
Introduction

Introduction

1 / 869

Introduction
About AdaCore

About AdaCore

2 / 869

Introduction
About AdaCore

The Company

Founded in 1994

Centered around helping developers build safe, secure and
reliable software

Headquartered in New York and Paris
Representatives in countries around the globe

Roots in Open Source software movement
GNAT compiler is part of GNU Compiler Collection (GCC)

3 / 869

Introduction
About This Training

About This Training

4 / 869

Introduction
About This Training

Your Trainer

Experience in software development
Languages
Methodology

Experience teaching this class

5 / 869

Introduction
About This Training

Goals of the training session

What you should know by the end of the training

Syllabus overview
The syllabus is a guide, but we might stray off of it
...and that's OK: we're here to cover your needs

6 / 869

Introduction
About This Training

Roundtable

5 minute exercise
Write down your answers to the following
Then share it with the room

Experience in software development
Languages
Methodology

Experience and interest with the syllabus
Current and upcoming projects
Curious for something?

Your personal goals for this training
What do you want to have coming out of this?

Anecdotes, stories... feel free to share!
Most interesting or funny bug you've encountered?
Your own programming interests?

7 / 869

Introduction
About This Training

Course Presentation

Slides

Quizzes

Labs
Hands-on practice
Recommended setup: latest GNAT Studio
Class reflection after some labs

Demos
Depending on the context

Daily schedule

8 / 869

Introduction
About This Training

Styles

This is a definition
this/is/a.path
code is highlighted
commands are emphasised --like-this

Warning
This is a warning

Note
This is an important piece of info

Tip
This is a tip

9 / 869

Basic Types

Basic Types

10 / 869

Basic Types
Introduction

Introduction

11 / 869

Basic Types
Introduction

Strong Typing

Definition of type
Applicable values
Applicable primitive operations

Compiler-enforced
Check of values and operations
Easy for a computer

Tip
Developer can focus on earlier phase: requirement

12 / 869

Basic Types
Introduction

Strongly-Typed Vs Weakly-Typed Languages

Weakly-typed:
Conversions are unchecked
Type errors are easy

typedef enum {north, south, east, west} direction;
typedef enum {sun, mon, tue, wed, thu, fri, sat} days;
direction heading = north;

heading = 1 + 3 * south/sun;// what?

Strongly-typed:
Conversions are checked
Type errors are hard

type Directions is (North, South, East, West);
type Days is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
Heading : Directions := North;
...
Heading := 1 + 3 * South/Sun; -- Compile Error

13 / 869

Basic Types
Introduction

A Little Terminology

Declaration creates a type name

type <name> is <type definition>;

Type-definition defines its structure
Characteristics, and operations
Base "class" of the type

type Type_1 is digits 12; -- floating-point
type Type_2 is range -200 .. 200; -- signed integer
type Type_3 is mod 256; -- unsigned integer

Representation is the memory-layout of an object of the type

14 / 869

Basic Types
Introduction

Abstract Data Types (ADT)

Variables of the type encapsulate the state

Classic definition of an ADT
Set of values
Set of operations
Hidden compile-time representation

Compiler-enforced
Check of values and operation
Easy for a computer
Developer can focus on earlier phase: requirements

15 / 869

Basic Types
Introduction

Ada "Named Typing"

Name differentiate types

Structure does not

Identical structures may not be interoperable

type Yen is range 0 .. 100_000_000;
type Ruble is range 0 .. 100_000_000;
Mine : Yen;
Yours : Ruble;
...
Mine := Yours; -- not legal

16 / 869

Basic Types
Introduction

Categories of Types

17 / 869

Basic Types
Introduction

Scalar Types

Indivisible: No components (also known as fields or elements)

Relational operators defined (<, =, ...)
Ordered

Have common attributes

Discrete Types
Integer
Enumeration

Real Types
Floating-point
Fixed-point

18 / 869

Basic Types
Introduction

Discrete Types

Individual ("discrete") values
1, 2, 3, 4 ...
Red, Yellow, Green

Integer types
Signed integer types

Modular integer types

Unsigned
Wrap-around semantics
Bitwise operations

Enumeration types
Ordered list of logical values

19 / 869

Basic Types
Introduction

Attributes
Properties of entities that can be queried like a function

May take input parameters

Defined by the language and/or compiler
Language-defined attributes found in RM K.2

May be implementation-defined

GNAT-defined attributes found in GNAT Reference Manual

Cannot be user-defined

Attribute behavior is generally pre-defined
Type_T'Digits gives number of digits used in Type_T definition

Some attributes can be modified by coding behavior
Typemark'Size gives the size of Typemark

Determined by compiler OR by using a representation clause
Object'Image gives a string representation of Object

Default behavior which can be replaced by aspect Put_Image

Examples

J := Object'Size;
K := Array_Object'First(2);

20 / 869

Basic Types
Introduction

Type Model Run-Time Costs

Checks at compilation and run-time

Same performance for identical programs
Run-time type checks can be disabled

Note
Compile-time check is free

C
int X;
int Y; // range 1 .. 10
...
if (X > 0 && X < 11)

Y = X;
else

// signal a failure

Ada
X : Integer;
Y, Z : Integer range 1 .. 10;
...
Y := X;
Z := Y; -- no check required

21 / 869

Basic Types
Introduction

The Type Model Saves Money

Shifts fixes and costs to early phases
Cost of an error during a flight?

22 / 869

Basic Types
Discrete Numeric Types

Discrete Numeric Types

23 / 869

Basic Types
Discrete Numeric Types

Signed Integer Types

Range of signed whole numbers
Symmetric about zero (-0 = +0)

Syntax

type <identifier> is range <lower> .. <upper>;

Implicit numeric operators

-- 12-bit device
type Analog_Conversions is range 0 .. 4095;
Count : Analog_Conversions := 0;
...
begin

...
Count := Count + 1;
...

end;
24 / 869

Basic Types
Discrete Numeric Types

Signed Integer Bounds

Must be static
Compiler selects base type
Hardware-supported integer type
Compilation error if not possible

25 / 869

Basic Types
Discrete Numeric Types

Predefined Signed Integer Types

Integer >= 16 bits wide

Other probably available
Long_Integer, Short_Integer, etc.
Guaranteed ranges: Short_Integer <= Integer <=
Long_Integer
Ranges are all implementation-defined

Warning
Portability not guaranteed

But usage may be difficult to avoid

26 / 869

Basic Types
Discrete Numeric Types

Operators for Signed Integer Type

By increasing precedence

relational operator = | /= | < | <= | > | >=
binary adding operator + | -
unary adding operator + | -
multiplying operator * | / | mod | rem
highest precedence operator ** | abs

Note
Exponentiation (**) result will be a signed integer

So power must be Integer >= 0

Warning
Division by zero → Constraint_Error

27 / 869

Basic Types
Discrete Numeric Types

Signed Integer Overflows

Finite binary representation
Common source of bugs

K : Short_Integer := Short_Integer'Last;
...
K := K + 1;

2#0111_1111_1111_1111# = (2**15)-1

+ 1

=======================
2#1000_0000_0000_0000# = -32,768

28 / 869

Basic Types
Discrete Numeric Types

Signed Integer Overflow: Ada Vs Others

Ada
Constraint_Error standard exception
Incorrect numerical analysis

Java
Silently wraps around (as the hardware does)

C/C++
Undefined behavior (typically silent wrap-around)

29 / 869

Basic Types
Discrete Numeric Types

String Attributes for All Scalars

T'Image (input)

Converts T → String

T'Value (input)

Converts String → T

Number : Integer := 12345;
Input : String (1 .. N);
...
Put_Line (Integer'Image (Number));
...
Get (Input);
Number := Integer'Value (Input);

30 / 869

Basic Types
Discrete Numeric Types

Range Attributes for All Scalars

T'First
First (smallest) value of type T

T'Last
Last (greatest) value of type T

T'Range
Shorthand for T'First .. T'Last

type Signed_T is range -99 .. 100;
Smallest : Signed_T := Signed_T'First; -- -99
Largest : Signed_T := Signed_T'Last; -- 100

31 / 869

Basic Types
Discrete Numeric Types

Neighbor Attributes for All Scalars

T'Pred (Input)

Predecessor of specified value
Input type must be T

T'Succ (Input)

Successor of specified value
Input type must be T

type Signed_T is range -128 .. 127;
type Unsigned_T is mod 256;
Signed : Signed_T := -1;
Unsigned : Unsigned_T := 0;
...
Signed := Signed_T'Succ (Signed); -- Signed = 0
...
Unsigned := Unsigned_T'Pred (Unsigned); -- Signed = 255

32 / 869

Basic Types
Discrete Numeric Types

Min/Max Attributes for All Scalars

T'Min (Value_A, Value_B)
Lesser of two T

T'Max (Value_A, Value_B)
Greater of two T

Safe_Lower : constant := 10;
Safe_Upper : constant := 30;
C : Integer := 15;
...
C := Integer'Max (Safe_Lower, C - 1);
...
C := Integer'Min (Safe_Upper, C + 1);

33 / 869

Basic Types
Discrete Numeric Types

Quiz
What happens when you try to compile/run this code?

C1 : constant := 2 ** 1024;
C2 : constant := 2 ** 1024 + 10;
C3 : constant := C1 - C2;
V : Integer := C1 - C2;

A. Compile error
B. Run-time error
C. V is assigned to -10
D. Unknown - depends on the compiler

Explanations

21024 too big for most runtimes BUT

C1, C2, and C3 are named numbers, not typed constants
Compiler uses unbounded precision for named numbers
Large intermediate representation does not get stored in object code

For assignment to V, subtraction is computed by compiler
V is assigned the value -10

34 / 869

Basic Types
Discrete Numeric Types

Quiz
What happens when you try to compile/run this code?

C1 : constant := 2 ** 1024;
C2 : constant := 2 ** 1024 + 10;
C3 : constant := C1 - C2;
V : Integer := C1 - C2;

A. Compile error
B. Run-time error
C. V is assigned to -10
D. Unknown - depends on the compiler

Explanations

21024 too big for most runtimes BUT

C1, C2, and C3 are named numbers, not typed constants
Compiler uses unbounded precision for named numbers
Large intermediate representation does not get stored in object code

For assignment to V, subtraction is computed by compiler
V is assigned the value -10

34 / 869

Basic Types
Modular Types

Modular Types

35 / 869

Basic Types
Modular Types

Bit Pattern Values and Range Constraints

Binary based assignments possible
No Constraint_Error when in range
Even if they would be <= 0 as a signed integer type

procedure Demo is
type Byte is mod 256; -- 0 .. 255
B : Byte;

begin
B := 2#1000_0000#; -- not a negative value

end Demo;

36 / 869

Basic Types
Modular Types

Modular Range Must Be Respected

procedure P_Unsigned is
type Byte is mod 2**8; -- 0 .. 255
B : Byte;
type Signed_Byte is range -128 .. 127;
SB : Signed_Byte;

begin
...
B := -256; -- compile error
SB := -1;
B := Byte (SB); -- run-time error
...

end P_Unsigned;

37 / 869

Basic Types
Modular Types

Safely Converting Signed to Unsigned

Conversion may raise Constraint_Error

Use T'Mod to return argument mod T'Modulus

Universal_Integer argument
So any integer type allowed

procedure Test is
type Byte is mod 2**8; -- 0 .. 255
B : Byte;
type Signed_Byte is range -128 .. 127;
SB : Signed_Byte;

begin
SB := -1;
B := Byte'Mod (SB); -- OK (255)

38 / 869

Basic Types
Modular Types

Package Interfaces

Standard package

Integer types with defined bit length

type My_Base_Integer is new Integer;
pragma Assert (My_Base_Integer'First = -2**31);
pragma Assert (My_Base_Integer'Last = 2**31-1);

- Dealing with hardware registers

Note: Shorter may not be faster for integer maths
Modern 64-bit machines are not efficient at 8-bit maths

type Integer_8 is range -2**7 .. 2**7-1;
for Integer_8'Size use 8;
-- and so on for 16, 32, 64 bit types...

39 / 869

Basic Types
Modular Types

Shift/Rotate Functions

In Interfaces package
Shift_Left
Shift_Right
Shift_Right_Arithmetic
Rotate_Left
etc.

See RM B.2 - The Package Interfaces

40 / 869

Basic Types
Modular Types

Bit-Oriented Operations Example

Assuming Unsigned_16 is used
16-bits modular

with Interfaces;
use Interfaces;
...
procedure Swap (X : in out Unsigned_16) is
begin

X := (Shift_Left (X,8) and 16#FF00#) or
(Shift_Right (X,8) and 16#00FF#);

end Swap;

41 / 869

Basic Types
Modular Types

Why No Implicit Shift and Rotate?

Arithmetic, logical operators available implicitly

Why not Shift, Rotate, etc. ?

By excluding other solutions
As functions in standard → May hide user-defined declarations
As new operators → New operators for a single type
As reserved words → Not upward compatible

42 / 869

Basic Types
Modular Types

Shift/Rotate for User-Defined Types

Must be modular types

Approach 1: use Interfaces's types
Unsigned_8, Unsigned_16 ...

Approach 2: derive from Interfaces's types
Operations are inherited
More on that later

type Byte is new Interfaces.Unsigned_8;

Approach 3: use GNAT's intrinsic
Conditions on function name and type representation
See GNAT UG 8.11

function Shift_Left
(Value : T;
Amount : Natural) return T with Import,

Convention => Intrinsic;
43 / 869

Basic Types
Modular Types

Quiz

type T is mod 256;
V : T := 255;

Which statement(s) is (are) legal?

A. V := V + 1
B. V := 16#ff#
C. V := 256
D. V := 255 + 1

44 / 869

Basic Types
Modular Types

Quiz

type T is mod 256;
V : T := 255;

Which statement(s) is (are) legal?

A. V := V + 1
B. V := 16#ff#
C. V := 256
D. V := 255 + 1

44 / 869

Basic Types
Modular Types

Quiz

with Interfaces; use Interfaces;

type T1 is new Unsigned_8;
V1 : T1 := 255;

type T2 is mod 256;
V2 : T2 := 255;

Which statement(s) is (are) legal?

A. V1 := Rotate_Left (V1, 1)
B. V1 := Positive'First
C. V2 := 1 and V2
D. V2 := Rotate_Left (V2, 1)
E. V2 := T2'Mod (2.0)

45 / 869

Basic Types
Modular Types

Quiz

with Interfaces; use Interfaces;

type T1 is new Unsigned_8;
V1 : T1 := 255;

type T2 is mod 256;
V2 : T2 := 255;

Which statement(s) is (are) legal?

A. V1 := Rotate_Left (V1, 1)
B. V1 := Positive'First
C. V2 := 1 and V2
D. V2 := Rotate_Left (V2, 1)
E. V2 := T2'Mod (2.0)

45 / 869

Basic Types
Enumeration Types

Enumeration Types

46 / 869

Basic Types
Enumeration Types

Enumeration Types

Enumeration of logical values
Integer value is an implementation detail

Syntax

type <identifier> is (<identifier-list>) ;

Literals
Distinct, ordered
Can be in multiple enumerations

type Colors is (Red, Orange, Yellow, Green, Blue, Violet);
type Stop_Light is (Red, Yellow, Green);
...
-- Red both a member of Colors and Stop_Light
Shade : Colors := Red;
Light : Stop_Light := Red;

47 / 869

Basic Types
Enumeration Types

Enumeration Type Operations

Assignment, relationals

Not numeric quantities
Possible with attributes
Not recommended

type Directions is (North, South, East, West);
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
Heading : Directions;
Today, Tomorrow : Days;
...
Today := Mon;
Today := North; -- compile error
Heading := South;
Heading := East + 1; -- compile error
if Today < Tomorrow then ...

48 / 869

Basic Types
Enumeration Types

Character Types

Literals
Enclosed in single quotes eg. 'A'
Case-sensitive

Special-case of enumerated type
At least one character enumeral

System-defined Character

Can be user-defined

type EBCDIC is (nul, ..., 'a' , ..., 'A', ..., del);
Control : EBCDIC := 'A';
Nullo : EBCDIC := nul;

49 / 869

Basic Types
Enumeration Types

Language-Defined Type Boolean

Enumeration

type Boolean is (False, True);

Supports assignment, relational operators, attributes

A : Boolean;
Counter : Integer;
...
A := (Counter = 22);

Logical operators and, or, xor, not

A := B or (not C); -- For A, B, C boolean

50 / 869

Basic Types
Enumeration Types

Why Boolean Isn't Just an Integer?
Example: Real-life error

HETE-2 satellite attitude
control system software
(ACS)
Written in C

Controls four "solar paddles"
Deployed after launch

51 / 869

Basic Types
Enumeration Types

Why Boolean Isn't Just an Integer!

Initially variable with paddles' state
Either all deployed, or none deployed

Used int as a boolean

if (rom->paddles_deployed == 1)
use_deployed_inertia_matrix();

else
use_stowed_inertia_matrix();

Later paddles_deployed became a 4-bits value
One bit per paddle
0 → none deployed, 0xF → all deployed

Then, use_deployed_inertia_matrix() if only first paddle is
deployed!

Better: boolean function paddles_deployed()

Single line to modify
52 / 869

Basic Types
Enumeration Types

Boolean Operators' Operand Evaluation

Evaluation order not specified
May be needed

Checking value before operation
Dereferencing null pointers
Division by zero

if Divisor /= 0 and K / Divisor = Max then ... -- Problem!

53 / 869

Basic Types
Enumeration Types

Short-Circuit Control Forms

Short-circuit → fixed evaluation order

Left-to-right

Right only evaluated if necessary
and then: if left is False, skip right

Divisor /= 0 and then K / Divisor = Max

or else: if left is True, skip right

Divisor = 0 or else K / Divisor = Max

54 / 869

Basic Types
Enumeration Types

Quiz

type Enum_T is (Able, Baker, Charlie);

Which statement(s) is (are) legal?

A. V1 : Enum_T := Enum_T'Value ("Able");
B. V2 : Enum_T := Enum_T'Value ("BAKER");
C. V3 : Enum_T := Enum_T'Value (" charlie ");
D. V4 : Enum_T := Enum_T'Value ("Able Baker Charlie");

Explanations

A. Legal
B. Legal - conversion is case-insensitive
C. Legal - leading/trailing blanks are ignored
D. Value tries to convert entire string, which will fail at run-time

55 / 869

Basic Types
Enumeration Types

Quiz

type Enum_T is (Able, Baker, Charlie);

Which statement(s) is (are) legal?

A. V1 : Enum_T := Enum_T'Value ("Able");
B. V2 : Enum_T := Enum_T'Value ("BAKER");
C. V3 : Enum_T := Enum_T'Value (" charlie ");
D. V4 : Enum_T := Enum_T'Value ("Able Baker Charlie");

Explanations

A. Legal
B. Legal - conversion is case-insensitive
C. Legal - leading/trailing blanks are ignored
D. Value tries to convert entire string, which will fail at run-time

55 / 869

Basic Types
Representation Values

Representation Values

56 / 869

Basic Types
Representation Values

Enumeration Representation Values
Numeric representation of enumerals

Position, unless redefined

Redefinition syntax

type Enum_T is (Able, Baker, Charlie, David);
for Enum_T use

(Able => 3, Baker => 15, Charlie => 63, David => 255);

Enumerals are ordered logically (not by value)

Prior to Ada 2022
Only way to get value is through Unchecked_Conversion

function Value is new Ada.Unchecked_Conversion
(Enum_T, Integer_8);

I : Integer_8;

begin
I := Value (Charlie);

New attributes in Ada 2022
'Enum_Rep to get representation value

Charlie'Enum_Rep → 63

'Enum_Val to convert integer to enumeral (if possible)

Enum_T'Enum_Val (15) → Baker

Enum_T'Enum_Val (16) → raise Constraint_Error

57 / 869

Basic Types
Representation Values

Order Attributes for All Discrete Types

All discrete types, mostly useful for enumerated types

T'Pos (Input)

"Logical position number" of Input

T'Val (Input)

Converts "logical position number" to T

type Days is (Sun, Mon, Tue, Wed, Thu, Fri, Sat); -- 0 .. 6
Today : Days := Some_Value;
Position : Integer;
...
Position := Days'Pos (Today);
...
Get (Position);
Today := Days'Val (Position);

58 / 869

Basic Types
Representation Values

Quiz

type T is (Left, Top, Right, Bottom);
V : T := Left;

Which of the following proposition(s) are true?

A. T'Value (V) = 1
B. T'Pos (V) = 0
C. T'Image (T'Pos (V)) = Left
D. T'Val (T'Pos (V) - 1) = Bottom

59 / 869

Basic Types
Representation Values

Quiz

type T is (Left, Top, Right, Bottom);
V : T := Left;

Which of the following proposition(s) are true?

