)

type Several is record
A, B, C : Integer := F;

end record;

Equivalent to

type Several is record
A : Integer := F;
B : Integer := F;
C : Integer := F;

end record;

307 / 787

Record Types
Components Rules

"Dot" Notation for Components Reference

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
Arrival : Date;
...
Arrival.Day := 27; -- components referenced by name
Arrival.Month := November;
Arrival.Year := 1990;

Can reference nested components

Employee
.Birth_Date

.Month := March;
308 / 787

Record Types
Components Rules

Quiz

type Record_T is record
-- Definition here

end record;

Which record definition(s) is (are) legal?

A. Component_1 : array (1 .. 3) of Boolean
B. Component_2, Component_3 : Integer
C. Component_1 : Record_T
D. Component_1 : constant Integer := 123

A. Anonymous types not allowed
B. Correct
C. No recursive definition
D. No constant component

309 / 787

Record Types
Components Rules

Quiz

type Record_T is record
-- Definition here

end record;

Which record definition(s) is (are) legal?

A. Component_1 : array (1 .. 3) of Boolean
B. Component_2, Component_3 : Integer
C. Component_1 : Record_T
D. Component_1 : constant Integer := 123

A. Anonymous types not allowed
B. Correct
C. No recursive definition
D. No constant component

309 / 787

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don't specify its size.

310 / 787

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don't specify its size.

310 / 787

Record Types
Operations

Operations

311 / 787

Record Types
Operations

Available Operations

Predefined
Equality (and thus inequality)

if A = B then

Assignment

A := B;

User-defined
Subprograms

312 / 787

Record Types
Operations

Assignment Examples

declare
type Complex is record

Real : Float;
Imaginary : Float;

end record;
...
Phase1 : Complex;
Phase2 : Complex;

begin
...

-- object reference
Phase1 := Phase2; -- entire object reference
-- component references
Phase1.Real := 2.5;
Phase1.Real := Phase2.Real;

end;
313 / 787

Record Types
Operations

Limited Types - Quick Intro

A record type can be limited
And some other types, described later

limited types cannot be copied or compared
As a result then cannot be assigned
May still be modified component-wise

type Lim is limited record
A, B : Integer;

end record;

L1, L2 : Lim := Create_Lim (1, 2); -- Initial value OK

L1 := L2; -- Illegal
if L1 /= L2 then -- Illegal
[...]

314 / 787

Record Types
Aggregates

Aggregates

315 / 787

Record Types
Aggregates

Aggregates

Literal values for composite types
As for arrays
Default value / selector: <>, others

Can use both named and positional
Unambiguous

Example:

(Pos_1_Value,
Pos_2_Value,
Component_3 => Pos_3_Value,
Component_4 => <>, -- Default value (Ada 2005)
others => Remaining_Value)

316 / 787

Record Types
Aggregates

Record Aggregate Examples

type Color_T is (Red);
type Car_T is record

Color : Color_T;
Plate_No : String (1 .. 6);
Year : Natural;

end record;
type Complex_T is record

Real : Float;
Imaginary : Float;

end record;

declare
Car : Car_T := (Red, "ABC123", Year => 2_022);
Phase : Complex_T := (1.2, 3.4);

begin
Phase := (Real => 5.6, Imaginary => 7.8);

end;
317 / 787

Record Types
Aggregates

Aggregate Completeness
All component values must
be accounted for

Including defaults via box
Allows compiler to check for
missed components
Type definition
type Struct is record

A : Integer;
B : Integer;
C : Integer;
D : Integer;

end record;
S : Struct;

Compiler will not catch the
missing component
S.A := 10;
S.B := 20;
S.C := 12;
Send (S);
Aggregate must be complete
- compiler error
S := (10, 20, 12);
Send (S);

318 / 787

Record Types
Aggregates

Named Associations

Any order of associations

Provides more information to the reader
Can mix with positional

Restriction
Must stick with named associations once started

type Complex is record
Real : Float;
Imaginary : Float;

end record;
Phase : Complex := (0.0, 0.0);
...
Phase := (10.0, Imaginary => 2.5);
Phase := (Imaginary => 12.5, Real => 0.212);
Phase := (Imaginary => 12.5, 0.212); -- illegal

319 / 787

Record Types
Aggregates

Nested Aggregates

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
type Person is record

Born : Date;
Hair : Color;

end record;
John : Person := ((21, November, 1990), Brown);
Julius : Person := ((2, August, 1995), Blond);
Heather : Person := ((2, March, 1989), Hair => Blond);
Megan : Person := (Hair => Blond,

Born => (16, December, 2001));
320 / 787

Record Types
Aggregates

Aggregates with Only One Component

Must use named form
Same reason as array aggregates

type Singular is record
A : Integer;

end record;

S : Singular := (3); -- illegal
S : Singular := (3 + 1); -- illegal
S : Singular := (A => 3 + 1); -- required

321 / 787

Record Types
Aggregates

Aggregates with others

Indicates all components not yet specified (like arrays)
All others get the same value

They must be the exact same type

type Poly is record
A : Float;
B, C, D : Integer;

end record;

P : Poly := (2.5, 3, others => 0);

type Homogeneous is record
A, B, C : Integer;

end record;

Q : Homogeneous := (others => 10);
322 / 787

Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type Record_T is record

A, B, C : Integer;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

The aggregate is incomplete. The aggregate must specify all
components. You could use box notation (A => 1, others => <>)

323 / 787

Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type Record_T is record

A, B, C : Integer;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

The aggregate is incomplete. The aggregate must specify all
components. You could use box notation (A => 1, others => <>)

323 / 787

Record Types
Aggregates

Quiz
What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer;
D : My_Integer;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

All components associated to a value using others must be of the
same type.

324 / 787

Record Types
Aggregates

Quiz
What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer;
D : My_Integer;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

All components associated to a value using others must be of the
same type.

324 / 787

Record Types
Aggregates

Quiz
type Nested_T is record

Field : Integer;
end record;
type Record_T is record

One : Integer;
Two : Character;
Three : Integer;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment(s) is (are) legal?

A. X := (1, '2', Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

325 / 787

Record Types
Aggregates

Quiz
type Nested_T is record

Field : Integer;
end record;
type Record_T is record

One : Integer;
Two : Character;
Three : Integer;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment(s) is (are) legal?

A. X := (1, '2', Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

325 / 787

Record Types
Aggregates

Delta Aggregates
Ada 2022

A Record can use a delta aggregate just like an array

type Coordinate_T is record
X, Y, Z : Float;

end record;
Location : constant Coordinate_T := (1.0, 2.0, 3.0);

Prior to Ada 2022, you would copy and then modify

declare
New_Location : Coordinate_T := Location;

begin
New_Location.Z := 0.0;
-- OR
New_Location := (Z => 0.0, others => <>);

end;

Now in Ada 2022 we can just specify the change during the copy

New_Location : Coordinate_T := (Location with delta Z => 0.0);

Note for record delta aggregates you must use named notation
326 / 787

Record Types
Default Values

Default Values

327 / 787

Record Types
Default Values

Component Default Values

type Complex is
record

Real : Float := 0.0;
Imaginary : Float := 0.0;

end record;
-- all components use defaults
Phasor : Complex;
-- all components must be specified
I : constant Complex := (0.0, 1.0);

328 / 787

Record Types
Default Values

Default Component Value Evaluation

Occurs when object is elaborated
Not when the type is elaborated

Not evaluated if explicitly overridden

type Structure is
record

A : Integer;
R : Time := Clock;

end record;
-- Clock is called for S1
S1 : Structure;
-- Clock is not called for S2
S2 : Structure := (A => 0, R => Yesterday);

329 / 787

Record Types
Default Values

Defaults Within Record Aggregates

Specified via the box notation

Value for the component is thus taken as for a stand-alone object
declaration

So there may or may not be a defined default!

Can only be used with "named association" form
But can mix forms, unlike array aggregates

type Complex is
record

Real : Float := 0.0;
Imaginary : Float := 0.0;

end record;
Phase := (42.0, Imaginary => <>);

330 / 787

Record Types
Default Values

Default Initialization Via Aspect Clause

Not definable for entire record type
Components of scalar types take type's default if no explicit
default value specified by record type

type Toggle_Switch is (Off, On)
with Default_Value => Off;

type Controller is record
-- Off unless specified during object initialization
Override : Toggle_Switch;
-- default for this component
Enable : Toggle_Switch := On;

end record;
C : Controller; -- Override => off, Enable => On
D : Controller := (On, Off); -- All defaults replaced

331 / 787

Record Types
Default Values

Quiz

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

332 / 787

Record Types
Default Values

Quiz

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

332 / 787

Record Types
Variant Records

Variant Records

333 / 787

Record Types
Variant Records

Variant Record Types

Variant record can use a discriminant to specify alternative lists
of components

Also called discriminated record type
Different objects may have different components
All objects still share the same type

Kind of storage overlay
Similar to union in C
But preserves type checking
And object size is related to discriminant

Aggregate assignment is allowed

334 / 787

Record Types
Variant Records

Immutable Variant Record
Discriminant must be set at creation time and cannot be modified

2 type Person_Group is (Student, Faculty);
3 type Person (Group : Person_Group) is
4 record
5 -- Fields common across all discriminants
6 -- (must appear before variant part)
7 Age : Positive;
8 case Group is -- Variant part of record
9 when Student => -- 1st variant

10 Gpa : Float range 0.0 .. 4.0;
11 when Faculty => -- 2nd variant
12 Pubs : Positive;
13 end case;
14 end record;

In a variant record, a discriminant can be used to specify the
variant part (line 6)

Similar to case statements (all values must be covered)
Fields listed will only be visible if choice matches discriminant
Field names need to be unique (even across discriminants)
Variant part must be end of record (hence only one variant part
allowed)

Discriminant is treated as any other field
But is a constant in an immutable variant record

Note that discriminants can be used for other purposes than the variant
part

335 / 787

Record Types
Variant Records

Immutable Variant Record Example
Each object of Person has three fields, but it depends on Group

Pat : Person (Student);
Sam : Person := (Faculty, 33, 5);

Pat has Group, Age, and Gpa
Sam has Group, Age, and Pubs
Aggregate specifies all fields, including the discriminant

Compiler can detect some problems, but more often clashes are
run-time errors

procedure Do_Something (Param : in out Person) is
begin

Param.Age := Param.Age + 1;
Param.Pubs := Param.Pubs + 1;

end Do_Something;

Pat.Pubs := 3; would generate a compiler warning because
compiler knows Pat is a Student

warning: Constraint_Error will be raised at run time
Do_Something (Pat); generates a run-time error, because only at
runtime is the discriminant for Param known

raised CONSTRAINT_ERROR : discriminant check failed

Pat := Sam; would be a compiler warning because the
constraints do not match

336 / 787

Record Types
Variant Records

Mutable Variant Record

Type will become mutable if its discriminant has a default value
and we instantiate the object without specifying a discriminant

2 type Person_Group is (Student, Faculty);
3 type Person (Group : Person_Group := Student) is -- default value
4 record
5 Age : Positive;
6 case Group is
7 when Student =>
8 Gpa : Float range 0.0 .. 4.0;
9 when Faculty =>

10 Pubs : Positive;
11 end case;
12 end record;

Pat : Person; is mutable
Sam : Person (Faculty); is not mutable

Declaring an object with an explicit discriminant value (Faculty)
makes it immutable

337 / 787

Record Types
Variant Records

Mutable Variant Record Example

Each object of Person has three fields, but it depends on Group

Pat : Person := (Student, 19, 3.9);
Sam : Person (Faculty);

You can only change the discriminant of Pat, but only via a whole
record assignment, e.g:

if Pat.Group = Student then
Pat := (Faculty, Pat.Age, 1);

else
Pat := Sam;

end if;
Update (Pat);

But you cannot change the discriminant of Sam

Sam := Pat; will give you a run-time error if Pat.Group is not
Faculty

And the compiler will not warn about this!
338 / 787

Record Types
Variant Records

Quiz

type Variant_T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

Variant_Object : Variant_T (1);

Which component(s) does Variant_Object contain?

A. Variant_Object.I, Variant_Object.B
B. Variant_Object.N
C. None: Compilation error
D. None: Run-time error

339 / 787

Record Types
Variant Records

Quiz

type Variant_T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

Variant_Object : Variant_T (1);

Which component(s) does Variant_Object contain?

A. Variant_Object.I, Variant_Object.B
B. Variant_Object.N
C. None: Compilation error
D. None: Run-time error

339 / 787

Record Types
Variant Records

Quiz
type Variant_T (Floating : Boolean := False) is record

case Floating is
when False =>

I : Integer;
when True =>

F : Float;
end case;
Flag : Character;

end record;

Variant_Object : Variant_T (True);

Which component does Variant_Object contain?

A. Variant_Object.F, Variant_Object.Flag
B. Variant_Object.F
C. None: Compilation error
D. None: Run-time error

The variant part cannot be followed by a component declaration
(Flag : Character here)

340 / 787

Record Types
Variant Records

Quiz
type Variant_T (Floating : Boolean := False) is record

case Floating is
when False =>

I : Integer;
when True =>

F : Float;
end case;
Flag : Character;

end record;

Variant_Object : Variant_T (True);

Which component does Variant_Object contain?

A. Variant_Object.F, Variant_Object.Flag
B. Variant_Object.F
C. None: Compilation error
D. None: Run-time error

The variant part cannot be followed by a component declaration
(Flag : Character here)

340 / 787

Record Types
Lab

Lab

341 / 787

Record Types
Lab

Record Types Lab

Requirements
Create a simple First-In/First-Out (FIFO) queue record type and
object

Allow the user to:

Add ("push") items to the queue
Remove ("pop") the next item to be serviced from the queue
(Print this item to ensure the order is correct)

When the user is done manipulating the queue, print out the
remaining items in the queue

Hints
Queue record should at least contain:

Array of items
Index into array where next item will be added

342 / 787

Record Types
Lab

Record Types Lab Solution - Declarations

1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Main is
3

4 type Name_T is array (1 .. 6) of Character;
5 type Index_T is range 0 .. 1_000;
6 type Queue_T is array (Index_T range 1 .. 1_000) of Name_T;
7

8 type Fifo_Queue_T is record
9 Next_Available : Index_T := 1;

10 Last_Served : Index_T := 0;
11 Queue : Queue_T := (others => (others => ' '));
12 end record;
13

14 Queue : Fifo_Queue_T;
15 Choice : Integer;

343 / 787

Record Types
Lab

Record Types Lab Solution - Implementation
17 begin
18

19 loop
20 Put ("1 = add to queue | 2 = remove from queue | others => done: ");
21 Choice := Integer'Value (Get_Line);
22 if Choice = 1 then
23 Put ("Enter name: ");
24 Queue.Queue (Queue.Next_Available) := Name_T (Get_Line);
25 Queue.Next_Available := Queue.Next_Available + 1;
26 elsif Choice = 2 then
27 if Queue.Next_Available = 1 then
28 Put_Line ("Nobody in line");
29 else
30 Queue.Last_Served := Queue.Last_Served + 1;
31 Put_Line ("Now serving: " & String (Queue.Queue (Queue.Last_Served)));
32 end if;
33 else
34 exit;
35 end if;
36 New_Line;
37 end loop;
38

39 Put_Line ("Remaining in line: ");
40 for Index in Queue.Last_Served + 1 .. Queue.Next_Available - 1 loop
41 Put_Line (" " & String (Queue.Queue (Index)));
42 end loop;
43

44 end Main;

344 / 787

Record Types
Summary

Summary

345 / 787

Record Types
Summary

Summary

Heterogeneous types allowed for components

Default initial values allowed for components
Evaluated when each object elaborated, not the type
Not evaluated if explicit initial value specified

Aggregates express literals for composite types
Can mix named and positional forms

346 / 787

Subprograms

Subprograms

347 / 787

Subprograms
Introduction

Introduction

348 / 787

Subprograms
Introduction

Introduction

Are syntactically distinguished as function and procedure

Functions represent values
Procedures represent actions

function Is_Leaf (T : Tree) return Boolean
procedure Split (T : in out Tree;

Left : out Tree;
Right : out Tree)

Provide direct syntactic support for separation of specification
from implementation

function Is_Leaf (T : Tree) return Boolean;
function Is_Leaf (T : Tree) return Boolean is
begin
...
end Is_Leaf;

349 / 787

Subprograms
Introduction

Recognizing Procedures and Functions

Functions' results must be treated as values
And cannot be ignored

Procedures cannot be treated as values

You can always distinguish them via the call context

10 Open (Source, "SomeFile.txt");
11 while not End_of_File (Source) loop
12 Get (Next_Char, From => Source);
13 if Found (Next_Char, Within => Buffer) then
14 Display (Next_Char);
15 Increment;
16 end if;
17 end loop;

Note that a subprogram without parameters (Increment on line
15) does not allow an empty set of parentheses

350 / 787

Subprograms
Introduction

A Little "Preaching" About Names

Procedures are abstractions for actions

Functions are abstractions for values

Use names that reflect those facts!
Imperative verbs for procedure names

Nouns for function names, as for mathematical functions

Questions work for boolean functions

procedure Open (V : in out Valve);
procedure Close (V : in out Valve);
function Square_Root (V: Float) return Float;
function Is_Open (V: Valve) return Boolean;

351 / 787

Subprograms
Syntax

Syntax

352 / 787

Subprograms
Syntax

Specification and Body

Subprogram specification is the external (user) interface
Declaration and specification are used synonymously

Specification may be required in some cases
eg. recursion

Subprogram body is the implementation

353 / 787

Subprograms
Syntax

Procedure Specification Syntax (Simplified)

procedure Swap (A, B : in out Integer);

procedure_specification ::=
procedure program_unit_name

(parameter_specification
{ ; parameter_specification});

parameter_specification ::=
identifier_list : mode subtype_mark [:= expression]

mode ::= [in] | out | in out

354 / 787

Subprograms
Syntax

Function Specification Syntax (Simplified)

function F (X : Float) return Float;

Close to procedure specification syntax
With return
Can be an operator: + - * / mod rem ...

function_specification ::=
function designator

(parameter_specification
{ ; parameter_specification})
return result_type;

designator ::= program_unit_name | operator_symbol

355 / 787

Subprograms
Syntax

Body Syntax

subprogram_specification is
[declarations]

begin
sequence_of_statements

end [designator];

procedure Hello is
begin

Ada.Text_IO.Put_Line ("Hello World!");
Ada.Text_IO.New_Line (2);

end Hello;

function F (X : Float) return Float is
Y : constant Float := X + 3.0;

begin
return X * Y;

end F;
356 / 787

Subprograms
Syntax

Completions

Bodies complete the specification
There are other ways to complete

Separate specification is not required
Body can act as a specification

A declaration and its body must fully conform
Mostly semantic check
But parameters must have same name

procedure P (J, K : Integer)
procedure P (J : Integer; K : Integer)
procedure P (J, K : in Integer)
-- Invalid
procedure P (A : Integer; B : Integer)

357 / 787

Subprograms
Syntax

Completion Examples
Specifications

procedure Swap (A, B : in out Integer);
function Min (X, Y : Person) return Person;

Completions

procedure Swap (A, B : in out Integer) is
Temp : Integer := A;

begin
A := B;
B := Temp;

end Swap;

-- Completion as specification
function Less_Than (X, Y : Person) return Boolean is
begin

return X.Age < Y.Age;
end Less_Than;

function Min (X, Y : Person) return Person is
begin

if Less_Than (X, Y) then
return X;

else
return Y;

end if;
end Min;

358 / 787

Subprograms
Syntax

Direct Recursion - No Declaration Needed

When is is reached, the subprogram becomes visible
It can call itself without a declaration

type Vector_T is array (Natural range <>) of Integer;
Empty_Vector : constant Vector_T (1 .. 0) := (others => 0);

function Get_Vector return Vector_T is
Next : Integer;

begin
Get (Next);

if Next = 0 then
return Empty_Vector;

else
return Get_Vector & Next;

end if;
end Input;

359 / 787

Subprograms
Syntax

Indirect Recursion Example

Elaboration in linear order

procedure P;

procedure F is
begin

P;
end F;

procedure P is
begin

F;
end P;

360 / 787

Subprograms
Syntax

Quiz

Which profile is semantically different from the others?

A. procedure P (A : Integer; B : Integer);
B. procedure P (A, B : Integer);
C. procedure P (B : Integer; A : Integer);
D. procedure P (A : in Integer; B : in Integer);

Parameter names are important in Ada. The other selections have the
names in the same order with the same mode and type.

361 / 787

Subprograms
Syntax

Quiz

Which profile is semantically different from the others?

A. procedure P (A : Integer; B : Integer);
B. procedure P (A, B : Integer);
C. procedure P (B : Integer; A : Integer);
D. procedure P (A : in Integer; B : in Integer);

Parameter names are important in Ada. The other selections have the
names in the same order with the same mode and type.

361 / 787

Subprograms
Parameters

Parameters

362 / 787

Subprograms
Parameters

Subprogram Parameter Terminology

Actual parameters are values passed to a call

Variables, constants, expressions

Formal parameters are defined by specification

Receive the values passed from the actual parameters
Specify the types required of the actual parameters
Type cannot be anonymous

procedure Something (Formal1 : in Integer);

ActualX : Integer;
...
Something (ActualX);

363 / 787

Subprograms
Parameters

Parameter Associations in Calls

Associate formal parameters with actuals
Both positional and named association allowed

Something (ActualX, Formal2 => ActualY);
Something (Formal2 => ActualY, Formal1 => ActualX);

Having named then positional is forbidden

-- Compilation Error
Something (Formal1 => ActualX, ActualY);

364 / 787

Subprograms
Parameters

Parameter Modes and Return

Mode in

Formal parameter is constant
So actual is not modified either

Can have default, used when no value is provided

procedure P (N : in Integer := 1; M : in Positive);
[...]
P (M => 2);

Mode out

Writing is expected
Reading is allowed
Actual must be a writable object

Mode in out

Actual is expected to be both read and written
Actual must be a writable object

Function return

Must always be handled
365 / 787

Subprograms
Parameters

Why Read Mode out Parameters?

Convenience of writing the body
No need for readable temporary variable

Warning: initial value is not defined

procedure Compute (Value : out Integer) is
begin

Value := 0;
for K in 1 .. 10 loop

Value := Value + K; -- this is a read AND a write
end loop;

end Compute;

366 / 787

Subprograms
Parameters

Parameter Passing Mechanisms

By-Copy
The formal denotes a separate object from the actual
in, in out: actual is copied into the formal on entry to the
subprogram
out, in out: formal is copied into the actual on exit from the
subprogram

By-Reference
The formal denotes a view of the actual
Reads and updates to the formal directly affect the actual
More efficient for large objects

Parameter types control mechanism selection
Not the parameter modes
Compiler determines the mechanism

367 / 787

Subprograms
Parameters

By-Copy Vs By-Reference Types

By-Copy
Scalar types
access types

By-Reference
tagged types
task types and protected types
limited types

array, record

By-Reference when they have by-reference components
By-Reference for implementation-defined optimizations
By-Copy otherwise

private depends on its full definition

Note that the parameter mode aliased will force
pass-by-reference

This mode is discussed in the Access Types module
368 / 787

Subprograms
Parameters

Unconstrained Formal Parameters or Return

Unconstrained formals are allowed
Constrained by actual

Unconstrained return is allowed too
Constrained by the returned object

type Vector is array (Positive range <>) of Float;
procedure Print (Formal : Vector);

Phase : Vector (X .. Y);
State : Vector (1 .. 4);
...
begin

Print (Phase); -- Formal'Range is X .. Y
Print (State); -- Formal'Range is 1 .. 4
Print (State (3 .. 4)); -- Formal'Range is 3 .. 4

369 / 787

Subprograms
Parameters

Unconstrained Parameters Surprise

Assumptions about formal bounds may be wrong

type Vector is array (Positive range <>) of Float;
function Subtract (Left, Right : Vector) return Vector;

V1 : Vector (1 .. 10); -- length = 10
V2 : Vector (15 .. 24); -- length = 10
R : Vector (1 .. 10); -- length = 10
...
-- What are the indices returned by Subtract?
R := Subtract (V2, V1);

370 / 787

Subprograms
Parameters

Naive Implementation

Assumes bounds are the same everywhere

Fails when Left'First /= Right'First

Fails when Left'Length /= Right'Length

Fails when Left'First /= 1

function Subtract (Left, Right : Vector)
return Vector is
Result : Vector (1 .. Left'Length);

begin
...
for K in Result'Range loop

Result (K) := Left (K) - Right (K);
end loop;

371 / 787

Subprograms
Parameters

Correct Implementation

Covers all bounds
return indexed by Left'Range

function Subtract (Left, Right : Vector) return Vector is
pragma Assert (Left'Length = Right'Length);

Result : Vector (Left'Range);
Offset : constant Integer := Right'First - Result'First;

begin
for K in Result'Range loop

Result (K) := Left (K) - Right (K + Offset);
end loop;

return Result;
end Subtract;

372 / 787

Subprograms
Parameters

Quiz

function F (P1 : in Integer := 0;
P2 : in out Integer;
P3 : in Character := ' ';
P4 : out Character)

return Integer;
J1, J2 : Integer;
C : Character;

Which call(s) is (are) legal?