A. T'Value (V) = 1
B. T'Pos (V) = 0
C. T'Image (T'Pos (V)) = Left
D. T'Val (T'Pos (V) - 1) = Bottom

59 / 869

Basic Types
Character Types

Character Types

60 / 869

Basic Types
Character Types

Language-Defined Character Types

Character

8-bit Latin-1
Base component of String
Uses attributes 'Image / 'Value

Wide_Character

16-bit Unicode
Base component of Wide_Strings
Uses attributes 'Wide_Image / 'Wide_Value

Wide_Wide_Character

32-bit Unicode
Base component of Wide_Wide_Strings
Uses attributes 'Wide_Wide_Image / 'Wide_Wide_Value

61 / 869

Basic Types
Character Types

Character Oriented Packages

Language-defined

Ada.Characters.Handling

Classification
Conversion

Ada.Characters.Latin_1

Characters as constants

See RM Annex A for details

62 / 869

Basic Types
Character Types

Ada.Characters.Latin_1 Sample Content

package Ada.Characters.Latin_1 is
NUL : constant Character := Character'Val (0);
...
LF : constant Character := Character'Val (10);
VT : constant Character := Character'Val (11);
FF : constant Character := Character'Val (12);
CR : constant Character := Character'Val (13);
...
Commercial_At : constant Character := '@'; -- Character'Val (64)
...
LC_A : constant Character := 'a'; -- Character'Val (97)
LC_B : constant Character := 'b'; -- Character'Val (98)
...
Inverted_Exclamation : constant Character := Character'Val (161);
Cent_Sign : constant Character := Character'Val (162);

...
LC_Y_Diaeresis : constant Character := Character'Val (255);

end Ada.Characters.Latin_1;
63 / 869

Basic Types
Character Types

Ada.Characters.Handling Sample Content
package Ada.Characters.Handling is

function Is_Control (Item : Character) return Boolean;
function Is_Graphic (Item : Character) return Boolean;
function Is_Letter (Item : Character) return Boolean;
function Is_Lower (Item : Character) return Boolean;
function Is_Upper (Item : Character) return Boolean;
function Is_Basic (Item : Character) return Boolean;
function Is_Digit (Item : Character) return Boolean;
function Is_Decimal_Digit (Item : Character) return Boolean renames Is_Digit;
function Is_Hexadecimal_Digit (Item : Character) return Boolean;
function Is_Alphanumeric (Item : Character) return Boolean;
function Is_Special (Item : Character) return Boolean;
function To_Lower (Item : Character) return Character;
function To_Upper (Item : Character) return Character;
function To_Basic (Item : Character) return Character;
function To_Lower (Item : String) return String;
function To_Upper (Item : String) return String;
function To_Basic (Item : String) return String;

...
end Ada.Characters.Handling;

64 / 869

Basic Types
Character Types

Quiz

type T1 is (NUL, A, B, 'C');
for T1 use (NUL => 0, A => 1, B => 2, 'C' => 3);
type T2 is array (Positive range <>) of T1;
Obj : T2 := "CC" & A & NUL;

Which of the following proposition(s) is (are) true

A. The code fails at run-time
B. Obj'Length = 3
C. Obj (1) = 'C'
D. Obj (3) = A

65 / 869

Basic Types
Character Types

Quiz

type T1 is (NUL, A, B, 'C');
for T1 use (NUL => 0, A => 1, B => 2, 'C' => 3);
type T2 is array (Positive range <>) of T1;
Obj : T2 := "CC" & A & NUL;

Which of the following proposition(s) is (are) true

A. The code fails at run-time
B. Obj'Length = 3
C. Obj (1) = 'C'
D. Obj (3) = A

65 / 869

Basic Types
Character Types

Quiz

with Ada.Characters.Latin_1;
use Ada.Characters.Latin_1;
with Ada.Characters.Handling;
use Ada.Characters.Handling;

Which of the following proposition(s) are true?

A. NUL = 0
B. NUL = '\0'
C. Character'Pos (NUL) = 0
D. Is_Control (NUL)

66 / 869

Basic Types
Character Types

Quiz

with Ada.Characters.Latin_1;
use Ada.Characters.Latin_1;
with Ada.Characters.Handling;
use Ada.Characters.Handling;

Which of the following proposition(s) are true?

A. NUL = 0
B. NUL = '\0'
C. Character'Pos (NUL) = 0
D. Is_Control (NUL)

66 / 869

Basic Types
Real Types

Real Types

67 / 869

Basic Types
Real Types

Real Types

Approximations to continuous values
1.0, 1.1, 1.11, 1.111 ... 2.0, ...
Finite hardware → approximations

Floating-point
Variable exponent
Large range
Constant relative precision

Fixed-point
Constant exponent
Limited range
Constant absolute precision
Subdivided into Binary and Decimal

Class focuses on floating-point

68 / 869

Basic Types
Real Types

Real Type (Floating and Fixed) Literals

Must contain a fractional part
No silent promotion

type Phase is digits 8; -- floating-point
OK : Phase := 0.0;
Bad : Phase := 0 ; -- compile error

69 / 869

Basic Types
Real Types

Declaring Floating Point Types

Syntax

type <identifier> is
digits <expression> [range constraint];

digits → minimum number of significant digits
Decimal digits, not bits

Compiler choses representation
From available floating point types
May be more accurate, but not less
If none available → declaration is rejected

System.Max_Digits - constant specifying maximum digits of
precision available for runtime

type Very_Precise_T is digits System.Max_Digits;

Need to do with System; to get visibility
70 / 869

Basic Types
Real Types

Predefined Floating Point Types

Type Float >= 6 digits

Additional implementation-defined types
Long_Float >= 11 digits

General-purpose
Tip

It is best, and easy, to avoid predefined types
To keep portability

71 / 869

Basic Types
Real Types

Floating Point Type Operators

By increasing precedence

relational operator = | /= | < | >= | > | >=
binary adding operator + | -
unary adding operator + | -
multiplying operator * | /
highest precedence operator ** | abs

Note
Exponentiation (**) result will be real

So power must be Integer
Not possible to ask for root
X**0.5 → sqrt (x)

72 / 869

Basic Types
Real Types

Floating Point Type Attributes

Core attributes

type My_Float is digits N; -- N static

My_Float'Digits

Number of digits requested (N)

My_Float'Base'Digits

Number of actual digits

My_Float'Rounding (X)

Integral value nearest to X
Note: Float'Rounding (0.5) = 1 and
Float'Rounding (-0.5) = -1

Model-oriented attributes
Advanced machine representation of the floating-point type
Mantissa, strict mode

73 / 869

Basic Types
Real Types

Numeric Types Conversion

Ada's integer and real are numeric
Holding a numeric value

Special rule: can always convert between numeric types
Explicitly

Warning
Float → Integer causes rounding

declare
N : Integer := 0;
F : Float := 1.5;

begin
N := Integer (F); -- N = 2
F := Float (N); -- F = 2.0

74 / 869

Basic Types
Real Types

Quiz
What is the output of this code?

declare
F : Float := 7.6;
I : Integer := 10;

begin
F := Float (Integer (F) / I);
Put_Line (Float'Image (F));

end;

A. 7.6E-01
B. Compile Error
C. 8.0E-01
D. 0.0

Explanations

A. Result of F := F / Float (I);
B. Result of F := F / I;
C. Result of F := Float (Integer (F)) / Float (I);
D. Integer value of F is 8. Integer result of dividing that by 10 is 0.

Converting to float still gives us 0

75 / 869

Basic Types
Real Types

Quiz
What is the output of this code?

declare
F : Float := 7.6;
I : Integer := 10;

begin
F := Float (Integer (F) / I);
Put_Line (Float'Image (F));

end;

A. 7.6E-01
B. Compile Error
C. 8.0E-01
D. 0.0

Explanations

A. Result of F := F / Float (I);
B. Result of F := F / I;
C. Result of F := Float (Integer (F)) / Float (I);
D. Integer value of F is 8. Integer result of dividing that by 10 is 0.

Converting to float still gives us 0
75 / 869

Basic Types
Base Type

Base Type

76 / 869

Basic Types
Base Type

Base Ranges
Actual hardware-supported numeric type used

GNAT makes consistent and predictable choices on all major
platforms

Predefined operators
Work on full-range

No range checks on inputs or result
Best performance

Implementation may use wider registers

Intermediate values

Can be accessed with 'Base attribute

type Foo is range -30_000 .. 30_000;
function "+" (Left, Right : Foo'Base) return Foo'Base;

Base range
Signed
8 bits → -128 .. 127
16 bits → -32_768 .. 32767

77 / 869

Basic Types
Base Type

Compile-Time Constraint Violation

May produce warnings
And compile successfuly

May produce errors
And fail at compilation

Requirements for rejection
Static value
Value not in range of base type
Compilation is impossible

procedure Test is
type Some_Integer is range -200 .. 200;
Object : Some_Integer;

begin
Object := 50_000; -- probable error

end;
78 / 869

Basic Types
Base Type

Range Check Failure

Compile-time rejection
Depends on base type
Selected by the compiler
Depends on underlying hardware
Early error → "Best" case

Else run-time exception
Most cases
Be happy when compilation failed instead

79 / 869

Basic Types
Base Type

Real Base Decimal Precision

Real types precision may be better than requested

Example:
Available: 6, 12, or 24 digits of precision

Type with 8 digits of precision

type My_Type is digits 8;

My_Type will have 12 or 24 digits of precision

80 / 869

Basic Types
Base Type

Floating Point Division by Zero

Language-defined do as the machine does
If T'Machine_Overflows attribute is True raises
Constraint_Error

Else +∞ / −∞

Better performance

User-defined types always raise Constraint_Error

subtype MyFloat is Float range Float'First .. Float'Last;
type MyFloat is new Float range Float'First .. Float'Last;

81 / 869

Basic Types
Base Type

Using Equality for Floating Point Types

Questionable: representation issue
Equality → identical bits
Approximations → hard to analyze, and not portable
Related to floating-point, not Ada

Perhaps define your own function
Comparison within tolerance (+ε / −ε)

82 / 869

Basic Types
Miscellaneous

Miscellaneous

83 / 869

Basic Types
Miscellaneous

Checked Type Conversions

Between "closely related" types
Numeric types
Inherited types
Array types

Illegal conversions rejected
Unsafe Unchecked_Conversion available

Called as if it was a function
Named using destination type name

Target_Float := Float (Source_Integer);

Implicitly defined

Must be explicitly called
84 / 869

Basic Types
Miscellaneous

Default Value

Not defined by language for scalars

Can be done with an aspect clause
Only during type declarations
<value> must be static

type Type_Name is <type_definition>
with Default_Value => <value>;

Example

type Tertiary_Switch is (Off, On, Neither)
with Default_Value => Neither;

Implicit : Tertiary_Switch; -- Implicit = Neither
Explicit : Tertiary_Switch := Neither;

85 / 869

Basic Types
Miscellaneous

Simple Static Type Derivation

New type from an existing type
Limited form of inheritance: operations
Not fully OOP
More details later

Strong type benefits
Only explicit conversion possible
eg. Meters can't be set from a Feet value

Syntax

type identifier is new Base_Type [<constraints>]

Example

type Measurement is digits 6;
type Distance is new Measurement

range 0.0 .. Measurement'Last;
86 / 869

Basic Types
Subtypes

Subtypes

87 / 869

Basic Types
Subtypes

Subtype

May constrain an existing type

Still the same type

Syntax

subtype Defining_Identifier is Type_Name [constraints];

Type_Name is an existing type or subtype

Note
If no constraint → type alias

88 / 869

Basic Types
Subtypes

Subtype Example

Enumeration type with range constraint

type Days is (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);
subtype Weekdays is Days range Mon .. Fri;
Workday : Weekdays; -- type Days limited to Mon .. Fri

Equivalent to anonymous subtype

Same_As_Workday : Days range Mon .. Fri;

89 / 869

Basic Types
Subtypes

Kinds of Constraints

Range constraints on scalar types

subtype Positive is Integer range 1 .. Integer'Last;
subtype Natural is Integer range 0 .. Integer'Last;
subtype Weekdays is Days range Mon .. Fri;
subtype Symmetric_Distribution is

Float range -1.0 .. +1.0;

Other kinds, discussed later

Constraints apply only to values

Representation and set of operations are kept

90 / 869

Basic Types
Subtypes

Subtype Constraint Checks

Constraints are checked
At initial value assignment
At assignment
At subprogram call
Upon return from subprograms

Invalid constraints
Will cause Constraint_Error to be raised

May be detected at compile time

If values are static
Initial value → error
... else → warning

Max : Integer range 1 .. 100 := 0; -- compile error
...
Max := 0; -- run-time error

91 / 869

Basic Types
Subtypes

Performance Impact of Constraints Checking

Constraint checks have run-time performance impact

The following code

procedure Demo is
K : Integer := F;
P : Integer range 0 .. 100;

begin
P := K;

Generates assignment checks similar to

if K < 0 or K > 100 then
raise Constraint_Error;

else
P := K;

end if;

These checks can be disabled with -gnatp
92 / 869

Basic Types
Subtypes

Optimizations of Constraint Checks

Checks happen only if necessary

Compiler assumes variables to be initialized

So this code generates no check

procedure Demo is
P, K : Integer range 0 .. 100;

begin
P := K;
-- But K is not initialized!

93 / 869

Basic Types
Subtypes

Range Constraint Examples

subtype Proper_Subset is Positive range 1 .. 10;
subtype Same_Constraints is Positive

range 1 .. Integer'Last;
subtype Letter is Character range 'A' .. 'z';
subtype Upper_Case is Letter range 'A' .. 'Z';
subtype Lower_Case is Letter range 'a' .. 'z';
subtype Null_Range is Integer

range 1 .. 0; -- silly when hard-coded...
-- evaluated when subtype defined, not when object declared
subtype Dynamic is Integer range Lower .. Upper;

94 / 869

Basic Types
Subtypes

Quiz

type Enum_T is (Sat, Sun, Mon, Tue, Wed, Thu, Fri);
subtype Enum_Sub_T is Enum_T range Mon .. Fri;

Which subtype definition is valid?

A. subtype A is Enum_Sub_T range Enum_Sub_T'Pred
(Enum_Sub_T'First) .. Enum_Sub_T'Last;

B. subtype B is range Sat .. Mon;
C. subtype C is Integer;
D. subtype D is digits 6;

Explanations

A. This generates a run-time error because the first enumeral
specified is not in the range of Enum_Sub_T

B. Compile error - no type specified
C. Correct - standalone subtype
D. Digits 6 is used for a type definition, not a subtype

95 / 869

Basic Types
Subtypes

Quiz

type Enum_T is (Sat, Sun, Mon, Tue, Wed, Thu, Fri);
subtype Enum_Sub_T is Enum_T range Mon .. Fri;

Which subtype definition is valid?

A. subtype A is Enum_Sub_T range Enum_Sub_T'Pred
(Enum_Sub_T'First) .. Enum_Sub_T'Last;

B. subtype B is range Sat .. Mon;
C. subtype C is Integer;
D. subtype D is digits 6;

Explanations

A. This generates a run-time error because the first enumeral
specified is not in the range of Enum_Sub_T

B. Compile error - no type specified
C. Correct - standalone subtype
D. Digits 6 is used for a type definition, not a subtype

95 / 869

Basic Types
Subtypes - Full Picture

Subtypes - Full Picture

96 / 869

Basic Types
Subtypes - Full Picture

Implicit Subtype

The declaration

type Typ is range L .. R;

Is short-hand for

type <Anon> is new Predefined_Integer_Type;
subtype Typ is <Anon> range L .. R;

<Anon> is the Base type of Typ

Accessed with Typ'Base

97 / 869

Basic Types
Subtypes - Full Picture

Implicit Subtype Explanation

type <Anon> is new Predefined_Integer_Type;
subtype Typ is <Anon> range L .. R;

Compiler choses a standard integer type that includes L .. R

Integer, Short_Integer, Long_Integer, etc.
Implementation-defined choice, non portable

New anonymous type <Anon> is derived from the predefined type

<Anon> inherits the type's operations (+, - ...)

Typ, subtype of <Anon> is created with range L .. R

Typ'Base will return the type <Anon>

98 / 869

Basic Types
Subtypes - Full Picture

Stand-Alone (Sub)Type Names

Denote all the values of the type or subtype
Unless explicitly constrained

subtype Constrained_Sub is Integer range 0 .. 10;
subtype Just_A_Rename is Integer;
X : Just_A_Rename;
...
for I in Constrained_Sub loop

X := I;
end loop;

99 / 869

Basic Types
Subtypes - Full Picture

Subtypes Localize Dependencies
Single points of change
Relationships captured in code
No subtypes

type Vector is array (1 .. 12) of Some_Type;

K : Integer range 0 .. 12 := 0; -- anonymous subtype
Values : Vector;
...
if K in 1 .. 12 then ...
for J in Integer range 1 .. 12 loop ...

Subtypes

type Counter is range 0 .. 12;
subtype Index is Counter range 1 .. Counter'Last;
type Vector is array (Index) of Some_Type;

K : Counter := 0;
Values : Vector;
...
if K in Index then ...
for J in Index loop ...

100 / 869

Basic Types
Subtypes - Full Picture

Subtypes May Enhance Performance

Provides compiler with more information
Redundant checks can more easily be identified

subtype Index is Integer range 1 .. Max;
type Vector is array (Index) of Float;
K : Index;
Values : Vector;
...
K := Some_Value; -- range checked here
Values (K) := 0.0; -- so no range check needed here

101 / 869

Basic Types
Subtypes - Full Picture

Subtypes Don't Cause Overloading

Illegal code: re-declaration of F

type A is new Integer;
subtype B is A;
function F return A is (0);
function F return B is (1);

102 / 869

Basic Types
Subtypes - Full Picture

Default Values and Option Types

Not allowed: Defaults on new type only
subtype is still the same type

Note: Default value may violate subtype constraints
Compiler error for static definition
Constraint_Error otherwise

type Tertiary_Switch is (Off, On, Neither)
with Default_Value => Neither;

subtype Toggle_Switch is Tertiary_Switch
range Off .. On;

Safe : Toggle_Switch := Off;
Implicit : Toggle_Switch; -- compile error: out of range

Tip
Using a meaningless value (Neither) to extend the
range of the type is turning it into an option type . This
idiom is very rich and allows for e.g. "in-flow" errors
handling.

103 / 869

Basic Types
Subtypes - Full Picture

Attributes Reflect the Underlying Type

type Color is
(White, Red, Yellow, Green, Blue, Brown, Black);

subtype Rainbow is Color range Red .. Blue;

T'First and T'Last respect constraints
Rainbow'First → Red but Color'First → White
Rainbow'Last → Blue but Color'Last → Black

Other attributes reflect base type
Color'Succ (Blue) = Brown = Rainbow'Succ (Blue)
Color'Pos (Blue) = 4 = Rainbow'Pos (Blue)
Color'Val (0) = White = Rainbow'Val (0)

Assignment must still satisfy target constraints

Shade : Color range Red .. Blue := Brown; -- run-time error
Hue : Rainbow := Rainbow'Succ (Blue); -- run-time error

104 / 869

Basic Types
Subtypes - Full Picture

Valid attribute

The_Type'Valid is a Boolean
True → the current representation for the given scalar is valid

procedure Main is
subtype Small_T is Integer range 1 .. 3;
Big : aliased Integer := 0;
Small : Small_T with Address => Big'Address;

begin
for V in 0 .. 5 loop

Big := V;
Put_Line (Big'Image & " => " & Boolean'Image (Small'Valid));

end loop;
end Main;

0 => FALSE
1 => TRUE
2 => TRUE
3 => TRUE
4 => FALSE
5 => FALSE

105 / 869

Basic Types
Subtypes - Full Picture

Idiom: Extended Ranges

Count / Positive_Count

Sometimes as Type_Ext (extended) / Type

For counting vs indexing

An index goes from 1 to max length
A count goes from 0 to max length

-- ARM A.10.1
package Text_IO is

...
type Count is range 0 .. implementation-defined;
subtype Pos_Count is Count range 1 .. Count'Last;

106 / 869

Basic Types
Subtypes - Full Picture

Idiom: Partition
Useful for splitting-up large enums

Warning
Be careful about checking that the partition is complete
when items are added/removed.
With a case, the compiler automatically checks that for
you.

Tip
Can have non-consecutive values with the Predicate
aspect.

type Commands_T is (Lights_On, Lights_Off, Read, Write, Accelerate, Stop);
-- Complete partition of the commands
subtype IO_Commands_T is Commands_T range Read .. Write;
subtype Lights_Commands_T is Commands_T range Lights_On .. Lights_Off;
subtype Movement_Commands_T is Commands_T range Accelerate .. Stop;

subtype Physical_Commands_T is Commands_T
with Predicate => Physical_Commands_T in Lights_Commands_T | Movement_Commands_T;

procedure Execute_Light_Command (C : Lights_Commands_T);

procedure Execute_Command (C : Commands_T) is
begin

case C in -- partition must be exhaustive
when Lights_Commands_T => Execute_Light_Command (C);

...
107 / 869

Basic Types
Subtypes - Full Picture

Idiom: Subtypes as Local Constraints
Can replace defensive code

Can be very useful in some identified cases

Subtypes accept dynamic bounds, unlike types

Checks happen through type-system
Can be disabled with -gnatp , unlike conditionals
Can also be a disadvantage

Warning
Do not use for checks that should always happen, even
in production.

Constrain input range

subtype Incrementable_Integer is Integer range Integer'First .. Integer'Last - 1;
function Increment (I : Incrementable_Integer) return Integer;

Constrain output range

subtype Valid_Fingers_T is Integer range 1 .. 5;
Fingers : Valid_Fingers_T := Prompt_And_Get_Integer ("Give me the number of a finger");

Constrain array index

procedure Read_Index_And_Manipulate_Char (S : String) is
subtype S_Index is Positive range S'Range;
I : constant S_Index := Read_Positive;
C : Character renames S (I);

108 / 869

Basic Types
Subtypes - Full Picture

Quiz

1 type T1 is range 0 .. 10;
2 function "-" (V : T1) return T1;
3 subtype T2 is T1 range 1 .. 9;
4 function "-" (V : T2) return T2;
5

6 Obj : T2 := -T2 (1);

Which function is executed at line 6?

A. The one at line 2
B. The one at line 4
C. A predefined "-" operator for integer types
D. None: The code is illegal

The type is used for the overload profile, and here both T1 and T2 are
of type T1, which means line 4 is actually a redeclaration, which is
forbidden.

109 / 869

Basic Types
Subtypes - Full Picture

Quiz

1 type T1 is range 0 .. 10;
2 function "-" (V : T1) return T1;
3 subtype T2 is T1 range 1 .. 9;
4 function "-" (V : T2) return T2;
5

6 Obj : T2 := -T2 (1);

Which function is executed at line 6?

A. The one at line 2
B. The one at line 4
C. A predefined "-" operator for integer types
D. None: The code is illegal

The type is used for the overload profile, and here both T1 and T2 are
of type T1, which means line 4 is actually a redeclaration, which is
forbidden.

109 / 869

Basic Types
Subtypes - Full Picture

Quiz

type T is range 0 .. 10;
subtype S is T range 1 .. 9;

What is the value of S'Succ (S (9))?

A. 9
B. 10
C. None, this fails at run-time
D. None, this does not compile

T'Succ and T'Pred are defined on the type, not the subtype.

110 / 869

Basic Types
Subtypes - Full Picture

Quiz

type T is range 0 .. 10;
subtype S is T range 1 .. 9;

What is the value of S'Succ (S (9))?

A. 9
B. 10
C. None, this fails at run-time
D. None, this does not compile

T'Succ and T'Pred are defined on the type, not the subtype.

110 / 869

Basic Types
Subtypes - Full Picture

Quiz

type T is new Integer range 0 .. Integer'Last;
subtype S is T range 0 .. 10;

Obj : S;

What is the result of Obj := S'Last + 1?

A. 0
B. 11
C. None, this fails at run-time
D. None, this does not compile

111 / 869

Basic Types
Subtypes - Full Picture

Quiz

type T is new Integer range 0 .. Integer'Last;
subtype S is T range 0 .. 10;

Obj : S;

What is the result of Obj := S'Last + 1?

A. 0
B. 11
C. None, this fails at run-time
D. None, this does not compile

111 / 869

Basic Types
Lab

Lab

112 / 869

Basic Types
Lab

Basic Types Lab

Create types to handle the following concepts
Determining average test score

Number of tests taken
Total of all test scores

Number of degrees in a circle

Collection of colors

Create objects for the types you've created
Assign initial values to the objects
Print the values of the objects

Modify the objects you've created and print the new values
Determine the average score for all the tests
Add 359 degrees to the initial circle value
Set the color object to the value right before the last possible value

113 / 869

Basic Types
Lab

Using the "Prompts" Directory

Course material should have a link to a Prompts folder
Folder contains everything you need to get started on the lab

GNAT Studio project file default.gpr
Annotated / simplified source files

Source files are templates for lab solutions
Files compile as is, but don't implement the requirements
Comments in source files give hints for the solution

To load prompt, either
From within GNAT Studio, select File → Open Project and
navigate to and open the appropriate default.gpr OR
From a command prompt, enter
gnatstudio -P <full path to GPR file>

If you are in the appropriate directory, and there is only one GPR
file, entering gnatstudio will start the tool and open that project

These prompt folders should be available for most labs
114 / 869

Basic Types
Lab

Basic Types Lab Hints

Understand the properties of the types
Do you need fractions or just whole numbers?
What happens when you want the number to wrap?

Predefined package Ada.Text_IO is handy...
Procedure Put_Line takes a String as the parameter

Remember attribute 'Image returns a String

<typemark>'Image (Object)
Object'Image

115 / 869

Basic Types
Lab

Basic Types Extra Credit

See what happens when your data is invalid / illegal
Number of tests = 0
Assign a very large number to the test score total
Color type only has one value
Add a number larger than 360 to the circle value

116 / 869

Basic Types
Lab

Basic Types Lab Solution - Declarations

1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Main is
3

4 type Number_Of_Tests_T is range 0 .. 100;
5 type Test_Score_Total_T is digits 6 range 0.0 .. 10_000.0;
6

7 type Degrees_T is mod 360;
8

9 type Cymk_T is (Cyan, Magenta, Yellow, Black);
10

11 Number_Of_Tests : Number_Of_Tests_T;
12 Test_Score_Total : Test_Score_Total_T;
13

14 Angle : Degrees_T;
15

16 Color : Cymk_T;
117 / 869

Basic Types
Lab

Basic Types Lab Solution - Implementation
18 begin
19

20 -- assignment
21 Number_Of_Tests := 15;
22 Test_Score_Total := 1_234.5;
23 Angle := 180;
24 Color := Magenta;
25

26 Put_Line (Number_Of_Tests'Image);
27 Put_Line (Test_Score_Total'Image);
28 Put_Line (Angle'Image);
29 Put_Line (Color'Image);
30

31 -- operations / attributes
32 Test_Score_Total := Test_Score_Total / Test_Score_Total_T (Number_Of_Tests);
33 Angle := Angle + 359;
34 Color := Cymk_T'Pred (Cymk_T'Last);
35

36 Put_Line (Test_Score_Total'Image);
37 Put_Line (Angle'Image);
38 Put_Line (Color'Image);
39

40 end Main;
118 / 869

Basic Types
Summary

Summary

119 / 869

Basic Types
Summary

Benefits of Strongly Typed Numerics

Prevent subtle bugs

Cannot mix Apples and Oranges

Force to clarify representation needs
eg. constant with or with fractional part

type Yen is range 0 .. 1_000_000;
type Ruble is range 0 .. 1_000_000;
Mine : Yen := 1;
Yours : Ruble := 1;
Mine := Yours; -- illegal

120 / 869

Basic Types
Summary

User-Defined Numeric Type Benefits

Close to requirements
Types with explicit requirements (range, precision, etc.)
Best case: Incorrect state not possible

Either implemented/respected or rejected
No run-time (bad) suprise

Portability enhanced
Reduced hardware dependencies

121 / 869

Basic Types
Summary

Summary

User-defined types and strong typing is good
Programs written in application's terms
Computer in charge of checking constraints
Security, reliability requirements have a price
Performance identical, given same requirements

User definitions from existing types can be good

Right trade-off depends on use-case
More types → more precision → less bugs
Storing both feet and meters in Float has caused bugs
More types → more complexity → more bugs
A Green_Round_Object_Altitude type is probably never
needed

Default initialization is possible
Use sparingly

122 / 869

Record Types

Record Types

123 / 869

Record Types
Introduction

Introduction

124 / 869

Record Types
Introduction

Syntax and Examples

Syntax (simplified)

type T is record
Component_Name : Type [:= Default_Value];
...

end record;

type T_Empty is null record;

Example

type Record1_T is record
Component1 : Integer;
Component2 : Boolean;

end record;

Records can be discriminated as well

type T (Size : Natural := 0) is record
Text : String (1 .. Size);

end record;
125 / 869

Record Types
Components Rules

Components Rules

126 / 869

Record Types
Components Rules

Characteristics of Components
Heterogeneous types allowed

Referenced by name

May be no components, for empty records

No anonymous types (e.g., arrays) allowed

type Record_1 is record
This_Is_Not_Legal : array (1 .. 3) of Integer;

end record;

No constant components

type Record_2 is record
This_Is_Not_Legal : constant Integer := 123;

end record;

No recursive definitions

type Record_3 is record
This_Is_Not_Legal : Record_3;

end record;

No indefinite types

type Record_5 is record
This_Is_Not_Legal : String;
But_This_Is_Legal : String (1 .. 10);

end record;

127 / 869

Record Types
Components Rules

Multiple Declarations

Multiple declarations are allowed (like objects)

type Several is record
A, B, C : Integer := F;

end record;

Equivalent to

type Several is record
A : Integer := F;
B : Integer := F;
C : Integer := F;

end record;

128 / 869

Record Types
Components Rules

"Dot" Notation for Components Reference

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
Arrival : Date;
...
Arrival.Day := 27; -- components referenced by name
Arrival.Month := November;
Arrival.Year := 1990;

Can reference nested components

Employee
.Birth_Date

.Month := March;
129 / 869

Record Types
Components Rules

Quiz

type Record_T is record
-- Definition here

end record;

Which record definition(s) is (are) legal?

A. Component_1 : array (1 .. 3) of Boolean
B. Component_2, Component_3 : Integer
C. Component_1 : Record_T
D. Component_1 : constant Integer := 123

A. Anonymous types not allowed
B. Correct
C. No recursive definition
D. No constant component

130 / 869

Record Types
Components Rules

Quiz

type Record_T is record
-- Definition here

end record;

Which record definition(s) is (are) legal?

A. Component_1 : array (1 .. 3) of Boolean
B. Component_2, Component_3 : Integer
C. Component_1 : Record_T
D. Component_1 : constant Integer := 123

A. Anonymous types not allowed
B. Correct
C. No recursive definition
D. No constant component

130 / 869

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don't specify its size.

131 / 869

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don't specify its size.

131 / 869

Record Types
Operations

Operations

132 / 869

Record Types
Operations

Available Operations

Predefined
Equality (and thus inequality)

if A = B then

Assignment

A := B;

User-defined
Subprograms

133 / 869

Record Types
Operations

Assignment Examples

declare
type Complex is record

Real : Float;
Imaginary : Float;

end record;
...
Phase1 : Complex;
Phase2 : Complex;

begin
...

-- object reference
Phase1 := Phase2; -- entire object reference
-- component references
Phase1.Real := 2.5;
Phase1.Real := Phase2.Real;

end;
134 / 869

Record Types
Operations

Limited Types - Quick Intro

A record type can be limited
And some other types, described later

limited types cannot be copied or compared
As a result then cannot be assigned
May still be modified component-wise

type Lim is limited record
A, B : Integer;

end record;

L1, L2 : Lim := Create_Lim (1, 2); -- Initial value OK

L1 := L2; -- Illegal
if L1 /= L2 then -- Illegal
[...]

135 / 869

Record Types
Aggregates

Aggregates

136 / 869

Record Types
Aggregates

Aggregates

Literal values for composite types
As for arrays
Default value / selector: <>, others

Can use both named and positional
Unambiguous

Example:

(Pos_1_Value,
Pos_2_Value,
Component_3 => Pos_3_Value,
Component_4 => <>, -- Default value (Ada 2005)
others => Remaining_Value)

137 / 869

Record Types
Aggregates

Record Aggregate Examples

type Color_T is (Red);
type Car_T is record

Color : Color_T;
Plate_No : String (1 .. 6);
Year : Natural;

end record;
type Complex_T is record

Real : Float;
Imaginary : Float;

end record;

declare
Car : Car_T := (Red, "ABC123", Year => 2_022);
Phase : Complex_T := (1.2, 3.4);

begin
Phase := (Real => 5.6, Imaginary => 7.8);

end;
138 / 869

Record Types
Aggregates

Aggregate Completeness
All component values must
be accounted for

Including defaults via box
Allows compiler to check for
missed components
Type definition
type Struct is record

A : Integer;
B : Integer;
C : Integer;
D : Integer;

end record;
S : Struct;

Compiler will not catch the
missing component
S.A := 10;
S.B := 20;
S.C := 12;
Send (S);
Aggregate must be complete
- compiler error
S := (10, 20, 12);
Send (S);

139 / 869

Record Types
Aggregates

Named Associations

Any order of associations

Provides more information to the reader
Can mix with positional

Restriction
Must stick with named associations once started

type Complex is record
Real : Float;
Imaginary : Float;

end record;
Phase : Complex := (0.0, 0.0);
...
Phase := (10.0, Imaginary => 2.5);
Phase := (Imaginary => 12.5, Real => 0.212);
Phase := (Imaginary => 12.5, 0.212); -- illegal

140 / 869

Record Types
Aggregates

Nested Aggregates

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
type Person is record

Born : Date;
Hair : Color;

end record;
John : Person := ((21, November, 1990), Brown);
Julius : Person := ((2, August, 1995), Blond);
Heather : Person := ((2, March, 1989), Hair => Blond);
Megan : Person := (Hair => Blond,

Born => (16, December, 2001));
141 / 869

Record Types
Aggregates

Aggregates with Only One Component

Must use named form
Same reason as array aggregates

type Singular is record
A : Integer;

end record;

S : Singular := (3); -- illegal
S : Singular := (3 + 1); -- illegal
S : Singular := (A => 3 + 1); -- required

142 / 869

Record Types
Aggregates

Aggregates with others

Indicates all components not yet specified (like arrays)
All others get the same value

They must be the exact same type

type Poly is record
A : Float;
B, C, D : Integer;

end record;

P : Poly := (2.5, 3, others => 0);

type Homogeneous is record
A, B, C : Integer;

end record;

Q : Homogeneous := (others => 10);
143 / 869

Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type Record_T is record

A, B, C : Integer;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

The aggregate is incomplete. The aggregate must specify all
components. You could use box notation (A => 1, others => <>)

144 / 869

Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type Record_T is record

A, B, C : Integer;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

The aggregate is incomplete. The aggregate must specify all
components. You could use box notation (A => 1, others => <>)

144 / 869

Record Types
Aggregates

Quiz
What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer;
D : My_Integer;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

All components associated to a value using others must be of the
same type.

145 / 869

Record Types
Aggregates

Quiz
What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer;
D : My_Integer;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

All components associated to a value using others must be of the
same type.

145 / 869

Record Types
Aggregates

Quiz
type Nested_T is record

Component : Integer;
end record;
type Record_T is record

One : Integer;
Two : Character;
Three : Integer;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment(s) is (are) legal?

A. X := (1, '2', Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

146 / 869

Record Types
Aggregates

Quiz
type Nested_T is record

Component : Integer;
end record;
type Record_T is record

One : Integer;
Two : Character;
Three : Integer;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment(s) is (are) legal?

A. X := (1, '2', Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

146 / 869

Record Types
Aggregates

Delta Aggregates
Ada 2022

A Record can use a delta aggregate just like an array

type Coordinate_T is record
X, Y, Z : Float;

end record;
Location : constant Coordinate_T := (1.0, 2.0, 3.0);

Prior to Ada 2022, you would copy and then modify

declare
New_Location : Coordinate_T := Location;

begin
New_Location.Z := 0.0;
-- OR
New_Location := (Z => 0.0, others => <>);

end;

Now in Ada 2022 we can just specify the change during the copy

New_Location : Coordinate_T := (Location with delta Z => 0.0);

Note for record delta aggregates you must use named notation
147 / 869

Record Types
Default Values

Default Values

148 / 869

Record Types
Default Values

Component Default Values

type Complex is
record

Real : Float := 0.0;
Imaginary : Float := 0.0;

end record;
-- all components use defaults
Phasor : Complex;
-- all components must be specified
I : constant Complex := (0.0, 1.0);

149 / 869

Record Types
Default Values

Default Component Value Evaluation

Occurs when object is elaborated
Not when the type is elaborated

Not evaluated if explicitly overridden

type Structure is
record

A : Integer;
R : Time := Clock;

end record;
-- Clock is called for S1
S1 : Structure;
-- Clock is not called for S2
S2 : Structure := (A => 0, R => Yesterday);

150 / 869

Record Types
Default Values

Defaults Within Record Aggregates

Specified via the box notation

Value for the component is thus taken as for a stand-alone object
declaration

So there may or may not be a defined default!

Can only be used with "named association" form
But can mix forms, unlike array aggregates

type Complex is
record

Real : Float := 0.0;
Imaginary : Float := 0.0;

end record;
Phase := (42.0, Imaginary => <>);

151 / 869

Record Types
Default Values

Default Initialization Via Aspect Clause

Not definable for entire record type
Components of scalar types take type's default if no explicit
default value specified by record type

type Toggle_Switch is (Off, On)
with Default_Value => Off;

type Controller is record
-- Off unless specified during object initialization
Override : Toggle_Switch;
-- default for this component
Enable : Toggle_Switch := On;

end record;
C : Controller; -- Override => off, Enable => On
D : Controller := (On, Off); -- All defaults replaced

152 / 869

Record Types
Default Values

Quiz

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

153 / 869

Record Types
Default Values

Quiz

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

153 / 869

Record Types
Variant Records

Variant Records

154 / 869

Record Types
Variant Records

Variant Record Types

Variant record can use a discriminant to specify alternative lists
of components

Also called discriminated record type
Different objects may have different components
All objects still share the same type

Kind of storage overlay
Similar to union in C
But preserves type checking
And object size is related to discriminant

Aggregate assignment is allowed

155 / 869

Record Types
Variant Records

Immutable Variant Record
Discriminant must be set at creation time and cannot be modified

2 type Person_Group is (Student, Faculty);
3 type Person (Group : Person_Group) is
4 record
5 -- Components common across all discriminants
6 -- (must appear before variant part)
7 Age : Positive;
8 case Group is -- Variant part of record
9 when Student => -- 1st variant

10 Gpa : Float range 0.0 .. 4.0;
11 when Faculty => -- 2nd variant
12 Pubs : Positive;
13 end case;
14 end record;

In a variant record, a discriminant can be used to specify the
variant part (line 8)

Similar to case statements (all values must be covered)
Components listed will only be visible if choice matches discriminant
Component names need to be unique (even across discriminants)
Variant part must be end of record (hence only one variant part
allowed)

Discriminant is treated as any other component
But is a constant in an immutable variant record

Note that discriminants can be used for other purposes than the variant
part

156 / 869

Record Types
Variant Records

Immutable Variant Record Example
Each object of Person has three components, but it depends on
Group

Pat : Person (Student);
Sam : Person := (Faculty, 33, 5);

Pat has Group, Age, and Gpa
Sam has Group, Age, and Pubs
Aggregate specifies all components, including the discriminant

Compiler can detect some problems, but more often clashes are
run-time errors

procedure Do_Something (Param : in out Person) is
begin

Param.Age := Param.Age + 1;
Param.Pubs := Param.Pubs + 1;

end Do_Something;

Pat.Pubs := 3; would generate a compiler warning because
compiler knows Pat is a Student

warning: Constraint_Error will be raised at run time
Do_Something (Pat); generates a run-time error, because only at
runtime is the discriminant for Param known

raised CONSTRAINT_ERROR : discriminant check failed

Pat := Sam; would be a compiler warning because the
constraints do not match

157 / 869

Record Types
Variant Records

Mutable Variant Record

Type will become mutable if its discriminant has a default value
and we instantiate the object without specifying a discriminant

2 type Person_Group is (Student, Faculty);
3 type Person (Group : Person_Group := Student) is -- default value
4 record
5 Age : Positive;
6 case Group is
7 when Student =>
8 Gpa : Float range 0.0 .. 4.0;
9 when Faculty =>

10 Pubs : Positive;
11 end case;
12 end record;

Pat : Person; is mutable
Sam : Person (Faculty); is not mutable

Declaring an object with an explicit discriminant value (Faculty)
makes it immutable

158 / 869

Record Types
Variant Records

Mutable Variant Record Example

Each object of Person has three components, but it depends on
Group

Pat : Person := (Student, 19, 3.9);
Sam : Person (Faculty);

You can only change the discriminant of Pat, but only via a whole
record assignment, e.g:

if Pat.Group = Student then
Pat := (Faculty, Pat.Age, 1);

else
Pat := Sam;

end if;
Update (Pat);

But you cannot change the discriminant of Sam

Sam := Pat; will give you a run-time error if Pat.Group is not
Faculty

And the compiler will not warn about this!
159 / 869

Record Types
Variant Records

Quiz

type Variant_T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

Variant_Object : Variant_T (1);

Which component(s) does Variant_Object contain?

A. Variant_Object.I, Variant_Object.B
B. Variant_Object.N
C. None: Compilation error
D. None: Run-time error

160 / 869

Record Types
Variant Records

Quiz

type Variant_T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

Variant_Object : Variant_T (1);

Which component(s) does Variant_Object contain?

A. Variant_Object.I, Variant_Object.B
B. Variant_Object.N
C. None: Compilation error
D. None: Run-time error

160 / 869

Record Types
Variant Records

Quiz
type Variant_T (Floating : Boolean := False) is record

case Floating is
when False =>

I : Integer;
when True =>

F : Float;
end case;
Flag : Character;

end record;

Variant_Object : Variant_T (True);

Which component does Variant_Object contain?

A. Variant_Object.F, Variant_Object.Flag
B. Variant_Object.F
C. None: Compilation error
D. None: Run-time error

The variant part cannot be followed by a component declaration
(Flag : Character here)

161 / 869

Record Types
Variant Records

Quiz
type Variant_T (Floating : Boolean := False) is record

case Floating is
when False =>

I : Integer;
when True =>

F : Float;
end case;
Flag : Character;

end record;

Variant_Object : Variant_T (True);

Which component does Variant_Object contain?

A. Variant_Object.F, Variant_Object.Flag
B. Variant_Object.F
C. None: Compilation error
D. None: Run-time error

The variant part cannot be followed by a component declaration
(Flag : Character here)

161 / 869

Record Types
Lab

Lab

162 / 869

Record Types
Lab

Record Types Lab

Requirements
Create a simple First-In/First-Out (FIFO) queue record type and
object

Allow the user to:

Add ("push") items to the queue
Remove ("pop") the next item to be serviced from the queue
(Print this item to ensure the order is correct)

When the user is done manipulating the queue, print out the
remaining items in the queue

Hints
Queue record should at least contain:

Array of items
Index into array where next item will be added

163 / 869

Record Types
Lab

Record Types Lab Solution - Declarations

1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Main is
3

4 type Name_T is array (1 .. 6) of Character;
5 type Index_T is range 0 .. 1_000;
6 type Queue_T is array (Index_T range 1 .. 1_000) of Name_T;
7

8 type Fifo_Queue_T is record
9 Next_Available : Index_T := 1;

10 Last_Served : Index_T := 0;
11 Queue : Queue_T := (others => (others => ' '));
12 end record;
13

14 Queue : Fifo_Queue_T;
15 Choice : Integer;

164 / 869

Record Types
Lab

Record Types Lab Solution - Implementation
17 begin
18

19 loop
20 Put ("1 = add to queue | 2 = remove from queue | others => done: ");
21 Choice := Integer'Value (Get_Line);
22 if Choice = 1 then
23 Put ("Enter name: ");
24 Queue.Queue (Queue.Next_Available) := Name_T (Get_Line);
25 Queue.Next_Available := Queue.Next_Available + 1;
26 elsif Choice = 2 then
27 if Queue.Next_Available = 1 then
28 Put_Line ("Nobody in line");
29 else
30 Queue.Last_Served := Queue.Last_Served + 1;
31 Put_Line ("Now serving: " & String (Queue.Queue (Queue.Last_Served)));
32 end if;
33 else
34 exit;
35 end if;
36 New_Line;
37 end loop;
38

39 Put_Line ("Remaining in line: ");
40 for Index in Queue.Last_Served + 1 .. Queue.Next_Available - 1 loop
41 Put_Line (" " & String (Queue.Queue (Index)));
42 end loop;
43

44 end Main;

165 / 869

Record Types
Summary

Summary

166 / 869

Record Types
Summary

Summary

Heterogeneous types allowed for components

Default initial values allowed for components
Evaluated when each object elaborated, not the type
Not evaluated if explicit initial value specified

Aggregates express literals for composite types
Can mix named and positional forms

167 / 869

Discriminated Records

Discriminated Records

168 / 869

Discriminated Records
Introduction

Introduction

169 / 869

Discriminated Records
Introduction

Discriminated Record Types

Discriminated record type
Different objects may have different components and/or different
sizes
All objects still share the same type

Similar to union in C
But preserves type checking

Except in the case of an Unchecked_Union (seen later)

And object size is related to discriminant

Aggregate assignment is allowed
Provided constraints are correct

170 / 869

Discriminated Records
Introduction

Defining a Discriminated Record

Record type with a discriminant
Discriminant controls behavior of the record

Part of record definition

Can be read as any other component

But can only be modified by object assignment (sometimes)

Sample definitions (completions appear later in this module)

type Employee_T (Kind : Category_T) is record ...
type Mutable_T (Kind : Category_T := Employee) is record ...
type Vstring (Last : Natural := 0) is record ...
type C_Union_T (View : natural := 0) is record ...