A. J1 := F (P1 => 1, P2 => J2, P3 => '3', P4 => '4');
B. J1 := F (P1 => 1, P3 => '3', P4 => C);
C. J1 := F (1, J2, '3', C);
D. F (J1, J2, '3', C);

Explanations

A. P4 is out, it must be a variable
B. P2 has no default value, it must be specified
C. Correct
D. F is a function, its return must be handled

373 / 787

Subprograms
Parameters

Quiz

function F (P1 : in Integer := 0;
P2 : in out Integer;
P3 : in Character := ' ';
P4 : out Character)

return Integer;
J1, J2 : Integer;
C : Character;

Which call(s) is (are) legal?

A. J1 := F (P1 => 1, P2 => J2, P3 => '3', P4 => '4');
B. J1 := F (P1 => 1, P3 => '3', P4 => C);
C. J1 := F (1, J2, '3', C);
D. F (J1, J2, '3', C);

Explanations

A. P4 is out, it must be a variable
B. P2 has no default value, it must be specified
C. Correct
D. F is a function, its return must be handled

373 / 787

Subprograms
Null Procedures

Null Procedures

374 / 787

Subprograms
Null Procedures

Null Procedure Declarations

Shorthand for a procedure body that does nothing

Longhand form

procedure NOP is
begin

null;
end NOP;

Shorthand form

procedure NOP is null;

The null statement is present in both cases

Explicitly indicates nothing to be done, rather than an accidental
removal of statements

375 / 787

Subprograms
Null Procedures

Null Procedures As Completions

Completions for a distinct, prior declaration

procedure NOP;
...
procedure NOP is null;

A declaration and completion together
A body is then not required, thus not allowed

procedure NOP is null;
...
procedure NOP is -- compile error
begin

null;
end NOP;

376 / 787

Subprograms
Null Procedures

Typical Use for Null Procedures: OOP

When you want a method to be concrete, rather than abstract,
but don't have anything for it to do

The method is then always callable, including places where an
abstract routine would not be callable
More convenient than full null-body definition

377 / 787

Subprograms
Null Procedures

Null Procedure Summary

Allowed where you can have a full body
Syntax is then for shorthand for a full null-bodied procedure

Allowed where you can have a declaration!
Example: package declarations

Syntax is shorthand for both declaration and completion

Thus no body required/allowed

Formal parameters are allowed

procedure Do_Something (P : in Integer) is null;

378 / 787

Subprograms
Nested Subprograms

Nested Subprograms

379 / 787

Subprograms
Nested Subprograms

Subprograms Within Subprograms

Subprograms can be placed in any declarative block
So they can be nested inside another subprogram
Or even within a declare block

Useful for performing sub-operations without passing parameter
data

380 / 787

Subprograms
Nested Subprograms

Nested Subprogram Example

1 procedure Main is
2

3 function Read (Prompt : String) return Types.Line_T is
4 begin
5 Put (Prompt & "> ");
6 return Types.Line_T'Value (Get_Line);
7 end Read;
8

9 Lines : Types.Lines_T (1 .. 10);
10 begin
11 for J in Lines'Range loop
12 Lines (J) := Read ("Line " & J'Image);
13 end loop;

381 / 787

Subprograms
Procedure Specifics

Procedure Specifics

382 / 787

Subprograms
Procedure Specifics

Return Statements in Procedures
Returns immediately to caller
Optional

Automatic at end of body
execution

Fewer is traditionally
considered better

procedure P is
begin

...
if Some_Condition then

return; -- early return
end if;
...

end P; -- automatic return

383 / 787

Subprograms
Procedure Specifics

Main Subprograms

Must be library subprograms
Not nested inside another subprogram

No special subprogram unit name required

Can be many per project

Can always be procedures

Can be functions if implementation allows it
Execution environment must know how to handle result

with Ada.Text_IO;
procedure Hello is
begin

Ada.Text_IO.Put ("Hello World");
end Hello;

384 / 787

Subprograms
Function Specifics

Function Specifics

385 / 787

Subprograms
Function Specifics

Return Statements in Functions

Must have at least one
Compile-time error otherwise
Unless doing machine-code insertions

Returns a value of the specified (sub)type

Syntax

function defining_designator [formal_part]
return subtype_mark is

declarative_part
begin

{statements}
return expression;

end designator;

386 / 787

Subprograms
Function Specifics

No Path Analysis Required by Compiler

Running to the end of a function without hitting a return
statement raises Program_Error
Compilers can issue warning if they suspect that a return
statement will not be hit

function Greater (X, Y : Integer) return Boolean is
begin

if X > Y then
return True;

end if;
end Greater; -- possible compile warning

387 / 787

Subprograms
Function Specifics

Multiple Return Statements

Allowed
Sometimes the most clear

function Truncated (R : Float) return Integer is
Converted : Integer := Integer (R);

begin
if R - Float (Converted) < 0.0 then -- rounded up

return Converted - 1;
else -- rounded down

return Converted;
end if;

end Truncated;

388 / 787

Subprograms
Function Specifics

Multiple Return Statements Versus One

Many can detract from readability
Can usually be avoided

function Truncated (R : Float) return Integer is
Result : Integer := Integer (R);

begin
if R - Float (Result) < 0.0 then -- rounded up

Result := Result - 1;
end if;
return Result;

end Truncated;

389 / 787

Subprograms
Function Specifics

Function Dynamic-Size Results

function Char_Mult (C : Character; L : Natural)
return String is
R : String (1 .. L) := (others => C);

begin
return R;

end Char_Mult;

X : String := Char_Mult ('x', 4);

begin
-- OK
pragma Assert (X'Length = 4 and X = "xxxx");

390 / 787

Subprograms
Expression Functions

Expression Functions

391 / 787

Subprograms
Expression Functions

Expression Functions

Functions whose implementations are pure expressions
No other completion is allowed
No return keyword

May exist only for sake of pre/postconditions

function function_specification is (expression);

NB: Parentheses around expression are required

Can complete a prior declaration

function Squared (X : Integer) return Integer;
function Squared (X : Integer) return Integer is

(X ** 2);

392 / 787

Subprograms
Expression Functions

Expression Functions Example

Expression function

function Square (X : Integer) return Integer is (X ** 2);

Is equivalent to

function Square (X : Integer) return Integer is
begin

return X ** 2;
end Square;

393 / 787

Subprograms
Expression Functions

Quiz

Which statement is True?

A. Expression functions cannot be nested functions.
B. Expression functions require a specification and a body.
C. Expression functions must have at least one "return" statement.
D. Expression functions can have "out" parameters.

Explanations

A. False, they can be declared just like regular function
B. False, an expression function cannot have a body
C. False, expression functions cannot contain a no return
D. Correct, but it can assign to out parameters only by calling

another function.

394 / 787

Subprograms
Expression Functions

Quiz

Which statement is True?

A. Expression functions cannot be nested functions.
B. Expression functions require a specification and a body.
C. Expression functions must have at least one "return" statement.
D. Expression functions can have "out" parameters.

Explanations

A. False, they can be declared just like regular function
B. False, an expression function cannot have a body
C. False, expression functions cannot contain a no return
D. Correct, but it can assign to out parameters only by calling

another function.

394 / 787

Subprograms
Potential Pitfalls

Potential Pitfalls

395 / 787

Subprograms
Potential Pitfalls

Mode out Risk for Scalars

Always assign value to out parameters

Else "By-copy" mechanism will copy something back
May be junk
Constraint_Error or unknown behaviour further down

procedure P
(A, B : in Some_Type; Result : out Scalar_Type) is

begin
if Some_Condition then

return; -- Result not set
end if;
...
Result := Some_Value;

end P;
396 / 787

Subprograms
Potential Pitfalls

"Side Effects"

Any effect upon external objects or external environment
Typically alteration of non-local variables or states
Can cause hard-to-debug errors
Not legal for function in SPARK

Can be there for historical reasons
Or some design patterns

Global : Integer := 0;

function F (X : Integer) return Integer is
begin

Global := Global + X;
return Global;

end F;
397 / 787

Subprograms
Potential Pitfalls

Order-Dependent Code and Side Effects

Global : Integer := 0;

function Inc return Integer is
begin

Global := Global + 1;
return Global;

end Inc;

procedure Assert_Equals (X, Y : in Integer);
...
Assert_Equals (Global, Inc);

Language does not specify parameters' order of evaluation

Assert_Equals could get called with
X → 0, Y → 1 (if Global evaluated first)
X → 1, Y → 1 (if Inc evaluated first)

398 / 787

Subprograms
Potential Pitfalls

Parameter Aliasing

Aliasing : Multiple names for an actual parameter inside a
subprogram body

Possible causes:
Global object used is also passed as actual parameter
Same actual passed to more than one formal
Overlapping array slices
One actual is a component of another actual

Can lead to code dependent on parameter-passing mechanism

Ada detects some cases and raises Program_Error

procedure Update (Doubled, Tripled : in out Integer);
...
Update (Doubled => A,

Tripled => A); -- illegal in Ada 2012
399 / 787

Subprograms
Potential Pitfalls

Functions' Parameter Modes

Can be mode in out and out too

Note: operator functions can only have mode in

Including those you overload
Keeps readers sane

Justification for only mode in prior to Ada 2012
No side effects: should be like mathematical functions
But side effects are still possible via globals
So worst possible case: side effects are possible and necessarily
hidden!

400 / 787

Subprograms
Potential Pitfalls

Easy Cases Detected and Not Legal

procedure Example (A : in out Positive) is
function Increment (This : Integer) return Integer is
begin

A := A + This;
return A;

end Increment;
X : array (1 .. 10) of Integer;

begin
-- order of evaluating A not specified
X (A) := Increment (A);

end Example;

401 / 787

Subprograms
Extended Examples

Extended Examples

402 / 787

Subprograms
Extended Examples

Tic-Tac-Toe Winners Example (Spec)

package TicTacToe is
type Players is (Nobody, X, O);
type Move is range 1 .. 9;
type Game is array (Move) of

Players;
function Winner (This : Game)

return Players;
...

end TicTacToe;

1 N 2 N 3 N
4 N 5 N 6 N
7 N 8 N 9 N

403 / 787

Subprograms
Extended Examples

Tic-Tac-Toe Winners Example (Body)
function Winner (This : Game) return Players is

type Winning_Combinations is range 1 .. 8;
type Required_Positions is range 1 .. 3;
Winning : constant array

(Winning_Combinations, Required_Positions)
of Move := (-- rows

(1, 2, 3), (4, 5, 6), (7, 8, 9),
-- columns
(1, 4, 7), (2, 5, 8), (3, 6, 9),
-- diagonals
(1, 5, 9), (3, 5, 7));

begin
for K in Winning_Combinations loop

if This (Winning (K, 1)) /= Nobody and then
(This (Winning (K, 1)) = This (Winning (K, 2)) and
This (Winning (K, 2)) = This (Winning (K, 3)))

then
return This (Winning (K, 1));

end if;
end loop;
return Nobody;

end Winner;
404 / 787

Subprograms
Extended Examples

Set Example
-- some colors
type Color is (Red, Orange, Yellow, Green, Blue, Violet);
-- truth table for each color
type Set is array (Color) of Boolean;
-- unconstrained array of colors
type Set_Literal is array (Positive range <>) of Color;

-- Take an array of colors and set table value to True
-- for each color in the array
function Make (Values : Set_Literal) return Set;
-- Take a color and return table with color value set to true
function Make (Base : Color) return Set;
-- Return True if the color has the truth value set
function Is_Member (C : Color; Of_Set: Set) return Boolean;

Null_Set : constant Set := (Set'Range => False);
RGB : Set := Make (

Set_Literal'(Red, Blue, Green));
Domain : Set := Make (Green);

if Is_Member (Red, Of_Set => RGB) then ...

-- Type supports operations via Boolean operations,
-- as Set is a one-dimensional array of Boolean
S1, S2 : Set := Make (....);
Union : Set := S1 or S2;
Intersection : Set := S1 and S2;
Difference : Set := S1 xor S2;

405 / 787

Subprograms
Extended Examples

Set Example (Implementation)
function Make (Base : Color) return Set is

Result : Set := Null_Set;
begin

Result (Base) := True;
return Result;

end Make;

function Make (Values : Set_Literal) return Set is
Result : Set := Null_Set;

begin
for K in Values'Range loop

Result (Values (K)) := True;
end loop;
return Result;

end Make;

function Is_Member (C: Color;
Of_Set: Set)
return Boolean is

begin
return Of_Set (C);

end Is_Member;
406 / 787

Subprograms
Lab

Lab

407 / 787

Subprograms
Lab

Subprograms Lab

Requirements
Build a list of sorted unique integers

Do not add an integer to the list if it is already there

Print the list

Hints
Subprograms can be nested inside other subprograms

Like inside main

Build a Search subprogram to find the correct insertion point in the
list

408 / 787

Subprograms
Lab

Subprograms Lab Solution - Search
4 type List_T is array (Positive range <>) of Integer;
5

6 function Search
7 (List : List_T;
8 Item : Integer)
9 return Positive is

10 begin
11 if List'Length = 0 then
12 return 1;
13 elsif Item <= List (List'First) then
14 return 1;
15 else
16 for Idx in (List'First + 1) .. List'Length loop
17 if Item <= List (Idx) then
18 return Idx;
19 end if;
20 end loop;
21 return List'Last;
22 end if;
23 end Search;

409 / 787

Subprograms
Lab

Subprograms Lab Solution - Main
25 procedure Add (Item : Integer) is
26 Place : Natural := Search (List (1..Length), Item);
27 begin
28 if List (Place) /= Item then
29 Length := Length + 1;
30 List (Place + 1 .. Length) := List (Place .. Length - 1);
31 List (Place) := Item;
32 end if;
33 end Add;
34

35 begin
36

37 Add (100);
38 Add (50);
39 Add (25);
40 Add (50);
41 Add (90);
42 Add (45);
43 Add (22);
44

45 for Idx in 1 .. Length loop
46 Put_Line (List (Idx)'Image);
47 end loop;
48

49 end Main;

410 / 787

Subprograms
Summary

Summary

411 / 787

Subprograms
Summary

Summary

procedure is abstraction for actions

function is abstraction for value computations

Separate declarations are sometimes necessary
Mutual recursion
Visibility from packages (i.e., exporting)

Modes allow spec to define effects on actuals
Don't have to see the implementation: abstraction maintained

Parameter-passing mechanism is based on the type

Watch those side effects!

412 / 787

Overloading

Overloading

413 / 787

Overloading
Introduction

Introduction

414 / 787

Overloading
Introduction

Introduction

Overloading is the use of an already existing name to define a
new entity

Historically, only done as part of the language implementation
Eg. on operators
Float vs Integer vs pointers arithmetic

Several languages allow user-defined overloading
C++
Python (limited to operators)
Haskell

415 / 787

Overloading
Introduction

Visibility and Scope

Overloading is not re-declaration

Both entities share the name
No hiding
Compiler performs name resolution

Allowed to be declared in the same scope
Remember this is forbidden for "usual" declarations

416 / 787

Overloading
Introduction

Overloadable Entities in Ada

Identifiers for subprograms
Both procedure and function names

Identifiers for enumeration values (enumerals)

Language-defined operators for functions

procedure Put (Str : in String);
procedure Put (C : in Complex);
function Max (Left, Right : Integer) return Integer;
function Max (Left, Right : Float) return Float;
function "+" (Left, Right : Rational) return Rational;
function "+" (Left, Right : Complex) return Complex;
function "*" (Left : Natural; Right : Character)

return String;

417 / 787

Overloading
Introduction

Function Operator Overloading Example

-- User-defined overloading
function "+" (L,R : Complex) return Complex is
begin

return (L.Real_Part + R.Real_Part,
L.Imaginary + R.Imaginary);

end "+";

A, B, C : Complex;
I, J, K : Integer;

I := J + K; -- overloaded operator (predefined)
A := B + C; -- overloaded operator (user-defined)

418 / 787

Overloading
Introduction

Benefits and Risk of Overloading

Management of the name space
Support for abstraction
Linker will not simply take the first match and apply it globally

Safe: compiler will reject ambiguous calls

Sensible names are the programmer's job

function "+" (L, R : Integer) return String is
begin

return Integer'Image (L - R);
end "+";

419 / 787

Overloading
Enumerals and Operators

Enumerals and Operators

420 / 787

Overloading
Enumerals and Operators

Overloading Enumerals

Each is treated as if a function name (identifier)
Thus same rules as for function identifier overloading

type Stop_Light is (Red, Yellow, Green);
type Colors is (Red, Blue, Green);
Shade : Colors := Red;
Current_Value : Stop_Light := Red;

421 / 787

Overloading
Enumerals and Operators

Overloadable Operator Symbols

Only those defined by the language already
Users cannot introduce new operator symbols

Note that assignment (:=) is not an operator

Operators (in precedence order)

Logicals and, or, xor

Relationals <, <=, =, >=, >

Unary +, -

Binary +, -, &

Multiplying *, /, mod, rem

Highest precedence **, abs, not
422 / 787

Overloading
Enumerals and Operators

Parameters for Overloaded Operators

Must not change syntax of calls
Number of parameters must remain same (unary, binary...)
No default expressions allowed for operators

Infix calls use positional parameter associations
Left actual goes to first formal, right actual goes to second formal

Definition

function "*" (Left, Right : Integer) return Integer;

Usage

X := 2 * 3;

Named parameter associations allowed but ugly
Requires prefix notation for call

X := "*" (Left => 2, Right => 3);
423 / 787

Overloading
Call Resolution

Call Resolution

424 / 787

Overloading
Call Resolution

Call Resolution

Compilers must reject ambiguous calls

Resolution is based on the calling context
Compiler attempts to find a matching profile
Based on Parameter and Result Type

Overloading is not re-definition, or hiding
More than one matching profile is ambiguous

type Complex is ...
function "+" (L, R : Complex) return Complex;
A, B : Complex := some_value;
C : Complex := A + B;
D : Float := A + B; -- illegal!
E : Float := 1.0 + 2.0;

425 / 787

Overloading
Call Resolution

Profile Components Used

Significant components appear in the call itself
Number of parameters
Order of parameters
Base type of parameters
Result type (for functions)

Insignificant components might not appear at call
Formal parameter names are optional
Formal parameter modes never appear
Formal parameter subtypes never appear
Default expressions never appear

Display (X);
Display (Foo => X);
Display (Foo => X, Bar => Y);

426 / 787

Overloading
Call Resolution

Manually Disambiguating Calls

Qualification can be used

Named parameter association can be used
Unless name is ambiguous

type Stop_Light is (Red, Yellow, Green);
type Colors is (Red, Blue, Green);
procedure Put (Light : in Stop_Light);
procedure Put (Shade : in Colors);

Put (Red); -- ambiguous call
Put (Yellow); -- not ambiguous: only 1 Yellow
Put (Colors'(Red)); -- using type to distinguish
Put (Light => Green); -- using profile to distinguish

427 / 787

Overloading
Call Resolution

Overloading Example
function "+" (Left : Position; Right : Offset)

return Position is
begin

return Position'(Left.Row + Right.Row, Left.Column + Right.Col);
end "+";

function Acceptable (P : Position) return Boolean;
type Positions is array (Moves range <>) of Position;

function Next (Current : Position) return Positions is
Result : Positions (Moves range 1 .. 4);
Count : Moves := 0;
Test : Position;

begin
for K in Offsets'Range loop

Test := Current + Offsets (K);
if Acceptable (Test) then

Count := Count + 1;
Result (Count) := Test;

end if;
end loop;
return Result (1 .. Count);

end Next;
428 / 787

Overloading
Call Resolution

Quiz

type Vertical_T is (Top, Middle, Bottom);
type Horizontal_T is (Left, Middle, Right);
function "*" (H : Horizontal_T; V : Vertical_T) return Positive;
function "*" (V : Vertical_T; H : Horizontal_T) return Positive;
P : Positive;

Which statement(s) is (are) legal?

A. P := Horizontal_T'(Middle) * Middle;
B. P := Top * Right;
C. P := "*" (Middle, Top);
D. P := "*" (H => Middle, V => Top);

Explanations

A. Qualifying one parameter resolves ambiguity
B. No overloaded names
C. Use of Top resolves ambiguity
D. When overloading subprogram names, best to not just switch the

order of parameters

429 / 787

Overloading
Call Resolution

Quiz

type Vertical_T is (Top, Middle, Bottom);
type Horizontal_T is (Left, Middle, Right);
function "*" (H : Horizontal_T; V : Vertical_T) return Positive;
function "*" (V : Vertical_T; H : Horizontal_T) return Positive;
P : Positive;

Which statement(s) is (are) legal?

A. P := Horizontal_T'(Middle) * Middle;
B. P := Top * Right;
C. P := "*" (Middle, Top);
D. P := "*" (H => Middle, V => Top);

Explanations

A. Qualifying one parameter resolves ambiguity
B. No overloaded names
C. Use of Top resolves ambiguity
D. When overloading subprogram names, best to not just switch the

order of parameters
429 / 787

Overloading
User-Defined Equality

User-Defined Equality

430 / 787

Overloading
User-Defined Equality

User-Defined Equality

Allowed like any other operator
Must remain a binary operator

Typically declared as return Boolean

Hard to do correctly for composed types
Especially user-defined types
Issue of Composition of equality

431 / 787

Overloading
Lab

Lab

432 / 787

Overloading
Lab

Overloading Lab

Requirements
Create multiple functions named "Convert" to convert between
digits and text representation

One routine should take a digit and return the text version (e.g. 3
would return three)
One routine should take text and return the digit (e.g. two would
return 2)

Query the user to enter text or a digit and print it's equivalent

If the user enters consecutive entries that are equivalent, print a
message

e.g. 4 followed by four should get the message

Hints
You can use enumerals for the text representation

Then use 'Image / 'Value where needed

Use an equivalence function two compare different types
433 / 787

Overloading
Lab

Overloading Lab Solution - Conversion Functions
4 type Digit_T is range 0 .. 9;
5 type Digit_Name_T is
6 (Zero, One, Two, Three, Four, Five, Six, Seven, Eight, Nine);
7

8 function Convert (Value : Digit_T) return Digit_Name_T;
9 function Convert (Value : Digit_Name_T) return Digit_T;

10 function Convert (Value : Character) return Digit_Name_T;
11 function Convert (Value : String) return Digit_T;
12

13 function "=" (L : Digit_Name_T; R : Digit_T) return Boolean is (Convert (L) = R);
14

15 function Convert (Value : Digit_T) return Digit_Name_T is
16 (case Value is when 0 => Zero, when 1 => One,
17 when 2 => Two, when 3 => Three,
18 when 4 => Four, when 5 => Five,
19 when 6 => Six, when 7 => Seven,
20 when 8 => Eight, when 9 => Nine);
21

22 function Convert (Value : Digit_Name_T) return Digit_T is
23 (case Value is when Zero => 0, when One => 1,
24 when Two => 2, when Three => 3,
25 when Four => 4, when Five => 5,
26 when Six => 6, when Seven => 7,
27 when Eight => 8, when Nine => 9);
28

29 function Convert (Value : Character) return Digit_Name_T is
30 (case Value is when '0' => Zero, when '1' => One,
31 when '2' => Two, when '3' => Three,
32 when '4' => Four, when '5' => Five,
33 when '6' => Six, when '7' => Seven,
34 when '8' => Eight, when '9' => Nine,
35 when others => Zero);
36

37 function Convert (Value : String) return Digit_T is
38 (Convert (Digit_Name_T'Value (Value)));

434 / 787

Overloading
Lab

Overloading Lab Solution - Main
40 Last_Entry : Digit_T := 0;
41

42 begin
43 loop
44 Put ("Input: ");
45 declare
46 Str : constant String := Get_Line;
47 begin
48 exit when Str'Length = 0;
49 if Str (Str'First) in '0' .. '9' then
50 declare
51 Converted : constant Digit_Name_T := Convert (Str (Str'First));
52 begin
53 Put (Digit_Name_T'Image (Converted));
54 if Converted = Last_Entry then
55 Put_Line (" - same as previous");
56 else
57 Last_Entry := Convert (Converted);
58 New_Line;
59 end if;
60 end;
61 else
62 declare
63 Converted : constant Digit_T := Convert (Str);
64 begin
65 Put (Digit_T'Image (Converted));
66 if Converted = Last_Entry then
67 Put_Line (" - same as previous");
68 else
69 Last_Entry := Converted;
70 New_Line;
71 end if;
72 end;
73 end if;
74 end;
75 end loop;
76 end Main;

435 / 787

Overloading
Summary

Summary

436 / 787

Overloading
Summary

Summary

Ada allows user-defined overloading
Identifiers and operator symbols

Benefits easily outweigh danger of senseless names
Can have nonsensical names without overloading

Compiler rejects ambiguous calls

Resolution is based on the calling context
Parameter and Result Type Profile

Calling context is those items present at point of call
Thus modes etc. don't affect overload resolution

User-defined equality is allowed
But is tricky

437 / 787

Tagged Derivation

Tagged Derivation

438 / 787

Tagged Derivation
Introduction

Introduction

439 / 787

Tagged Derivation
Introduction

Object-Oriented Programming with Tagged Types

For record types

type T is tagged record
...

Child types can add new components (attributes)

Object of a child type can be substituted for base type

Primitive (method) can dispatch at run-time depending on the
type at call-site

Types can be extended by other packages
Conversion and qualification to base type is allowed

Private data is encapsulated through privacy

440 / 787

Tagged Derivation
Introduction

Tagged Derivation Ada Vs C++

type T1 is tagged record
Member1 : Integer;

end record;

procedure Attr_F (This : T1);

type T2 is new T1 with record
Member2 : Integer;

end record;

overriding procedure Attr_F (
This : T2);

procedure Attr_F2 (This : T2);

class T1 {
public:

int Member1;
virtual void Attr_F(void);

};

class T2 : public T1 {
public:

int Member2;
virtual void Attr_F(void);
virtual void Attr_F2(void);

};

441 / 787

Tagged Derivation
Tagged Derivation

Tagged Derivation

442 / 787

Tagged Derivation
Tagged Derivation

Difference with Simple Derivation

Tagged derivation can change the structure of a type
Keywords tagged record and with record

type Root is tagged record
F1 : Integer;

end record;

type Child is new Root with record
F2 : Integer;

end record;

443 / 787

Tagged Derivation
Tagged Derivation

Type Extension

A tagged derivation has to be a type extension
Use with null record if there are no additional components

type Child is new Root with null record;
type Child is new Root; -- illegal

Conversion is only allowed from child to parent

V1 : Root;
V2 : Child;
...
V1 := Root (V2);
V2 := Child (V1); -- illegal

Click here for more information on extending private types

444 / 787

Tagged Derivation
Tagged Derivation

Primitives

Child cannot remove a primitive

Child can add new primitives

Controlling parameter
Parameters the subprogram is a primitive of
For tagged types, all should have the same type

type Root1 is tagged null record;
type Root2 is tagged null record;

procedure P1 (V1 : Root1;
V2 : Root1);

procedure P2 (V1 : Root1;
V2 : Root2); -- illegal

445 / 787

Tagged Derivation
Tagged Derivation

Freeze Point for Tagged Types

Freeze point definition does not change
A variable of the type is declared
The type is derived
The end of the scope is reached

Declaring tagged type primitives past freeze point is forbidden

type Root is tagged null record;

procedure Prim (V : Root);

type Child is new Root with null record; -- freeze root

procedure Prim2 (V : Root); -- illegal

V : Child; -- freeze child

procedure Prim3 (V : Child); -- illegal
446 / 787

Tagged Derivation
Tagged Derivation

Tagged Aggregate

At initialization, all fields (including inherited) must have a value

type Root is tagged record
F1 : Integer;

end record;

type Child is new Root with record
F2 : Integer;

end record;

V : Child := (F1 => 0, F2 => 0);

For private types use aggregate extension
Copy of a parent instance
Use with null record absent new fields

V2 : Child := (Parent_Instance with F2 => 0);
V3 : Empty_Child := (Parent_Instance with null record);

Click here for more information on aggregates of private extensions
447 / 787

Tagged Derivation
Tagged Derivation

Overriding Indicators
Optional overriding and not overriding indicators

type Shape_T is tagged record
Name : String (1..10);

end record;

-- primitives of "Shape_T"
procedure Set_Name (S : in out Shape_T);
function Name (S : Shape_T) return String;

-- Derive "Point" from Shape_T
type Point is new Shape_T with record

Origin : Coord_T;
end Point;

-- We want to _change_ the behavior of Set_Name
overriding procedure Set_Name (P : in out Point_T);
-- We want to _add_ a new primitive
not overriding Origin (P : Point_T) return Point_T;
-- We get "Name" for free

448 / 787

Tagged Derivation
Tagged Derivation

Prefix Notation

Tagged types primitives can be called as usual

The call can use prefixed notation
If the first argument is a controlling parameter
No need for use or use type for visibility

-- Prim1 visible even without *use Pkg*
X.Prim1;

declare
use Pkg;

begin
Prim1 (X);

end;

449 / 787

Tagged Derivation
Tagged Derivation

Quiz
Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
Object : T1;
procedure P (O : T1) is null;

D. package Nested is
type T1 is tagged null record;

end Nested;
use Nested;
procedure P (O : T1) is null;

A. Primitive (same scope)
B. Primitive (T1 is not yet frozen)
C. T1 is frozen by the object declaration
D. Primitive must be declared in same scope as type

450 / 787

Tagged Derivation
Tagged Derivation

Quiz
Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
Object : T1;
procedure P (O : T1) is null;

D. package Nested is
type T1 is tagged null record;

end Nested;
use Nested;
procedure P (O : T1) is null;

A. Primitive (same scope)
B. Primitive (T1 is not yet frozen)
C. T1 is frozen by the object declaration
D. Primitive must be declared in same scope as type

450 / 787

Tagged Derivation
Tagged Derivation

Quiz

with Shapes; -- Defines tagged type Shape, with primitive P
with Colors; use Colors; -- Defines tagged type Color, with primitive P
with Weights; -- Defines tagged type Weight, with primitive P
use type Weights.Weight;

procedure Main is
The_Shape : Shapes.Shape;
The_Color : Colors.Color;
The_Weight : Weights.Weight;

Which statement(s) is (are) valid?

A. The_Shape.P
B. P (The_Shape)
C. P (The_Color)
D. P (The_Weight)

D. use type only gives visibility to operators; needs to be
use all type

451 / 787

Tagged Derivation
Tagged Derivation

Quiz

with Shapes; -- Defines tagged type Shape, with primitive P
with Colors; use Colors; -- Defines tagged type Color, with primitive P
with Weights; -- Defines tagged type Weight, with primitive P
use type Weights.Weight;

procedure Main is
The_Shape : Shapes.Shape;
The_Color : Colors.Color;
The_Weight : Weights.Weight;

Which statement(s) is (are) valid?

A. The_Shape.P
B. P (The_Shape)
C. P (The_Color)
D. P (The_Weight)

D. use type only gives visibility to operators; needs to be
use all type

451 / 787

Tagged Derivation
Tagged Derivation

Quiz
Which code block(s) is (are) legal?

A. type A1 is record
Field1 : Integer;

end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Field2 : Integer;
end record;
type B2 is new B1 with
record

Field2b : Integer;
end record;

C. type C1 is tagged
record

Field3 : Integer;
end record;
type C2 is new C1 with
record

Field3 : Integer;
end record;

D. type D1 is tagged
record

Field1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

452 / 787

Tagged Derivation
Tagged Derivation

Quiz
Which code block(s) is (are) legal?

A. type A1 is record
Field1 : Integer;

end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Field2 : Integer;
end record;
type B2 is new B1 with
record

Field2b : Integer;
end record;

C. type C1 is tagged
record

Field3 : Integer;
end record;
type C2 is new C1 with
record

Field3 : Integer;
end record;

D. type D1 is tagged
record

Field1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

452 / 787

Tagged Derivation
Lab

Lab

453 / 787

Tagged Derivation
Lab

Tagged Derivation Lab

Requirements
Create a type structure that could be used in a business

A person has some defining characteristics
An employee is a person with some employment information
A staff member is an employee with specific job information

Create primitive operations to read and print the objects

Create a main program to test the objects and operations

Hints
Use overriding and not overriding as appropriate (Ada 2005 and
above)

454 / 787

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Spec)
1 package Employee is
2 subtype Name_T is String (1 .. 6);
3 type Date_T is record
4 Year : Positive;
5 Month : Positive;
6 Day : Positive;
7 end record;
8 type Job_T is (Sales, Engineer, Bookkeeping);
9

10 ------------
11 -- Person --
12 ------------
13 type Person_T is tagged record
14 The_Name : Name_T;
15 The_Birth_Date : Date_T;
16 end record;
17 procedure Set_Name (O : in out Person_T;
18 Value : Name_T);
19 function Name (O : Person_T) return Name_T;
20 procedure Set_Birth_Date (O : in out Person_T;
21 Value : Date_T);
22 function Birth_Date (O : Person_T) return Date_T;
23 procedure Print (O : Person_T);
24

25 --------------
26 -- Employee --
27 --------------
28 type Employee_T is new Person_T with record
29 The_Employee_Id : Positive;
30 The_Start_Date : Date_T;
31 end record;
32 not overriding procedure Set_Start_Date (O : in out Employee_T;
33 Value : Date_T);
34 not overriding function Start_Date (O : Employee_T) return Date_T;
35 overriding procedure Print (O : Employee_T);
36

37 --------------
38 -- Position --
39 --------------
40 type Position_T is new Employee_T with record
41 The_Job : Job_T;
42 end record;
43 not overriding procedure Set_Job (O : in out Position_T;
44 Value : Job_T);
45 not overriding function Job (O : Position_T) return Job_T;
46 overriding procedure Print (O : Position_T);
47

48 end Employee;

455 / 787

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Partial Body)
1 with Ada.Text_IO; use Ada.Text_IO;
2 package body Employee is
3

4 function Image (Date : Date_T) return String is
5 (Date.Year'Image & " -" & Date.Month'Image & " -" & Date.Day'Image);
6

7 procedure Set_Name (O : in out Person_T;
8 Value : Name_T) is
9 begin

10 O.The_Name := Value;
11 end Set_Name;
12 function Name (O : Person_T) return Name_T is (O.The_Name);
13

14 procedure Set_Birth_Date (O : in out Person_T;
15 Value : Date_T) is
16 begin
17 O.The_Birth_Date := Value;
18 end Set_Birth_Date;
19 function Birth_Date (O : Person_T) return Date_T is (O.The_Birth_Date);
20

21 procedure Print (O : Person_T) is
22 begin
23 Put_Line ("Name: " & O.Name);
24 Put_Line ("Birthdate: " & Image (O.Birth_Date));
25 end Print;
26

27 not overriding procedure Set_Start_Date
28 (O : in out Employee_T;
29 Value : Date_T) is
30 begin
31 O.The_Start_Date := Value;
32 end Set_Start_Date;
33 not overriding function Start_Date (O : Employee_T) return Date_T is
34 (O.The_Start_Date);
35

36 overriding procedure Print (O : Employee_T) is
37 begin
38 Put_Line ("Name: " & Name (O));
39 Put_Line ("Birthdate: " & Image (O.Birth_Date));
40 Put_Line ("Startdate: " & Image (O.Start_Date));
41 end Print;
42

456 / 787

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Employee;
3 procedure Main is
4 Applicant : Employee.Person_T;
5 Employ : Employee.Employee_T;
6 Staff : Employee.Position_T;
7

8 begin
9 Applicant.Set_Name ("Wilma ");

10 Applicant.Set_Birth_Date ((Year => 1_234,
11 Month => 12,
12 Day => 1));
13

14 Employ.Set_Name ("Betty ");
15 Employ.Set_Birth_Date ((Year => 2_345,
16 Month => 11,
17 Day => 2));
18 Employ.Set_Start_Date ((Year => 3_456,
19 Month => 10,
20 Day => 3));
21

22 Staff.Set_Name ("Bambam");
23 Staff.Set_Birth_Date ((Year => 4_567,
24 Month => 9,
25 Day => 4));
26 Staff.Set_Start_Date ((Year => 5_678,
27 Month => 8,
28 Day => 5));
29 Staff.Set_Job (Employee.Engineer);
30

31 Applicant.Print;
32 Employ.Print;
33 Staff.Print;
34 end Main;

457 / 787

Tagged Derivation
Summary

Summary

458 / 787

Tagged Derivation
Summary

Summary

Tagged derivation
Building block for OOP types in Ada

Primitives rules for tagged types are trickier
Primitives forbidden below freeze point
Unique controlling parameter
Tip: Keep the number of tagged type per package low

459 / 787

Tagged Derivation
Additional Information - Extending Tagged Types

Additional Information - Extending Tagged Types

460 / 787

Tagged Derivation
Additional Information - Extending Tagged Types

How Do You Extend a Tagged Type?
Premise of a tagged type is to extend an existing type

In general, that means we want to add more fields
We can extend a tagged type by adding fields

package Animals is
type Animal_T is tagged record

Age : Natural;
end record;

end Animals;

with Animals; use Animals;
package Mammals is

type Mammal_T is new Animal_T with record
Number_Of_Legs : Natural;

end record;
end Mammals;

with Mammals; use Mammals;
package Canines is

type Canine_T is new Mammal_T with record
Domesticated : Boolean;

end record;
end Canines;

461 / 787

Tagged Derivation
Additional Information - Extending Tagged Types

Tagged Aggregates

At initialization, all fields (including inherited) must have a value

Animal : Animal_T := (Age => 1);
Mammal : Mammal_T := (Age => 2,

Number_Of_Legs => 2);
Canine : Canine_T := (Age => 2,

Number_Of_Legs => 4,
Domesticated => True);

But we can also "seed" the aggregate with a parent object

Mammal := (Animal with Number_Of_Legs => 4);
Canine := (Animal with Number_Of_Legs => 4,

Domesticated => False);
Canine := (Mammal with Domesticated => True);

462 / 787

Tagged Derivation
Additional Information - Extending Tagged Types

Private Tagged Types

But data hiding says types should be private!

So we can define our base type as private
package Animals is

type Animal_T is tagged private;
function Get_Age (P : Animal_T) return Natural;
procedure Set_Age (P : in out Animal_T; A : Natural);

private
type Animal_T is tagged record

Age : Natural;
end record;

end Animals;

And still allow derivation
with Animals;
package Mammals is

type Mammal_T is new Animals.Animal_T with record
Number_Of_Legs : Natural;

end record;

But now the only way to get access to Age is with accessor
subprograms

463 / 787

Tagged Derivation
Additional Information - Extending Tagged Types

Private Extensions

In the previous slide, we exposed the fields for Mammal_T!

Better would be to make the extension itself private

package Mammals is
type Mammal_T is new Animals.Animal_T with private;

private
type Mammal_T is new Animals.Animal_T with record

Number_Of_Legs : Natural;
end record;

end Mammals;

Click here to go back to Type Extension

464 / 787

Tagged Derivation
Additional Information - Extending Tagged Types

Aggregates with Private Tagged Types

Remember, an aggregate must specify values for all components
But with private types, we can't see all the components!

So we need to use the "seed" method:

procedure Inside_Mammals_Pkg is
Animal : Animal_T := Animals.Create;
Mammal : Mammal_T;

begin
Mammal := (Animal with Number_Of_Legs => 4);
Mammal := (Animals.Create with Number_Of_Legs => 4);

end Inside_Mammals_Pkg;

Note that we cannot use others => <> for components that are
not visible to us

Mammal := (Number_Of_Legs => 4,
others => <>); -- Compile Error

465 / 787

Tagged Derivation
Additional Information - Extending Tagged Types

Null Extensions

To create a new type with no additional fields
We still need to "extend" the record - we just do it with an empty
record

type Dog_T is new Canine_T with null record;

We still need to specify the "added" fields in an aggregate

C : Canine_T := Canines.Create;
Dog1 : Dog_T := C; -- Compile Error
Dog2 : Dog_T := (C with null record);

Click here to go back to Tagged Aggregate

466 / 787

Tagged Derivation
Additional Information - Extending Tagged Types

Quiz
Given the following code:

package Parents is
type Parent_T is tagged private;
function Create return Parent_T;

private
type Parent_T is tagged record

Id : Integer;
end record;

end Parents;

with Parents; use Parents;
package Children is

P : Parent_T;
type Child_T is new Parent_T with record

Count : Natural;
end record;
function Create (C : Natural) return Child_T;

end Children;

Which completion(s) of Create is (are) valid?

A. function Create return Child_T is (Parents.Create
with Count => 0);

B. function Create return Child_T is (others => <>);
C. function Create return Child_T is (0, 0);
D. function Create return Child_T is (P with Count =>

0);

Explanations

A. Correct - Parents.Create returns Parent_T
B. Cannot use others to complete private part of an aggregate
C. Aggregate has no visibility to Id field, so cannot assign
D. Correct - P is a Parent_T

467 / 787

Tagged Derivation
Additional Information - Extending Tagged Types

Quiz
Given the following code:

package Parents is
type Parent_T is tagged private;
function Create return Parent_T;

private
type Parent_T is tagged record

Id : Integer;
end record;

end Parents;

with Parents; use Parents;
package Children is

P : Parent_T;
type Child_T is new Parent_T with record

Count : Natural;
end record;
function Create (C : Natural) return Child_T;

end Children;

Which completion(s) of Create is (are) valid?

A. function Create return Child_T is (Parents.Create
with Count => 0);

B. function Create return Child_T is (others => <>);
C. function Create return Child_T is (0, 0);
D. function Create return Child_T is (P with Count =>

0);

Explanations

A. Correct - Parents.Create returns Parent_T
B. Cannot use others to complete private part of an aggregate
C. Aggregate has no visibility to Id field, so cannot assign
D. Correct - P is a Parent_T

467 / 787

Polymorphism

Polymorphism

468 / 787

Polymorphism
Introduction

Introduction

469 / 787

Polymorphism
Introduction

Introduction

'Class operator to categorize classes of types

Type classes allow dispatching calls
Abstract types
Abstract subprograms

Runtime call dispatch vs compile-time call dispatching

470 / 787

Polymorphism
Classes of Types

Classes of Types

471 / 787

Polymorphism
Classes of Types

Classes

In Ada, a Class denotes an inheritance subtree

Class of Root is the class of Root and all its children

Type Root'Class can designate any object typed after type of
class of Root

type Root is tagged null record;
type Child1 is new Root with null record;
type Child2 is new Root with null record;
type Grand_Child1 is new Child1 with null record;
-- Root'Class = {Root, Child1, Child2, Grand_Child1}
-- Child1'Class = {Child1, Grand_Child1}
-- Child2'Class = {Child2}
-- Grand_Child1'Class = {Grand_Child1}

Objects of type Root'Class have at least the properties of Root
Fields of Root
Primitives of Root

472 / 787

Polymorphism
Classes of Types

Indefinite Type
A class wide type is an indefinite type

Just like an unconstrained array or a record with a discriminant

Properties and constraints of indefinite types apply
Can be used for parameter declarations
Can be used for variable declaration with initialization

procedure Main is
type Animal is tagged null record;
type Dog is new Animal with null record;
procedure Handle_Animal (Some_Animal : in out Animal'Class) is null;
My_Dog : Dog;
Pet : Dog'Class := My_Dog;
Pet_Animal : Animal'Class := Pet;
Pet_Dog : Animal'Class := My_Dog;
-- initialization required in class-wide declaration
Bad_Animal : Animal'Class; -- compile error
Bad_Dog : Dog'Class; -- compile error

begin
Handle_Animal (Pet);
Handle_Animal (My_Dog);

end Main;
473 / 787

Polymorphism
Classes of Types

Testing the Type of an Object
The tag of an object denotes its type
It can be accessed through the 'Tag attribute
Applies to both objects and types
Membership operator is available to check the type against a
hierarchy

type Parent is tagged null record;
type Child is new Parent with null record;
Parent_Obj : Parent; -- Parent_Obj'Tag = Parent'Tag
Child_Obj : Child; -- Child_Obj'Tag = Child'Tag
Parent_Class_1 : Parent'Class := Parent_Obj;

-- Parent_Class_1'Tag = Parent'Tag
Parent_Class_2 : Parent'Class := Child_Obj;

-- Parent_Class_2'Tag = Child'Tag
Child_Class : Child'Class := Child (Parent_Class_2);

-- Child_Class'Tag = Child'Tag

B1 : Boolean := Parent_Class_1 in Parent'Class; -- True
B2 : Boolean := Parent_Class_1'Tag = Child'Tag; -- False
B3 : Boolean := Child_Class'Tag = Parent'Tag; -- False
B4 : Boolean := Child_Class in Child'Class; -- True

474 / 787

Polymorphism
Classes of Types

Abstract Types

A tagged type can be declared abstract

Then, abstract tagged types:
cannot be instantiated
can have abstract subprograms (with no implementation)
Non-abstract derivation of an abstract type must override and
implement abstract subprograms

475 / 787

Polymorphism
Classes of Types

Abstract Types Ada Vs C++
Ada

type Animal is abstract tagged record
Number_Of_Eyes : Integer;

end record;
procedure Feed (The_Animal : Animal) is abstract;
procedure Pet (The_Animal : Animal);
type Dog is abstract new Animal with null record;
type Bulldog is new Dog with null record;

overriding -- Ada 2005 and later
procedure Feed (The_Animal : Bulldog);

C++

class Animal {
public:

int Number_Of_Eyes;
virtual void Feed (void) = 0;
virtual void Pet (void);

};
class Dog : public Animal {
};
class Bulldog {

public:
virtual void Feed (void);

};

476 / 787

Polymorphism
Classes of Types

Relation to Primitives

Warning: Subprograms with parameter of type Root'Class are not
primitives of Root

type Root is tagged null record;
procedure Not_A_Primitive (Param : Root'Class);
type Child is new Root with null record;
-- This does not override Not_A_Primitive!
overriding procedure Not_A_Primitive (Param : Child'Class);

477 / 787

Polymorphism
Classes of Types

'Class and Prefix Notation

Prefix notation rules apply when the first parameter is of a class wide
type

type Animal is tagged null record;
procedure Handle_Animal (Some_Animal : Animal'Class);
type Cat is new Animal with null record;

Stray_Animal : Animal;
Pet_Animal : Animal'Class := Animal'(others => <>);
...
Handle_Animal (Stray_Animal);
Handle_Animal (Pet_Animal);
Stray_Animal.Handle_Animal;
Pet_Animal.Handle_Animal;

478 / 787

Polymorphism
Dispatching and Redispatching

Dispatching and Redispatching

479 / 787

Polymorphism
Dispatching and Redispatching

Calls on Class-Wide Types (1/3)

Any subprogram expecting a Root object can be called with a
Animal'Class object

type Animal is tagged null record;
procedure Feed (The_Animal : Animal);

type Dog is new Animal with null record;
procedure Feed (The_Dog : Dog);

Stray_Dog : Animal'Class := [...]
My_Dog : Dog'Class := [...]

begin
Feed (Stray_Dog);
Feed (My_Dog);

480 / 787

Polymorphism
Dispatching and Redispatching

Calls on Class-Wide Types (2/3)

The actual type of the object is not known at compile time
The right type will be selected at run-time

Ada
declare

Stray : Animal'Class :=
Animal'(others => <>);

My_Dog : Animal'Class :=
Dog'(others => <>);

begin
Stray.Feed; -- calls Feed of Animal
My_Dog.Feed; -- calls Feed of Dog

C++
Animal * Stray =

new Animal ();
Animal * My_Dog = new Dog ();
Stray->Feed ();
My_Dog->Feed ();

481 / 787

Polymorphism
Dispatching and Redispatching

Calls on Class-Wide Types (3/3)

It is still possible to force a call to be static using a conversion of
view

Ada
declare

Stray : Animal'Class :=
Animal'(others => <>);

My_Dog : Animal'Class :=
Dog'(others => <>);

begin
Animal (Stray).Feed; -- calls Feed of Animal
Animal (My_Dog).Feed; -- calls Feed of Animal

C++
Animal * Stray =

new Animal ();
Animal * My_Dog = new Dog ();
((Animal) *Stray).Feed ();
((Animal) *My_Dog).Feed ();

482 / 787

Polymorphism
Dispatching and Redispatching

Definite and Class Wide Views

In C++, dispatching occurs only on pointers
In Ada, dispatching occurs only on class wide views

type Animal is tagged null record;
procedure Groom (The_Animal : Animal);
procedure Give_Treat (The_Animal : Animal);
type Dog is new Animal with null record;
overriding procedure Give_Treat (The_Dog : Dog);
procedure Groom (The_Animal : Animal) is
begin

Give_Treat (The_Animal); -- always calls Give_Treat from Animal
end Groom;
procedure Main is

My_Dog : Animal'Class :=
Dog'(others => <>);

begin
-- Calls Groom from the implicitly overridden subprogram
-- Calls Give_Treat from Animal!
My_Dog.Groom;

483 / 787

Polymorphism
Dispatching and Redispatching

Redispatching

tagged types are always passed by reference
The original object is not copied

Therefore, it is possible to convert them to different views

type Animal is tagged null record;
procedure Feed (An_Animal : Animal);
procedure Pet (An_Animal : Animal);
type Cat is new Animal with null record;
overriding procedure Pet (A_Cat : Cat);

484 / 787

Polymorphism
Dispatching and Redispatching

Redispatching Example

procedure Feed (Anml : Animal) is
Fish : Animal'Class renames

Animal'Class (Anml); -- naming of a view
begin

Pet (Anml); -- static: uses the definite view
Pet (Animal'Class (Anml)); -- dynamic: (redispatching)
Pet (Fish); -- dynamic: (redispatching)

-- Ada 2005 "distinguished receiver" syntax
Anml.Pet; -- static: uses the definite view
Animal'Class (Anml).Pet; -- dynamic: (redispatching)
Fish.Pet; -- dynamic: (redispatching)

end Feed;

485 / 787

Polymorphism
Dispatching and Redispatching

Quiz
package Robots is

type Robot is tagged null record;
function Service_Code (The_Bot : Robot) return Integer is (101);
type Appliance_Robot is new Robot with null record;
function Service_Code (The_Bot : Appliance_Robot) return Integer is (201);
type Vacuum_Robot is new Appliance_Robot with null record;
function Service_Code (The_Bot : Vacuum_Robot) return Integer is (301);

end Robots;

with Robots; use Robots;
procedure Main is

Robot_Object : Robot'Class := Vacuum_Robot'(others => <>);

What is the value returned by
Service_Code (Appliance_Robot'Class (Robot_Object));?

A. 301
B. 201
C. 101
D. Compilation error

Explanations

A. Correct
B. Would be correct if Robot_Object was a Appliance_Robot -

Appliance_Robot'Class leaves the object as Vacuum_Robot
C. Object is initialized to something in Robot'Class, but it doesn't

have to be Robot
D. Would be correct if function parameter types were 'Class

486 / 787

Polymorphism
Dispatching and Redispatching

Quiz
package Robots is

type Robot is tagged null record;
function Service_Code (The_Bot : Robot) return Integer is (101);
type Appliance_Robot is new Robot with null record;
function Service_Code (The_Bot : Appliance_Robot) return Integer is (201);
type Vacuum_Robot is new Appliance_Robot with null record;
function Service_Code (The_Bot : Vacuum_Robot) return Integer is (301);

end Robots;

with Robots; use Robots;
procedure Main is

Robot_Object : Robot'Class := Vacuum_Robot'(others => <>);

What is the value returned by
Service_Code (Appliance_Robot'Class (Robot_Object));?