171 / 869

Discriminated Records
Variant Records

Variant Records

172 / 869

Discriminated Records
Variant Records

What is a Variant Record?
A variant record uses the discriminant to determine which
components are currently accessible

type Category_T is (Employee, Contractor);
type Employee_T (Kind : Category_T) is record

Name : String_T;
DOB : Date_T;
case Kind is

when Employee =>
Pay_Rate : Pay_T;

when Contractor =>
Hourly_Rate : Contractor_Rate_T;

end case;
end record;

An_Employee : Employee_T (Employee);
Some_Contractor : Employee_T (Contractor);

Note that the case block must be the last part of the record
definition

Therefore only one per record

Variant records are considered the same type
So you can have

procedure Print (Item : Employee_T);

Print (An_Employee);
Print (Some_Contractor);

173 / 869

Discriminated Records
Variant Records

Immutable Variant Record

In an immutable variant record the discriminant has no default
value

It is an indefinite type , similar to an unconstrained array
So you must add a constraint (discriminant) when creating an
object
But it can be unconstrained when used as a parameter

For example

24 Pat : Employee_T (Employee);
25 Sam : Employee_T :=
26 (Kind => Contractor,
27 Name => From_String ("Sam"),
28 DOB => "2000/01/01",
29 Hourly_Rate => 123.45);
30 Illegal : Employee_T; -- indefinite

174 / 869

Discriminated Records
Variant Records

Immutable Variant Record Usage

Compiler can detect some problems

begin
Pat.Hourly_Rate := 12.3;

end;

warning: component not present in subtype of
"Employee_T" defined at line 24

But more often clashes are run-time errors

32 procedure Print (Item : Employee_T) is
33 begin
34 Print (Item.Pay_Rate);

raised CONSTRAINT_ERROR : print.adb:34 discriminant
check failed

Pat := Sam; would be a compiler warning because the
constraints do not match

175 / 869

Discriminated Records
Variant Records

Mutable Variant Record
To add flexibility, we can make the type mutable by specifying a
default value for the discriminant

type Mutable_T (Kind : Category_T := Employee) is record
Name : String_T;
DOB : Date_T;
case Kind is

when Employee =>
Pay_Rate : Pay_T;

when Contractor =>
Hourly_Rate : Contractor_Rate_T;

end record;

Pat : Mutable_T;
Sam : Mutable_T (Contractor);

Making the variant mutable creates a definite type
An object can be created without a constraint (Pat)
Or we can create in immutable object where the discriminant
cannot change (Sam)
And we can create an array whose component is mutable

176 / 869

Discriminated Records
Variant Records

Mutable Variant Record Example

You can only change the discriminant of Pat, but only via a whole
record assignment, e.g:

if Pat.Group = Student then
Pat := (Faculty, Pat.Age, 1);

else
Pat := Sam;

end if;
Update (Pat);

But you cannot change the discriminant like a regular component

Pat.Kind := Contractor; -- compile error

error: assignment to discriminant not allowed

And you cannot change the discriminant of Sam

Sam := Pat; will give you a run-time error if Pat.Kind is not
Contractor

And the compiler will not warn about this!
177 / 869

Discriminated Records
Variant Records

Quiz

type Variant_T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

Variant_Object : Variant_T (1);

Which component(s) does Variant_Object contain?

A. Variant_Object.I, Variant_Object.B
B. Variant_Object.N
C. None: Compilation error
D. None: Run-time error

178 / 869

Discriminated Records
Variant Records

Quiz

type Variant_T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

Variant_Object : Variant_T (1);

Which component(s) does Variant_Object contain?

A. Variant_Object.I, Variant_Object.B
B. Variant_Object.N
C. None: Compilation error
D. None: Run-time error

178 / 869

Discriminated Records
Variant Records

Quiz
2 type Coord_T is record
3 X, Y : Float;
4 end record;
5
6 type Kind_T is (Circle, Line);
7 type Shape_T (Kind : Kind_T := Line) is record
8 Origin : Coord_T;
9 case Kind is

10 when Line =>
11 End_Point : Coord_T;
12 when Circle =>
13 End_Point : Coord_T;
14 end case;
15 end record;
16
17 A_Circle : Shape_T :=
18 (Circle, (1.0, 2.0), (3.0, 4.0));
19 A_Line : Shape_T (Line) :=
20 (Circle, (1.0, 2.0), (3.0, 4.0));

What happens when you try to build
and run this code?

A. Run-time error
B. Compilation error on an object
C. Compilation error on a type
D. No problems

If you fix the compilation error (by changing the name of one of
the End_Point components), then

You would get a warning on line 20 (because A_Line is constrained
to be a Line

incorrect value for discriminant "Kind"

If you then ran the executable, you would get an exception

CONSTRAINT_ERROR : test.adb:20 discriminant check
failed

179 / 869

Discriminated Records
Variant Records

Quiz
2 type Coord_T is record
3 X, Y : Float;
4 end record;
5
6 type Kind_T is (Circle, Line);
7 type Shape_T (Kind : Kind_T := Line) is record
8 Origin : Coord_T;
9 case Kind is

10 when Line =>
11 End_Point : Coord_T;
12 when Circle =>
13 End_Point : Coord_T;
14 end case;
15 end record;
16
17 A_Circle : Shape_T :=
18 (Circle, (1.0, 2.0), (3.0, 4.0));
19 A_Line : Shape_T (Line) :=
20 (Circle, (1.0, 2.0), (3.0, 4.0));

What happens when you try to build
and run this code?

A. Run-time error
B. Compilation error on an object
C. Compilation error on a type
D. No problems

If you fix the compilation error (by changing the name of one of
the End_Point components), then

You would get a warning on line 20 (because A_Line is constrained
to be a Line

incorrect value for discriminant "Kind"

If you then ran the executable, you would get an exception

CONSTRAINT_ERROR : test.adb:20 discriminant check
failed

179 / 869

Discriminated Records
Discriminant Record Array Size Idiom

Discriminant Record Array Size Idiom

180 / 869

Discriminated Records
Discriminant Record Array Size Idiom

Vectors of Varying Lengths

In Ada, array objects must be fixed length

S : String (1 .. 80);
A : array (M .. K*L) of Integer;

We would like an object with a maximum length and a variable
current length

Like a queue or a stack

Need two pieces of data

Array contents
Location of last valid component

For common usage, we want this to be a type (probably a record)
Maximum size array for contents
Index for last valid component

181 / 869

Discriminated Records
Discriminant Record Array Size Idiom

Simple Vector of Varying Length
Not unconstrained - we have to define a maximum length to make
it a definite type

type Simple_Vstring is
record

Last : Natural range 0 .. Max_Length := 0;
Data : String (1 .. Max_Length) := (others => ' ');

end record;

Obj1 : Simple_Vstring := (0, (others => '-'));
Obj2 : Simple_Vstring := (0, (others => '+'));
Obj3 : Simple_Vstring;

Issue - Operations need to consider Last component
Obj1 = Obj2 will be false

Can redefine = to be something like

if Obj1.Data (1 .. Obj1.Last) = Obj2.Data (1 .. Obj2.Last)

Same thing with concatentation

Obj3.Last := Obj1.Last + Obj2.Last;
Obj3.Data (1 .. Obj3.Last) := Obj1.Data (1 .. Obj1.Last) &

Obj2.Data (1 .. Obj2.Last)

Other Issues
Every object has same maximum length
Last needs to be maintained by program logic

182 / 869

Discriminated Records
Discriminant Record Array Size Idiom

Vector of Varying Length via Discriminated Records

Discriminant can serve as bound of array component

type Vstring (Last : Natural := 0) is
record

Data : String (1 .. Last) := (others => ' ');
end record;

Mutable objects vs immutable objects
With default discriminant value (mutable), objects can be copied
even if lengths are different
With no default discriminant value (immutable), objects of different
lengths cannot be copied (and we can't change the length)

183 / 869

Discriminated Records
Discriminant Record Array Size Idiom

Object Creation
When a mutable object is created, runtime assumes largest
possible value

So this example is a problem

type Vstring (Last : Natural := 0) is record
Data : String (1 .. Last) := (others => ' ');

end record;

Good : Vstring (10);
Bad : Vstring;

Compiler warning

warning: creation of "Vstring" object may raise
Storage_Error

Run-time error

raised STORAGE_ERROR : EXCEPTION_STACK_OVERFLOW

Better implementation

subtype Length_T is natural range 0 .. 1_000;
type Vstring (Last : Length_T := 0) is record

Data : String (1 .. Last) := (others => ' ');
end record;

Good : Vstring (10);
Also_Good : Vstring;

184 / 869

Discriminated Records
Discriminant Record Array Size Idiom

Simplifying Operations

With mutable discriminated records, operations are simpler

Obj : Simple_Vstring;
Obj1 : Simple_Vstring := (6, " World");

Creation

function Make (S : String)
return Vstring is (S'length, S);

Obj2 : Simple_Vstring := Make ("Hello");

Equality: Obj1 = Obj2

Data is exactly the correct length
if Data or Last is different, equality fails

Concatentation

Obj := (Obj1.Last + Obj2.Last,
Obj1.Data & Obj2.Data);

185 / 869

Discriminated Records
Discriminant Record Array Size Idiom

Quiz

type R (Size : Integer := 0) is record
S : String (1 .. Size);

end record;

Which proposition(s) will compile and run without error?

A. V : R := (6, "Hello")
B. V : R := (5, "Hello")
C. V : R (5) := (5, S => "Hello")
D. V : R (6) := (6, S => "Hello")

Choices A and B are mutable: the runtime assumes Size can be
Positive'Last, so component S will cause a run-time error. Choice
D tries to copy a 5-character string into a 6-character string, also
generating a run-time error.

186 / 869

Discriminated Records
Discriminant Record Array Size Idiom

Quiz

type R (Size : Integer := 0) is record
S : String (1 .. Size);

end record;

Which proposition(s) will compile and run without error?

A. V : R := (6, "Hello")
B. V : R := (5, "Hello")
C. V : R (5) := (5, S => "Hello")
D. V : R (6) := (6, S => "Hello")

Choices A and B are mutable: the runtime assumes Size can be
Positive'Last, so component S will cause a run-time error. Choice
D tries to copy a 5-character string into a 6-character string, also
generating a run-time error.

186 / 869

Discriminated Records
Interfacing with C

Interfacing with C

187 / 869

Discriminated Records
Interfacing with C

Passing Records Between Ada and C

Your Ada code needs to call C that looks like this:

struct Struct_T {
int Component1;
char Component2;
float Component3;

};

int DoSomething (struct Struct_T);

Ada has mechanisms that will allow you to
Call DoSomething
Build a record that is binary-compatible to Struct_T

188 / 869

Discriminated Records
Interfacing with C

Building a C-Compatible Record

To build an Ada record for Struct_T, start with a regular record:

type Struct_T is record
Component1 : Interfaces.C.int;
Component2 : Interfaces.C.char;
Component3 : Interfaces.C.C_Float;

end record;

We use types from Interfaces.C to map directly to the C types

But the Ada compiler needs to know that the record layout must
match C

So we add an aspect to enforce it

type Struct_T is record
Component1 : Interfaces.C.int;
Component2 : Interfaces.C.char;
Component3 : Interfaces.C.C_Float;

end record with Convention => C_Pass_By_Copy;
189 / 869

Discriminated Records
Interfacing with C

Mapping Ada to C Unions
Discriminant records are similar to C's union, but with a limitation

Only one part of the record is available at any time

So, you create the equivalent of this C union

union Union_T {
int Component1;
char Component2;
float Component3;

};

By using a discriminant record and adding aspect
Unchecked_Union

type C_Union_T (View : natural := 0) is record
case View is
when 0 => Component1 : Interfaces.C.int;
when 1 => Component2 : Interfaces.C.char;
when 2 => Component3 : Interfaces.C.C_Float;
when others => null;
end case;

end record with Convention => C_Pass_By_Copy,
Unchecked_Union;

This tells the compiler not to reserve space in the record for the
discriminant

190 / 869

Discriminated Records
Interfacing with C

Quiz
union Union_T {

struct Record_T component1;
char component2[11];
float component3;

};

type C_Union_T (Flag : Natural := 1) is record
case Sign is
when 1 =>

One : Record_T;
when 2 =>

Two : String(1 .. 11);
when 3 =>

Three : Float;
end case;

end record;

C_Object : C_Union_T;

Which component does C_Object contain?

A. C_Object.One
B. C_Object.Two
C. None: Compilation error
D. None: Run-time error

The variant case must cover all the possible values of Natural.

191 / 869

Discriminated Records
Interfacing with C

Quiz
union Union_T {

struct Record_T component1;
char component2[11];
float component3;

};

type C_Union_T (Flag : Natural := 1) is record
case Sign is
when 1 =>

One : Record_T;
when 2 =>

Two : String(1 .. 11);
when 3 =>

Three : Float;
end case;

end record;

C_Object : C_Union_T;

Which component does C_Object contain?

A. C_Object.One
B. C_Object.Two
C. None: Compilation error
D. None: Run-time error

The variant case must cover all the possible values of Natural.
191 / 869

Discriminated Records
Lab

Lab

192 / 869

Discriminated Records
Lab

Discriminated Records Lab

Requirements for a simplistic employee database
Create a package to handle varying length strings using variant
records

Create a package to create employee data in a variant record

Store first name, last name, and hourly pay rate for all employees
Supervisors must also include the project they are supervising
Managers must also include the number of employees they are
managing and the department name

Main program should read employee information from the console

Any number of any type of employees can be entered in any order
When data entry is done, print out all appropriate information for
each employee

Hints
Create concatenation functions for your varying length string type
Is it easier to create an input function for each employee category,
or a common one?

193 / 869

Discriminated Records
Lab

Discriminated Records Lab Solution - Vstring
1 package Vstring is
2 Max_String_Length : constant := 1_000;
3 subtype Index_T is Integer range 0 .. Max_String_Length;
4 type Vstring_T (Length : Index_T := 0) is record
5 Text : String (1 .. Length);
6 end record;
7 function To_Vstring (Str : String) return Vstring_T;
8 function To_String (Vstr : Vstring_T) return String;
9 function "&" (L, R : Vstring_T) return Vstring_T;

10 function "&" (L : String; R : Vstring_T) return Vstring_T;
11 function "&" (L : Vstring_T; R : String) return Vstring_T;
12 end Vstring;
13

14 package body Vstring is
15 function To_Vstring (Str : String) return Vstring_T is
16 ((Length => Str'Length, Text => Str));
17 function To_String (Vstr : Vstring_T) return String is
18 (Vstr.Text);
19 function "&" (L, R : Vstring_T) return Vstring_T is
20 Ret_Val : constant String := L.Text & R.Text;
21 begin
22 return (Length => Ret_Val'Length, Text => Ret_Val);
23 end "&";
24

25 function "&" (L : String; R : Vstring_T) return Vstring_T is
26 Ret_Val : constant String := L & R.Text;
27 begin
28 return (Length => Ret_Val'Length, Text => Ret_Val);
29 end "&";
30

31 function "&" (L : Vstring_T; R : String) return Vstring_T is
32 Ret_Val : constant String := L.Text & R;
33 begin
34 return (Length => Ret_Val'Length, Text => Ret_Val);
35 end "&";
36 end Vstring;

194 / 869

Discriminated Records
Lab

Discriminated Records Lab Solution - Employee (Spec)
1 with Vstring; use Vstring;
2 package Employee is
3

4 type Category_T is (Staff, Supervisor, Manager);
5 type Pay_T is delta 0.01 range 0.0 .. 1_000.00;
6

7 type Employee_T (Category : Category_T := Staff) is record
8 Last_Name : Vstring.Vstring_T;
9 First_Name : Vstring.Vstring_T;

10 Hourly_Rate : Pay_T;
11 case Category is
12 when Staff =>
13 null;
14 when Supervisor =>
15 Project : Vstring.Vstring_T;
16 when Manager =>
17 Department : Vstring.Vstring_T;
18 Staff_Count : Natural;
19 end case;
20 end record;
21

22 function Get_Staff return Employee_T;
23 function Get_Supervisor return Employee_T;
24 function Get_Manager return Employee_T;
25

26 end Employee;

195 / 869

Discriminated Records
Lab

Discriminated Records Lab Solution - Employee (Body)
1 with Ada.Text_IO; use Ada.Text_IO;
2 package body Employee is
3 function Read (Prompt : String) return String is
4 begin
5 Put (Prompt & " > ");
6 return Get_Line;
7 end Read;
8

9 function Get_Staff return Employee_T is
10 Ret_Val : Employee_T (Staff);
11 begin
12 Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
13 Ret_Val.First_Name := To_Vstring (Read ("First name"));
14 Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
15 return Ret_Val;
16 end Get_Staff;
17

18 function Get_Supervisor return Employee_T is
19 Ret_Val : Employee_T (Supervisor);
20 begin
21 Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
22 Ret_Val.First_Name := To_Vstring (Read ("First name"));
23 Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
24 Ret_Val.Project := To_Vstring (Read ("Project"));
25 return Ret_Val;
26 end Get_Supervisor;
27

28 function Get_Manager return Employee_T is
29 Ret_Val : Employee_T (Manager);
30 begin
31 Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
32 Ret_Val.First_Name := To_Vstring (Read ("First name"));
33 Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
34 Ret_Val.Department := To_Vstring (Read ("Department"));
35 Ret_Val.Staff_Count := Integer'Value (Read ("Staff count"));
36 return Ret_Val;
37 end Get_Manager;
38 end Employee;

196 / 869

Discriminated Records
Lab

Discriminated Records Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Employee;
3 with Vstring; use Vstring;
4 procedure Main is
5 procedure Print (Member : Employee.Employee_T) is
6 First_Line : constant Vstring.Vstring_T :=
7 Member.First_Name & " " & Member.Last_Name & " " &
8 Member.Hourly_Rate'Image;
9 begin

10 Put_Line (Vstring.To_String (First_Line));
11 case Member.Category is
12 when Employee.Supervisor =>
13 Put_Line (" Project: " & Vstring.To_String (Member.Project));
14 when Employee.Manager =>
15 Put_Line (" Overseeing " & Member.Staff_Count'Image & " in " &
16 Vstring.To_String (Member.Department));
17 when others => null;
18 end case;
19 end Print;
20

21 List : array (1 .. 1_000) of Employee.Employee_T;
22 Count : Natural := 0;
23 begin
24 loop
25 Put_Line ("E => Employee");
26 Put_Line ("S => Supervisor");
27 Put_Line ("M => Manager");
28 Put ("E/S/M (any other to stop): ");
29 declare
30 Choice : constant String := Get_Line;
31 begin
32 case Choice (1) is
33 when 'E' | 'e' =>
34 Count := Count + 1;
35 List (Count) := Employee.Get_Staff;
36 when 'S' | 's' =>
37 Count := Count + 1;
38 List (Count) := Employee.Get_Supervisor;
39 when 'M' | 'm' =>
40 Count := Count + 1;
41 List (Count) := Employee.Get_Manager;
42 when others =>
43 exit;
44 end case;
45 end;
46 end loop;
47

48 for Item of List (1 .. Count) loop
49 Print (Item);
50 end loop;
51 end Main;

197 / 869

Discriminated Records
Summary

Summary

198 / 869

Discriminated Records
Summary

Properties of Discriminated Record Types

Rules
Case choices for variants must partition possible values for
discriminant
Component names must be unique across all variants

Style
Typical processing is via a case statement that "dispatches" based
on discriminant
This centralized functional processing is in contrast to decentralized
object-oriented approach

199 / 869

Array Types

Array Types

200 / 869

Array Types
Introduction

Introduction

201 / 869

Array Types
Introduction

What Is an Array?
Definition: collection of components of the same type, stored in
contiguous memory, and indexed using a discrete range
Syntax (simplified):

type <typename> is array (Index_Type) of Component_Type;

where

Index_Type
Discrete range of values to be used to access the array components

Component_Type
Type of values stored in the array
All components are of this same type and size

type Array_T is array (0 .. 3) of Interfaces.Integer_32;

0 16 32 48 64

0 1 2 3

-123 456 -78 90

Index

Components

Address offset

202 / 869

Array Types
Introduction

Arrays in Ada

Traditional array concept supported to any dimension

declare
type Hours is digits 6;
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Schedule is array (Days) of Hours;
Workdays : Schedule;

begin
...
Workdays (Mon) := 8.5;

203 / 869

Array Types
Introduction

Array Type Index Constraints

Must be of an integer or enumeration type

May be dynamic

Default to predefined Integer
Same rules as for-loop parameter default type

Allowed to be null range
Defines an empty array
Meaningful when bounds are computed at run-time

Used to define constrained array types

type Schedule is array (Days range Mon .. Fri) of Float;
type Flags_T is array (-10 .. 10) of Boolean;

Or to constrain unconstrained array types

subtype Line is String (1 .. 80);
subtype Translation is Matrix (1..3, 1..3);

204 / 869

Array Types
Introduction

Run-Time Index Checking

Array indices are checked at run-time as needed
Invalid index values result in Constraint_Error

procedure Test is
type Int_Arr is array (1..10) of Integer;
A : Int_Arr;
K : Integer;

begin
A := (others => 0);
K := FOO;
A (K) := 42; -- run-time error if Foo returns < 1 or > 10
Put_Line (A(K)'Image);

end Test;

205 / 869

Array Types
Introduction

Kinds of Array Types

Constrained Array Types
Bounds specified by type declaration
All objects of the type have the same bounds

Unconstrained Array Types
Bounds not constrained by type declaration
Objects share the type, but not the bounds
More flexible

type Unconstrained is array (Positive range <>)
of Integer;

U1 : Unconstrained (1 .. 10);
S1 : String (1 .. 50);
S2 : String (35 .. 95);

206 / 869

Array Types
Constrained Array Types

Constrained Array Types

207 / 869

Array Types
Constrained Array Types

Constrained Array Type Declarations

Syntax (simplified)

type <typename> is array (<index constraint>) of <constrained type>;

where
typename - identifier
index constraint - discrete range or type
constrained type - type with size known at compile time

Examples

type Integer_Array_T is array (1 .. 3) of Integer;
type Boolean_Array_T is array (Boolean) of Integer;
type Character_Array_T is array (character range 'a' .. 'z') of Boolean;
type Copycat_T is array (Boolean_Array_T'Range) of Integer;

208 / 869

Array Types
Constrained Array Types

Quiz

type Array1_T is array (1 .. 8) of Boolean;
type Array2_T is array (0 .. 7) of Boolean;
X1, Y1 : Array1_T;
X2, Y2 : Array2_T;

Which statement(s) is (are) legal?
A. X1 (1) := Y1 (1);
B. X1 := Y1;
C. X1 (1) := X2 (1);
D. X2 := X1;

Explanations
A. Legal - components are

Boolean
B. Legal - object types match
C. Legal - components are

Boolean
D. Although the sizes are the

same and the components
are the same, the type is
different

209 / 869

Array Types
Constrained Array Types

Quiz

type Array1_T is array (1 .. 8) of Boolean;
type Array2_T is array (0 .. 7) of Boolean;
X1, Y1 : Array1_T;
X2, Y2 : Array2_T;

Which statement(s) is (are) legal?
A. X1 (1) := Y1 (1);
B. X1 := Y1;
C. X1 (1) := X2 (1);
D. X2 := X1;

Explanations
A. Legal - components are

Boolean
B. Legal - object types match
C. Legal - components are

Boolean
D. Although the sizes are the

same and the components
are the same, the type is
different

209 / 869

Array Types
Unconstrained Array Types

Unconstrained Array Types

210 / 869

Array Types
Unconstrained Array Types

Unconstrained Array Type Declarations

Do not specify bounds for objects

Thus different objects of the same type may have different bounds

Bounds cannot change once set

Syntax (with simplifications)

unconstrained_array_definition ::=
array (index_subtype_definition

{, index_subtype_definition})
of subtype_indication

index_subtype_definition ::= subtype_mark range <>

Examples

type Index is range 1 .. Integer'Last;
type Char_Arr is array (Index range <>) of Character;

211 / 869

Array Types
Unconstrained Array Types

Supplying Index Constraints for Objects

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Schedule is array (Days range <>) of Float;

Bounds set by:
Object declaration

Weekdays : Schedule(Mon..Fri);

Object (or constant) initialization

Weekend : Schedule := (Sat => 4.0, Sun => 0.0);
-- (Note this is an array aggregate, explained later)

Further type definitions (shown later)

Actual parameter to subprogram (shown later)

Once set, bounds never change

Weekdays(Sat) := 0.0; -- Constraint error
Weekend(Mon) := 0.0; -- Constraint error

212 / 869

Array Types
Unconstrained Array Types

Bounds Must Satisfy Type Constraints

Must be somewhere in the range of possible values specified by the
type declaration
Constraint_Error otherwise

type Index is range 1 .. 100;
type Char_Arr is array (Index range <>) of Character;
...
Wrong : Char_Arr (0 .. 10); -- run-time error
OK : Char_Arr (50 .. 75);

213 / 869

Array Types
Unconstrained Array Types

Null Index Range

When 'Last of the range is smaller than 'First

Array is empty - no components

When using literals, the compiler will allow out-of-range numbers
to indicate empty range

Provided values are within the index's base type

type Index_T is range 1 .. 100;
-- Index_T'Size = 8

type Array_T is array (Index_T range <>) of Integer;

Typical_Empty_Array : Array_T (1 .. 0);
Weird_Empty_Array : Array_T (123 .. -5);
Illegal_Empty_Array : Array_T (999 .. 0);

When the index type is a single-valued enumerated type, no empty
array is possible

214 / 869

Array Types
Unconstrained Array Types

"String" Types

Language-defined unconstrained array types
Allow double-quoted literals as well as aggregates
Always have a character component type
Always one-dimensional

Language defines various types
String, with Character as component

subtype Positive is Integer range 1 .. Integer'Last;
type String is array (Positive range <>) of Character;

Wide_String, with Wide_Character as component

Wide_Wide_String, with Wide_Wide_Character as component

Ada 2005 and later

Can be defined by applications too
215 / 869

Array Types
Unconstrained Array Types

Application-Defined String Types

Like language-defined string types
Always have a character component type
Always one-dimensional

Recall character types are enumeration types with at least one
character literal value

type Roman_Digit is ('I', 'V', 'X', 'L', 'C', 'D', 'M');
type Roman_Number is array (Positive range <>)

of Roman_Digit;
Orwellian : constant Roman_Number := "MCMLXXXIV";

216 / 869

Array Types
Unconstrained Array Types

Specifying Constraints Via Initial Value

Lower bound is Index_subtype'First
Upper bound is taken from number of items in value

subtype Positive is Integer range 1 .. Integer'Last;
type String is array (Positive range <>)

of Character;
...
M : String := "Hello World!";
-- M'First is Positive'First (1)

type Another_String is array (Integer range <>)
of Character;

...
M : Another_String := "Hello World!";
-- M'First is Integer'First

217 / 869

Array Types
Unconstrained Array Types

Indefinite Types

Indefinite types do not provide enough information to be
instantiated

Size
Representation

Unconstrained arrays types are indefinite
They do not have a definite 'Size

Other indefinite types exist (seen later)

218 / 869

Array Types
Unconstrained Array Types

No Indefinite Component Types

Arrays: consecutive components of the exact same type

Component size must be defined
No indefinite types
No unconstrained types
Constrained subtypes allowed

type Good is array (1 .. 10) of String (1 .. 20); -- OK
type Bad is array (1 .. 10) of String; -- Illegal

219 / 869

Array Types
Unconstrained Array Types

Arrays of Arrays

Allowed (of course!)
As long as the "component" array type is constrained

Indexed using multiple parenthesized values
One per array

declare
type Array_of_10 is array (1..10) of Integer;
type Array_of_Array is array (Boolean) of Array_of_10;
A : Array_of_Array;

begin
...
A (True)(3) := 42;

220 / 869

Array Types
Unconstrained Array Types

Quiz

type Bit_T is range 0 .. 1;
type Bit_Array_T is array (Positive range <>) of Bit_T;

Which declaration(s) is (are)
legal?

A. AAA : Array_T (0..99);
B. BBB : Array_T (1..32);
C. CCC : Array_T (17..16);
D. DDD : Array_T;

Explanations
A. Array_T index is Positive

which starts at 1
B. OK, indices are in range
C. OK, indicates a zero-length

array
D. Object must be constrained

221 / 869

Array Types
Unconstrained Array Types

Quiz

type Bit_T is range 0 .. 1;
type Bit_Array_T is array (Positive range <>) of Bit_T;

Which declaration(s) is (are)
legal?

A. AAA : Array_T (0..99);
B. BBB : Array_T (1..32);
C. CCC : Array_T (17..16);
D. DDD : Array_T;

Explanations
A. Array_T index is Positive

which starts at 1
B. OK, indices are in range
C. OK, indicates a zero-length

array
D. Object must be constrained

221 / 869

Array Types
Attributes

Attributes

222 / 869

Array Types
Attributes

Array Attributes

Return info about array index bounds

O'Length number of array components
O'First value of lower index bound
O'Last value of upper index bound

O'Range another way of saying T'First .. T'Last

Meaningfully applied to constrained array types
Only constrained array types provide index bounds
Returns index info specified by the type (hence all such objects)

Meaningfully applied to array objects
Returns index info for the object
Especially useful for objects of unconstrained array types

223 / 869

Array Types
Attributes

Attributes' Benefits

Allow code to be more robust
Relationships are explicit
Changes are localized

Optimizer can identify redundant checks

declare
type Int_Arr is array (5 .. 15) of Integer;
Vector : Int_Arr;

begin
...
for Idx in Vector'Range loop

Vector (Idx) := Idx * 2;
end loop;

Compiler understands Idx has to be a valid index for Vector, so
no run-time checks are necessary

224 / 869

Array Types
Attributes

Nth Dimension Array Attributes

Attribute with parameter

T'Length (n)
T'First (n)
T'Last (n)
T'Range (n)

n is the dimension
defaults to 1

type Two_Dimensioned is array
(1 .. 10, 12 .. 50) of T;

TD : Two_Dimensioned;

TD'First (2) = 12
TD'Last (2) = 50
TD'Length (2) = 39
TD'First = TD'First (1) = 1

225 / 869

Array Types
Attributes

Quiz

subtype Index1_T is Integer range 0 .. 7;
subtype Index2_T is Integer range 1 .. 8;
type Array_T is array (Index1_T, Index2_T) of Integer;
X : Array_T;

Which comparison is False?

A. X'Last (2) = Index2_T'Last
B. X'Last (1)*X'Last (2) = X'Length (1)*X'Length (2)
C. X'Length (1) = X'Length (2)
D. X'Last (1) = 7

Explanations

A. 8 = 8
B. 7*8 /= 8*8
C. 8 = 8
D. 7 = 7

226 / 869

Array Types
Attributes

Quiz

subtype Index1_T is Integer range 0 .. 7;
subtype Index2_T is Integer range 1 .. 8;
type Array_T is array (Index1_T, Index2_T) of Integer;
X : Array_T;

Which comparison is False?

A. X'Last (2) = Index2_T'Last
B. X'Last (1)*X'Last (2) = X'Length (1)*X'Length (2)
C. X'Length (1) = X'Length (2)
D. X'Last (1) = 7

Explanations

A. 8 = 8
B. 7*8 /= 8*8
C. 8 = 8
D. 7 = 7

226 / 869

Array Types
Operations

Operations

227 / 869

Array Types
Operations

Object-Level Operations
Assignment of array objects

A := B;

Equality and inequality

if A = B then

Conversions
Component types must be the same type
Index types must be the same or convertible
Dimensionality must be the same
Bounds must be compatible (not necessarily equal)

declare
type Index1_T is range 1 .. 2;
type Index2_T is range 101 .. 102;
type Array1_T is array (Index1_T) of Integer;
type Array2_T is array (Index2_T) of Integer;
type Array3_T is array (Boolean) of Integer;

One : Array1_T;
Two : Array2_T;
Three : Array3_T;

begin

One := Array1_T (Two); -- OK
Two := Array2_T (Three); -- Illegal (indices not convertible)

228 / 869

Array Types
Operations

Extra Object-Level Operations

Only for 1-dimensional arrays!

Concatenation

type String_Type is array
(Integer range <>) of Character;

A : constant String_Type := "foo";
B : constant String_Type := "bar";
C : constant String_Type := A & B;
-- C now contains "foobar"

Comparison (for discrete component types)
Not for all scalars

Logical (for Boolean component type)

Slicing
Portion of array

229 / 869

Array Types
Operations

Slicing

Contiguous subsection of an array
On any one-dimensional array type

Any component type

procedure Test is
S1 : String (1 .. 9) := "Hi Adam!!";
S2 : String := "We love !";

begin
S2 (9..11) := S1 (4..6);
Put_Line (S2);

end Test;

Result: We love Ada!

230 / 869

Array Types
Operations

Example: Slicing with Explicit Indexes

Imagine a requirement to have a ISO date
Year, month, and day with a specific format

declare
Iso_Date : String (1 .. 10) := "2024-03-27";

begin
Put_Line (Iso_Date);
Put_Line (Iso_Date (1 .. 4)); -- year
Put_Line (Iso_Date (6 .. 7)); -- month
Put_Line (Iso_Date (9 .. 10)); -- day

231 / 869

Array Types
Operations

Idiom: Named Subtypes for Indexes

Subtype name indicates the slice index range
Names for constraints, in this case index constraints

Enhances readability and robustness

procedure Test is
subtype Iso_Index is Positive range 1 .. 10;
subtype Year is Iso_Index

range Iso_Index'First .. Iso_Index'First + 3;
subtype Month is Iso_Index

range Year'Last + 2 .. Year'Last + 3;
subtype Day is Iso_Index

range Month'Last + 2 .. Month'Last + 3;
Iso_Date : String (Iso_Index) := "2024-03-27";

begin
Put_Line (Iso_Date (Year)); -- 2024
Put_Line (Iso_Date (Month)); -- 03
Put_Line (Iso_Date (Day)); -- 27

232 / 869

Array Types
Operations

Dynamic Subtype Constraint Example

Useful when constraints not known at compile-time
Example: remove file name extension

File_Name
(File_Name'First
..
Index (File_Name, '.', Direction => Backward));

233 / 869

Array Types
Operations

Quiz

type Index_T is range 1 .. 10;
type OneD_T is array (Index_T) of Boolean;
type TwoD_T is array (Index_T) of OneD_T;
A : TwoD_T;
B : OneD_T;

Which statement(s) is (are) legal?

A. B(1) := A(1,2) or A(4,3);
B. B := A(2) and A(4);
C. A(1..2)(4) := A(5..6)(8);
D. B(3..4) := B(4..5)

Explanations

A. All objects are just Boolean values
B. A component of A is the same type as B
C. Slice must be of outermost array
D. Slicing allowed on single-dimension arrays

234 / 869

Array Types
Operations

Quiz

type Index_T is range 1 .. 10;
type OneD_T is array (Index_T) of Boolean;
type TwoD_T is array (Index_T) of OneD_T;
A : TwoD_T;
B : OneD_T;

Which statement(s) is (are) legal?

A. B(1) := A(1,2) or A(4,3);
B. B := A(2) and A(4);
C. A(1..2)(4) := A(5..6)(8);
D. B(3..4) := B(4..5)

Explanations

A. All objects are just Boolean values
B. A component of A is the same type as B
C. Slice must be of outermost array
D. Slicing allowed on single-dimension arrays

234 / 869

Array Types
Looping Over Array Components

Looping Over Array Components

235 / 869

Array Types
Looping Over Array Components

Note on Default Initialization for Array Types

In Ada, objects are not initialized by default

To initialize an array, you can initialize each component
But if the array type is used in multiple places, it would be better
to initialize at the type level
No matter how many dimensions, there is only one component type

Uses aspect Default_Component_Value

type Vector is array (Positive range <>) of Float
with Default_Component_Value => 0.0;

Note that creating a large object of type Vector might incur a
run-time cost during initialization

236 / 869

Array Types
Looping Over Array Components

Two High-Level For-Loop Kinds

For arrays and containers
Arrays of any type and form

Iterable containers

Those that define iteration (most do)
Not all containers are iterable (e.g., priority queues)!

For iterator objects
Known as "generalized iterators"
Language-defined, e.g., most container data structures

User-defined iterators too

We focus on the arrays/containers form for now

237 / 869

Array Types
Looping Over Array Components

Array/Container For-Loops

Work in terms of components within an object

Syntax hides indexing/iterator controls

for name of [reverse] array_or_container_object loop
...
end loop;

Starts with "first" component unless you reverse it

Loop parameter name is a constant if iterating over a constant, a
variable otherwise

238 / 869

Array Types
Looping Over Array Components

Array Component For-Loop Example

Given an array

type T is array (Positive range <>) of Integer;
Primes : T := (2, 3, 5, 7, 11);

Component-based looping would look like

for P of Primes loop
Put_Line (Integer'Image (P));

end loop;

While index-based looping would look like

for P in Primes'Range loop
Put_Line (Integer'Image (Primes (P)));

end loop;

239 / 869

Array Types
Looping Over Array Components

Quiz

declare
type Array_T is array (1..5) of Integer

with Default_Component_Value => 1;
A : Array_T;

begin
for I in A'First + 1 .. A'Last - 1 loop

A (I) := I * A'Length;
end loop;
for I of reverse A loop

Put (I'Image);
end loop;

end;
Which output is correct?

A. 1 10 15 20 1
B. 1 20 15 10 1
C. 0 10 15 20 0
D. 25 20 15 10 5

Explanations
A. There is a reverse
B. Yes
C. Default value is 1
D. No

NB: Without Default_Component_Value, init. values are random
240 / 869

Array Types
Looping Over Array Components

Quiz

declare
type Array_T is array (1..5) of Integer

with Default_Component_Value => 1;
A : Array_T;

begin
for I in A'First + 1 .. A'Last - 1 loop

A (I) := I * A'Length;
end loop;
for I of reverse A loop

Put (I'Image);
end loop;

end;
Which output is correct?

A. 1 10 15 20 1
B. 1 20 15 10 1
C. 0 10 15 20 0
D. 25 20 15 10 5

Explanations
A. There is a reverse
B. Yes
C. Default value is 1
D. No

NB: Without Default_Component_Value, init. values are random
240 / 869

Array Types
Aggregates

Aggregates

241 / 869

Array Types
Aggregates

Aggregates

Literals for composite types
Array types
Record types

Two distinct forms
Positional
Named

Syntax (simplified):

component_expr ::=
expression -- Defined value
| <> -- Default value

array_aggregate ::= (
{component_expr ,} -- Positional

| {discrete_choice_list => component_expr,}) -- Named
-- Default "others" indices
[others => expression]

242 / 869

Array Types
Aggregates

Aggregate "Positional" Form

Specifies array component values explicitly
Uses implicit ascending index values

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;
Week : Working;
...
-- Saturday and Sunday are False, everything else true
Week := (True, True, True, True, True, False, False);

243 / 869

Array Types
Aggregates

Aggregate "Named" Form

Explicitly specifies both index and corresponding component values
Allows any order to be specified
Ranges and choice lists are allowed (like case choices)

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;
Week : Working;
...
Week := (Sat => False, Sun => False, Mon..Fri => True);
Week := (Sat | Sun => False, Mon..Fri => True);

244 / 869

Array Types
Aggregates

Combined Aggregate Forms Not Allowed

Some cases lead to ambiguity, therefore never allowed for array
types
Are only allowed for record types (shown in subsequent section)

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Working is array (Days) of Boolean;
Week : Working;
...
Week := (True, True, True, True, True, False, False);
Week := (Sat => False, Sun => False, Mon..Fri => True);
Week := (True, True, True, True, True,

Sat => False, Sun => False); -- invalid
Week := (Sat | Sun => False, Mon..Fri => True);

245 / 869

Array Types
Aggregates

Aggregates Are True Literal Values

Used any place a value of the type may be used

type Schedule is array (Mon .. Fri) of Float;
Work : Schedule;
Normal : constant Schedule := (8.0, 8.0, 8.0, 8.0, 8.0);
...
Work := (8.5, 8.5, 8.5, 8.5, 6.0);
...
if Work = Normal then
...
if Work = (10.0, 10.0, 10.0, 10.0, 0.0) then -- 4-day week

246 / 869

Array Types
Aggregates

Aggregate Consistency Rules

Must always be complete
They are literals, after all
Each component must be given a value
But defaults are possible (more in a moment)

Must provide only one value per index position
Duplicates are detected at compile-time

Compiler rejects incomplete or inconsistent aggregates

Week := (Sat => False,
Sun => False,
Mon .. Fri => True,
Wed => False);

247 / 869

Array Types
Aggregates

"Others"

Indicates all components not yet assigned a value
All remaining components get this single value
Similar to case statement's others
Can be used to apply defaults too

type Schedule is array (Days) of Float;
Work : Schedule;
Normal : constant Schedule := (8.0, 8.0, 8.0, 8.0, 8.0,

others => 0.0);

248 / 869

Array Types
Aggregates

Nested Aggregates

For arrays of composite component types

type Col_T is array (1 .. 3) of Float;
type Matrix_T is array (1 .. 3) of Col_T;
Matrix : Matrix_T := (1 => (1.2, 1.3, 1.4),

2 => (2.5, 2.6, 2.7),
3 => (3.8, 3.9, 3.0));

249 / 869

Array Types
Aggregates

Defaults Within Array Aggregates

Specified via the box notation

Value for component is thus taken as for stand-alone object
declaration

So there may or may not be a defined default!