A. 301
B. 201
C. 101
D. Compilation error

Explanations

A. Correct
B. Would be correct if Robot_Object was a Appliance_Robot -

Appliance_Robot'Class leaves the object as Vacuum_Robot
C. Object is initialized to something in Robot'Class, but it doesn't

have to be Robot
D. Would be correct if function parameter types were 'Class

486 / 787

Polymorphism
Exotic Dispatching Operations

Exotic Dispatching Operations

487 / 787

Polymorphism
Exotic Dispatching Operations

Multiple Dispatching Operands
Primitives with multiple dispatching operands are allowed if all
operands are of the same type

type Animal is tagged null record;
procedure Interact (Left : Animal; Right : Animal);
type Dog is new Animal with null record;
overriding procedure Interact (Left : Dog; Right : Dog);

At call time, all actual parameters' tags have to match, either
statically or dynamically

Animal_1, Animal_2 : Animal;
Dog_1, Dog_2 : Dog;
Any_Animal_1 : Animal'Class := Animal_1;
Any_Animal_2 : Animal'Class := Animal_2;
Dog_Animal : Animal'Class := Dog_1;
...
Interact (Animal_1, Animal_2); -- static: ok
Interact (Animal_1, Dog_1); -- static: error
Interact (Any_Animal_1, Any_Animal_2); -- dynamic: ok
Interact (Any_Animal_1, Dog_Animal); -- dynamic: error
Interact (Animal_1, Any_Animal_1); -- static: error
Interact (Animal'Class (Animal_1), Any_Animal_1); -- dynamic: ok

488 / 787

Polymorphism
Exotic Dispatching Operations

Special Case for Equality

Overriding the default equality for a tagged type involves the use
of a function with multiple controlling operands
As in general case, static types of operands have to be the same
If dynamic types differ, equality returns false instead of raising
exception

type Animal is tagged null record;
function "=" (Left : Animal; Right : Animal) return Boolean;
type Dog is new Animal with null record;
overriding function "=" (Left : Dog; Right : Dog) return Boolean;
Animal_1, Animal_2 : Animal;
Dog_1, Dog_2 : Child;
Any_Animal_1 : Animal'Class := Animal_1;
Any_Animal_2 : Animal'Class := Animal_2;
Dog_Animal : Animal'Class := Dog_1;
...
-- overridden "=" called via dispatching
if Any_Animal_1 = Any_Animal_2 then [...]
if Any_Animal_1 = Dog_Animal then [...] -- returns false

489 / 787

Polymorphism
Exotic Dispatching Operations

Controlling Result (1/2)
The controlling operand may be the return type

This is known as the constructor pattern

type Animal is tagged null record;
function Feed_Treats (Number_Of_Treats : Integer) return Animal;

If the child adds fields, all such subprograms have to be overridden

type Animal is tagged null record;
function Feed_Treats (Number_Of_Treats : Integer) return Animal;

type Dog is new Animal with null record;
-- OK, Feed_Treats is implicitly inherited

type Bulldog is new Animal with record
Has_Underbite : Boolean;

end record;
-- ERROR no implicitly inherited function Feed_Treats

Primitives returning abstract types have to be abstract

type Animal is abstract tagged null record;
function Feed_Treats (Number_Of_Treats : Integer) return Animal is abstract;

490 / 787

Polymorphism
Exotic Dispatching Operations

Controlling Result (2/2)
Primitives returning tagged types can be used in a static context

type Animal is tagged null record;
function Feed return Animal;
type Dog is new Animal with null record;
function Feed return Dog;
Fed_Animal : Animal := Feed;

In a dynamic context, the type has to be known to correctly
dispatch

Fed_Animal : Animal'Class :=
Animal'(Feed); -- Static call to Animal primitive

Another_Fed_Animal : Animal'Class := Fed_Animal;
Fed_Dog : Animal'Class := Dog'(Feed); -- Static call to Dog primitive
Starving_Animal : Animal'Class := Feed; -- Error - ambiguous expression
...
Fed_Animal := Feed; -- Dispatching call to Animal primitive
Another_Fed_Animal := Feed; -- Dispatching call to Animal primitive
Fed_Dog := Feed; -- Dispatching call to Dog primitive

No dispatching is possible when returning access types
491 / 787

Polymorphism
Lab

Lab

492 / 787

Polymorphism
Lab

Polymorphism Lab

Requirements
Create a multi-level types hierarchy of shapes

Level 1: Shape → Quadrilateral | Triangle
Level 2: Quadrilateral → Square

Types should have the following primitive operations

Description
Number of sides
Perimeter

Create a main program that has multiple shapes

Create a nested subprogram that takes any shape and prints all
appropriate information

Hints
Top-level type should be abstract

But can have concrete operations

Nested subprogram in main should take a shape class parameter
493 / 787

Polymorphism
Lab

Polymorphism Lab Solution - Shapes (Spec)
1 package Shapes is
2 type Length_T is new Natural;
3 type Lengths_T is array (Positive range <>) of Length_T;
4 subtype Description_T is String (1 .. 10);
5

6 type Shape_T is abstract tagged record
7 Description : Description_T;
8 end record;
9 function Get_Description (Shape : Shape_T'Class) return Description_T;

10 function Number_Of_Sides (Shape : Shape_T) return Natural is abstract;
11 function Perimeter (Shape : Shape_T) return Length_T is abstract;
12

13 type Quadrilateral_T is new Shape_T with record
14 Lengths : Lengths_T (1 .. 4);
15 end record;
16 function Number_Of_Sides (Shape : Quadrilateral_T) return Natural;
17 function Perimeter (Shape : Quadrilateral_T) return Length_T;
18

19 type Square_T is new Quadrilateral_T with null record;
20 function Perimeter (Shape : Square_T) return Length_T;
21

22 type Triangle_T is new Shape_T with record
23 Lengths : Lengths_T (1 .. 3);
24 end record;
25 function Number_Of_Sides (Shape : Triangle_T) return Natural;
26 function Perimeter (Shape : Triangle_T) return Length_T;
27 end Shapes;

494 / 787

Polymorphism
Lab

Polymorphism Lab Solution - Shapes (Body)
1 package body Shapes is
2

3 function Perimeter (Lengths : Lengths_T) return Length_T is
4 Ret_Val : Length_T := 0;
5 begin
6 for I in Lengths'First .. Lengths'Last
7 loop
8 Ret_Val := Ret_Val + Lengths (I);
9 end loop;

10 return Ret_Val;
11 end Perimeter;
12

13 function Get_Description (Shape : Shape_T'Class) return Description_T is
14 (Shape.Description);
15

16 function Number_Of_Sides (Shape : Quadrilateral_T) return Natural is
17 (4);
18 function Perimeter (Shape : Quadrilateral_T) return Length_T is
19 (Perimeter (Shape.Lengths));
20

21 function Perimeter (Shape : Square_T) return Length_T is
22 (4 * Shape.Lengths (Shape.Lengths'First));
23

24 function Number_Of_Sides (Shape : Triangle_T) return Natural is
25 (3);
26 function Perimeter (Shape : Triangle_T) return Length_T is
27 (Perimeter (Shape.Lengths));
28 end Shapes;

495 / 787

Polymorphism
Lab

Polymorphism Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Shapes; use Shapes;
3 procedure Main is
4

5 Rectangle : constant Shapes.Quadrilateral_T :=
6 (Description => "rectangle ",
7 Lengths => (10, 20, 10, 20));
8 Triangle : constant Shapes.Triangle_T :=
9 (Description => "triangle ",

10 Lengths => (200, 300, 400));
11 Square : constant Shapes.Square_T :=
12 (Description => "square ",
13 Lengths => (5_000, 5_000, 5_000, 5_000));
14

15 procedure Describe (Shape : Shapes.Shape_T'Class) is
16 begin
17 Put_Line (Shape.Get_Description);
18 Put_Line
19 (" Number of sides:" & Integer'Image (Shape.Number_Of_Sides));
20 Put_Line (" Perimeter:" & Shapes.Length_T'Image (Shape.Perimeter));
21 end Describe;
22 begin
23

24 Describe (Rectangle);
25 Describe (Triangle);
26 Describe (Square);
27 end Main;

496 / 787

Polymorphism
Summary

Summary

497 / 787

Polymorphism
Summary

Summary

'Class attribute
Allows subprograms to be used for multiple versions of a type

Dispatching
Abstract types require concrete versions

Abstract subprograms allow template definitions

Need an implementation for each abstract type referenced

Runtime call dispatch vs compile-time call dispatching
Compiler resolves appropriate call where it can
Runtime resolves appropriate call where it can
If not resolved, exception

498 / 787

Packages

Packages

499 / 787

Packages
Introduction

Introduction

500 / 787

Packages
Introduction

Packages

Enforce separation of client from implementation
In terms of compile-time visibility

For data

For type representation, when combined with private types

Abstract Data Types

Provide basic namespace control

Directly support software engineering principles
Especially in combination with private types
Modularity
Information Hiding (Encapsulation)
Abstraction
Separation of Concerns

501 / 787

Packages
Introduction

Basic Syntax and Nomenclature

Spec
Basic declarative items only

e.g. no subprogram bodies

package name is
{basic_declarative_item}

end [name];

Body

package body name is
declarative_part

end [name];

502 / 787

Packages
Introduction

Separating Interface and Implementation

Implementation and specification are textually distinct from
each other

Typically in separate files

Clients can compile their code before body exists
All they need is the package specification
Clients have no visibility over the body
Full client/interface consistency is guaranteed

package Float_Stack is
Max : constant := 100;
procedure Push (X : in Float);
procedure Pop (X : out Float);

end Float_Stack;

503 / 787

Packages
Introduction

Uncontrolled Visibility Problem

Clients have too much access to representation
Data
Type representation

Changes force clients to recode and retest

Manual enforcement is not sufficient

Why fixing bugs introduces new bugs!

504 / 787

Packages
Declarations

Declarations

505 / 787

Packages
Declarations

Package Declarations

Required in all cases
Cannot have a package without the declaration

Describe the client's interface
Declarations are exported to clients
Effectively the "pin-outs" for the black-box

When changed, requires clients recompilation
The "pin-outs" have changed

package Float_Stack is
Max : constant := 100;
procedure Push (X : in Float);
procedure Pop (X : out Float);

end Float_Stack;

package Data is
Object : Integer;

end Data;
506 / 787

Packages
Declarations

Compile-Time Visibility Control

Items in the declaration are visible to users

package Some_Package is
-- exported declarations of
-- types, variables, subprograms ...

end Some_Package;

Items in the body are never externally visible
Compiler prevents external references

package body Some_Package is
-- hidden declarations of
-- types, variables, subprograms ...
-- implementations of exported subprograms etc.

end Some_Package;

507 / 787

Packages
Declarations

Example of Exporting to Clients

Variables, types, exception, subprograms, etc.
The primary reason for separate subprogram declarations

package P is
procedure This_Is_Exported;

end P;

package body P is
procedure Not_Exported is

...
procedure This_Is_Exported is

...
end P;

508 / 787

Packages
Referencing Other Packages

Referencing Other Packages

509 / 787

Packages
Referencing Other Packages

with Clause

When package Client needs access to package Server, it uses a
with clause

Specify the library units that Client depends upon
The "context" in which the unit is compiled
Client's code gets visibility over Server's specification

Syntax (simplified)

context_clause ::= { context_item }
context_item ::= with_clause | use_clause
with_clause ::= with library_unit_name

{ , library_unit_name };

with Server; -- dependency
procedure Client is

510 / 787

Packages
Referencing Other Packages

Referencing Exported Items

Achieved via "dot notation"

Package Specification

package Float_Stack is
procedure Push (X : in Float);
procedure Pop (X : out Float);

end Float_Stack;

Package Reference

with Float_Stack;
procedure Test is

X : Float;
begin

Float_Stack.Pop (X);
Float_Stack.Push (12.0);
...

511 / 787

Packages
Referencing Other Packages

with Clause Syntax

A library unit is a package or subprogram that is not nested within
another unit

Typically in its own file(s)
e.g. for package Test, GNAT defaults to expect the spec in
test.ads and body in test.adb)

Only library units may appear in a with statement
Can be a package or a standalone subprogram

Due to the with syntax, library units cannot be overloaded
If overloading allowed, which P would with P; refer to?

512 / 787

Packages
Referencing Other Packages

What To Import
Need only name direct dependencies

Those actually referenced in the corresponding unit

Will not cause compilation of referenced units
Unlike "include directives" of some languages

package A is
type Something is ...

end A;

with A;
package B is

type Something is record
Field : A.Something;

end record;
end B;

with B; -- no "with" of A
procedure Foo is

X : B.Something;
begin

X.Field := ...
513 / 787

Packages
Bodies

Bodies

514 / 787

Packages
Bodies

Package Bodies

Dependent on corresponding package specification
Obsolete if specification changed

Clients need only to relink if body changed
Any code that would require editing would not have compiled in the
first place

Necessary for specifications that require a completion, for example:
Subprogram bodies
Task bodies
Incomplete types in private part
Others...

515 / 787

Packages
Bodies

Bodies Are Never Optional

Either required for a given spec or not allowed at all
Based on declarations in that spec

A change from Ada 83

A (nasty) justification example will be shown later

516 / 787

Packages
Bodies

Example Spec That Cannot Have a Body

package Graphics_Primitives is
type Coordinate is digits 12;
type Device_Coordinates is record

X, Y : Integer;
end record;
type Normalized_Coordinates is record

X, Y : Coordinate range 0.0 .. 1.0;
end record;
type Offset is record

X, Y : Coordinate range -1.0 .. 1.0;
end record;
-- nothing to implement, so no body allowed

end Graphics_Primitives;

517 / 787

Packages
Bodies

Example Spec Requiring a Package Body

package VT100 is
subtype Rows is Integer range 1 .. 24;
subtype Columns is Integer range 1 .. 80;
type Position is record

Row : Rows := Rows'First;
Col : Columns := Columns'First;

end record;
-- The following need to be defined in the body

procedure Move_Cursor (To : in Position);
procedure Home;
procedure Clear_Screen;
procedure Cursor_Up (Count : in Positive := 1);

end VT100;

518 / 787

Packages
Bodies

Required Body Example
package body VT100 is

-- This function is not visible outside this package
function Unsigned (Input : Integer) return String is

Str : constant String := Integer'Image (Input);
begin

return Str (2 .. Str'Length);
end Unsigned;
procedure Move_Cursor (To : in Position) is
begin

Text_IO.Put (ASCII.Esc & 'I' &
Unsigned (To.Row) & ';' &
Unsigned (To.Col) & 'H');

end Move_Cursor;
procedure Home is
begin

Text_IO.Put (ASCII.Esc & "iH");
end Home;
procedure Cursor_Up (Count : in Positive := 1) is ...

...
end VT100;

519 / 787

Packages
Bodies

Quiz
package P is

Object_One : Integer;
procedure One (V : out Integer);

end P;

Which completion(s) is (are) correct for package P?

A. No completion is needed

B. package body P is
procedure One (V : out Integer) is null;

end P;

C. package body P is
Object_One : Integer;
procedure One (V : out Integer) is
begin

V := Object_One;
end One;

end P;

D. package body P is
procedure One (V : out Integer) is
begin

V := Object_One;
end One;

end P;

A. Procedure One must have a body
B. Parameter V is out but not assigned (legal but not a good idea)
C. Redeclaration of Object_One
D. Correct

520 / 787

Packages
Bodies

Quiz
package P is

Object_One : Integer;
procedure One (V : out Integer);

end P;

Which completion(s) is (are) correct for package P?

A. No completion is needed

B. package body P is
procedure One (V : out Integer) is null;

end P;

C. package body P is
Object_One : Integer;
procedure One (V : out Integer) is
begin

V := Object_One;
end One;

end P;

D. package body P is
procedure One (V : out Integer) is
begin

V := Object_One;
end One;

end P;

A. Procedure One must have a body
B. Parameter V is out but not assigned (legal but not a good idea)
C. Redeclaration of Object_One
D. Correct

520 / 787

Packages
Executable Parts

Executable Parts

521 / 787

Packages
Executable Parts

Optional Executable Part

package_body ::=
package body name is

declarative_part
[begin

handled_sequence_of_statements]
end [name];

522 / 787

Packages
Executable Parts

Executable Part Semantics

Executed only once, when package is elaborated

Ideal when statements are required for initialization
Otherwise initial values in variable declarations would suffice

package body Random is
Seed1, Seed2 : Integer;
Call_Count : Natural := 0;
procedure Initialize (Seed1 : out Integer;

Seed2 : out Integer) is ...
function Number return Float is ...

begin -- Random
Initialize (Seed1, Seed2);

end Random;

523 / 787

Packages
Executable Parts

Requiring/Rejecting Bodies Justification
Consider the alternative: an
optional package body that
becomes obsolete prior to
building
Builder could silently choose
not to include the package in
executable

Package executable part
might do critical
initialization!

package P is
Data : array (L .. U) of

Integer;
end P;

package body P is
...

begin
for K in Data'Range loop

Data (K) := ...
end loop;

end P;

524 / 787

Packages
Executable Parts

Forcing a Package Body to Be Required
Use
pragma Elaborate_Body

Says to elaborate body
immediately after spec
Hence there must be a
body!

Additional pragmas we will
examine later

package P is
pragma Elaborate_Body;
Data : array (L .. U) of

Integer;
end P;

package body P is
...

begin
for K in Data'Range loop

Data (K) := ...
end loop;

end P;

525 / 787

Packages
Idioms

Idioms

526 / 787

Packages
Idioms

Named Collection of Declarations

Exports:
Objects (constants and variables)
Types
Exceptions

Does not export operations

package Physical_Constants is
Polar_Radius_in_feet : constant := 20_856_010.51;
Equatorial_Radius_in_feet : constant := 20_926_469.20;
Earth_Diameter_in_feet : constant := 2.0 *

((Polar_Radius_in_feet + Equatorial_Radius_in_feet)/2.0);
Sea_Level_Air_Density : constant := 0.00239; --slugs/foot**3
Altitude_Of_Tropopause_in_feet : constant := 36089.0;
Tropopause_Temperature_in_celsius : constant := -56.5;

end Physical_Constants;
527 / 787

Packages
Idioms

Named Collection of Declarations (2)

Effectively application global data

package Equations_of_Motion is
Longitudinal_Velocity : Float := 0.0;
Longitudinal_Acceleration : Float := 0.0;
Lateral_Velocity : Float := 0.0;
Lateral_Acceleration : Float := 0.0;
Vertical_Velocity : Float := 0.0;
Vertical_Acceleration : Float := 0.0;
Pitch_Attitude : Float := 0.0;
Pitch_Rate : Float := 0.0;
Pitch_Acceleration : Float := 0.0;

end Equations_of_Motion;

528 / 787

Packages
Idioms

Group of Related Program Units

Exports:
Objects
Types
Values
Operations

Users have full access to type representations
This visibility may be necessary

package Linear_Algebra is
type Vector is array (Positive range <>) of Float;
function "+" (L,R : Vector) return Vector;
function "*" (L,R : Vector) return Vector;
...

end Linear_Algebra;
529 / 787

Packages
Idioms

Uncontrolled Data Visibility Problem
Effects of changes are
potentially pervasive so one
must understand everything
before changing anything

530 / 787

Packages
Idioms

Packages and "Lifetime"

Like a subprogram, objects declared directly in a package exist
while the package is "in scope"

Whether the object is in the package spec or body

Packages defined at the library level (not inside a subprogram) are
always "in scope"

Including packages nested inside a package

So package objects are considered "global data"
Putting variables in the spec exposes them to clients

Usually - in another module we talk about data hiding in the spec
Variables in the body can only be accessed from within the package
body

531 / 787

Packages
Idioms

Controlling Data Visibility Using Packages

Divides global data into separate package bodies

Visible only to procedures and functions declared in those same
packages

Clients can only call these visible routines

Global change effects are much less likely
Direct breakage is impossible

532 / 787

Packages
Idioms

Abstract Data Machines

Exports:
Operations
State information queries (optional)

No direct user access to data

package Float_Stack is
Max : constant := 100;
procedure Push (X : in Float);
procedure Pop (X : out Float);

end Float_Stack;

package body Float_Stack is
type Contents is array (1 .. Max) of Float;
Values : Contents;
Top : Integer range 0 .. Max := 0;
procedure Push (X : in Float) is ...
procedure Pop (X : out Float) is ...

end Float_Stack;
533 / 787

Packages
Idioms

Controlling Type Representation Visibility

In other words, support for Abstract Data Types
No operations visible to clients based on representation

The fundamental concept for Ada

Requires private types discussed in coming section...

534 / 787

Packages
Lab

Lab

535 / 787

Packages
Lab

Packages Lab

Requirements
Create a program to add and remove integer values from a list

Program should allow user to do the following as many times as
desired

Add an integer in a pre-defined range to the list
Remove all occurrences of an integer from the list
Print the values in the list

Hints
Create (at least) three packages

1 minimum/maximum integer values and maximum number of items
in list

2 User input (ensure value is in range)
3 List Abstract Data Machine

Remember: with package_name; gives access to package_name
536 / 787

Packages
Lab

Creating Packages in GNAT Studio

Right-click on the source directory node
If you used a prompt, the directory is probably .
If you used the wizard, the directory is probably src

New → Ada Package

Fill in name of Ada package
Check the box if you want to create the package body in addition
to the package spec

537 / 787

Packages
Lab

Packages Lab Solution - Constants

1 package Constants is
2

3 Lowest_Value : constant := 100;
4 Highest_Value : constant := 999;
5 Maximum_Count : constant := 10;
6 subtype Integer_T is Integer
7 range Lowest_Value .. Highest_Value;
8

9 end Constants;

538 / 787

Packages
Lab

Packages Lab Solution - Input
1 with Constants;
2 package Input is
3 function Get_Value (Prompt : String) return Constants.Integer_T;
4 end Input;
5

6 with Ada.Text_IO; use Ada.Text_IO;
7 package body Input is
8

9 function Get_Value (Prompt : String) return Constants.Integer_T is
10 Ret_Val : Integer;
11 begin
12 Put (Prompt & "> ");
13 loop
14 Ret_Val := Integer'Value (Get_Line);
15 exit when Ret_Val >= Constants.Lowest_Value
16 and then Ret_Val <= Constants.Highest_Value;
17 Put ("Invalid. Try Again >");
18 end loop;
19 return Ret_Val;
20 end Get_Value;
21

22 end Input;
539 / 787

Packages
Lab

Packages Lab Solution - List
1 package List is
2 procedure Add (Value : Integer);
3 procedure Remove (Value : Integer);
4 function Length return Natural;
5 procedure Print;
6 end List;
7

8 with Ada.Text_IO; use Ada.Text_IO;
9 with Constants;

10 package body List is
11 Content : array (1 .. Constants.Maximum_Count) of Integer;
12 Last : Natural := 0;
13

14 procedure Add (Value : Integer) is
15 begin
16 if Last < Content'Last then
17 Last := Last + 1;
18 Content (Last) := Value;
19 else
20 Put_Line ("Full");
21 end if;
22 end Add;
23

24 procedure Remove (Value : Integer) is
25 I : Natural := 1;
26 begin
27 while I <= Last loop
28 if Content (I) = Value then
29 Content (I .. Last - 1) := Content (I + 1 .. Last);
30 Last := Last - 1;
31 else
32 I := I + 1;
33 end if;
34 end loop;
35 end Remove;
36

37 procedure Print is
38 begin
39 for I in 1 .. Last loop
40 Put_Line (Integer'Image (Content (I)));
41 end loop;
42 end Print;
43

44 function Length return Natural is (Last);
45 end List;

540 / 787

Packages
Lab

Packages Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Input;
3 with List;
4 procedure Main is
5

6 begin
7

8 loop
9 Put ("(A)dd | (R)emove | (P)rint | (Q)uit : ");

10 declare
11 Str : constant String := Get_Line;
12 begin
13 exit when Str'Length = 0;
14 case Str (Str'First) is
15 when 'A' =>
16 List.Add (Input.Get_Value ("Value to add"));
17 when 'R' =>
18 List.Remove (Input.Get_Value ("Value to remove"));
19 when 'P' =>
20 List.Print;
21 when 'Q' =>
22 exit;
23 when others =>
24 Put_Line ("Illegal entry");
25 end case;
26 end;
27 end loop;
28

29 end Main;

541 / 787

Packages
Summary

Summary

542 / 787

Packages
Summary

Summary

Emphasizes separations of concerns

Solves the global visibility problem
Only those items in the specification are exported

Enforces software engineering principles
Information hiding
Abstraction

Implementation can't be corrupted by clients
Compiler won't let clients compile references to internals

Bugs must be in the implementation, not clients
Only body implementation code has to be understood

543 / 787

Private Types

Private Types

544 / 787

Private Types
Introduction

Introduction

545 / 787

Private Types
Introduction

Introduction

Why does fixing bugs introduce new ones?