Can only be used with "named association" form
But others counts as named form

Syntax

discrete_choice_list => <>

Example

type Int_Arr is array (1 .. N) of Integer;
Primes : Int_Arr := (1 => 2, 2 .. N => <>);

250 / 869

Array Types
Aggregates

Named Format Aggregate Rules

Bounds cannot overlap
Index values must be specified once and only once

All bounds must be static
Avoids run-time cost to verify coverage of all index values
Except for single choice format

type Float_Arr is array (Integer range <>) of Float;
Ages : Float_Arr (1 .. 10) := (1 .. 3 => X, 4 .. 10 => Y);
-- illegal: 3 and 4 appear twice
Overlap : Float_Arr (1 .. 10) := (1 .. 4 => X, 3 .. 10 => Y);
N, M, K, L : Integer;
-- illegal: cannot determine if
-- every index covered at compile time
Not_Static : Float_Arr (1 .. 10) := (M .. N => X, K .. L => Y);
-- This is legal
Values : Float_Arr (1 .. N) := (1 .. N => X);

251 / 869

Array Types
Aggregates

Quiz

type Array_T is array (1 .. 5) of Integer;
X : Array_T;
J : Integer := X'First;

Which statement is correct?

A. X := (1, 2, 3, 4 => 4, 5 => 5);
B. X := (1..3 => 100, 4..5 => -100, others => -1);
C. X := (J => -1, J + 1..X'Last => 1);
D. X := (1..3 => 100, 3..5 => 200);

Explanations

A. Cannot mix positional and named notation
B. Correct - others not needed but is allowed
C. Dynamic values must be the only choice. (This could be fixed by

making J a constant.)
D. Overlapping index values (3 appears more than once)

252 / 869

Array Types
Aggregates

Quiz

type Array_T is array (1 .. 5) of Integer;
X : Array_T;
J : Integer := X'First;

Which statement is correct?

A. X := (1, 2, 3, 4 => 4, 5 => 5);
B. X := (1..3 => 100, 4..5 => -100, others => -1);
C. X := (J => -1, J + 1..X'Last => 1);
D. X := (1..3 => 100, 3..5 => 200);

Explanations

A. Cannot mix positional and named notation
B. Correct - others not needed but is allowed
C. Dynamic values must be the only choice. (This could be fixed by

making J a constant.)
D. Overlapping index values (3 appears more than once)

252 / 869

Array Types
Aggregates

Aggregates in Ada 2022
Ada 2022

Ada 2022 allows us to use square brackets "[...]" in defining
aggregates

type Array_T is array (positive range <>) of Integer;

So common aggregates can use either square brackets or
parentheses

Ada2012 : Array_T := (1, 2, 3);
Ada2022 : Array_T := [1, 2, 3];

But square brackets help in more problematic situations
Empty array

Ada2012 : Array_T := (1..0 => 0);
Illegal : Array_T := ();
Ada2022 : Array_T := [];

Single component array

Ada2012 : Array_T := (1 => 5);
Illegal : Array_T := (5);
Ada2022 : Array_T := [5];

253 / 869

Array Types
Aggregates

Iterated Component Association
Ada 2022

With Ada 2022, we can create aggregates with iterators
Basically, an inline looping mechanism

Index-based iterator

type Array_T is array (positive range <>) of Integer;
Object1 : Array_T(1..5) := (for J in 1 .. 5 => J * 2);
Object2 : Array_T(1..5) := (for J in 2 .. 3 => J,

5 => -1,
others => 0);

Object1 will get initialized to the squares of 1 to 5
Object2 will give the equivalent of (0, 2, 3, 0, -1)

Component-based iterator

Object2 := [for Item of Object => Item * 2];

Object2 will have each component doubled
254 / 869

Array Types
Aggregates

More Information on Iterators
Ada 2022

You can nest iterators for arrays of arrays

type Col_T is array (1 .. 3) of Integer;
type Matrix_T is array (1 .. 3) of Col_T;
Matrix : Matrix_T :=

[for J in 1 .. 3 =>
[for K in 1 .. 3 => J * 10 + K]];

You can even use multiple iterators for a single dimension array

Ada2012 : Array_T(1..5) :=
[for I in 1 .. 2 => -1,
for J in 4 ..5 => 1,
others => 0];

Restrictions
You cannot mix index-based iterators and component-based
iterators in the same aggregate
You still cannot have overlaps or missing values

255 / 869

Array Types
Aggregates

Delta Aggregates
Ada 2022

type Coordinate_T is array (1 .. 3) of Float;
Location : constant Coordinate_T := (1.0, 2.0, 3.0);

Sometimes you want to copy an array with minor modifications
Prior to Ada 2022, it would require two steps

declare
New_Location : Coordinate_T := Location;

begin
New_Location(3) := 0.0;
-- OR
New_Location := (3 => 0.0, others => <>);

end;

Ada 2022 introduces a delta aggregate
Aggregate indicates an object plus the values changed - the delta

New_Location : Coordinate_T := [Location with delta 3 => 0.0];

Notes
You can use square brackets or parentheses
Only allowed for single dimension arrays

This works for records as well (see that chapter)
256 / 869

Array Types
Detour - 'Image for Complex Types

Detour - 'Image for Complex Types

257 / 869

Array Types
Detour - 'Image for Complex Types

'Image Attribute
Ada 2022

Previously, we saw the string attribute 'Image is provided for
scalar types

e.g. Integer'Image(10+2) produces the string " 12"

Starting with Ada 2022, the Image attribute can be used for any
type

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

type Colors_T is (Red, Yellow, Green);
type Array_T is array (Colors_T) of Boolean;
Object : Array_T :=

(Green => False,
Yellow => True,
Red => True);

begin
Put_Line (Object'Image);

end Main;

Yields an output of

[TRUE, TRUE, FALSE]

258 / 869

Array Types
Detour - 'Image for Complex Types

Overriding the 'Image Attribute
Ada 2022

We don't always want to rely on the compiler defining how we
print a complex object
We can define it - by using 'Image and attaching a procedure to
the Put_Image aspect

type Colors_T is (Red, Yellow, Green);
type Array_T is array (Colors_T) of Boolean with

Put_Image => Array_T_Image;

259 / 869

Array Types
Detour - 'Image for Complex Types

Defining the 'Image Attribute
Ada 2022

Then we need to declare the procedure

procedure Array_T_Image
(Output : in out Ada.Strings.Text_Buffers.Root_Buffer_Type'Class;
Value : Array_T);

Which uses the
Ada.Strings.Text_Buffers.Root_Buffer_Type as an output
buffer
(No need to go into detail here other than knowing you do
Output.Put to add to the buffer)

And then we define it

procedure Array_T_Image
(Output : in out Ada.Strings.Text_Buffers.Root_Buffer_Type'Class;
Value : Array_T) is

begin
for Color in Value'Range loop

Output.Put (Color'Image & "=>" & Value (Color)'Image & ASCII.LF);
end loop;

end Array_T_Image;
260 / 869

Array Types
Detour - 'Image for Complex Types

Using the 'Image Attribute
Ada 2022

Now, when we call Image we get our "pretty-print" version

with Ada.Text_IO; use Ada.Text_IO;
with Types; use Types;
procedure Main is

Object : Array_T := (Green => False,
Yellow => True,
Red => True);

begin
Put_Line (Object'Image);

end Main;

Generating the following output

RED=>TRUE

YELLOW=>TRUE

GREEN=>FALSE

Note this redefinition can be used on any type, even the scalars
that have always had the attribute

261 / 869

Array Types
Anonymous Array Types

Anonymous Array Types

262 / 869

Array Types
Anonymous Array Types

Anonymous Array Types
Array objects need not be of
a named type
A : array (1 .. 3) of B;
Without a type name, no
object-level operations

Cannot be checked for
type compatibility
Operations on components
are still ok if compatible

declare
-- These are not same type!

A, B : array (Foo) of Bar;
begin

A := B; -- illegal
B := A; -- illegal
-- legal assignment of values
A(J) := B(K);

end;

263 / 869

Array Types
Lab

Lab

264 / 869

Array Types
Lab

Array Lab

Requirements
Create an array type whose index is days of the week and each
component is a number

Create two objects of the array type, one of which is constant

Perform the following operations

Copy the constant object to the non-constant object
Print the contents of the non-constant object
Use an array aggregate to initialize the non-constant object
For each component of the array, print the array index and the
value
Move part ("source") of the non-constant object to another part
("destination"), and then clear the source location
Print the contents of the non-constant object

Hints
When you want to combine multiple strings (which are arrays!) use
the concatenation operator (&)
Slices are how you access part of an array
Use aggregates (either named or positional) to initialize data

265 / 869

Array Types
Lab

Arrays of Arrays

Requirements
For each day of the week, you need an array of three strings
containing names of workers for that day
Two sets of workers: weekend and weekday, but the store is closed
on Wednesday (no workers)
Initialize the array and then print it hierarchically

266 / 869

Array Types
Lab

Array Lab Solution - Declarations

1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Main is
3

4 type Days_Of_Week_T is
5 (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
6 type Unconstrained_Array_T is
7 array (Days_Of_Week_T range <>) of Natural;
8

9 Const_Arr : constant Unconstrained_Array_T := (1, 2, 3, 4, 5, 6, 7);
10 Array_Var : Unconstrained_Array_T (Days_Of_Week_T);
11

12 type Name_T is array (1 .. 6) of Character;
13 type Names_T is array (1 .. 3) of Name_T;
14 Weekly_Staff : array (Days_Of_Week_T) of Names_T;

267 / 869

Array Types
Lab

Array Lab Solution - Implementation
15 begin
16 Array_Var := Const_Arr;
17 for Item of Array_Var loop
18 Put_Line (Item'Image);
19 end loop;
20 New_Line;
21

22 Array_Var :=
23 (Mon => 111, Tue => 222, Wed => 333, Thu => 444, Fri => 555, Sat => 666,
24 Sun => 777);
25 for Index in Array_Var'Range loop
26 Put_Line (Index'Image & " => " & Array_Var (Index)'Image);
27 end loop;
28 New_Line;
29

30 Array_Var (Mon .. Wed) := Const_Arr (Wed .. Fri);
31 Array_Var (Wed .. Fri) := (others => Natural'First);
32 for Item of Array_Var loop
33 Put_Line (Item'Image);
34 end loop;
35 New_Line;
36

37 Weekly_Staff := (Mon | Tue | Thu | Fri => ("Fred ", "Barney", "Wilma "),
38 Wed => ("closed", "closed", "closed"),
39 others => ("Pinky ", "Inky ", "Blinky"));
40

41 for Day in Weekly_Staff'Range loop
42 Put_Line (Day'Image);
43 for Staff of Weekly_Staff(Day) loop
44 Put_Line (" " & String (Staff));
45 end loop;
46 end loop;
47 end Main;

268 / 869

Array Types
Summary

Summary

269 / 869

Array Types
Summary

Final Notes on Type String

Any single-dimensioned array of some character type is a
string type

Language defines types String, Wide_String, etc.

Just another array type: no null termination

Language-defined support defined in Appendix A
Ada.Strings.*
Fixed-length, bounded-length, and unbounded-length
Searches for pattern strings and for characters in program-specified
sets
Transformation (replacing, inserting, overwriting, and deleting of
substrings)
Translation (via a character-to-character mapping)

270 / 869

Array Types
Summary

Summary

Any dimensionality directly supported

Component types can be any (constrained) type

Index types can be any discrete type
Integer types
Enumeration types

Constrained array types specify bounds for all objects

Unconstrained array types leave bounds to the objects
Thus differently-sized objects of the same type

Default initialization for large arrays may be expensive!

Anonymously-typed array objects used in examples for brevity but
that doesn't mean you should in real programs

271 / 869

Type Derivation

Type Derivation

272 / 869

Type Derivation
Introduction

Introduction

273 / 869

Type Derivation
Introduction

Type Derivation

Type derivation allows for reusing code

Type can be derived from a base type

Base type can be substituted by the derived type

Subprograms defined on the base type are inherited on derived
type

This is not OOP in Ada
Tagged derivation is OOP in Ada

274 / 869

Type Derivation
Introduction

Reminder: What is a Type?

A type is characterized by two components
Its data structure
The set of operations that applies to it

The operations are called primitive operations in Ada

package Types is
type Integer_T is range -(2**63) .. 2**63-1 with Size => 64;
procedure Increment_With_Truncation (Val : in out Integer_T);
procedure Increment_With_Rounding (Val : in out Integer_T);

end Types;

275 / 869

Type Derivation
Simple Derivation

Simple Derivation

276 / 869

Type Derivation
Simple Derivation

Simple Type Derivation

Any type (except tagged) can be derived

type Natural_T is new Integer_T range 0 .. Integer_T'Last;

Natural_T inherits from:
The data representation of the parent

Integer based, 64 bits

The primitives of the parent

Increment_With_Truncation and Increment_With_Rounding

The types are not the same

I_Obj : Integer_T := 0;
N_Obj : Natural_T := 0;

I_Obj := N_Obj; → generates a compile error

expected type "Integer_T" defined at line 2

But a child can be converted to the parent

I_Obj := Integer_T (N_Obj);
277 / 869

Type Derivation
Simple Derivation

Simple Derivation and Type Structure

The type "structure" can not change
array cannot become record
Integers cannot become floats

But can be constrained further

Scalar ranges can be reduced

type Positive_T is new Natural_T range 1 .. Natural_T'Last;

Unconstrained types can be constrained

type Arr_T is array (Integer range <>) of Integer;
type Ten_Elem_Arr_T is new Arr_T (1 .. 10);
type Rec_T (Size : Integer) is record

Elem : Arr_T (1 .. Size);
end record;
type Ten_Elem_Rec_T is new Rec_T (10);

278 / 869

Type Derivation
Primitives

Primitives

279 / 869

Type Derivation
Primitives

Primitive Operations

Primitive Operations are those subprograms associated with a type

type Integer_T is range -(2**63) .. 2**63-1 with Size => 64;
procedure Increment_With_Truncation (Val : in out Integer_T);
procedure Increment_With_Rounding (Val : in out Integer_T);

Most types have some primitive operations defined by the language
e.g. equality operators for most types, numeric operators for
integers and floats

A primitive operation on the parent can receive an object of a
child type with no conversion

declare
N_Obj : Natural_T := 1234;

begin
Increment_With_Truncation (N_Obj);

end;
280 / 869

Type Derivation
Primitives

General Rule for Defining a Primitive

Primitives are subprograms

Subprogram S is a primitive of type T if and only if:
S is declared in the scope of T

S uses type T

As a parameter
As its return type (for a function)

S is above freeze-point (see next section)

Standard practice
Primitives should be declared right after the type itself

In a scope, declare at most a single type with primitives

package P is
type T is range 1 .. 10;
procedure P1 (V : T);
procedure P2 (V1 : Integer; V2 : T);
function F return T;

end P;
281 / 869

Type Derivation
Primitives

Primitive of Multiple Types

A subprogram can be a primitive of several types

package P is
type Distance_T is range 0 .. 9999;
type Percentage_T is digits 2 range 0.0 .. 1.0;
type Units_T is (Meters, Feet, Furlongs);

procedure Convert (Value : in out Distance_T;
Source : Units_T;
Result : Units_T;

procedure Shrink (Value : in out Distance_T;
Percent : Percentage_T);

end P;

Convert and Shrink are primitives for Distance_T
Convert is also a primitive of Units_T
Shrink is also a primitive of Percentage_T

282 / 869

Type Derivation
Primitives

Creating Primitives for Children

Just because we can inherit a primitive from out parent doesn't
mean we want to

We can create a new primitive (with the same name as the parent)
for the child

Very similar to overloaded subprograms
But added benefit of visibility to grandchildren

We can also remove a primitive (see next slide)

type Integer_T is range -(2**63) .. 2**63-1;
procedure Increment_With_Truncation (Val : in out Integer_T);
procedure Increment_With_Rounding (Val : in out Integer_T);

type Child_T is new Integer_T range -1000 .. 1000;
procedure Increment_With_Truncation (Val : in out Child_T);

type Grandchild_T is new Child_T range -100 .. 100;
procedure Increment_With_Rounding (Val : in out Grandchild_T);

283 / 869

Type Derivation
Primitives

Overriding Indications
Optional indications

Checked by compiler

type Child_T is new Integer_T range -1000 .. 1000;
procedure Increment_With_Truncation

(Val : in out Child_T);
procedure Just_For_Child

(Val : in out Child_T);

Replacing a primitive: overriding indication

overriding procedure Increment_With_Truncation
(Val : in out Child_T);

Adding a primitive: not overriding indication

not overriding procedure Just_For_Child
(Val : in out Child_T);

Removing a primitive: overriding as abstract

overriding procedure Just_For_Child
(Val : in out Grandchild_T) is abstract;

Using overriding or not overriding incorrectly will generate a
compile error

284 / 869

Type Derivation
Primitives

Quiz

type T is new Integer;

Which operator(s) definition(s) is (are) legal?

A. function "+" (V : T) return Boolean is (V /= 0)
B. function "+" (A, B : T) return T is (A + B)
C. function "=" (A, B : T) return T is (A - B)
D. function ":=" (A : T) return T is (A)

B. Infinite recursion
C. Unlike some languages, there is no assignment operator

285 / 869

Type Derivation
Primitives

Quiz

type T is new Integer;

Which operator(s) definition(s) is (are) legal?

A. function "+" (V : T) return Boolean is (V /= 0)
B. function "+" (A, B : T) return T is (A + B)
C. function "=" (A, B : T) return T is (A - B)
D. function ":=" (A : T) return T is (A)

B. Infinite recursion
C. Unlike some languages, there is no assignment operator

285 / 869

Type Derivation
Freeze Point

Freeze Point

286 / 869

Type Derivation
Freeze Point

What is the "Freeze Point"?
Ada doesn't explicitly identify the end of the "scope" of a type

The compiler needs to know it for determining primitive operations
Also needed for other situations (described elsewhere)

This end is the implicit freeze point occurring whenever:
A variable of the type is declared
The type is derived
The end of the scope is reached

Subprograms past this "freeze point" are not primitive operations

type Parent is Integer;
procedure Prim (V : Parent);

type Child is new Parent;

-- Parent has been derived, so it is frozen.
-- Prim2 is not a primitive
procedure Prim2 (V : Parent);

V : Child;

-- Child used in an object declaration, so it is frozen
-- Prim3 is not a primitive
procedure Prim3 (V : Child);

287 / 869

Type Derivation
Freeze Point

Debugging Type Freeze

Freeze → Type completely defined

Compiler does need to determine the freeze point
To instantiate, derive, get info on the type ('Size)...

Freeze rules are a guide to place it

Actual choice is more technical

May contradict the standard

-gnatDG to get expanded source

Pseudo-Ada debug information

pkg.ads

type Up_To_Eleven is range 0 .. 11;

<obj>/pkg.ads.dg

type example__up_to_eleven_t is range 0 .. 11; -- type declaration
[type example__Tup_to_eleven_tB is new short_short_integer] -- representation
freeze example__Tup_to_eleven_tB [] -- freeze representation
freeze example__up_to_eleven_t [] -- freeze representation

288 / 869

Type Derivation
Freeze Point

Quiz
type Parent is range 1 .. 100;
procedure Proc_A (X : in out Parent);

type Child is new Parent range 2 .. 99;
procedure Proc_B (X : in out Parent);
procedure Proc_B (X : in out Child);

-- Other scope
procedure Proc_C (X : in out Child);

type Grandchild is new Child range 3 .. 98;

procedure Proc_C (X : in out Grandchild);

Which are Parent's primitives?
A. Proc_A
B. Proc_B
C. Proc_C
D. No primitives of Parent

Explanations
A. Correct
B. Freeze: Parent has been

derived
C. Freeze: scope change
D. Incorrect

289 / 869

Type Derivation
Freeze Point

Quiz
type Parent is range 1 .. 100;
procedure Proc_A (X : in out Parent);

type Child is new Parent range 2 .. 99;
procedure Proc_B (X : in out Parent);
procedure Proc_B (X : in out Child);

-- Other scope
procedure Proc_C (X : in out Child);

type Grandchild is new Child range 3 .. 98;

procedure Proc_C (X : in out Grandchild);

Which are Parent's primitives?
A. Proc_A
B. Proc_B
C. Proc_C
D. No primitives of Parent

Explanations
A. Correct
B. Freeze: Parent has been

derived
C. Freeze: scope change
D. Incorrect

289 / 869

Type Derivation
Summary

Summary

290 / 869

Type Derivation
Summary

Summary

Primitive of a type
Subprogram above freeze-point that takes or returns the type
Can be a primitive for multiple types

Freeze point rules can be tricky

Simple type derivation
Types derived from other types can only add limitations

Constraints, ranges
Cannot change underlying structure

291 / 869

Expressions

Expressions

292 / 869

Expressions
Introduction

Introduction

293 / 869

Expressions
Introduction

Advanced Expressions

Different categories of expressions above simple assignment and
conditional statements

Constraining types to sub-ranges to increase readability and
flexibility

Allows for simple membership checks of values

Embedded conditional assignments

Equivalent to C's A ? B : C and even more elaborate

294 / 869

Expressions
Membership Tests

Membership Tests

295 / 869

Expressions
Membership Tests

"Membership" Operation

Syntax

simple_expression [not] in membership_choice_list
membership_choice_list ::= membership_choice

{ | membership_choice}
membership_choice ::= expression | range | subtype_mark

Acts like a boolean function

Usable anywhere a boolean value is allowed

X : Integer := ...
B : Boolean := X in 0..5;
C : Boolean := X not in 0..5; -- also "not (X in 0..5)"

296 / 869

Expressions
Membership Tests

Testing Constraints Via Membership

type Calendar_Days is
(Mon, Tues, Wed, Thur, Fri, Sat, Sun);

subtype Weekdays is Calendar_Days range Mon .. Fri;
Day : Calendar_Days := Today;
...
if Day in Mon .. Fri then ...
if Day in Weekdays then ... -- same as above

297 / 869

Expressions
Membership Tests

Testing Non-Contiguous Membership

We use in to indicate membership in a range of values

if Color in Red .. Green then
if Index in List'Range then

But what if the values are not contiguous?
We could use a Boolean conjunction

if Index = 1 or Index = 3 or Index = 5 then

Or we could simplify it by specifying a collection (or set)

if Index in 1 | 3 | 5 then

| is used to separate members
So 1 | 3 | 5 is the set for which we are verifying membership

298 / 869

Expressions
Membership Tests

Quiz

type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Weekdays_T is Days_T range Mon .. Fri;
Today : Days_T;

Which condition(s) is (are) legal?