Control over visibility is a primary factor
Changes to an abstraction's internals shouldn't break users
Including type representation

Need tool-enforced rules to isolate dependencies
Between implementations of abstractions and their users
In other words, "information hiding"

546 / 787

Private Types
Introduction

Information Hiding
A design technique in which
implementation artifacts are
made inaccessible to users
Based on control of visibility
to those artifacts

A product of
"encapsulation"
Language support provides
rigor

Concept is "software
integrated circuits"

547 / 787

Private Types
Introduction

Views

Specify legal manipulation for objects of a type
Types are characterized by permitted values and operations

Some views are implicit in language
Mode in parameters have a view disallowing assignment

Views may be explicitly specified
Disallowing access to representation
Disallowing assignment

Purpose: control usage in accordance with design
Adherence to interface
Abstract Data Types

548 / 787

Private Types
Implementing Abstract Data Types Via Views

Implementing Abstract Data Types Via Views

549 / 787

Private Types
Implementing Abstract Data Types Via Views

Implementing Abstract Data Types

A combination of constructs in Ada

Not based on single "class" construct, for example

Constituent parts
Packages, with "private part" of package spec
"Private types" declared in packages
Subprograms declared within those packages

550 / 787

Private Types
Implementing Abstract Data Types Via Views

Package Visible and Private Parts for Views

Declarations in visible part are exported to users

Declarations in private part are hidden from users
No compilable references to type's actual representation

package name is
... exported declarations of types, variables, subprograms ...
private
... hidden declarations of types, variables, subprograms ...
end name;

551 / 787

Private Types
Implementing Abstract Data Types Via Views

Declaring Private Types for Views
Partial syntax

type defining_identifier is private;

Private type declaration must occur in visible part

Partial view

Only partial information on the type

Users can reference the type name

But cannot create an object of that type until after the full type
declaration

Full type declaration must appear in private part

Completion is the Full view
Never visible to users
Not visible to designer until reached

package Bounded_Stacks is
type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);
...

private
...
type Stack is record

Top : Positive;
...

end Bounded_Stacks;

552 / 787

Private Types
Implementing Abstract Data Types Via Views

Partial and Full Views of Types

Private type declaration defines a partial view
The type name is visible
Only designer's operations and some predefined operations
No references to full type representation

Full type declaration defines the full view
Fully defined as a record type, scalar, imported type, etc...
Just an ordinary type within the package

Operations available depend upon one's view

553 / 787

Private Types
Implementing Abstract Data Types Via Views

Software Engineering Principles

Encapsulation and abstraction enforced by views
Compiler enforces view effects

Same protection as hiding in a package body
Recall "Abstract Data Machines" idiom

Additional flexibility of types
Unlimited number of objects possible
Passed as parameters
Components of array and record types
Dynamically allocated
et cetera

554 / 787

Private Types
Implementing Abstract Data Types Via Views

Users Declare Objects of the Type

Unlike "abstract data machine" approach

Hence must specify which stack to manipulate
Via parameter

X, Y, Z : Bounded_Stacks.Stack;
...
Push (42, X);
...
if Empty (Y) then
...
Pop (Counter, Z);

555 / 787

Private Types
Implementing Abstract Data Types Via Views

Compile-Time Visibility Protection

No type representation details available outside the package

Therefore users cannot compile code referencing representation

This does not compile

with Bounded_Stacks;
procedure User is

S : Bounded_Stacks.Stack;
begin

S.Top := 1; -- Top is not visible
end User;

556 / 787

Private Types
Implementing Abstract Data Types Via Views

Benefits of Views

Users depend only on visible part of specification
Impossible for users to compile references to private part
Physically seeing private part in source code is irrelevant

Changes to implementation don't affect users
No editing changes necessary for user code

Implementers can create bullet-proof abstractions
If a facility isn't working, you know where to look

Fixing bugs is less likely to introduce new ones

557 / 787

Private Types
Implementing Abstract Data Types Via Views

Quiz
package P is

type Private_T is private;

type Record_T is record

Which component(s) is (are) legal?

A. Field_A : Integer := Private_T'Pos
(Private_T'First);

B. Field_B : Private_T := null;

C. Field_C : Private_T := 0;

D. Field_D : Integer := Private_T'Size;

end record;

Explanations

A. Visible part does not know Private_T is discrete
B. Visible part does not know possible values for Private_T
C. Visible part does not know possible values for Private_T
D. Correct - type will have a known size at run-time

558 / 787

Private Types
Implementing Abstract Data Types Via Views

Quiz
package P is

type Private_T is private;

type Record_T is record

Which component(s) is (are) legal?

A. Field_A : Integer := Private_T'Pos
(Private_T'First);

B. Field_B : Private_T := null;

C. Field_C : Private_T := 0;

D. Field_D : Integer := Private_T'Size;

end record;

Explanations

A. Visible part does not know Private_T is discrete
B. Visible part does not know possible values for Private_T
C. Visible part does not know possible values for Private_T
D. Correct - type will have a known size at run-time

558 / 787

Private Types
Private Part Construction

Private Part Construction

559 / 787

Private Types
Private Part Construction

Private Part and Recompilation

Users can compile their code before the package body is compiled
or even written

Private part is part of the specification
Compiler needs info from private part for users' code, e.g., storage
layouts for private-typed objects

Thus changes to private part require user recompilation

Some vendors avoid "unnecessary" recompilation
Comment additions or changes
Additions which nobody yet references

560 / 787

Private Types
Private Part Construction

Declarative Regions
Declarative region of the spec extends to the body

Anything declared there is visible from that point down
Thus anything declared in specification is visible in body

package Foo is
type Private_T is private;
procedure X (B : in out Private_T);

private
-- Y and Hidden_T are not visible to users
procedure Y (B : in out Private_T);
type Hidden_T is ...;
type Private_T is array (1 .. 3) of Hidden_T;

end Foo;

package body Foo is
-- Z is not visible to users
procedure Z (B : in out Private_T) is ...
procedure Y (B : in out Private_T) is ...
procedure X (B : in out Private_T) is ...

end Foo;
561 / 787

Private Types
Private Part Construction

Full Type Declaration
May be any type

Predefined or user-defined
Including references to
imported types

Contents of private part are
unrestricted

Anything a package
specification may contain
Types, subprograms,
variables, etc.

package P is
type T is private;
...

private
type Vector is array (1.. 10)

of Integer;
function Initial

return Vector;
type T is record

A, B : Vector := Initial;
end record;

end P;

562 / 787

Private Types
Private Part Construction

Deferred Constants

Visible constants of a hidden representation
Value is "deferred" to private part
Value must be provided in private part

Not just for private types, but usually so

package P is
type Set is private;
Null_Set : constant Set; -- exported name
...

private
type Index is range ...
type Set is array (Index) of Boolean;
Null_Set : constant Set := -- definition

(others => False);
end P;

563 / 787

Private Types
Private Part Construction

Quiz
package P is

type Private_T is private;
Object_A : Private_T;
procedure Proc (Param : in out Private_T);

private
type Private_T is new Integer;
Object_B : Private_T;

end package P;

package body P is
Object_C : Private_T;
procedure Proc (Param : in out Private_T) is null;

end P;

Which object definition(s) is (are) legal?

A. Object_A
B. Object_B
C. Object_C
D. None of the above

An object cannot be declared until its type is fully declared. Object_A
could be declared constant, but then it would have to be finalized in
the private section.

564 / 787

Private Types
Private Part Construction

Quiz
package P is

type Private_T is private;
Object_A : Private_T;
procedure Proc (Param : in out Private_T);

private
type Private_T is new Integer;
Object_B : Private_T;

end package P;

package body P is
Object_C : Private_T;
procedure Proc (Param : in out Private_T) is null;

end P;

Which object definition(s) is (are) legal?

A. Object_A
B. Object_B
C. Object_C
D. None of the above

An object cannot be declared until its type is fully declared. Object_A
could be declared constant, but then it would have to be finalized in
the private section.

564 / 787

Private Types
View Operations

View Operations

565 / 787

Private Types
View Operations

View Operations

Reminder: view is the interface you have on the type
User of package has Partial view

Operations exported by
package

Designer of package has Full view
Once completion is
reached
All operations based upon
full definition of type

566 / 787

Private Types
View Operations

Users Have the Partial View

Since they are outside package
Basic operations
Exported subprograms

package Bounded_Stacks is
type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);
procedure Pop (Item : out Integer; From : in out Stack);
function Empty (S : Stack) return Boolean;
procedure Clear (S : in out Stack);
function Top (S : Stack) return Integer;

private
...

end Bounded_Stacks;

567 / 787

Private Types
View Operations

User View's Activities

Declarations of objects
Constants and variables
Must call designer's functions for values

C : Complex.Number := Complex.I;

Assignment, equality and inequality, conversions

Designer's declared subprograms

User-declared subprograms
Using parameters of the exported private type
Dependent on designer's operations

568 / 787

Private Types
View Operations

User View Formal Parameters

Dependent on designer's operations for manipulation
Cannot reference type's representation

Can have default expressions of private types

-- external implementation of "Top"
procedure Get_Top (

The_Stack : in out Bounded_Stacks.Stack;
Value : out Integer) is

Local : Integer;
begin

Bounded_Stacks.Pop (Local, The_Stack);
Value := Local;
Bounded_Stacks.Push (Local, The_Stack);

end Get_Top;
569 / 787

Private Types
View Operations

Limited Private

limited is itself a view
Cannot perform assignment, copy, or equality

limited private can restrain user's operation
Actual type does not need to be limited

package UART is
type Instance is limited private;
function Get_Next_Available return Instance;

[...]

declare
A, B : UART.Instance := UART.Get_Next_Available;

begin
if A = B -- Illegal
then

A := B; -- Illegal
end if;

570 / 787

Private Types
When to Use or Avoid Private Types

When to Use or Avoid Private Types

571 / 787

Private Types
When to Use or Avoid Private Types

When to Use Private Types

Implementation may change
Allows users to be unaffected by changes in representation

Normally available operations do not "make sense"
Normally available based upon type's representation
Determined by intent of ADT

A : Valve;
B : Valve;
C : Valve;
...
C := A + B; -- addition not meaningful

Users have no "need to know"
Based upon expected usage

572 / 787

Private Types
When to Use or Avoid Private Types

When to Avoid Private Types

If the abstraction is too simple to justify the effort
But that's the thinking that led to Y2K rework

If normal user interface requires representation-specific operations
that cannot be provided

Those that cannot be redefined by programmers

Would otherwise be hidden by a private type

If Vector is private, indexing of elements is annoying

type Vector is array (Positive range <>) of Float;
V : Vector (1 .. 3);
...
V (1) := Alpha;

573 / 787

Private Types
Idioms

Idioms

574 / 787

Private Types
Idioms

Effects of Hiding Type Representation

Makes users independent of representation
Changes cannot require users to alter their code
Software engineering is all about money...

Makes users dependent upon exported operations
Because operations requiring representation info are not available to
users

Expression of values (aggregates, etc.)
Assignment for limited types

Common idioms are a result
Constructor
Selector

575 / 787

Private Types
Idioms

Constructors

Create designer's objects from user's values
Usually functions

package Complex is
type Number is private;
function Make (Real_Part : Float; Imaginary : Float) return Number;

private
type Number is record ...

end Complex;

package body Complex is
function Make (Real_Part : Float; Imaginary_Part : Float)

return Number is ...
end Complex:
...
A : Complex.Number :=

Complex.Make (Real_Part => 2.5, Imaginary => 1.0);
576 / 787

Private Types
Idioms

Procedures As Constructors
Spec

package Complex is
type Number is private;
procedure Make (This : out Number; Real_Part, Imaginary : in Float) ;
...

private
type Number is record

Real_Part, Imaginary : Float;
end record;

end Complex;

Body (partial)

package body Complex is
procedure Make (This : out Number;

Real_Part, Imaginary : in Float) is
begin

This.Real_Part := Real_Part;
This.Imaginary := Imaginary;

end Make;
...

577 / 787

Private Types
Idioms

Selectors
Decompose designer's objects into user's values
Usually functions

package Complex is
type Number is private;
function Real_Part (This: Number) return Float;
...

private
type Number is record

Real_Part, Imaginary : Float;
end record;

end Complex;

package body Complex is
function Real_Part (This : Number) return Float is
begin

return This.Real_Part;
end Real_Part;
...

end Complex;
...
Phase : Complex.Number := Complex.Make (10.0, 5.5);
Object : Float := Complex.Real_Part (Phase);

578 / 787

Private Types
Lab

Lab

579 / 787

Private Types
Lab

Private Types Lab

Requirements
Implement a program to create a map such that

Map key is a description of a flag
Map element content is the set of colors in the flag

Operations on the map should include: Add, Remove, Modify, Get,
Exists, Image

Main program should print out the entire map before exiting

Hints
Should implement a map ADT (to keep track of the flags)

This map will contain all the flags and their color descriptions

Should implement a set ADT (to keep track of the colors)

This set will be the description of the map element

Each ADT should be its own package

At a minimum, the map and set type should be private
580 / 787

Private Types
Lab

Private Types Lab Solution - Color Set
1 package Colors is
2 type Color_T is (Red, Yellow, Green, Blue, Black);
3 type Color_Set_T is private;
4

5 Empty_Set : constant Color_Set_T;
6

7 procedure Add (Set : in out Color_Set_T;
8 Color : Color_T);
9 procedure Remove (Set : in out Color_Set_T;

10 Color : Color_T);
11 function Image (Set : Color_Set_T) return String;
12 private
13 type Color_Set_Array_T is array (Color_T) of Boolean;
14 type Color_Set_T is record
15 Values : Color_Set_Array_T := (others => False);
16 end record;
17 Empty_Set : constant Color_Set_T := (Values => (others => False));
18 end Colors;
19

20 package body Colors is
21 procedure Add (Set : in out Color_Set_T;
22 Color : Color_T) is
23 begin
24 Set.Values (Color) := True;
25 end Add;
26 procedure Remove (Set : in out Color_Set_T;
27 Color : Color_T) is
28 begin
29 Set.Values (Color) := False;
30 end Remove;
31

32 function Image (Set : Color_Set_T;
33 First : Color_T;
34 Last : Color_T)
35 return String is
36 Str : constant String := (if Set.Values (First) then Color_T'Image (First) else "");
37 begin
38 if First = Last then
39 return Str;
40 else
41 return Str & " " & Image (Set, Color_T'Succ (First), Last);
42 end if;
43 end Image;
44 function Image (Set : Color_Set_T) return String is
45 (Image (Set, Color_T'First, Color_T'Last));
46 end Colors;

581 / 787

Private Types
Lab

Private Types Lab Solution - Flag Map (Spec)
1 with Colors;
2 package Flags is
3 type Key_T is (USA, England, France, Italy);
4 type Map_Element_T is private;
5 type Map_T is private;
6

7 procedure Add (Map : in out Map_T;
8 Key : Key_T;
9 Description : Colors.Color_Set_T;

10 Success : out Boolean);
11 procedure Remove (Map : in out Map_T;
12 Key : Key_T;
13 Success : out Boolean);
14 procedure Modify (Map : in out Map_T;
15 Key : Key_T;
16 Description : Colors.Color_Set_T;
17 Success : out Boolean);
18

19 function Exists (Map : Map_T; Key : Key_T) return Boolean;
20 function Get (Map : Map_T; Key : Key_T) return Map_Element_T;
21 function Image (Item : Map_Element_T) return String;
22 function Image (Flag : Map_T) return String;
23 private
24 type Map_Element_T is record
25 Key : Key_T := Key_T'First;
26 Description : Colors.Color_Set_T := Colors.Empty_Set;
27 end record;
28 type Map_Array_T is array (1 .. 100) of Map_Element_T;
29 type Map_T is record
30 Values : Map_Array_T;
31 Length : Natural := 0;
32 end record;
33 end Flags;

582 / 787

Private Types
Lab

Private Types Lab Solution - Flag Map (Body - 1 of 2)
3 function Find (Map : Map_T;
4 Key : Key_T)
5 return Integer is
6 begin
7 for I in 1 .. Map.Length loop
8 if Map.Values (I).Key = Key then
9 return I;

10 end if;
11 end loop;
12 return -1;
13 end Find;
14

15 procedure Add (Map : in out Map_T;
16 Key : Key_T;
17 Description : Colors.Color_Set_T;
18 Success : out Boolean) is
19 Index : constant Integer := Find (Map, Key);
20 begin
21 Success := False;
22 if Index not in Map.Values'Range then
23 declare
24 New_Item : constant Map_Element_T :=
25 (Key => Key,
26 Description => Description);
27 begin
28 Map.Length := Map.Length + 1;
29 Map.Values (Map.Length) := New_Item;
30 Success := True;
31 end;
32 end if;
33 end Add;
34

35 procedure Remove (Map : in out Map_T;
36 Key : Key_T;
37 Success : out Boolean) is
38 Index : constant Integer := Find (Map, Key);
39 begin
40 Success := False;
41 if Index in Map.Values'Range then
42 Map.Values (Index .. Map.Length - 1) :=
43 Map.Values (Index + 1 .. Map.Length);
44 Success := True;
45 end if;
46 end Remove;

583 / 787

Private Types
Lab

Private Types Lab Solution - Flag Map (Body - 2 of 2)
35 procedure Modify (Map : in out Map_T;
36 Key : Key_T;
37 Description : Colors.Color_Set_T;
38 Success : out Boolean) is
39 Index : constant Integer := Find (Map, Key);
40 begin
41 Success := False;
42 if Index in Map.Values'Range then
43 Map.Values (Index).Description := Description;
44 Success := True;
45 end if;
46 end Modify;
47

48 function Exists (Map : Map_T;
49 Key : Key_T)
50 return Boolean is
51 (Find (Map, Key) in Map.Values'Range);
52

53 function Get (Map : Map_T;
54 Key : Key_T)
55 return Map_Element_T is
56 Index : constant Integer := Find (Map, Key);
57 Ret_Val : Map_Element_T;
58 begin
59 if Index in Map.Values'Range then
60 Ret_Val := Map.Values (Index);
61 end if;
62 return Ret_Val;
63 end Get;
64

65 function Image (Item : Map_Element_T) return String is
66 (Item.Key'Image & " => " & Colors.Image (Item.Description));
67

68 function Image (Flag : Map_T) return String is
69 Ret_Val : String (1 .. 1_000);
70 Next : Integer := Ret_Val'First;
71 begin
72 for I in 1 .. Flag.Length loop
73 declare
74 Item : constant Map_Element_T := Flag.Values (I);
75 Str : constant String := Image (Item);
76 begin
77 Ret_Val (Next .. Next + Str'Length) := Image (Item) & ASCII.LF;
78 Next := Next + Str'Length + 1;
79 end;
80 end loop;
81 return Ret_Val (1 .. Next - 1);
82 end Image;

584 / 787

Private Types
Lab

Private Types Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors;
3 with Flags;
4 with Input;
5 procedure Main is
6 Map : Flags.Map_T;
7 begin
8

9 loop
10 Put ("Enter country name (");
11 for Key in Flags.Key_T loop
12 Put (Flags.Key_T'Image (Key) & " ");
13 end loop;
14 Put ("): ");
15 declare
16 Str : constant String := Get_Line;
17 Key : Flags.Key_T;
18 Description : Colors.Color_Set_T;
19 Success : Boolean;
20 begin
21 exit when Str'Length = 0;
22 Key := Flags.Key_T'Value (Str);
23 Description := Input.Get;
24 if Flags.Exists (Map, Key) then
25 Flags.Modify (Map, Key, Description, Success);
26 else
27 Flags.Add (Map, Key, Description, Success);
28 end if;
29 end;
30 end loop;
31

32 Put_Line (Flags.Image (Map));
33 end Main;

585 / 787

Private Types
Summary

Summary

586 / 787

Private Types
Summary

Summary

Tool-enforced support for Abstract Data Types
Same protection as Abstract Data Machine idiom
Capabilities and flexibility of types

May also be limited

Thus additionally no assignment or predefined equality
More on this later

Common interface design idioms have arisen
Resulting from representation independence

Assume private types as initial design choice
Change is inevitable

587 / 787

Program Structure

Program Structure

588 / 787

Program Structure
Introduction

Introduction

589 / 787

Program Structure
Introduction

Introduction

Moving to "bigger" issues of overall program composition
How to compose programs out of program units
How to control object lifetimes
How to define subsystems

590 / 787

Program Structure
Building a System

Building a System

591 / 787

Program Structure
Building a System

What Is a System?

Also called Application or Program or ...

Collection of library units
Which are a collection of packages or subprograms

592 / 787

Program Structure
Building a System

Library Units Review

Those units not nested within another program unit

Candidates
Subprograms
Packages
Generic Units
Generic Instantiations
Renamings

Dependencies between library units via with clauses
What happens when two units need to depend on each other?

593 / 787

Program Structure
Circular Dependencies

Circular Dependencies

594 / 787

Program Structure
Circular Dependencies

Handling Cyclic Dependencies

Elaboration must be linear

Package declarations cannot depend on each other
No linear order is possible

Which package elaborates first?

595 / 787

Program Structure
Circular Dependencies

Body-Level Cross Dependencies Are OK

The bodies only depend on other packages' declarations
The declarations are already elaborated by the time the bodies are
elaborated

package Personnel is

...

end Personnel;

with Personnel;
package Department is
...

end Department;

with Department;
package body Personnel is
...

end Personnel;

package body Department is

...

end Department;

personnel.ads

personnel.adb

department.ads

department.adb

596 / 787

Program Structure
Circular Dependencies

Resulting Design Problem

Good design dictates that conceptually distinct types appear in
distinct package declarations

Separation of concerns
High level of cohesion

Not possible if they depend on each other

One solution is to combine them in one package, even though
conceptually distinct

Poor software engineering
May be only choice, depending on language version

Best choice would be to implement both parts in a new package

597 / 787

Program Structure
Circular Dependencies

Circular Dependency in Package Declaration

with Department; -- Circular dependency
package Personnel is

type Employee is private;
procedure Assign (This : in Employee;

To : in out Department.Section);
private

type Employee is record
Assigned_To : Department.Section;

end record;
end Personnel;

with Personnel; -- Circular dependency
package Department is

type Section is private;
procedure Choose_Manager (This : in out Section;

Who : in Personnel.Employee);
[...]
end Department;

598 / 787

Program Structure
Circular Dependencies

limited with Clauses
Solve the cyclic declaration dependency problem

Controlled cycles are now permitted

Provide a limited view of the specified package
Only type names are visible (including in nested packages)
Types are viewed as incomplete types

Normal view

package Personnel is
type Employee is private;
procedure Assign ...

private
type Employee is ...

end Personnel;

Implied limited view

package Personnel is
type Employee;

end Personnel;
599 / 787

Program Structure
Circular Dependencies

Using Incomplete Types

A type is incomplete when its representation is completely
unknown

Address can still be manipulated through an access

Can be a formal parameter or function result's type

Subprogram's completion needs the complete type
Actual parameter needs the complete type

Can be a generic formal type parameters

If tagged, may also use 'Class

type T;

Can be declared in a private part of a package
And completed in its body
Used to implement opaque pointers

Thus typically involves some advanced features
600 / 787

Program Structure
Circular Dependencies

Legal Package Declaration Dependency
with Department;
package Personnel is

type Employee is private;
procedure Assign (This : in Employee;

To : in out Department.Section);
private

type Employee is record
Assigned_To : Department.Section;

end record;
end Personnel;

limited with Personnel;
package Department is

type Section is private;
procedure Choose_Manager (This : in out Section;

Who : in Personnel.Employee);
private

type Section is record
Manager : access Personnel.Employee;

end record;
end Department;

601 / 787

Program Structure
Circular Dependencies

Full with Clause on the Package Body

Even though declaration has a limited with clause

Typically necessary since body does the work
Dereferencing, etc.

Usual semantics from then on

limited with Personnel;
package Department is
...
end Department;

with Personnel; -- normal view in body
package body Department is
...
end Department;

602 / 787

Program Structure
Hierarchical Library Units

Hierarchical Library Units

603 / 787

Program Structure
Hierarchical Library Units

Problem: Packages Are Not Enough

Extensibility is a problem for private types
Provide excellent encapsulation and abstraction
But one has either complete visibility or essentially none
New functionality must be added to same package for sake of
compile-time visibility to representation
Thus enhancements require editing/recompilation/retesting

Should be something "bigger" than packages
Subsystems

Directly relating library items in one name-space

One big package has too many disadvantages

Avoiding name clashes among independently-developed code

604 / 787

Program Structure
Hierarchical Library Units

Solution: Hierarchical Library Units
Address extensibility issue

Can extend packages with
visibility to parent private
part
Extensions do not require
recompilation of parent
unit
Visibility of parent's
private part is protected

Directly support subsystems
Extensions all have the
same ancestor root name

605 / 787

Program Structure
Hierarchical Library Units

Programming by Extension
Parent unit

package Complex is
type Number is private;
function "*" (Left, Right : Number) return Number;
function "/" (Left, Right : Number) return Number;
function "+" (Left, Right : Number) return Number;
function "-" (Left, Right : Number) return Number;

...
private

type Number is record
Real_Part, Imaginary_Part : Float;

end record;
end Complex;

Extension created to work with parent unit

package Complex.Utils is
procedure Put (C : in Number);
function As_String (C : Number) return String;
...

end Complex.Utils;
606 / 787

Program Structure
Hierarchical Library Units

Extension Can See Private Section

With certain limitations

with Ada.Text_IO;
package body Complex.Utils is

procedure Put (C : in Number) is
begin

Ada.Text_IO.Put (As_String (C));
end Put;
function As_String (C : Number) return String is
begin

-- Real_Part and Imaginary_Part are
-- visible to child's body
return "(" & Float'Image (C.Real_Part) & ", " &

Float'Image (C.Imaginary_Part) & ")";
end As_String;

...
end Complex.Utils;

607 / 787

Program Structure
Hierarchical Library Units

Subsystem Approach
with Interfaces.C;
package OS is -- Unix and/or POSIX
type File_Descriptor is new Interfaces.C.int;
...

end OS;

package OS.Mem_Mgmt is
...
procedure Dump (File : File_Descriptor;

Requested_Location : System.Address;
Requested_Size : Interfaces.C.Size_T);

...
end OS.Mem_Mgmt;

package OS.Files is
...
function Open (Device : Interfaces.C.char_array;

Permission : Permissions := S_IRWXO)
return File_Descriptor;

...
end OS.Files;

608 / 787

Program Structure
Hierarchical Library Units

Predefined Hierarchies

Standard library facilities are children of Ada
Ada.Text_IO
Ada.Calendar
Ada.Command_Line
Ada.Exceptions
et cetera

Other root packages are also predefined
Interfaces.C
Interfaces.Fortran
System.Storage_Pools
System.Storage_Elements
et cetera

609 / 787

Program Structure
Hierarchical Library Units

Hierarchical Visibility
Children can see ancestors'
visible and private parts

All the way up to the root
library unit

Siblings have no automatic
visibility to each other
Visibility same as nested

As if child library units are
nested within parents

All child units come
after the root parent's
specification
Grandchildren within
children,
great-grandchildren
within ...