A. if Today = Mon or Wed or Fri then
B. if Today in Days_T then
C. if Today not in Weekdays_T then
D. if Today in Tue | Thu then

Explanations

A. Wed and Fri are not Boolean expressions - need to compare each
of them to Today

B. Legal - should always return True
C. Legal - returns True if Today is Sat or Sun
D. Legal - returns True if Today is Tue or Thu

299 / 869

Expressions
Membership Tests

Quiz

type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
subtype Weekdays_T is Days_T range Mon .. Fri;
Today : Days_T;

Which condition(s) is (are) legal?

A. if Today = Mon or Wed or Fri then
B. if Today in Days_T then
C. if Today not in Weekdays_T then
D. if Today in Tue | Thu then

Explanations

A. Wed and Fri are not Boolean expressions - need to compare each
of them to Today

B. Legal - should always return True
C. Legal - returns True if Today is Sat or Sun
D. Legal - returns True if Today is Tue or Thu

299 / 869

Expressions
Qualified Names

Qualified Names

300 / 869

Expressions
Qualified Names

Qualification

Explicitly indicates the subtype of the value

Syntax

qualified_expression ::= subtype_mark'(expression) |
subtype_mark'aggregate

Similar to conversion syntax
Mnemonic - "qualification uses quote"

Various uses shown in course
Testing constraints
Removing ambiguity of overloading
Enhancing readability via explicitness

301 / 869

Expressions
Qualified Names

Testing Constraints Via Qualification

Asserts value is compatible with subtype
Raises exception Constraint_Error if not true

subtype Weekdays is Days range Mon .. Fri;
This_Day : Days;
...
case Weekdays'(This_Day) is -- run-time error if out of range

when Mon =>
Arrive_Late;
Leave_Early;

when Tue .. Thur =>
Arrive_Early;
Leave_Late;

when Fri =>
Arrive_Early;
Leave_Early;

end case; -- no 'others' because all subtype values covered
302 / 869

Expressions
Conditional Expressions

Conditional Expressions

303 / 869

Expressions
Conditional Expressions

Conditional Expressions

Ultimate value depends on a controlling condition

Allowed wherever an expression is allowed
Assignment RHS, formal parameters, aggregates, etc.

Similar intent as in other languages
Java, C/C++ ternary operation A ? B : C
Python conditional expressions
etc.

Two forms:
If expressions
Case expressions

304 / 869

Expressions
Conditional Expressions

If Expressions

Syntax looks like an if statement without end if

if_expression ::=
(if condition then dependent_expression
{elsif condition then dependent_expression}
[else dependent_expression])

condition ::= boolean_expression

The conditions are always Boolean values

(if Today > Wednesday then 1 else 0)

305 / 869

Expressions
Conditional Expressions

Result Must Be Compatible with Context

The dependent_expression parts, specifically

X : Integer :=
(if Day_Of_Week (Clock) > Wednesday then 1 else 0);

306 / 869

Expressions
Conditional Expressions

"If Expression" Example

declare
Remaining : Natural := 5; -- arbitrary

begin
while Remaining > 0 loop

Put_Line ("Warning! Self-destruct in" &
Remaining'Image &
(if Remaining = 1 then " second" else " seconds"));

delay 1.0;
Remaining := Remaining - 1;

end loop;
Put_Line ("Boom! (goodbye Nostromo)");

307 / 869

Expressions
Conditional Expressions

Boolean "If Expressions"

Return a value of either True or False
(if P then Q) - assuming P and Q are Boolean
"If P is True then the result of the if expression is the value of Q"

But what is the overall result if all conditions are False?

Answer: the default result value is True
Why?

Consistency with mathematical proving

308 / 869

Expressions
Conditional Expressions

The "else" Part When Result Is Boolean

Redundant because the default result is True
(if P then Q else True)

So for convenience and elegance it can be omitted
Acceptable : Boolean := (if P1 > 0 then P2 > 0 else True);
Acceptable : Boolean := (if P1 > 0 then P2 > 0);

Use else if you need to return False at the end

309 / 869

Expressions
Conditional Expressions

Rationale for Parentheses Requirement

Prevents ambiguity regarding any enclosing expression

Problem:

X : Integer := if condition then A else B + 1;

Does that mean
If condition, then X := A + 1, else X := B + 1 OR
If condition, then X := A, else X := B + 1

But not required if parentheses already present
Because enclosing construct includes them

Subprogram_Call (if A then B else C);

310 / 869

Expressions
Conditional Expressions

When to Use If Expressions

When you need computation to be done prior to sequence of
statements

Allows constants that would otherwise have to be variables

When an enclosing function would be either heavy or redundant
with enclosing context

You'd already have written a function if you'd wanted one

Preconditions and postconditions
All the above reasons
Puts meaning close to use rather than in package body

Static named numbers
Can be much cleaner than using Boolean'Pos (Condition)

311 / 869

Expressions
Conditional Expressions

"If Expression" Example for Constants
Starting from

End_of_Month : array (Months) of Days
:= (Sep | Apr | Jun | Nov => 30,

Feb => 28,
others => 31);

begin
if Leap (Today.Year) then -- adjust for leap year

End_of_Month (Feb) := 29;
end if;
if Today.Day = End_of_Month (Today.Month) then

...

Using if expression to call Leap (Year) as needed

End_Of_Month : constant array (Months) of Days
:= (Sep | Apr | Jun | Nov => 30,

Feb => (if Leap (Today.Year)
then 29 else 28),

others => 31);
begin

if Today.Day /= End_of_Month (Today.Month) then
...

312 / 869

Expressions
Conditional Expressions

Case Expressions

Syntax similar to case statements
Lighter: no closing end case
Commas between choices

Same general rules as if expressions
Parentheses required unless already present
Type of "result" must match context

Advantage over if expressions is completeness checked by compiler
Same as with case statements (unless others is used)

-- compile error if not all days covered
Hours : constant Integer :=

(case Day_of_Week is
when Mon .. Thurs => 9,
when Fri => 4,
when Sat | Sun => 0);

313 / 869

Expressions
Conditional Expressions

"Case Expression" Example

Leap : constant Boolean :=
(Today.Year mod 4 = 0 and Today.Year mod 100 /= 0)
or else
(Today.Year mod 400 = 0);

End_Of_Month : array (Months) of Days;
...
-- initialize array
for M in Months loop

End_Of_Month (M) :=
(case M is
when Sep | Apr | Jun | Nov => 30,
when Feb => (if Leap then 29 else 28),
when others => 31);

end loop;
314 / 869

Expressions
Conditional Expressions

Quiz

function Sqrt (X : Float) return Float;
F : Float;
B : Boolean;

Which statement(s) is (are) legal?

A. F := if X < 0.0 then Sqrt (-1.0 * X) else Sqrt (X);
B. F := Sqrt (if X < 0.0 then -1.0 * X else X);
C. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0 else

True);
D. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0);

Explanations

A. Missing parentheses around expression
B. Legal - Expression is already enclosed in parentheses so you don't

need to add more
C. Legal - else True not needed but is allowed
D. Legal - B will be True if X >= 0.0

315 / 869

Expressions
Conditional Expressions

Quiz

function Sqrt (X : Float) return Float;
F : Float;
B : Boolean;

Which statement(s) is (are) legal?

A. F := if X < 0.0 then Sqrt (-1.0 * X) else Sqrt (X);
B. F := Sqrt (if X < 0.0 then -1.0 * X else X);
C. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0 else

True);
D. B := (if X < 0.0 then Sqrt (-1.0 * X) < 10.0);

Explanations

A. Missing parentheses around expression
B. Legal - Expression is already enclosed in parentheses so you don't

need to add more
C. Legal - else True not needed but is allowed
D. Legal - B will be True if X >= 0.0

315 / 869

Expressions
Quantified Expressions

Quantified Expressions

316 / 869

Expressions
Quantified Expressions

Introduction

Expressions that have a Boolean value

The value indicates something about a set of objects
In particular, whether something is True about that set

That "something" is expressed as an arbitrary boolean expression
A so-called "predicate"

"Universal" quantified expressions
Indicate whether predicate holds for all components

"Existential" quantified expressions
Indicate whether predicate holds for at least one component

317 / 869

Expressions
Quantified Expressions

Semantics Are As If You Wrote This Code

function Universal (Set : Components) return Boolean is
begin

for C of Set loop
if not Predicate (C) then

return False; -- Predicate must be true for all
end if;

end loop;
return True;

end Universal;

function Existential (Set : Components) return Boolean is
begin

for C of Set loop
if Predicate (C) then

return True; -- Predicate need only be true for one
end if;

end loop;
return False;

end Existential;
318 / 869

Expressions
Quantified Expressions

Quantified Expressions Syntax

Four for variants
Index-based in or component-based of
Existential some or universal all

Using arrow => to indicate predicate expression

(for some Index in Subtype_T => Predicate (Index))
(for all Index in Subtype_T => Predicate (Index))
(for some Value of Container_Obj => Predicate (Value))
(for all Value of Container_Obj => Predicate (Value))

319 / 869

Expressions
Quantified Expressions

Simple Examples

Values : constant array (1 .. 10) of Integer := (...);
Is_Any_Even : constant Boolean :=

(for some V of Values => V mod 2 = 0);
Are_All_Even : constant Boolean :=

(for all V of Values => V mod 2 = 0);

320 / 869

Expressions
Quantified Expressions

Universal Quantifier

In logic, denoted by ∀ (inverted 'A', for "all")

"There is no member of the set for which the predicate does not
hold"

If predicate is False for any member, the whole is False

Functional equivalent

function Universal (Set : Components) return Boolean is
begin

for C of Set loop
if not Predicate (C) then

return False; -- Predicate must be true for all
end if;

end loop;
return True;

end Universal;
321 / 869

Expressions
Quantified Expressions

Universal Quantifier Illustration

"There is no member of the set for which the predicate does not
hold"
Given a set of integer answers to a quiz, there are no answers that
are not 42 (i.e., all are 42)

Ultimate_Answer : constant := 42; -- to everything...
Answers : constant array (1 .. 10)

of Integer := (...);
All_Correct_1 : constant Boolean :=

(for all Component of Answers =>
Component = Ultimate_Answer);

All_Correct_2 : constant Boolean :=
(for all K in Answers'Range =>

Answers (K) = Ultimate_Answer);

322 / 869

Expressions
Quantified Expressions

Universal Quantifier Real-World Example

type DMA_Status_Flag is (...);
function Status_Indicated (

Flag : DMA_Status_Flag)
return Boolean;

None_Set : constant Boolean := (
for all Flag in DMA_Status_Flag =>

not Status_Indicated (Flag));

323 / 869

Expressions
Quantified Expressions

Existential Quantifier

In logic, denoted by ∃ (rotated 'E', for "exists")

"There is at least one member of the set for which the predicate
holds"

If predicate is True for any member, the whole is True

Functional equivalent

function Existential (Set : Components) return Boolean is
begin

for C of Set loop
if Predicate (C) then

return True; -- Need only be true for at least one
end if;

end loop;
return False;

end Existential;
324 / 869

Expressions
Quantified Expressions

Existential Quantifier Illustration

"There is at least one member of the set for which the predicate
holds"
Given set of Integer answers to a quiz, there is at least one answer
that is 42

Ultimate_Answer : constant := 42; -- to everything...
Answers : constant array (1 .. 10)

of Integer := (...);
Any_Correct_1 : constant Boolean :=

(for some Component of Answers =>
Component = Ultimate_Answer);

Any_Correct_2 : constant Boolean :=
(for some K in Answers'Range =>

Answers (K) = Ultimate_Answer);

325 / 869

Expressions
Quantified Expressions

Index-Based Vs Component-Based Indexing

Given an array of Integers

Values : constant array (1 .. 10) of Integer := (...);

Component-based indexing is useful for checking individual values

Contains_Negative_Number : constant Boolean :=
(for some N of Values => N < 0);

Index-based indexing is useful for comparing across values

Is_Sorted : constant Boolean :=
(for all I in Values'Range =>

I = Values'First or else
Values (I) >= Values (I-1));

326 / 869

Expressions
Quantified Expressions

"Pop Quiz" for Quantified Expressions

What will be the value of Ascending_Order?
Table : constant array (1 .. 10) of Integer :=

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
Ascending_Order : constant Boolean := (

for all K in Table'Range =>
K > Table'First and then Table (K - 1) <= Table (K));
Answer: False. Predicate fails when K = Table'First

First subcondition is False!
Condition should be
Ascending_Order : constant Boolean := (

for all K in Table'Range =>
K = Table'First or else Table (K - 1) <= Table (K));

327 / 869

Expressions
Quantified Expressions

When the Set Is Empty...

Universally quantified expressions are True
Definition: there is no member of the set for which the predicate
does not hold
If the set is empty, there is no such member, so True
"All people 12-feet tall will be given free chocolate."

Existentially quantified expressions are False
Definition: there is at least one member of the set for which the
predicate holds

If the set is empty, there is no such member, so False

Common convention in set theory, arbitrary but settled

328 / 869

Expressions
Quantified Expressions

Not Just Arrays: Any "Iterable" Objects

Those that can be iterated over
Language-defined, such as the containers
User-defined too

package Characters is new
Ada.Containers.Vectors (Positive, Character);

use Characters;
Alphabet : constant Vector :=

To_Vector ('A',1) & 'B' & 'C';
Any_Zed : constant Boolean :=

(for some C of Alphabet => C = 'Z');
All_Lower : constant Boolean :=

(for all C of Alphabet => Is_Lower (C));

329 / 869

Expressions
Quantified Expressions

Conditional / Quantified Expression Usage

Use them when a function would be too heavy

Don't over-use them!

if (for some Component of Answers =>
Component = Ultimate_Answer)

then

Function names enhance readability
So put the quantified expression in a function

if At_Least_One_Answered (Answers) then

Even in pre/postconditions, use functions containing quantified
expressions for abstraction

330 / 869

Expressions
Quantified Expressions

Quiz

Which declaration(s) is (are) legal?

A. function F (S : String) return Boolean is
(for all C of S => C /= ' ');

B. function F (S : String) return Boolean is
(not for some C of S => C = ' ');

C. function F (S : String) return String is
(for all C of S => C);

D. function F (S : String) return String is
(if (for all C of S => C /= ' ') then "OK"
else "NOK");

B. Parentheses required around the quantified expression
C. Must return a Boolean

331 / 869

Expressions
Quantified Expressions

Quiz

Which declaration(s) is (are) legal?

A. function F (S : String) return Boolean is
(for all C of S => C /= ' ');

B. function F (S : String) return Boolean is
(not for some C of S => C = ' ');

C. function F (S : String) return String is
(for all C of S => C);

D. function F (S : String) return String is
(if (for all C of S => C /= ' ') then "OK"
else "NOK");

B. Parentheses required around the quantified expression
C. Must return a Boolean

331 / 869

Expressions
Quantified Expressions

Quiz

type T1 is array (1 .. 3) of Integer;
type T2 is array (1 .. 3) of Integer;

Which piece(s) of code correctly perform(s) equality check on A and B?

A. function "=" (A : T1; B : T2) return Boolean is
(A = T1 (B));

B. function "=" (A : T1; B : T2) return Boolean is
(for all E1 of A => (for all E2 of B => E1 = E2));

C. function "=" (A : T1; B : T2) return Boolean is
(for some E1 of A => (for some E2 of B => E1 =

E2));

D. function "=" (A : T1; B : T2) return Boolean is
(for all J in A'Range => A (J) = B (J));

B. Counterexample: A = B = (0, 1, 0) returns False
C. Counterexample: A = (0, 0, 1) and B = (0, 1, 1) returns

True

332 / 869

Expressions
Quantified Expressions

Quiz

type T1 is array (1 .. 3) of Integer;
type T2 is array (1 .. 3) of Integer;

Which piece(s) of code correctly perform(s) equality check on A and B?

A. function "=" (A : T1; B : T2) return Boolean is
(A = T1 (B));

B. function "=" (A : T1; B : T2) return Boolean is
(for all E1 of A => (for all E2 of B => E1 = E2));

C. function "=" (A : T1; B : T2) return Boolean is
(for some E1 of A => (for some E2 of B => E1 =

E2));

D. function "=" (A : T1; B : T2) return Boolean is
(for all J in A'Range => A (J) = B (J));

B. Counterexample: A = B = (0, 1, 0) returns False
C. Counterexample: A = (0, 0, 1) and B = (0, 1, 1) returns

True
332 / 869

Expressions
Quantified Expressions

Quiz
type Array1_T is array (1 .. 3) of Integer;
type Array2_T is array (1 .. 3) of Array1_T;
A : Array2_T;

The above describes an array A whose components are arrays of three
components. Which expression would one use to determine if at least
one of A's components are sorted?

A. (for some El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

B. (for all El of A => for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

C. (for some El of A => (for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

D. (for all El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

A. Will be True if any component has two consecutive increasing
values

B. Will be True if every component is sorted
C. Correct
D. Will be True if every component has two consecutive increasing

values

333 / 869

Expressions
Quantified Expressions

Quiz
type Array1_T is array (1 .. 3) of Integer;
type Array2_T is array (1 .. 3) of Array1_T;
A : Array2_T;

The above describes an array A whose components are arrays of three
components. Which expression would one use to determine if at least
one of A's components are sorted?

A. (for some El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

B. (for all El of A => for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

C. (for some El of A => (for all Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

D. (for all El of A => (for some Idx in 2 .. 3 =>
El (Idx) >= El (Idx - 1)));

A. Will be True if any component has two consecutive increasing
values

B. Will be True if every component is sorted
C. Correct
D. Will be True if every component has two consecutive increasing

values
333 / 869

Expressions
Lab

Lab

334 / 869

Expressions
Lab

Expressions Lab

Requirements
Allow the user to fill a list with dates

After the list is created, use quantified expressions to print
True/False

If any date is not legal (taking into account leap years!)
If all dates are in the same calendar year

Use expression functions for all validation routines

Hints
Use subtype membership for range validation

You will need conditional expressions in your functions

You can use component-based iterations for some checks

But you must use indexed-based iterations for others

This is the same lab as the Expressions lab, we're just replacing the
validation functions with quantified expressions!

So you can just copy that project and update the code!
335 / 869

Expressions
Lab

Expressions Lab Solution - Checks
4 subtype Year_T is Positive range 1_900 .. 2_099;
5 subtype Month_T is Positive range 1 .. 12;
6 subtype Day_T is Positive range 1 .. 31;
7

8 type Date_T is record
9 Year : Positive;

10 Month : Positive;
11 Day : Positive;
12 end record;
13

14 List : array (1 .. 5) of Date_T;
15 Item : Date_T;
16

17 function Is_Leap_Year (Year : Positive)
18 return Boolean is
19 (Year mod 400 = 0 or else (Year mod 4 = 0 and Year mod 100 /= 0));
20

21 function Days_In_Month (Month : Positive;
22 Year : Positive)
23 return Day_T is
24 (case Month is when 4 | 6 | 9 | 11 => 30,
25 when 2 => (if Is_Leap_Year (Year) then 29 else 28), when others => 31);
26

27 function Is_Valid (Date : Date_T)
28 return Boolean is
29 (Date.Year in Year_T and then Date.Month in Month_T
30 and then Date.Day <= Days_In_Month (Date.Month, Date.Year));
31

32 function Any_Invalid return Boolean is
33 (for some Date of List => not Is_Valid (Date));
34

35 function Same_Year return Boolean is
36 (for all I in List'Range => List (I).Year = List (List'First).Year);

336 / 869

Expressions
Lab

Expressions Lab Solution - Main
37 function Number (Prompt : String)
38 return Positive is
39 begin
40 Put (Prompt & "> ");
41 return Positive'Value (Get_Line);
42 end Number;
43

44 begin
45

46 for I in List'Range loop
47 Item.Year := Number ("Year");
48 Item.Month := Number ("Month");
49 Item.Day := Number ("Day");
50 List (I) := Item;
51 end loop;
52

53 Put_Line ("Any invalid: " & Boolean'Image (Any_Invalid));
54 Put_Line ("Same Year: " & Boolean'Image (Same_Year));
55

56 end Main;
337 / 869

Expressions
Summary

Summary

338 / 869

Expressions
Summary

Summary

Conditional expressions are allowed wherever expressions are
allowed, but beware over-use

Especially useful when a constant is intended
Especially useful when a static expression is required

Quantified expressions are general purpose but especially useful
with pre/postconditions

Consider hiding them behind expressive function names

339 / 869

Limited Types

Limited Types

340 / 869

Limited Types
Introduction

Introduction

341 / 869

Limited Types
Introduction

Views

Specify how values and objects may be manipulated

Are implicit in much of the language semantics
Constants are just variables without any assignment view
Task types, protected types implicitly disallow assignment
Mode in formal parameters disallow assignment

Variable : Integer := 0;
...
-- P's view of X prevents modification
procedure P(X : in Integer) is
begin

...
end P;
...
P(Variable);

342 / 869

Limited Types
Introduction

Limited Type Views' Semantics

Prevents copying via predefined assignment
Disallows assignment between objects
Must make your own copy procedure if needed

type File is limited ...
...
F1, F2 : File;
...
F1 := F2; -- compile error

Prevents incorrect comparison semantics
Disallows predefined equality operator
Make your own equality function = if needed

343 / 869

Limited Types
Introduction

Inappropriate Copying Example

type File is ...
F1, F2 : File;
...
Open (F1);
Write (F1, "Hello");
-- What is this assignment really trying to do?
F2 := F1;

344 / 869

Limited Types
Introduction

Intended Effects of Copying

type File is ...
F1, F2 : File;
...
Open (F1);
Write (F1, "Hello");
Copy (Source => F1, Target => F2);

345 / 869

Limited Types
Declarations

Declarations

346 / 869

Limited Types
Declarations

Limited Type Declarations

Syntax
Additional keyword limited added to record type declaration

type defining_identifier is limited record
component_list

end record;

Are always record types unless also private
More in a moment...