610 / 787

Program Structure
Hierarchical Library Units

Example of Visibility As If Nested

package Complex is
type Number is private;
function "*" (Left, Right : Number) return Number;
function "/" (Left, Right : Number) return Number;
function "+" (Left, Right : Number) return Number;
...

private
type Number is record

Real_Part : Float;
Imaginary : Float;

end record;
package Utils is

procedure Put (C : in Number);
function As_String (C : Number) return String;
...

end Utils;
end Complex;

611 / 787

Program Structure
Hierarchical Library Units

with Clauses for Ancestors Are Implicit
Because children can
reference ancestors' private
parts

Code is not in executable
unless somewhere in the
with clauses

Explicit clauses for ancestors
are redundant but OK

package Parent is
...

private
A : Integer := 10;

end Parent;

-- no "with" of parent needed
package Parent.Child is

...
private

B : Integer := Parent.A;
-- no dot-notation needed
C : Integer := A;

end Parent.Child;
612 / 787

Program Structure
Hierarchical Library Units

with Clauses for Siblings Are Required

If references are intended

with A.Foo; --required
package body A.Bar is

...
-- 'Foo' is directly visible because of the
-- implied nesting rule
X : Foo.Typemark;

end A.Bar;

613 / 787

Program Structure
Hierarchical Library Units

Quiz
package Parent is

Parent_Object : Integer;
end Parent;

package Parent.Sibling is
Sibling_Object : Integer;

end Parent.Sibling;

package Parent.Child is
Child_Object : Integer := ? ;

end Parent.Child;

Which is (are) legal initialization(s) of Child_Object?

A. Parent.Parent_Object + Parent.Sibling.Sibling_Object
B. Parent_Object + Sibling.Sibling_Object
C. Parent_Object + Sibling_Object
D. None of the above

A, B, and C are illegal because there is no reference to package
Parent.Sibling (the reference to Parent is implied by the hierarchy).
If Parent.Child had "with Parent.Sibling;", then A and B
would be legal, but C would still be incorrect because there is no
implied reference to a sibling.

614 / 787

Program Structure
Hierarchical Library Units

Quiz
package Parent is

Parent_Object : Integer;
end Parent;

package Parent.Sibling is
Sibling_Object : Integer;

end Parent.Sibling;

package Parent.Child is
Child_Object : Integer := ? ;

end Parent.Child;

Which is (are) legal initialization(s) of Child_Object?

A. Parent.Parent_Object + Parent.Sibling.Sibling_Object
B. Parent_Object + Sibling.Sibling_Object
C. Parent_Object + Sibling_Object
D. None of the above

A, B, and C are illegal because there is no reference to package
Parent.Sibling (the reference to Parent is implied by the hierarchy).
If Parent.Child had "with Parent.Sibling;", then A and B
would be legal, but C would still be incorrect because there is no
implied reference to a sibling.

614 / 787

Program Structure
Visibility Limits

Visibility Limits

615 / 787

Program Structure
Visibility Limits

Parents Do Not Know Their Children!

Children grant themselves access to ancestors' private parts
May be created well after parent
Parent doesn't know if/when child packages will exist

Alternatively, language could have been designed to grant access
when declared

Like friend units in C++

But would have to be prescient!

Or else adding children requires modifying parent

Hence too restrictive

Note: Parent body can reference children
Typical method of parsing out complex processes

616 / 787

Program Structure
Visibility Limits

Correlation to C++ Class Visibility Controls
Ada private part is visible to
child units
package P is

A ...
private

B ...
end P;
package body P is

C ...
end P;

Thus private part is like the
protected part in C++
class C {
public:

A ...
protected:

B ...
private:

C ...
};

617 / 787

Program Structure
Visibility Limits

Visibility Limits
Visibility to parent's private part is not open-ended

Only visible to private parts and bodies of children
As if only private part of child package is nested in parent

Recall users can only reference exported declarations
Child public spec only has access to parent public spec

package Parent is
...

private
type Parent_T is ...

end Parent;

package Parent.Child is
-- Parent_T is not visible here!

private
-- Parent_T is visible here

end Parent.Child;

package body Parent.Child is
-- Parent_T is visible here

end Parent.Child;
618 / 787

Program Structure
Visibility Limits

Children Can Break Abstraction

Could break a parent's abstraction
Alter a parent package state
Alters an ADT object state

Useful for reset, testing: fault injections...

package Stack is
...

private
Values : array (1 .. N) of Foo;
Top : Natural range 0 .. N := 0;

end Stack;

package body Stack.Reset is
procedure Reset is
begin

Top := 0;
end Reset;

end Stack.Reset;
619 / 787

Program Structure
Visibility Limits

Using Children for Debug

Provide accessors to parent's private information
eg internal metrics...

package P is
...

private
Internal_Counter : Integer := 0;

end P;

package P.Child is
function Count return Integer;

end P.Child;

package body P.Child is
function Count return Integer is
begin

return Internal_Counter;
end Count;

end P.Child;
620 / 787

Program Structure
Visibility Limits

Quiz
package P is

Object_A : Integer;
private

Object_B : Integer;
procedure Dummy_For_Body;

end P;

package body P is
Object_C : Integer;
procedure Dummy_For_Body is null;

end P;

package P.Child is
function X return Integer;

end P.Child;

Which return statement would be legal in
P.Child.X?

A. return Object_A;
B. return Object_B;
C. return Object_C;
D. None of the above

Explanations
A. Object_A is in the public part of P -

visible to any unit that with's P
B. Object_B is in the private part of P -

visible in the private part or body of
any descendant of P

C. Object_C is in the body of P, so it is
only visible in the body of P

D. A and B are both valid completions

621 / 787

Program Structure
Visibility Limits

Quiz
package P is

Object_A : Integer;
private

Object_B : Integer;
procedure Dummy_For_Body;

end P;

package body P is
Object_C : Integer;
procedure Dummy_For_Body is null;

end P;

package P.Child is
function X return Integer;

end P.Child;

Which return statement would be legal in
P.Child.X?

A. return Object_A;
B. return Object_B;
C. return Object_C;
D. None of the above

Explanations
A. Object_A is in the public part of P -

visible to any unit that with's P
B. Object_B is in the private part of P -

visible in the private part or body of
any descendant of P

C. Object_C is in the body of P, so it is
only visible in the body of P

D. A and B are both valid completions

621 / 787

Program Structure
Private Children

Private Children

622 / 787

Program Structure
Private Children

Private Children

Intended as implementation artifacts

Only available within subsystem
Rules prevent with clauses by clients

Thus cannot export anything outside subsystem

Thus have no parent visibility restrictions

Public part of child also has visibility to ancestors' private parts

private package Maze.Debug is
procedure Dump_State;
...

end Maze.Debug;

623 / 787

Program Structure
Private Children

Rules Preventing Private Child Visibility

Only available within immediate family
Rest of subsystem cannot import them

Public unit declarations have import restrictions
To prevent re-exporting private information

Public unit bodies have no import restrictions
Since can't re-export any imported info

Private units can import anything
Declarations and bodies can import public and private units
Cannot be imported outside subsystem so no restrictions

624 / 787

Program Structure
Private Children

Import Rules

Only parent of private unit and its descendants can import a
private child

Public unit declarations import restrictions
Not allowed to have with clauses for private units

Exception explained in a moment

Precludes re-exporting private information

Private units can import anything
Declarations and bodies can import private children

625 / 787

Program Structure
Private Children

Some Public Children Are Trustworthy
Would only use a private sibling's exports privately
But rules disallow with clause

private package OS.UART is
type Device is limited private;
procedure Open (This : out Device; ...);
...

end OS.UART;

-- illegal - private child
with OS.UART;
package OS.Serial is

type COM_Port is limited private;
...

private
type COM_Port is limited record

-- but I only need it here!
COM : OS.UART.Device;

...
end record;

end OS.Serial;
626 / 787

Program Structure
Private Children

Solution 1: Move Type to Parent Package
package OS is

...
private

-- no longer an ADT!
type Device is limited private;

...
end OS;
private package OS.UART is

procedure Open (This : out Device;
...);

...
end OS.UART;

package OS.Serial is
type COM_Port is limited private;
...

private
type COM_Port is limited record

COM : Device; -- now visible
...

end record;
end OS.Serial;

627 / 787

Program Structure
Private Children

Solution 2: Partially Import Private Unit

Via private with clause

Syntax

private with package_name {, package_name} ;

Public declarations can then access private siblings
But only in their private part
Still prevents exporting contents of private unit

The specified package need not be a private unit
But why bother otherwise

628 / 787

Program Structure
Private Children

private with Example

private package OS.UART is
type Device is limited private;
procedure Open (This : out Device;

...);
...

end OS.UART;

private with OS.UART;
package OS.Serial is

type COM_Port is limited private;
...

private
type COM_Port is limited record

COM : OS.UART.Device;
...

end record;
end OS.Serial;

629 / 787

Program Structure
Private Children

Combining Private and Limited Withs

Cyclic limited with clauses allowed
A public unit can with a private unit
With-ed unit only visible in the private part

limited with Parent.Public_Child;
private package Parent.Private_Child is

type T is ...
end Parent.Private_Child;

limited private with Parent.Private_Child;
package Parent.Public_Child is

...
private

X : access Parent.Private_Child.T;
end Parent.Public_Child;

630 / 787

Program Structure
Private Children

Child Subprograms

Child units can be subprograms
Recall syntax
Both public and private child subprograms

Separate declaration required if private
Syntax doesn't allow private on subprogram bodies

Only library packages can be parents
Only they have necessary scoping

private procedure Parent.Child;

631 / 787

Program Structure
Lab

Lab

632 / 787

Program Structure
Lab

Program Structure Lab

Requirements
Create a message data type

Actual message type should be private
Need primitives to construct message and query contents

Create a child package that allows clients to modify the contents of
the message

Main program should

Build a message
Print the contents of the message
Modify part of the message
Print the new contents of the message

Note: There is no prompt for this lab - you need to learn
how to build the program structure

633 / 787

Program Structure
Lab

Program Structure Lab Solution - Messages
1 package Messages is
2 type Message_T is private;
3 type Kind_T is (Command, Query);
4 type Request_T is digits 6;
5 type Status_T is mod 255;
6

7 function Create (Kind : Kind_T;
8 Request : Request_T;
9 Status : Status_T)

10 return Message_T;
11

12 function Kind (Message : Message_T) return Kind_T;
13 function Request (Message : Message_T) return Request_T;
14 function Status (Message : Message_T) return Status_T;
15

16 private
17 type Message_T is record
18 Kind : Kind_T;
19 Request : Request_T;
20 Status : Status_T;
21 end record;
22 end Messages;
23

24 package body Messages is
25

26 function Create (Kind : Kind_T;
27 Request : Request_T;
28 Status : Status_T)
29 return Message_T is
30 (Kind => Kind, Request => Request, Status => Status);
31

32 function Kind (Message : Message_T) return Kind_T is
33 (Message.Kind);
34 function Request (Message : Message_T) return Request_T is
35 (Message.Request);
36 function Status (Message : Message_T) return Status_T is
37 (Message.Status);
38

39 end Messages;

634 / 787

Program Structure
Lab

Program Structure Lab Solution - Message Modification
1 package Messages.Modify is
2

3 procedure Kind (Message : in out Message_T;
4 New_Value : Kind_T);
5 procedure Request (Message : in out Message_T;
6 New_Value : Request_T);
7 procedure Status (Message : in out Message_T;
8 New_Value : Status_T);
9

10 end Messages.Modify;
11

12 package body Messages.Modify is
13

14 procedure Kind (Message : in out Message_T;
15 New_Value : Kind_T) is
16 begin
17 Message.Kind := New_Value;
18 end Kind;
19

20 procedure Request (Message : in out Message_T;
21 New_Value : Request_T) is
22 begin
23 Message.Request := New_Value;
24 end Request;
25

26 procedure Status (Message : in out Message_T;
27 New_Value : Status_T) is
28 begin
29 Message.Status := New_Value;
30 end Status;
31

32 end Messages.Modify;

635 / 787

Program Structure
Lab

Program Structure Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Messages;
3 with Messages.Modify;
4 procedure Main is
5 Message : Messages.Message_T;
6 procedure Print is
7 begin
8 Put_Line ("Kind => " & Messages.Kind (Message)'Image);
9 Put_Line ("Request => " & Messages.Request (Message)'Image);

10 Put_Line ("Status => " & Messages.Status (Message)'Image);
11 New_Line;
12 end Print;
13 begin
14 Message := Messages.Create (Kind => Messages.Command,
15 Request => 12.34,
16 Status => 56);
17 Print;
18 Messages.Modify.Request (Message => Message,
19 New_Value => 98.76);
20 Print;
21 end Main;

636 / 787

Program Structure
Summary

Summary

637 / 787

Program Structure
Summary

Summary

Hierarchical library units address important issues
Direct support for subsystems
Extension without recompilation
Separation of concerns with controlled sharing of visibility (Ada
2012)

Parents should document assumptions for children
"These must always be in ascending order!"

Children cannot misbehave unless imported ("with'ed")

The writer of a child unit must be trusted
As much as if he or she were to modify the parent itself

638 / 787

Visibility

Visibility

639 / 787

Visibility
Introduction

Introduction

640 / 787

Visibility
Introduction

Improving Readability

Descriptive names plus hierarchical packages makes for very long
statements

Messages.Queue.Diagnostics.Inject_Fault (
Fault => Messages.Queue.Diagnostics.CRC_Failure,
Position => Messages.Queue.Front);

Operators treated as functions defeat the purpose of overloading

Complex1 := Complex_Types."+" (Complex2, Complex3);

Ada has mechanisms to simplify hierarchies

641 / 787

Visibility
Introduction

Operators and Primitives

Operators
Constructs which behave generally like functions but which differ
syntactically or semantically
Typically arithmetic, comparison, and logical

Primitive operation
Predefined operations such as = and + etc.
Subprograms declared in the same package as the type and which
operate on the type
Inherited or overridden subprograms
For tagged types, class-wide subprograms
Enumeration literals

642 / 787

Visibility
"use" Clauses

"use" Clauses

643 / 787

Visibility
"use" Clauses

"use" Clauses
use Pkg; provides direct visibility into public items in Pkg

Direct Visibility - as if object was referenced from within package
being used
Public Items - any entity defined in package spec public section

May still use expanded name

package Ada.Text_IO is
procedure Put_Line (...);
procedure New_Line (...);
...

end Ada.Text_IO;

with Ada.Text_IO;
procedure Hello is

use Ada.Text_IO;
begin

Put_Line ("Hello World");
New_Line (3);
Ada.Text_IO.Put_Line ("Good bye");

end Hello;
644 / 787

Visibility
"use" Clauses

"use" Clause Syntax

May have several, like with clauses

Can refer to any visible package (including nested packages)

Syntax

use_package_clause ::= use package_name {, package_name};

Can only use a package
Subprograms have no contents to use

645 / 787

Visibility
"use" Clauses

"use" Clause Scope
Applies to end of body, from first occurrence

package Pkg_A is
Constant_A : constant := 123;

end Pkg_A;

package Pkg_B is
Constant_B : constant := 987;

end Pkg_B;

with Pkg_A;
with Pkg_B;
use Pkg_A; -- everything in Pkg_A is now visible
package P is

A : Integer := Constant_A; -- legal
B1 : Integer := Constant_B; -- illegal
use Pkg_B; -- everything in Pkg_B is now visible
B2 : Integer := Constant_B; -- legal
function F return Integer;

end P;

package body P is
-- all of Pkg_A and Pkg_B is visible here
function F return Integer is (Constant_A + Constant_B);

end P;
646 / 787

Visibility
"use" Clauses

No Meaning Changes
A new use clause won't change a program's meaning!
Any directly visible names still refer to the original entities

package D is
T : Float;

end D;

with D;
procedure P is

procedure Q is
T, X : Float;

begin
...
declare

use D;
begin

-- With or without the clause, "T" means Q.T
X := T;

end;
...

end Q;
647 / 787

Visibility
"use" Clauses

No Ambiguity Introduction

package D is
V : Boolean;

end D;

package E is
V : Integer;

end E;
with D, E;

procedure P is
procedure Q is

use D, E;
begin

-- to use V here, must specify D.V or E.V
...

end Q;
begin
...

648 / 787

Visibility
"use" Clauses

"use" Clauses and Child Units
A clause for a child does not imply one for its parent

A clause for a parent makes the child directly visible
Since children are 'inside' declarative region of parent

package Parent is
P1 : Integer;

end Parent;

package Parent.Child is
PC1 : Integer;

end Parent.Child;

with Parent;
with Parent.Child; use Parent.Child;
procedure Demo is

D1 : Integer := Parent.P1;
D2 : Integer := Parent.Child.PC1;
use Parent;
D3 : Integer := P1; -- illegal
D4 : Integer := PC1;
...

649 / 787

Visibility
"use" Clauses

"use" Clause and Implicit Declarations
Visibility rules apply to implicit declarations too

package P is
type Int is range Lower .. Upper;
-- implicit declarations
-- function "+"(Left, Right : Int) return Int;
-- function "="(Left, Right : Int) return Boolean;

end P;

with P;
procedure Test is

A, B, C : P.Int := some_value;
begin

C := A + B; -- illegal reference to operator
C := P."+" (A,B);
declare

use P;
begin

C := A + B; -- now legal
end;

end Test;
650 / 787

Visibility
"use type" and "use all type" Clauses

"use type" and "use all type" Clauses

651 / 787

Visibility
"use type" and "use all type" Clauses

"use type" and "use all type"

use type makes primitive operators directly visible for specified
type

Implicit and explicit operator function declarations

use type subtype_mark {, subtype_mark};

use all type makes primitive operators and all other
operations directly visible for specified type

All enumerated type values will also be directly visible

use all type subtype_mark {, subtype_mark};

More specific alternative to use clauses
Especially useful when multiple use clauses introduce ambiguity

Note that use all type was introduced in Ada 2012
652 / 787

Visibility
"use type" and "use all type" Clauses

Example Code

package Types is
type Distance_T is range 0 .. Integer'Last;

-- explicit declaration
-- (we don't want a negative distance)
function "-" (Left, Right : Distance_T)

return Distance_T;

-- implicit declarations (we get the division operator
-- for "free", showing it for completeness)
-- function "/" (Left, Right : Distance_T) return
-- Distance_T;

-- primitive operation
function Min (A, B : Distance_T)

return Distance_T;

end Types;
653 / 787

Visibility
"use type" and "use all type" Clauses

"use" Clauses Comparison

654 / 787

Visibility
"use type" and "use all type" Clauses

Multiple "use type" Clauses
May be necessary
Only those that mention the type in their profile are made visible

package P is
type T1 is range 1 .. 10;
type T2 is range 1 .. 10;
-- implicit
-- function "+"(Left : T2; Right : T2) return T2;
type T3 is range 1 .. 10;
-- explicit
function "+"(Left : T1; Right : T2) return T3;

end P;

with P;
procedure UseType is

X1 : P.T1;
X2 : P.T2;
X3 : P.T3;
use type P.T1;

begin
X3 := X1 + X2; -- operator visible because it uses T1
X2 := X2 + X2; -- operator not visible

end UseType;
655 / 787

Visibility
Renaming Entities

Renaming Entities

656 / 787

Visibility
Renaming Entities

Three Positives Make a Negative

Good Coding Practices ...
Descriptive names
Modularization
Subsystem hierarchies

Can result in cumbersome references

-- use cosine rule to determine distance between two points,
-- given angle and distances between observer and 2 points
-- A**2 = B**2 + C**2 - 2*B*C*cos(angle)
Observation.Sides (Viewpoint_Types.Point1_Point2) :=

Math_Utilities.Square_Root
(Observation.Sides (Viewpoint_Types.Observer_Point1)**2 +
Observation.Sides (Viewpoint_Types.Observer_Point2)**2 -
2.0 * Observation.Sides (Viewpoint_Types.Observer_Point1) *

Observation.Sides (Viewpoint_Types.Observer_Point2) *
Math_Utilities.Trigonometry.Cosine

(Observation.Vertices (Viewpoint_Types.Observer)));
657 / 787

Visibility
Renaming Entities

Writing Readable Code - Part 1
We could use use on package names to remove some dot-notation

-- use cosine rule to determine distance between two points, given angle
-- and distances between observer and 2 points A**2 = B**2 + C**2 -
-- 2*B*C*cos(angle)
Observation.Sides (Point1_Point2) :=

Square_Root
(Observation.Sides (Observer_Point1)**2 +
Observation.Sides (Observer_Point2)**2 -
2.0 * Observation.Sides (Observer_Point1) *

Observation.Sides (Observer_Point2) *
Cosine (Observation.Vertices (Observer)));

But that only shortens the problem, not simplifies it
If there are multiple "use" clauses in scope:

Reviewer may have hard time finding the correct definition
Homographs may cause ambiguous reference errors

We want the ability to refer to certain entities by another name
(like an alias) with full read/write access (unlike temporary
variables)

658 / 787

Visibility
Renaming Entities

The "renames" Keyword

renames declaration creates an alias to an entity
Packages

package Trig renames Math.Trigonometry

Objects (or elements of objects)

Angles : Viewpoint_Types.Vertices_Array_T
renames Observation.Vertices;

Required_Angle : Viewpoint_Types.Vertices_T
renames Viewpoint_Types.Observer;

Subprograms

function Sqrt (X : Base_Types.Float_T)
return Base_Types.Float_T
renames Math.Square_Root;

659 / 787

Visibility
Renaming Entities

Writing Readable Code - Part 2
With renames our complicated code example is easier to
understand

Executable code is very close to the specification
Declarations as "glue" to the implementation details

begin
package Math renames Math_Utilities;
package Trig renames Math.Trigonometry;

function Sqrt (X : Base_Types.Float_T) return Base_Types.Float_T
renames Math.Square_Root;

function Cos ...

B : Base_Types.Float_T
renames Observation.Sides (Viewpoint_Types.Observer_Point1);

-- Rename the others as Side2, Angles, Required_Angle, Desired_Side
begin

...
-- A**2 = B**2 + C**2 - 2*B*C*cos(angle)
A := Sqrt (B**2 + C**2 - 2.0 * B * C * Cos (Angle));

end;
660 / 787

Visibility
Lab

Lab

661 / 787

Visibility
Lab

Visibility Lab

Requirements
Create two types packages for two different shapes. Each package
should have the following components:

Number_of_Sides - indicates how many sides in the shape
Side_T - numeric value for length
Shape_T - array of Side_T elements whose length is
Number_of_Sides

Create a main program that will

Create an object of each Shape_T
Set the values for each element in Shape_T
Add all the elements in each object and print the total

Hints
There are multiple ways to resolve this!

662 / 787

Visibility
Lab

Visibility Lab Solution - Types

1 package Quads is
2

3 Number_Of_Sides : constant Natural := 4;
4 type Side_T is range 0 .. 1_000;
5 type Shape_T is array (1 .. Number_Of_Sides) of Side_T;
6

7 end Quads;
8

9 package Triangles is
10

11 Number_Of_Sides : constant Natural := 3;
12 type Side_T is range 0 .. 1_000;
13 type Shape_T is array (1 .. Number_Of_Sides) of Side_T;
14

15 end Triangles;
663 / 787

Visibility
Lab

Visibility Lab Solution - Main #1
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Quads;
3 with Triangles;
4 procedure Main1 is
5

6 use type Quads.Side_T;
7 Q_Sides : Natural renames Quads.Number_Of_Sides;
8 Quad : Quads.Shape_T := (1, 2, 3, 4);
9 Quad_Total : Quads.Side_T := 0;

10

11 use type Triangles.Side_T;
12 T_Sides : Natural renames Triangles.Number_Of_Sides;
13 Triangle : Triangles.Shape_T := (1, 2, 3);
14 Triangle_Total : Triangles.Side_T := 0;
15

16 begin
17

18 for I in 1 .. Q_Sides loop
19 Quad_Total := Quad_Total + Quad (I);
20 end loop;
21 Put_Line ("Quad: " & Quads.Side_T'Image (Quad_Total));
22

23 for I in 1 .. T_Sides loop
24 Triangle_Total := Triangle_Total + Triangle (I);
25 end loop;
26 Put_Line ("Triangle: " & Triangles.Side_T'Image (Triangle_Total));
27

28 end Main1;

664 / 787

Visibility
Lab

Visibility Lab Solution - Main #2
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Quads; use Quads;
3 with Triangles; use Triangles;
4 procedure Main2 is
5 function Q_Image (S : Quads.Side_T) return String
6 renames Quads.Side_T'Image;
7 Quad : Quads.Shape_T := (1, 2, 3, 4);
8 Quad_Total : Quads.Side_T := 0;
9

10 function T_Image (S : Triangles.Side_T) return String
11 renames Triangles.Side_T'Image;
12 Triangle : Triangles.Shape_T := (1, 2, 3);
13 Triangle_Total : Triangles.Side_T := 0;
14

15 begin
16

17 for I in Quad'Range loop
18 Quad_Total := Quad_Total + Quad (I);
19 end loop;
20 Put_Line ("Quad: " & Q_Image (Quad_Total));
21

22 for I in Triangle'Range loop
23 Triangle_Total := Triangle_Total + Triangle (I);
24 end loop;
25 Put_Line ("Triangle: " & T_Image (Triangle_Total));
26

27 end Main2;

665 / 787

Visibility
Summary

Summary

666 / 787

Visibility
Summary

Summary

use clauses are not evil but can be abused
Can make it difficult for others to understand code

use all type clauses are more likely in practice than use type
clauses

Only available in Ada 2012 and later

Renames allow us to alias entities to make code easier to read
Subprogram renaming has many other uses, such as adding /
removing default parameter values

667 / 787

Access Types

Access Types

668 / 787

Access Types
Introduction

Introduction

669 / 787

Access Types
Introduction

Access Types Design

Memory-addressed objects are called access types
Objects are associated to pools of memory

With different allocation / deallocation policies
Access objects are guaranteed to always be meaningful

In the absence of Unchecked_Deallocation
And if pool-specific

Ada
type Integer_Pool_Access

is access Integer;
P_A : Integer_Pool_Access

:= new Integer;

type Integer_General_Access
is access all Integer;

G : aliased Integer;
G_A : Integer_General_Access := G'Access;

C++
int * P_C = malloc (sizeof (int));
int * P_CPP = new int;
int * G_C = &Some_Int;

.
670 / 787

Access Types
Introduction

Access Types Can Be Dangerous

Multiple memory issues
Leaks / corruptions

Introduces potential random failures complicated to analyze

Increase the complexity of the data structures

May decrease the performances of the application
Dereferences are slightly more expensive than direct access
Allocations are a lot more expensive than stacking objects

Ada avoids using accesses as much as possible
Arrays are not pointers
Parameters are implicitly passed by reference

Only use them when needed
671 / 787

Access Types
Introduction

Stack Vs Heap

I : Integer := 0;
J : String := "Some Long String";

I : Access_Int := new Integer'(0);
J : Access_Str := new String'("Some Long String");

672 / 787

Access Types
Access Types

Access Types

673 / 787

Access Types
Access Types

Declaration Location

Can be at library level

package P is
type String_Access is access String;

end P;

Can be nested in a procedure

package body P is
procedure Proc is

type String_Access is access String;
begin

...
end Proc;

end P;

Nesting adds non-trivial issues
Creates a nested pool with a nested accessibility
Don't do that unless you know what you are doing! (see later)

674 / 787

Access Types
Access Types

Null Values

A pointer that does not point to any actual data has a null value
Access types have a default value of null
null can be used in assignments and comparisons

declare
type Acc is access all Integer;
V : Acc;

begin
if V = null then

-- will go here
end if;
V := new Integer'(0);
V := null; -- semantically correct, but memory leak

675 / 787

Access Types
Access Types

Access Types and Primitives

Subprogram using an access type are primitive of the access type
Not the type of the accessed object

type A_T is access all T;
procedure Proc (V : A_T); -- Primitive of A_T, not T

Primitive of the type can be created with the access mode
Anonymous access type

Details elsewhere

procedure Proc (V : access T); -- Primitive of T

676 / 787

Access Types
Access Types

Dereferencing Access Types

.all does the access dereference
Lets you access the object pointed to by the pointer

.all is optional for
Access on a component of an array
Access on a component of a record

677 / 787

Access Types
Access Types

Dereference Examples

type R is record
F1, F2 : Integer;

end record;
type A_Int is access Integer;
type A_String is access all String;
type A_R is access R;
V_Int : A_Int := new Integer;
V_String : A_String := new String'("abc");
V_R : A_R := new R;

V_Int.all := 0;
V_String.all := "cde";
V_String (1) := 'z'; -- similar to V_String.all (1) := 'z';
V_R.all := (0, 0);
V_R.F1 := 1; -- similar to V_R.all.F1 := 1;

678 / 787

Access Types
Pool-Specific Access Types

Pool-Specific Access Types

679 / 787

Access Types
Pool-Specific Access Types

Pool-Specific Access Type

An access type is a type

type T is [...]
type T_Access is access T;
V : T_Access := new T;

Conversion is not possible between pool-specific access types

680 / 787

Access Types
Pool-Specific Access Types

Allocations

Objects are created with the new reserved word

The created object must be constrained
The constraint is given during the allocation

V : String_Access := new String (1 .. 10);

The object can be created by copying an existing object - using a
qualifier

V : String_Access := new String'("This is a String");

681 / 787

Access Types
Pool-Specific Access Types

Deallocations

Deallocations are unsafe
Multiple deallocations problems
Memory corruptions
Access to deallocated objects

As soon as you use them, you lose the safety of your access

But sometimes, you have to do what you have to do ...
There's no simple way of doing it
Ada provides Ada.Unchecked_Deallocation
Has to be instantiated (it's a generic)
Must work on an object, reset to null afterwards

682 / 787

Access Types
Pool-Specific Access Types

Deallocation Example

-- generic used to deallocate memory
with Ada.Unchecked_Deallocation;
procedure P is

type An_Access is access A_Type;
-- create instances of deallocation function
-- (object type, access type)
procedure Free is new Ada.Unchecked_Deallocation

(A_Type, An_Access);
V : An_Access := new A_Type;

begin
Free (V);
-- V is now null

end P;

683 / 787

Access Types
General Access Types

General Access Types

684 / 787

Access Types
General Access Types

General Access Types

Can point to any pool (including stack)

type T is [...]
type T_Access is access all T;
V : T_Access := new T;

Still distinct type

Conversions are possible

type T_Access_2 is access all T;
V2 : T_Access_2 := T_Access_2 (V); -- legal

685 / 787

Access Types
General Access Types

Referencing the Stack

By default, stack-allocated objects cannot be referenced - and can
even be optimized into a register by the compiler

aliased declares an object to be referenceable through an access
value

V : aliased Integer;

'Access attribute gives a reference to the object

A : Int_Access := V'Access;

'Unchecked_Access does it without checks

686 / 787

Access Types
General Access Types

Aliased Objects Examples
type Acc is access all Integer;
V, G : Acc;
I : aliased Integer;
...
V := I'Access;
V.all := 5; -- Same a I := 5
...
procedure P1 is

I : aliased Integer;
begin

G := I'Unchecked_Access;
P2;
-- Necessary to avoid corruption
-- Watch out for any of G's copies!
G := null;

end P1;

procedure P2 is
begin

G.all := 5;
end P2;

687 / 787

Access Types
General Access Types

Aliased Parameters

To ensure a subprogram parameter always has a valid memory
address, define it as aliased

Ensures 'Access and 'Address are valid for the parameter

procedure Example (Param : aliased Integer);

Object1 : aliased Integer;
Object2 : Integer;

-- This is OK
Example (Object1);

-- Compile error: Object2 could be optimized away
-- or stored in a register
Example (Object2);

-- Compile error: No address available for parameter
Example (123);

688 / 787

Access Types
General Access Types

Quiz

type One_T is access all Integer;
type Two_T is access Integer;

A : aliased Integer;
B : Integer;

One : One_T;
Two : Two_T;

Which assignment(s) is (are) legal?

A. One := B'Access;
B. One := A'Access;
C. Two := B'Access;
D. Two := A'Access;

'Access is only allowed for general access types (One_T). To use
'Access on an object, the object must be aliased.

689 / 787

Access Types
General Access Types

Quiz

type One_T is access all Integer;
type Two_T is access Integer;

A : aliased Integer;
B : Integer;

One : One_T;
Two : Two_T;

Which assignment(s) is (are) legal?

A. One := B'Access;
B. One := A'Access;
C. Two := B'Access;
D. Two := A'Access;

'Access is only allowed for general access types (One_T). To use
'Access on an object, the object must be aliased.

689 / 787

Access Types
Accessibility Checks

Accessibility Checks

690 / 787

Access Types
Accessibility Checks

Introduction to Accessibility Checks (1/2)
The depth of an object depends on its nesting within declarative
scopes

package body P is
-- Library level, depth 0
O0 : aliased Integer;
procedure Proc is

-- Library level subprogram, depth 1
type Acc1 is access all Integer;
procedure Nested is

-- Nested subprogram, enclosing + 1, here 2
O2 : aliased Integer;

Objects can be referenced by access types that are at same
depth or deeper

An access scope must be ≤ the object scope

type Acc1 (depth 1) can access O0 (depth 0) but not O2 (depth
2)

The compiler checks it statically
Removing checks is a workaround!

Note: Subprogram library units are at depth 1 and not 0
691 / 787

Access Types
Accessibility Checks

Introduction to Accessibility Checks (2/2)
Issues with nesting

package body P is
type T0 is access all Integer;
A0 : T0;
V0 : aliased Integer;

procedure Proc is
type T1 is access all Integer;
A1 : T1;
V1 : aliased Integer;

begin
A0 := V0'Access;
-- A0 := V1'Access; -- illegal
A0 := V1'Unchecked_Access;
A1 := V0'Access;
A1 := V1'Access;
A1 := T1 (A0);
A1 := new Integer;
-- A0 := T0 (A1); -- illegal

end Proc;
end P;

To avoid having to face these issues, avoid nested access types
692 / 787

Access Types
Accessibility Checks

Dynamic Accessibility Checks
Following the same rules

Performed dynamically by the runtime

Lots of possible cases
New compiler versions may detect more cases
Using access always requires proper debugging and reviewing

procedure Main is
type Acc is access all Integer;
O : Acc;

procedure Set_Value (V : access Integer) is
begin

O := Acc (V);
end Set_Value;

begin
declare

O2 : aliased Integer := 2;
begin

Set_Value (O2'Access);
end;

end Main;
693 / 787

Access Types
Accessibility Checks

Getting Around Accessibility Checks

Sometimes it is OK to use unsafe accesses to data

'Unchecked_Access allows access to a variable of an
incompatible accessibility level

Beware of potential problems!

type Acc is access all Integer;
G : Acc;
procedure P is

V : aliased Integer;
begin

G := V'Unchecked_Access;
...
Do_Something (G.all);
G := null; -- This is "reasonable"

end P;
694 / 787

Access Types
Accessibility Checks

Using Access Types for Recursive Structures

It is not possible to declare recursive structure
But there can be an access to the enclosing type

type Cell; -- partial declaration
type Cell_Access is access all Cell;
type Cell is record -- full declaration

Next : Cell_Access;
Some_Value : Integer;

end record;

695 / 787

Access Types
Accessibility Checks

Quiz
type Global_Access_T is access all Integer;
Global_Access : Global_Access_T;
Global_Object : aliased Integer;
procedure Proc_Access is

type Local_Access_T is access all Integer;
Local_Access : Local_Access_T;
Local_Object : aliased Integer;

begin

Which assignment(s) is (are) legal?

A. Global_Access := Global_Object'Access;
B. Global_Access := Local_Object'Access;
C. Local_Access := Global_Object'Access;
D. Local_Access := Local_Object'Access;

Explanations

A. Access type has same depth as object
B. Access type is not allowed to have higher level than accessed object
C. Access type has lower depth than accessed object
D. Access type has same depth as object

696 / 787

Access Types
Accessibility Checks

Quiz
type Global_Access_T is access all Integer;
Global_Access : Global_Access_T;
Global_Object : aliased Integer;
procedure Proc_Access is

type Local_Access_T is access all Integer;
Local_Access : Local_Access_T;
Local_Object : aliased Integer;

begin

Which assignment(s) is (are) legal?

A. Global_Access := Global_Object'Access;
B. Global_Access := Local_Object'Access;
C. Local_Access := Global_Object'Access;
D. Local_Access := Local_Object'Access;

Explanations

A. Access type has same depth as object
B. Access type is not allowed to have higher level than accessed object
C. Access type has lower depth than accessed object
D. Access type has same depth as object

696 / 787

Access Types
Memory Corruption

Memory Corruption

697 / 787

Access Types
Memory Corruption

Common Memory Problems (1/3)
Uninitialized pointers

declare
type An_Access is access all Integer;
V : An_Access;

begin
V.all := 5; -- constraint error

Double deallocation

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
Free (V2);

May raise Storage_Error if memory is still protected
(unallocated)

May deallocate a different object if memory has been reallocated

Putting that object in an inconsistent state

698 / 787

Access Types
Memory Corruption

Common Memory Problems (2/3)

Accessing deallocated memory

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
V2.all := 5;

May raise Storage_Error if memory is still protected
(unallocated)
May modify a different object if memory has been reallocated
(putting that object in an inconsistent state)

699 / 787

Access Types
Memory Corruption

Common Memory Problems (3/3)

Memory leaks

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V : An_Access := new Integer;

begin
V := null;

Silent problem

Might raise Storage_Error if too many leaks
Might slow down the program if too many page faults

700 / 787

Access Types
Memory Corruption

How to Fix Memory Problems?

There is no language-defined solution

Use the debugger!

Use additional tools
gnatmem monitor memory leaks
valgrind monitor all the dynamic memory

GNAT.Debug_Pools gives a pool for an access type, raising
explicit exception in case of invalid access
Others...

701 / 787

Access Types
Anonymous Access Types

Anonymous Access Types

702 / 787

Access Types
Anonymous Access Types

Anonymous Access Parameters

Parameter modes are of 4 types: in, out, in out, access

The access mode is called anonymous access type

Anonymous access is implicitly general (no need for all)

When used:
Any named access can be passed as parameter
Any anonymous access can be passed as parameter

type Acc is access all Integer;
Aliased_Integer : aliased Integer;
Access_Object : Acc := Aliased_Integer'Access;
procedure P1 (Anon_Access : access Integer) is null;
procedure P2 (Access_Parameter : access Integer) is
begin

P1 (Aliased_Integer'Access);
P1 (Access_Object);
P1 (Access_Parameter);

end P2;
703 / 787

Access Types
Anonymous Access Types

Anonymous Access Types

Other places can declare an anonymous access

function F return access Integer;
V : access Integer;
type T (V : access Integer) is record

C : access Integer;
end record;
type A is array (Integer range <>) of access Integer;

Do not use them without a clear understanding of accessibility
check rules

704 / 787

Access Types
Anonymous Access Types

Anonymous Access Constants

constant (instead of all) denotes an access type through which
the referenced object cannot be modified

type CAcc is access constant Integer;
G1 : aliased Integer;
G2 : aliased constant Integer := 123;
V1 : CAcc := G1'Access;
V2 : CAcc := G2'Access;
V1.all := 0; -- illegal

not null denotes an access type for which null value cannot be
accepted

Available in Ada 2005 and later

type NAcc is not null access Integer;
V : NAcc := null; -- illegal

Also works for subprogram parameters

procedure Bar (V1 : access constant Integer);
procedure Foo (V1 : not null access Integer); -- Ada 2005

705 / 787

Access Types
Lab

Lab

706 / 787

Access Types
Lab

Access Types Lab
Overview

Create a (really simple) Password Manager
The Password Manager should store the password and a counter for
each of some number of logins
As it's a Password Manager, you want to modify the data directly
(not pass the information around)

Requirements
Create a Password Manager package

Create a record to store the password string and the counter
Create an array of these records indexed by the login identifier
The user should be able to retrieve a pointer to the record, either
for modification or for viewing

Main program should:

Set passwords and initial counter values for many logins
Print password and counter value for each login

Hint
Password is a string of varying length

Easiest way to do this is a pointer to a string that gets initialized to
the correct length

707 / 787

Access Types
Lab

Access Types Lab Solution - Password Manager
package Password_Manager is

type Login_T is (Email, Banking, Amazon, Streaming);
type Password_T is record

Count : Natural;
Password : access String;

end record;

type Modifiable_T is access all Password_T;
type Viewable_T is access constant Password_T;

function Update (Login : Login_T) return Modifiable_T;
function View (Login : Login_T) return Viewable_T;

end Password_Manager;

package body Password_Manager is

Passwords : array (Login_T) of aliased Password_T;

function Update (Login : Login_T) return Modifiable_T is
(Passwords (Login)'Access);

function View (Login : Login_T) return Viewable_T is
(Passwords (Login)'Access);

end Password_Manager;

708 / 787

Access Types
Lab

Access Types Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Password_Manager; use Password_Manager;
3 procedure Main is
4

5 procedure Update (Which : Password_Manager.Login_T;
6 Pw : String;
7 Count : Natural) is
8 begin
9 Update (Which).Password := new String'(Pw);

10 Update (Which).Count := Count;
11 end Update;
12

13 begin
14 Update (Email, "QWE!@#", 1);
15 Update (Banking, "asd123", 22);
16 Update (Amazon, "098poi", 333);
17 Update (Streaming, ")(*LKJ", 444);
18

19 for Login in Login_T'Range loop
20 Put_Line
21 (Login'Image & " => " & View (Login).Password.all &
22 View (Login).Count'Image);
23 end loop;
24 end Main;

709 / 787

Access Types
Summary

Summary

710 / 787

Access Types
Summary

Summary

Access types are the same as C/C++ pointers

There are usually better ways of memory management
Language has its own ways of dealing with large objects passed as
parameters
Language has libraries dedicated to memory allocation /
deallocation

At a minimum, create your own generics to do allocation /
deallocation

Minimize memory leakage and corruption

711 / 787

Genericity

Genericity

712 / 787

Genericity
Introduction

Introduction

713 / 787

Genericity
Introduction

The Notion of a Pattern
Sometimes algorithms can be abstracted from types and
subprograms

procedure Swap_Int (Left, Right : in out Integer) is
V : Integer := Left;

begin
Left := Right;
Right := V;

end Swap_Int;

procedure Swap_Bool (Left, Right : in out Boolean) is
V : Boolean := Left;

begin
Left := Right;
Right := V;

end Swap_Bool;

It would be nice to extract these properties in some common
pattern, and then just replace the parts that need to be replaced

procedure Swap (Left, Right : in out (Integer | Boolean)) is
V : (Integer | Boolean) := Left;

begin
Left := Right;
Right := V;

end Swap;

714 / 787

Genericity
Introduction

Solution: Generics

A generic unit is a unit that does not exist
It is a pattern based on properties
The instantiation applies the pattern to certain parameters

715 / 787

Genericity
Introduction

Ada Generic Compared to C++ Template
Ada Generic
-- specification
generic

type T is private;
procedure Swap (L, R : in out T);

-- implementation
procedure Swap (L, R : in out T) is

Tmp : T := L;
begin

L := R;
R := Tmp;

end Swap;

-- instance
procedure Swap_F is new Swap (Float);

C++ Template
// prototype
template <class T>
void Swap (T & L, T & R);

// implementation
template <class T>
void Swap (T & L, T & R) {

T Tmp = L;
L = R;
R = Tmp;

}

// instance
int x, y;
Swap<int>(x,y);

716 / 787

Genericity
Creating Generics

Creating Generics

717 / 787

Genericity
Creating Generics

What Can Be Made Generic?

Subprograms and packages can be made generic

generic
type T is private;

procedure Swap (L, R : in out T)
generic

type T is private;
package Stack is

procedure Push (Item : T);
...

Children of generic units have to be generic themselves

generic
package Stack.Utilities is

procedure Print (S : Stack_T);
718 / 787

Genericity
Creating Generics

How Do You Use a Generic?

Generic instantiation is creating new set of data where a generic
package contains library-level variables:

package Integer_Stack is new Stack (Integer);
package Integer_Stack_Utils is

new Integer_Stack.Utilities;
...
Integer_Stack.Push (S, 1);
Integer_Stack_Utils.Print (S);

719 / 787

Genericity
Generic Data

Generic Data

720 / 787

Genericity
Generic Data

Generic Types Parameters (1/3)

A generic parameter is a template

It specifies the properties the generic body can rely on

generic
type T1 is private;
type T2 (<>) is private;
type T3 is limited private;

package Parent is

The actual parameter must be no more restrictive then the
generic contract

721 / 787

Genericity
Generic Data

Generic Types Parameters (2/3)

Generic formal parameter tells generic what it is allowed to do
with the type

type T1 is (<>); Discrete type; 'First, 'Succ, etc available
type T2 is range <>; Signed Integer type; appropriate mathematic operations allowed
type T3 is digits <>; Floating point type; appropriate mathematic operations allowed
type T4; Incomplete type; can only be used as target of access
type T5 is tagged private; tagged type; can extend the type
type T6 is private; No knowledge about the type other than assignment, comparison, object creation allowed
type T7 (<>) is private; (<>) indicates type can be unconstrained, so any object has to be initialized

722 / 787

Genericity
Generic Data

Generic Types Parameters (3/3)
The usage in the generic has to follow the contract

Generic Subprogram
generic

type T (<>) is private;
procedure P (V : T);
procedure P (V : T) is

X1 : T := V; -- OK, can constrain by initialization
X2 : T; -- Compilation error, no constraint to this

begin
Instantiations
type Limited_T is limited null record;

-- unconstrained types are accepted
procedure P1 is new P (String);

-- type is already constrained
-- (but generic will still always initialize objects)
procedure P2 is new P (Integer);

-- Illegal: the type can't be limited because the generic
-- thinks it can make copies
procedure P3 is new P (Limited_T);

723 / 787

Genericity
Generic Data

Generic Parameters Can Be Combined
Consistency is checked at compile-time

generic
type T (<>) is private;
type Acc is access all T;
type Index is (<>);
type Arr is array (Index range <>) of Acc;

function Element (Source : Arr;
Position : Index)
return T;

type String_Ptr is access all String;
type String_Array is array (Integer range <>)

of String_Ptr;

function String_Element is new Element
(T => String,
Acc => String_Ptr,
Index => Integer,
Arr => String_Array);

724 / 787

Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is (are) legal instantiation(s)?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

725 / 787

Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is (are) legal instantiation(s)?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

725 / 787

Genericity
Generic Formal Data

Generic Formal Data

726 / 787

Genericity
Generic Formal Data

Generic Constants/Variables As Parameters
Variables can be specified on
the generic contract
The mode specifies the way
the variable can be used:

in → read only
in out → read write

Generic variables can be
defined after generic types

Generic package
generic

type Element_T is private;
Array_Size : Positive;
High_Watermark : in out Element_T;

package Repository is
Generic instance
V : Float;
Max : Float;

procedure My_Repository is new Repository
(Element_T => Float,
Array_size => 10,
High_Watermark => Max);

727 / 787

Genericity
Generic Formal Data

Generic Subprogram Parameters
Subprograms can be defined in the generic contract

Must be introduced by with to differ from the generic unit

generic
type T is private;
with function Less_Than (L, R : T) return Boolean;

function Max (L, R : T) return T;

function Max (L, R : T) return T is
begin

if Less_Than (L, R) then
return R;

else
return L;

end if;
end Max;

type Something_T is null record;
function Less_Than (L, R : Something_T) return Boolean;
procedure My_Max is new Max (Something_T, Less_Than);

728 / 787

Genericity
Generic Formal Data

Generic Subprogram Parameters Defaults

is <> - matching subprogram is taken by default

is null - null procedure is taken by default
Only available in Ada 2005 and later

generic
type T is private;
with function Is_Valid (P : T) return Boolean is <>;
with procedure Error_Message (P : T) is null;

procedure Validate (P : T);

function Is_Valid_Record (P : Record_T) return Boolean;

procedure My_Validate is new Validate (Record_T,
Is_Valid_Record);

-- Is_Valid maps to Is_Valid_Record
-- Error_Message maps to a null procedure

729 / 787

Genericity
Generic Formal Data

Quiz
generic

type Element_T is (<>);
Last : in out Element_T;

procedure Write (P : Element_T);

Numeric : Integer;
Enumerated : Boolean;
Floating_Point : Float;

Which of the following piece(s) of code is (are) legal?

A. procedure Write_A is new Write (Integer, Numeric)
B. procedure Write_B is new Write (Boolean, Enumerated)
C. procedure Write_C is new Write (Integer, Integer'Pos

(Numeric))
D. procedure Write_D is new Write (Float,

Floating_Point)

A. Legal
B. Legal
C. The second generic parameter has to be a variable
D. The first generic parameter has to be discrete

730 / 787

Genericity
Generic Formal Data

Quiz
generic

type Element_T is (<>);
Last : in out Element_T;

procedure Write (P : Element_T);

Numeric : Integer;
Enumerated : Boolean;
Floating_Point : Float;

Which of the following piece(s) of code is (are) legal?

A. procedure Write_A is new Write (Integer, Numeric)
B. procedure Write_B is new Write (Boolean, Enumerated)
C. procedure Write_C is new Write (Integer, Integer'Pos

(Numeric))
D. procedure Write_D is new Write (Float,

Floating_Point)

A. Legal
B. Legal
C. The second generic parameter has to be a variable
D. The first generic parameter has to be discrete

730 / 787

Genericity
Generic Formal Data

Quiz
1 procedure Double (X : in out Integer);
2 procedure Square (X : in out Integer);
3 procedure Half (X : in out Integer);
4 generic
5 with procedure Double (X : in out Integer) is <>;
6 with procedure Square (X : in out Integer) is null;
7 procedure Math (P : in out Integer);
8 procedure Math (P : in out Integer) is
9 begin

10 Double (P);
11 Square (P);
12 end Math;
13 procedure Instance is new Math (Double => Half);
14 Number : Integer := 10;

What is the value of Number after
calling Instance (Number)

A. 20
B. 400
C. 5
D. 10

A. Would be correct for procedure Instance is new Math;
B. Would be correct for either

procedure Instance is new Math (Double, Square); or
procedure Instance is new Math (Square => Square);

C. Correct

We call formal parameter Double, which has been assigned to
actual subprogram Half, so P, which is 10, is halved.

Then we call formal parameter Square, which has no actual
subprogram, so it defaults to null, so nothing happens to P

D. Would be correct for either
procedure Instance is new Math (Double, Half); or
procedure Instance is new Math (Square => Half);

731 / 787

Genericity
Generic Formal Data

Quiz
1 procedure Double (X : in out Integer);
2 procedure Square (X : in out Integer);
3 procedure Half (X : in out Integer);
4 generic
5 with procedure Double (X : in out Integer) is <>;
6 with procedure Square (X : in out Integer) is null;
7 procedure Math (P : in out Integer);
8 procedure Math (P : in out Integer) is
9 begin

10 Double (P);
11 Square (P);
12 end Math;
13 procedure Instance is new Math (Double => Half);
14 Number : Integer := 10;

What is the value of Number after
calling Instance (Number)

A. 20
B. 400
C. 5
D. 10

A. Would be correct for procedure Instance is new Math;
B. Would be correct for either

procedure Instance is new Math (Double, Square); or
procedure Instance is new Math (Square => Square);

C. Correct

We call formal parameter Double, which has been assigned to
actual subprogram Half, so P, which is 10, is halved.
Then we call formal parameter Square, which has no actual
subprogram, so it defaults to null, so nothing happens to P

D. Would be correct for either
procedure Instance is new Math (Double, Half); or
procedure Instance is new Math (Square => Half);

731 / 787

Genericity
Generic Formal Data

Quiz Answer in Depth
A. Wrong - result for procedure Instance is new Math;
B. Wrong - result for

procedure Instance is new Math (Double, Square);
C. Double at line 10 is mapped to Half at line 3, and Square at line

11 wasn't specified so it defaults to null
D. Wrong - result for

procedure Instance is new Math (Square => Half);

Math is going to call two subprograms in order, Double and Square,
but both of those come from the formal data.

Whatever is used for Double, will be called by the Math instance. If
nothing is passed in, the compiler tries to find a subprogram named
Double and use that. If it doesn't, that's a compile error.

Whatever is used for Square, will be called by the Math instance. If
nothing is passed in, the compiler will treat this as a null call.

In our case, Half is passed in for the first subprogram, but nothing is
passed in for the second, so that call will just be null.

So the final answer should be 5 (hence letter C).

732 / 787

Genericity
Generic Formal Data

Quiz Answer in Depth
A. Wrong - result for procedure Instance is new Math;
B. Wrong - result for

procedure Instance is new Math (Double, Square);
C. Double at line 10 is mapped to Half at line 3, and Square at line

11 wasn't specified so it defaults to null
D. Wrong - result for

procedure Instance is new Math (Square => Half);

Math is going to call two subprograms in order, Double and Square,
but both of those come from the formal data.

Whatever is used for Double, will be called by the Math instance. If
nothing is passed in, the compiler tries to find a subprogram named
Double and use that. If it doesn't, that's a compile error.

Whatever is used for Square, will be called by the Math instance. If
nothing is passed in, the compiler will treat this as a null call.

In our case, Half is passed in for the first subprogram, but nothing is
passed in for the second, so that call will just be null.

So the final answer should be 5 (hence letter C).
732 / 787

Genericity
Generic Completion

Generic Completion

733 / 787

Genericity
Generic Completion

Implications at Compile-Time

The body needs to be visible when compiling the user code
Therefore, when distributing a component with generics to be
instantiated, the code of the generic must come along

734 / 787

Genericity
Generic Completion

Generic and Freezing Points

A generic type freezes the type and needs the full view
May force separation between its declaration (in spec) and
instantiations (in private or body)

generic
type X is private;

package Base is
V : access X;

end Base;

package P is
type X is private;
-- illegal
package B is new Base (X);

private
type X is null record;

end P;
735 / 787

Genericity
Generic Completion

Generic Incomplete Parameters

A generic type can be incomplete
Allows generic instantiations before full type definition
Restricts the possible usages (only access)

generic
type X; -- incomplete

package Base is
V : access X;

end Base;

package P is
type X is private;
-- legal
package B is new Base (X);

private
type X is null record;

end P;
736 / 787

Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is (are) legal for G_P's body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

737 / 787

Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is (are) legal for G_P's body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

737 / 787

Genericity
Lab

Lab

738 / 787

Genericity
Lab

Genericity Lab

Requirements
Create a record structure containing multiple fields

Need subprograms to convert the record to a string, and compare
the order of two records
Lab prompt package Data_Type contains a framework

Create a generic list implementation

Need subprograms to add items to the list, sort the list, and print
the list

The main program should:

Add many records to the list
Sort the list
Print the list

Hints
Sort routine will need to know how to compare elements
Print routine will need to know how to print one element

739 / 787

Genericity
Lab

Genericity Lab Solution - Generic (Spec)
1 generic
2 type Element_T is private;
3 Max_Size : Natural;
4 with function ">" (L, R : Element_T) return Boolean is <>;
5 with function Image (Element : Element_T) return String;
6 package Generic_List is
7

8 type List_T is private;
9

10 procedure Add (This : in out List_T;
11 Item : in Element_T);
12 procedure Sort (This : in out List_T);
13 procedure Print (List : List_T);
14

15 private
16 subtype Index_T is Natural range 0 .. Max_Size;
17 type List_Array_T is array (1 .. Index_T'Last) of Element_T;
18

19 type List_T is record
20 Values : List_Array_T;
21 Length : Index_T := 0;
22 end record;
23 end Generic_List;

740 / 787

Genericity
Lab

Genericity Lab Solution - Generic (Body)
1 with Ada.Text_io; use Ada.Text_IO;
2 package body Generic_List is
3

4 procedure Add (This : in out List_T;
5 Item : in Element_T) is
6 begin
7 This.Length := This.Length + 1;
8 This.Values (This.Length) := Item;
9 end Add;

10

11 procedure Sort (This : in out List_T) is
12 Temp : Element_T;
13 begin
14 for I in 1 .. This.Length loop
15 for J in 1 .. This.Length - I loop
16 if This.Values (J) > This.Values (J + 1) then
17 Temp := This.Values (J);
18 This.Values (J) := This.Values (J + 1);
19 This.Values (J + 1) := Temp;
20 end if;
21 end loop;
22 end loop;
23 end Sort;
24

25 procedure Print (List : List_T) is
26 begin
27 for I in 1 .. List.Length loop
28 Put_Line (Integer'Image (I) & ") " & Image (List.Values (I)));
29 end loop;
30 end Print;
31

32 end Generic_List;

741 / 787

Genericity
Lab

Genericity Lab Solution - Main
1 with Data_Type;
2 with Generic_List;
3 procedure Main is
4 package List is new Generic_List (Element_T => Data_Type.Record_T,
5 Max_Size => 20,
6 ">" => Data_Type.">",
7 Image => Data_Type.Image);
8

9 My_List : List.List_T;
10 Element : Data_Type.Record_T;
11

12 begin
13 List.Add (My_List, (Integer_Field => 111,
14 Character_Field => 'a'));
15 List.Add (My_List, (Integer_Field => 111,
16 Character_Field => 'z'));
17 List.Add (My_List, (Integer_Field => 111,
18 Character_Field => 'A'));
19 List.Add (My_List, (Integer_Field => 999,
20 Character_Field => 'B'));
21 List.Add (My_List, (Integer_Field => 999,
22 Character_Field => 'Y'));
23 List.Add (My_List, (Integer_Field => 999,
24 Character_Field => 'b'));
25 List.Add (My_List, (Integer_Field => 112,
26 Character_Field => 'a'));
27 List.Add (My_List, (Integer_Field => 998,
28 Character_Field => 'z'));
29

30 List.Sort (My_List);
31 List.Print (My_List);
32 end Main;

742 / 787

Genericity
Summary

Summary

743 / 787

Genericity
Summary

Generic Routines Vs Common Routines
package Helper is

type Float_T is digits 6;
generic

type Type_T is digits <>;
Min : Type_T;
Max : Type_T;

function In_Range_Generic (X : Type_T) return Boolean;
function In_Range_Common (X : Float_T;

Min : Float_T;
Max : Float_T)
return Boolean;

end Helper;

procedure User is
type Speed_T is new Float_T range 0.0 .. 100.0;
B : Boolean;
function Valid_Speed is new In_Range_Generic

(Speed_T, Speed_T'First, Speed_T'Last);
begin

B := Valid_Speed (12.3);
B := In_Range_Common (12.3, Speed_T'First, Speed_T'Last);

744 / 787

Genericity
Summary

Summary

Generics are useful for copying code that works the same just for
different types

Sorting, containers, etc

Properly written generics only need to be tested once
But testing / debugging can be more difficult

Generic instantiations are best done at compile time
At the package level
Can be run time expensive when done in subprogram scope

745 / 787

Tasking

Tasking

746 / 787

Tasking
Introduction

Introduction

747 / 787

Tasking
Introduction

Concurrency Mechanisms

Task
Active
Rendezvous: Client / Server model
Server entries
Client entry calls
Typically maps to OS threads

Protected object
Passive
Monitors protected data
Restricted set of operations
Concurrency-safe semantics
No thread overhead
Very portable

Object-Oriented
Synchronized interfaces
Protected objects inheritance

748 / 787

Tasking
Introduction

A Simple Task
Concurrent code execution via task

limited types (No copies allowed)

procedure Main is
task type Simple_Task_T;
task body Simple_Task_T is
begin

loop
delay 1.0;
Put_Line ("T");

end loop;
end Simple_Task_T;
Simple_Task : Simple_Task_T;
-- This task starts when Simple_Task is elaborated

begin
loop

delay 1.0;
Put_Line ("Main");

end loop;
end;

A task is started when its declaration scope is elaborated

Its enclosing scope exits when all tasks have finished
749 / 787

Tasking
Tasks

Tasks

750 / 787

Tasking
Tasks

Rendezvous Definitions
Server declares several entry

Client calls entries like subprograms

Server accept the client calls

At each standalone accept, server task blocks
Until a client calls the related entry

task type Msg_Box_T is
entry Start;
entry Receive_Message (S : String);

end Msg_Box_T;

task body Msg_Box_T is
begin

loop
accept Start;
Put_Line ("start");

accept Receive_Message (S : String) do
Put_Line ("receive " & S);

end Receive_Message;
end loop;

end Msg_Box_T;

T : Msg_Box_T;

751 / 787

Tasking
Tasks

Rendezvous Entry Calls

Upon calling an entry, client blocks
Until server reaches end of its accept block

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
T.Receive_Message ("2");

May be executed as follows:

calling start
start -- May switch place with line below
calling receive 1 -- May switch place with line above
receive 1
calling receive 2
-- Blocked until another task calls Start

752 / 787

Tasking
Tasks

Rendezvous with a Task

accept statement
Wait on single entry
If entry call waiting: Server handles it
Else: Server waits for an entry call

select statement
Several entries accepted at the same time
Can time-out on the wait
Can be not blocking if no entry call waiting
Can terminate if no clients can possibly make entry call
Can conditionally accept a rendezvous based on a guard
expression

753 / 787

Tasking
Protected Objects

Protected Objects

754 / 787

Tasking
Protected Objects

Protected Objects

Multitask-safe accessors to get and set state
No direct state manipulation
No concurrent modifications
limited types (No copies allowed)

755 / 787

Tasking
Protected Objects

Protected: Functions and Procedures

A function can get the state
Multiple-Readers
Protected data is read-only
Concurrent call to function is allowed
No concurrent call to procedure

A procedure can set the state
Single-Writer

No concurrent call to either procedure or function

In case of concurrency, other callers get blocked
Until call finishes

756 / 787

Tasking
Protected Objects

Example

protected type Protected_Value is
procedure Set (V : Integer);
function Get return Integer;

private
Value : Integer;

end Protected_Value;

protected body Protected_Value is
procedure Set (V : Integer) is
begin

Value := V;
end Set;

function Get return Integer is
begin

return Value;
end Get;

end Protected_Value;
757 / 787

Tasking
Delays

Delays

758 / 787

Tasking
Delays

Delay Keyword

delay keyword part of tasking
Blocks for a time
Relative: Blocks for at least Duration
Absolute: Blocks until no earlier than Calendar.Time or
Real_Time.Time

with Calendar;

procedure Main is
Relative : Duration := 1.0;
Absolute : Calendar.Time

:= Calendar.Time_Of (2030, 10, 01);
begin

delay Relative;
delay until Absolute;

end Main;
759 / 787

Tasking
Task and Protected Types

Task and Protected Types

760 / 787

Tasking
Task and Protected Types

Task Activation

Instantiated tasks start running when activated

On the stack
When enclosing declarative part finishes elaborating

On the heap
Immediately at instantiation

task type First_T is ...
type First_T_A is access all First_T;

task body First_T is ...
...
declare

V1 : First_T;
V2 : First_T_A;

begin -- V1 is activated
V2 := new First_T; -- V2 is activated immediately

761 / 787

Tasking
Task and Protected Types

Single Declaration
Instantiate an anonymous task (or protected) type
Declares an object of that type

task type Task_T is
entry Start;

end Task_T;

type Task_Ptr_T is access all Task_T;

task body Task_T is
begin

accept Start;
end Task_T;
...

V1 : Task_T;
V2 : Task_Ptr_T;

begin
V1.Start;
V2 := new Task_T;
V2.all.Start;

762 / 787

Tasking
Task and Protected Types

Task Scope

Nesting is possible in any declarative block

Scope has to wait for tasks to finish before ending

At library level: program ends only when all tasks finish

package P is
task type T;

end P;

package body P is
task body T is

loop
delay 1.0;
Put_Line ("tick");

end loop;
end T;

Task_Instance : T;
end P;

763 / 787

Tasking
Some Advanced Concepts

Some Advanced Concepts

764 / 787

Tasking
Some Advanced Concepts

Waiting on Multiple Entries

select can wait on multiple entries
With equal priority, regardless of declaration order

loop
select

accept Receive_Message (V : String)
do

Put_Line ("Message : " & V);
end Receive_Message;

or
accept Stop;
exit;

end select;
end loop;
...
T.Receive_Message ("A");
T.Receive_Message ("B");
T.Stop;

765 / 787

Tasking
Some Advanced Concepts

Waiting with a Delay
A select statement may time-out using delay or delay until

Resume execution at next statement

Multiple delay allowed
Useful when the value is not hard-coded

loop
select

accept Receive_Message (V : String) do
Put_Line ("Message : " & V);

end Receive_Message;
or

delay 50.0;
Put_Line ("Don't wait any longer");
exit;

end select;
end loop;

Task will wait up to 50 seconds for Receive_Message. If no message
is received, it will write to the console, and then restart the loop. (If
the exit wasn't there, the loop would exit the first time no message
was received.)

766 / 787

Tasking
Some Advanced Concepts

Calling an Entry with a Delay Protection

A call to entry blocks the task until the entry is accept 'ed
Wait for a given amount of time with select ... delay
Only one entry call is allowed
No accept statement is allowed

task Msg_Box is
entry Receive_Message (V : String);

end Msg_Box;

procedure Main is
begin

select
Msg_Box.Receive_Message ("A");

or
delay 50.0;

end select;
end Main;

Procedure will wait up to 50 seconds for Receive_Message to be
accepted before it gives up

767 / 787

Tasking
Some Advanced Concepts

Non-blocking Accept or Entry
Using else

Task skips the accept or entry call if they are not ready to be
entered

delay is not allowed in this case

select
accept Receive_Message (V : String) do

Put_Line ("Received : " & V);
end Receive_Message;

else
Put_Line ("Nothing to receive");

end select;

[...]

select
T.Receive_Message ("A");

else
Put_Line ("Receive message not called");

end select;
768 / 787

Tasking
Some Advanced Concepts

Queue

Protected entry or procedure and tasks entry are activated by
one task at a time

Mutual exclusion section

Other tasks trying to enter are queued
In First-In First-Out (FIFO) by default

When the server task terminates, tasks still queued receive
Tasking_Error

769 / 787

Tasking
Some Advanced Concepts

Advanced Tasking

Other constructions are available

Guard condition on accept
requeue to defer handling of an entry call
terminate the task when no entry call can happen anymore
abort to stop a task immediately
select ... then abort some other task

770 / 787

Tasking
Lab

Lab

771 / 787

Tasking
Lab

Tasking Lab

Requirements
Create multiple tasks with the following attributes

Startup entry receives some identifying information and a delay
length
Stop entry will end the task
Until stopped, the task will send it's identifying information to a
monitor periodically based on the delay length

Create a protected object that stores the identifying information of
task that called it

Main program should periodically check the protected object, and
print when it detects a task switch

I.e. If the current task is different than the last printed task, print
the identifying information for the current task

772 / 787

Tasking
Lab

Tasking Lab Solution - Protected Object
1 with Task_Type;
2 package Protected_Object is
3 protected Monitor is
4 procedure Set (Id : Task_Type.Task_Id_T);
5 function Get return Task_Type.Task_Id_T;
6 private
7 Value : Task_Type.Task_Id_T;
8 end Monitor;
9 end Protected_Object;

10

11 package body Protected_Object is
12 protected body Monitor is
13 procedure Set (Id : Task_Type.Task_Id_T) is
14 begin
15 Value := Id;
16 end Set;
17 function Get return Task_Type.Task_Id_T is (Value);
18 end Monitor;
19 end Protected_Object;

773 / 787

Tasking
Lab

Tasking Lab Solution - Task Type
1 package Task_Type is
2 type Task_Id_T is range 1_000 .. 9_999;
3 task type Task_T is
4 entry Start_Task (Task_Id : Task_Id_T;
5 Delay_Duration : Duration);
6 entry Stop_Task;
7 end Task_T;
8 end Task_Type;
9

10 with Protected_Object;
11 package body Task_Type is
12 task body Task_T is
13 Wait_Time : Duration;
14 Id : Task_Id_T;
15 begin
16 accept Start_Task (Task_Id : Task_Id_T;
17 Delay_Duration : Duration) do
18 Wait_Time := Delay_Duration;
19 Id := Task_Id;
20 end Start_Task;
21 loop
22 select
23 accept Stop_Task;
24 exit;
25 or
26 delay Wait_Time;
27 Protected_Object.Monitor.Set (Id);
28 end select;
29 end loop;
30 end Task_T;
31 end Task_Type;

774 / 787

Tasking
Lab

Tasking Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Protected_Object;
3 with Task_Type;
4 procedure Main is
5 T1, T2, T3 : Task_Type.Task_T;
6 Last_Id, This_Id : Task_Type.Task_Id_T := Task_Type.Task_Id_T'Last;
7 use type Task_Type.Task_Id_T;
8 begin
9

10 T1.Start_Task (1_111, 0.3);
11 T2.Start_Task (2_222, 0.5);
12 T3.Start_Task (3_333, 0.7);
13

14 for Count in 1 .. 20 loop
15 This_Id := Protected_Object.Monitor.Get;
16 if Last_Id /= This_Id then
17 Last_Id := This_Id;
18 Put_Line (Count'Image & "> " & Last_Id'image);
19 end if;
20 delay 0.2;
21 end loop;
22

23 T1.Stop_Task;
24 T2.Stop_Task;
25 T3.Stop_Task;
26

27 end Main;

775 / 787

Tasking
Summary

Summary

776 / 787

Tasking
Summary

Summary

Tasks are language-based concurrency mechanisms
Typically implemented as threads
Not necessarily for truly parallel operations
Originally for task-switching / time-slicing

Multiple mechanisms to synchronize tasks
Delay
Rendezvous
Queues
Protected Objects

777 / 787

Annex - Reference Materials

Annex - Reference Materials

778 / 787

Annex - Reference Materials
General Ada Information

General Ada Information

779 / 787

Annex - Reference Materials
General Ada Information

Learning the Ada Language

Written as a tutorial for those new to Ada

780 / 787

Annex - Reference Materials
General Ada Information

Reference Manual

LRM - Language Reference Manual (or just RM)
Always on-line (including all previous versions) at www.adaic.org

Finding stuff in the RM
You will often see the RM cited like this RM 4.5.3(10)

This means Section 4.5.3, paragraph 10

Have a look at the table of contents

Knowing that chapter 5 is Statements is useful

Index is very long, but very good!

781 / 787

www.adaic.org

Annex - Reference Materials
General Ada Information

Current Ada Standard

"ISO/IEC 8652(E) with Technical Corrigendum 1"
Useful as a Reference Text but not intended to be read from
beginning to end

782 / 787

Annex - Reference Materials
GNAT-Specific Help

GNAT-Specific Help

783 / 787

Annex - Reference Materials
GNAT-Specific Help

Reference Manual

Reference Manual(s) available from GNAT Studio Help

784 / 787

Annex - Reference Materials
GNAT-Specific Help

GNAT Tools

GNAT User's Guide
LOTS of info about the main tools: the GNAT compiler, binder,
linker etc.

GNAT Reference Manual
How GNAT implements Ada, pragmas, aspects, attributes etc. etc.

GNAT Studio (the IDE)
Tutorial
User's Guide
Release notes

Many other tools

785 / 787

Annex - Reference Materials
AdaCore Support

AdaCore Support

786 / 787

Annex - Reference Materials
AdaCore Support

Need More Help?

If you have an AdaCore subscription:
Find out your customer number #XXXX

Open a "Case" via the GNATtracker web interface and/or email
GNATtracker

Select "Create A New Case" from the main landing page

Email

Send to: support@adacore.com
Subject should read: #XXXX - (descriptive text)

Not just for "bug reports"
Ask questions, make suggestions, etc.

787 / 787

mailto:support@adacore.com

	Overview
	About This Course
	A Little History
	Big Picture
	Setup

	Declarations
	Introduction
	Identifiers and Comments
	Literals
	Object Declarations
	Universal Types
	Named Numbers
	Scope and Visibility
	Aspects
	Summary

	Basic Types
	Introduction
	Discrete Numeric Types
	Enumeration Types
	Real Types
	Miscellaneous
	Subtypes
	Lab
	Summary

	Statements
	Introduction
	Block Statements
	Null Statements
	Assignment Statements
	Conditional Statements
	Loop Statements
	GOTO Statements
	Lab
	Summary

	Expressions
	Introduction
	Membership Tests
	Qualified Names
	Conditional Expressions
	Lab
	Summary

	Array Types
	Introduction
	Constrained Array Types
	Unconstrained Array Types
	Attributes
	Operations
	Operations Added for Ada2012
	Aggregates
	Detour - 'Image for Complex Types
	Anonymous Array Types
	Lab
	Summary

	Record Types
	Introduction
	Components Rules
	Operations
	Aggregates
	Default Values
	Variant Records
	Lab
	Summary

	Subprograms
	Introduction
	Syntax
	Parameters
	Null Procedures
	Nested Subprograms
	Procedure Specifics
	Function Specifics
	Expression Functions
	Potential Pitfalls
	Extended Examples
	Lab
	Summary

	Overloading
	Introduction
	Enumerals and Operators
	Call Resolution
	User-Defined Equality
	Lab
	Summary

	Tagged Derivation
	Introduction
	Tagged Derivation
	Lab
	Summary
	Additional Information - Extending Tagged Types

	Polymorphism
	Introduction
	Classes of Types
	Dispatching and Redispatching
	Exotic Dispatching Operations
	Lab
	Summary

	Packages
	Introduction
	Declarations
	Referencing Other Packages
	Bodies
	Executable Parts
	Idioms
	Lab
	Summary

	Private Types
	Introduction
	Implementing Abstract Data Types Via Views
	Private Part Construction
	View Operations
	When to Use or Avoid Private Types
	Idioms
	Lab
	Summary

	Program Structure
	Introduction
	Building a System
	Circular Dependencies
	Hierarchical Library Units
	Visibility Limits
	Private Children
	Lab
	Summary

	Visibility
	Introduction
	"use" Clauses
	"use type" and "use all type" Clauses
	Renaming Entities
	Lab
	Summary

	Access Types
	Introduction
	Access Types
	Pool-Specific Access Types
	General Access Types
	Accessibility Checks
	Memory Corruption
	Anonymous Access Types
	Lab
	Summary

	Genericity
	Introduction
	Creating Generics
	Generic Data
	Generic Formal Data
	Generic Completion
	Lab
	Summary

	Tasking
	Introduction
	Tasks
	Protected Objects
	Delays
	Task and Protected Types
	Some Advanced Concepts
	Lab
	Summary

	Annex - Reference Materials
	General Ada Information
	GNAT-Specific Help
	AdaCore Support