347 / 869

Limited Types
Declarations

Approximate Analog in C++

class Stack {
public:

Stack ();
void Push (int X);
void Pop (int& X);
...

private:
...
// assignment operator hidden
Stack& operator= (const Stack& other);

}; // Stack

348 / 869

Limited Types
Declarations

Spin Lock Example

with Interfaces;
package Multiprocessor_Mutex is

-- prevent copying of a lock
type Spin_Lock is limited record

Flag : Interfaces.Unsigned_8;
end record;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);
pragma Inline (Lock, Unlock);

end Multiprocessor_Mutex;

349 / 869

Limited Types
Declarations

Parameter Passing Mechanism

Always "by-reference" if explicitly limited
Necessary for various reasons (task and protected types, etc)
Advantageous when required for proper behavior

By definition, these subprograms would be called concurrently
Cannot operate on copies of parameters!

procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

350 / 869

Limited Types
Declarations

Composites with Limited Types

Composite containing a limited type becomes limited as well
Example: Array of limited components

Array becomes a limited type

Prevents assignment and equality loop-holes

declare
-- if we can't copy component S, we can't copy User_Type
type User_Type is record -- limited because S is limited

S : File;
...

end record;
A, B : User_Type;

begin
A := B; -- not legal since limited
...

end;
351 / 869

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

L1, L2 : T;
B : Boolean;

Which statement(s) is (are) legal?

A. L1.I := 1
B. L1 := L2
C. B := (L1 = L2)
D. B := (L1.I = L2.I)

352 / 869

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

L1, L2 : T;
B : Boolean;

Which statement(s) is (are) legal?

A. L1.I := 1
B. L1 := L2
C. B := (L1 = L2)
D. B := (L1.I = L2.I)

352 / 869

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

Which of the following declaration(s) is (are) legal?

A. function "+" (A : T) return T is (A)
B. function "-" (A : T) return T is (I => -A.I)
C. function "=" (A, B : T) return Boolean is (True)
D. function "=" (A, B : T) return Boolean is (A.I =

T'(I => B.I).I)

353 / 869

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

Which of the following declaration(s) is (are) legal?

A. function "+" (A : T) return T is (A)
B. function "-" (A : T) return T is (I => -A.I)
C. function "=" (A, B : T) return Boolean is (True)
D. function "=" (A, B : T) return Boolean is (A.I =

T'(I => B.I).I)

353 / 869

Limited Types
Declarations

Quiz
package P is

type T is limited null record;
type R is record

F1 : Integer;
F2 : T;

end record;
end P;

with P;
procedure Main is

T1, T2 : P.T;
R1, R2 : P.R;

begin

Which assignment(s) is (are) legal?

A. T1 := T2;
B. R1 := R2;
C. R1.F1 := R2.F1;
D. R2.F2 := R2.F2;

Explanations

A. T1 and T2 are limited types
B. R1 and R2 contain limited types so they are also limited
C. Theses components are not limited types
D. These components are of a limited type

354 / 869

Limited Types
Declarations

Quiz
package P is

type T is limited null record;
type R is record

F1 : Integer;
F2 : T;

end record;
end P;

with P;
procedure Main is

T1, T2 : P.T;
R1, R2 : P.R;

begin

Which assignment(s) is (are) legal?

A. T1 := T2;
B. R1 := R2;
C. R1.F1 := R2.F1;
D. R2.F2 := R2.F2;

Explanations

A. T1 and T2 are limited types
B. R1 and R2 contain limited types so they are also limited
C. Theses components are not limited types
D. These components are of a limited type

354 / 869

Limited Types
Creating Values

Creating Values

355 / 869

Limited Types
Creating Values

Creating Values

Initialization is not assignment (but looks like it)!

Via limited constructor functions
Functions returning values of limited types

Via an aggregate

limited aggregate when used for a limited type

type Spin_Lock is limited record
Flag : Interfaces.Unsigned_8;

end record;
...
Mutex : Spin_Lock := (Flag => 0); -- limited aggregate

356 / 869

Limited Types
Creating Values

Limited Constructor Functions
Allowed wherever limited
aggregates are allowed
More capable (can perform
arbitrary computations)
Necessary when limited type
is also private

Users won't have visibility
required to express
aggregate contents

function F return Spin_Lock
is
begin

...
return (Flag => 0);

end F;

357 / 869

Limited Types
Creating Values

Writing Limited Constructor Functions

Remember - copying is not allowed

function F return Spin_Lock is
Local_X : Spin_Lock;

begin
...
return Local_X; -- this is a copy - not legal
-- (also illegal because of pass-by-reference)

end F;

Global_X : Spin_Lock;
function F return Spin_Lock is
begin

...
-- This is not legal staring with Ada2005
return Global_X; -- this is a copy

end F;
358 / 869

Limited Types
Creating Values

"Built In-Place"

Limited aggregates and functions, specifically

No copying done by implementation
Values are constructed in situ

Mutex : Spin_Lock := (Flag => 0);

function F return Spin_Lock is
begin

return (Flag => 0);
end F;

359 / 869

Limited Types
Creating Values

Quiz
type T is limited record

I : Integer;
end record;

Which piece(s) of code is (are) a legal constructor for T?

A. function F return T is
begin

return T (I => 0);
end F;

B. function F return T is
Val : Integer := 0;

begin
return (I => Val);

end F;

C. function F return T is
Ret : T := (I => 0);

begin
return Ret;

end F;

D. function F return T is
begin

return (0);
end F;

360 / 869

Limited Types
Creating Values

Quiz
type T is limited record

I : Integer;
end record;

Which piece(s) of code is (are) a legal constructor for T?

A. function F return T is
begin

return T (I => 0);
end F;

B. function F return T is
Val : Integer := 0;

begin
return (I => Val);

end F;

C. function F return T is
Ret : T := (I => 0);

begin
return Ret;

end F;

D. function F return T is
begin

return (0);
end F;

360 / 869

Limited Types
Creating Values

Quiz
package P is

type T is limited record
F1 : Integer;
F2 : Character;

end record;
Zero : T := (0, ' ');
One : constant T := (1, 'a');
Two : T;
function F return T;

end P;

Which is a correct completion of F?

A. return (3, 'c');

B. Two := (2, 'b');
return Two;

C. return One;

D. return Zero;

A contains an "in-place" return. The rest all rely on other objects,
which would require an (illegal) copy.

361 / 869

Limited Types
Creating Values

Quiz
package P is

type T is limited record
F1 : Integer;
F2 : Character;

end record;
Zero : T := (0, ' ');
One : constant T := (1, 'a');
Two : T;
function F return T;

end P;

Which is a correct completion of F?

A. return (3, 'c');

B. Two := (2, 'b');
return Two;

C. return One;

D. return Zero;

A contains an "in-place" return. The rest all rely on other objects,
which would require an (illegal) copy.

361 / 869

Limited Types
Extended Return Statements

Extended Return Statements

362 / 869

Limited Types
Extended Return Statements

Function Extended Return Statements

Extended return

Result is expressed as an object

More expressive than aggregates

Handling of unconstrained types

Syntax (simplified):

return identifier : subtype [:= expression];

return identifier : subtype
[do

sequence_of_statements ...
end return];

363 / 869

Limited Types
Extended Return Statements

Extended Return Statements Example

-- Implicitly limited array
type Spin_Lock_Array (Positive range <>) of Spin_Lock;

function F return Spin_Lock_Array is
begin

return Result : Spin_Lock_Array (1 .. 10) do
...

end return;
end F;

364 / 869

Limited Types
Extended Return Statements

Expression / Statements Are Optional

Without sequence (returns default if any)

function F return Spin_Lock is
begin

return Result : Spin_Lock;
end F;

With sequence

function F return Spin_Lock is
X : Interfaces.Unsigned_8;

begin
-- compute X ...
return Result : Spin_Lock := (Flag => X);

end F;

365 / 869

Limited Types
Extended Return Statements

Statements Restrictions

No nested extended return

Simple return statement allowed
Without expression
Returns the value of the declared object immediately

function F return Spin_Lock is
begin

return Result : Spin_Lock do
if Set_Flag then

Result.Flag := 1;
return; -- returns 'Result'

end if;
Result.Flag := 0;

end return; -- Implicit return
end F;

366 / 869

Limited Types
Extended Return Statements

Quiz
type T is limited record

I : Integer;
end record;

function F return T is
begin

-- F body...
end F;

O : T := F;

Which declaration(s) of F is (are) valid?

A. return Return : T := (I => 1)

B. return Result : T

C. return Value := (others => 1)

D. return R : T do
R.I := 1;

end return;

A. Using return reserved keyword
B. OK, default value
C. Extended return must specify type
D. OK

367 / 869

Limited Types
Extended Return Statements

Quiz
type T is limited record

I : Integer;
end record;

function F return T is
begin

-- F body...
end F;

O : T := F;

Which declaration(s) of F is (are) valid?

A. return Return : T := (I => 1)

B. return Result : T

C. return Value := (others => 1)

D. return R : T do
R.I := 1;

end return;

A. Using return reserved keyword
B. OK, default value
C. Extended return must specify type
D. OK

367 / 869

Limited Types
Combining Limited and Private Views

Combining Limited and Private Views

368 / 869

Limited Types
Combining Limited and Private Views

Limited Private Types

A combination of limited and private views
No client compile-time visibility to representation
No client assignment or predefined equality

The typical design idiom for limited types

Syntax
Additional reserved word limited added to private type
declaration

type defining_identifier is limited private;

369 / 869

Limited Types
Combining Limited and Private Views

Limited Private Type Rationale (1)

package Multiprocessor_Mutex is
-- copying is prevented
type Spin_Lock is limited record

-- but users can see this!
Flag : Interfaces.Unsigned_8;

end record;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);
pragma Inline (Lock, Unlock);

end Multiprocessor_Mutex;

370 / 869

Limited Types
Combining Limited and Private Views

Limited Private Type Rationale (2)

package MultiProcessor_Mutex is
-- copying is prevented AND users cannot see contents
type Spin_Lock is limited private;
procedure Lock (The_Lock : in out Spin_Lock);
procedure Unlock (The_Lock : in out Spin_Lock);
pragma Inline (Lock, Unlock);

private
type Spin_Lock is ...

end MultiProcessor_Mutex;

371 / 869

Limited Types
Combining Limited and Private Views

Limited Private Type Completions

Clients have the partial view as limited and private
The full view completion can be any kind of type
Not required to be a record type just because the partial view is
limited

package P is
type Unique_ID_T is limited private;
...

private
type Unique_ID_T is range 1 .. 10;

end P;

372 / 869

Limited Types
Combining Limited and Private Views

Write-Only Register Example

package Write_Only is
type Byte is limited private;
type Word is limited private;
type Longword is limited private;
procedure Assign (Input : in Unsigned_8;

To : in out Byte);
procedure Assign (Input : in Unsigned_16;

To : in out Word);
procedure Assign (Input : in Unsigned_32;

To : in out Longword);
private

type Byte is new Unsigned_8;
type Word is new Unsigned_16;
type Longword is new Unsigned_32;

end Write_Only;
373 / 869

Limited Types
Combining Limited and Private Views

Explicitly Limited Completions

Completion in Full view includes word limited
Optional
Requires a record type as the completion

package MultiProcessor_Mutex is
type Spin_Lock is limited private;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

private
type Spin_Lock is limited -- full view is limited as well

record
Flag : Interfaces.Unsigned_8;

end record;
end MultiProcessor_Mutex;

374 / 869

Limited Types
Combining Limited and Private Views

Effects of Explicitly Limited Completions

Allows no internal copying too
Forces parameters to be passed by-reference

package MultiProcessor_Mutex is
type Spin_Lock is limited private;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

private
type Spin_Lock is limited record

Flag : Interfaces.Unsigned_8;
end record;

end MultiProcessor_Mutex;

375 / 869

Limited Types
Combining Limited and Private Views

Automatically Limited Full View
When other limited types are used in the representation
Recall composite types containing limited types are limited too

package Foo is
type Legal is limited private;
type Also_Legal is limited private;
type Not_Legal is private;
type Also_Not_Legal is private;

private
type Legal is record

S : A_Limited_Type;
end record;
type Also_Legal is limited record

S : A_Limited_Type;
end record;
type Not_Legal is limited record

S : A_Limited_Type;
end record;
type Also_Not_Legal is record

S : A_Limited_Type;
end record;

end Foo;
376 / 869

Limited Types
Combining Limited and Private Views

Quiz
package P is

type Priv is private;
private

type Lim is limited null record;
-- Complete Here

end P;

Which of the following piece(s) of code is (are) legal?

A. type Priv is record
E : Lim;

end record;

B. type Priv is record
E : Float;

end record;

C. type A is array (1 .. 10) of Lim;
type Priv is record

F : A;
end record;

D. type Priv is record
Component : Integer := Lim'Size;

end record;

A. E has limited type, partial view of Priv must be
limited private

B. F has limited type, partial view of Priv must be
limited private

377 / 869

Limited Types
Combining Limited and Private Views

Quiz
package P is

type Priv is private;
private

type Lim is limited null record;
-- Complete Here

end P;

Which of the following piece(s) of code is (are) legal?

A. type Priv is record
E : Lim;

end record;

B. type Priv is record
E : Float;

end record;

C. type A is array (1 .. 10) of Lim;
type Priv is record

F : A;
end record;

D. type Priv is record
Component : Integer := Lim'Size;

end record;

A. E has limited type, partial view of Priv must be
limited private

B. F has limited type, partial view of Priv must be
limited private

377 / 869

Limited Types
Combining Limited and Private Views

Quiz

package P is
type L1_T is limited private;
type L2_T is limited private;
type P1_T is private;
type P2_T is private;

private
type L1_T is limited record

Component : Integer;
end record;
type L2_T is record

Component : Integer;
end record;
type P1_T is limited record

Component : L1_T;
end record;
type P2_T is record

Component : L2_T;
end record;

end P;

What will happen when the above code
is compiled?

A. Type P1_T will generate a
compile error

B. Type P2_T will generate a
compile error

C. Both type P1_T and type P2_T
will generate compile errors

D. The code will compile successfully

Full definition of P1_T adds
restrictions, which is not allowed.
P2_T contains a component
whose visible view is limited,
the internal view is not limited
so P2_T is not limited.

378 / 869

Limited Types
Combining Limited and Private Views

Quiz

package P is
type L1_T is limited private;
type L2_T is limited private;
type P1_T is private;
type P2_T is private;

private
type L1_T is limited record

Component : Integer;
end record;
type L2_T is record

Component : Integer;
end record;
type P1_T is limited record

Component : L1_T;
end record;
type P2_T is record

Component : L2_T;
end record;

end P;

What will happen when the above code
is compiled?

A. Type P1_T will generate a
compile error

B. Type P2_T will generate a
compile error

C. Both type P1_T and type P2_T
will generate compile errors

D. The code will compile successfully

Full definition of P1_T adds
restrictions, which is not allowed.
P2_T contains a component
whose visible view is limited,
the internal view is not limited
so P2_T is not limited.

378 / 869

Limited Types
Lab

Lab

379 / 869

Limited Types
Lab

Limited Types Lab

Requirements
Create an employee record data type consisting of a name, ID,
hourly pay rate

ID should be a unique value generated for every record

Create a timecard record data type consisting of an employee
record, hours worked, and total pay

Create a main program that generates timecards and prints their
contents

Hints
If the ID is unique, that means we cannot copy employee records

380 / 869

Limited Types
Lab

Limited Types Lab Solution - Employee Data (Spec)
1 package Employee_Data is
2

3 subtype Name_T is String (1 .. 6);
4 type Employee_T is limited private;
5 type Hourly_Rate_T is delta 0.01 digits 6 range 0.0 .. 999.99;
6 type Id_T is range 999 .. 9_999;
7

8 function Create (Name : Name_T;
9 Rate : Hourly_Rate_T := 0.0)

10 return Employee_T;
11 function Id (Employee : Employee_T)
12 return Id_T;
13 function Name (Employee : Employee_T)
14 return Name_T;
15 function Rate (Employee : Employee_T)
16 return Hourly_Rate_T;
17

18 private
19 type Employee_T is limited record
20 Name : Name_T := (others => ' ');
21 Rate : Hourly_Rate_T := 0.0;
22 Id : Id_T := Id_T'First;
23 end record;
24 end Employee_Data;

381 / 869

Limited Types
Lab

Limited Types Lab Solution - Timecards (Spec)
1 with Employee_Data;
2 package Timecards is
3

4 type Hours_Worked_T is digits 3 range 0.0 .. 24.0;
5 type Pay_T is digits 6;
6 type Timecard_T is limited private;
7

8 function Create (Name : Employee_Data.Name_T;
9 Rate : Employee_Data.Hourly_Rate_T;

10 Hours : Hours_Worked_T)
11 return Timecard_T;
12

13 function Id (Timecard : Timecard_T)
14 return Employee_Data.Id_T;
15 function Name (Timecard : Timecard_T)
16 return Employee_Data.Name_T;
17 function Rate (Timecard : Timecard_T)
18 return Employee_Data.Hourly_Rate_T;
19 function Pay (Timecard : Timecard_T)
20 return Pay_T;
21 function Image (Timecard : Timecard_T)
22 return String;
23

24 private
25 type Timecard_T is limited record
26 Employee : Employee_Data.Employee_T;
27 Hours_Worked : Hours_Worked_T := 0.0;
28 Pay : Pay_T := 0.0;
29 end record;
30 end Timecards;

382 / 869

Limited Types
Lab

Limited Types Lab Solution - Employee Data (Body)
1 package body Employee_Data is
2

3 Last_Used_Id : Id_T := Id_T'First;
4

5 function Create (Name : Name_T;
6 Rate : Hourly_Rate_T := 0.0)
7 return Employee_T is
8 begin
9 return Ret_Val : Employee_T do

10 Last_Used_Id := Id_T'Succ (Last_Used_Id);
11 Ret_Val.Name := Name;
12 Ret_Val.Rate := Rate;
13 Ret_Val.Id := Last_Used_Id;
14 end return;
15 end Create;
16

17 function Id (Employee : Employee_T) return Id_T is
18 (Employee.Id);
19 function Name (Employee : Employee_T) return Name_T is
20 (Employee.Name);
21 function Rate (Employee : Employee_T) return Hourly_Rate_T is
22 (Employee.Rate);
23

24 end Employee_Data;
383 / 869

Limited Types
Lab

Limited Types Lab Solution - Timecards (Body)
1 package body Timecards is
2

3 function Create (Name : Employee_Data.Name_T;
4 Rate : Employee_Data.Hourly_Rate_T;
5 Hours : Hours_Worked_T)
6 return Timecard_T is
7 begin
8 return
9 (Employee => Employee_Data.Create (Name, Rate),

10 Hours_Worked => Hours,
11 Pay => Pay_T (Hours) * Pay_T (Rate));
12 end Create;
13

14 function Id (Timecard : Timecard_T) return Employee_Data.Id_T is
15 (Employee_Data.Id (Timecard.Employee));
16 function Name (Timecard : Timecard_T) return Employee_Data.Name_T is
17 (Employee_Data.Name (Timecard.Employee));
18 function Rate (Timecard : Timecard_T) return Employee_Data.Hourly_Rate_T is
19 (Employee_Data.Rate (Timecard.Employee));
20 function Pay (Timecard : Timecard_T) return Pay_T is
21 (Timecard.Pay);
22

23 function Image
24 (Timecard : Timecard_T)
25 return String is
26 Name_S : constant String := Name (Timecard);
27 Id_S : constant String :=
28 Employee_Data.Id_T'Image (Employee_Data.Id (Timecard.Employee));
29 Rate_S : constant String :=
30 Employee_Data.Hourly_Rate_T'Image
31 (Employee_Data.Rate (Timecard.Employee));
32 Hours_S : constant String :=
33 Hours_Worked_T'Image (Timecard.Hours_Worked);
34 Pay_S : constant String := Pay_T'Image (Timecard.Pay);
35 begin
36 return
37 Name_S & " (" & Id_S & ") => " & Hours_S & " hours * " & Rate_S &
38 "/hour = " & Pay_S;
39 end Image;
40 end Timecards;

384 / 869

Limited Types
Lab

Limited Types Lab Solution - Main

1 with Ada.Text_IO; use Ada.Text_IO;
2 with Timecards;
3 procedure Main is
4

5 One : constant Timecards.Timecard_T := Timecards.Create
6 (Name => "Fred ",
7 Rate => 1.1,
8 Hours => 2.2);
9 Two : constant Timecards.Timecard_T := Timecards.Create

10 (Name => "Barney",
11 Rate => 3.3,
12 Hours => 4.4);
13

14 begin
15 Put_Line (Timecards.Image (One));
16 Put_Line (Timecards.Image (Two));
17 end Main;

385 / 869

Limited Types
Summary

Summary

386 / 869

Limited Types
Summary

Summary

Limited view protects against improper operations
Incorrect equality semantics
Copying via assignment

Enclosing composite types are limited too
Even if they don't use keyword limited themselves

Limited types are always passed by-reference

Extended return statements work for any type
Ada 2005 and later

Don't make types limited unless necessary
Users generally expect assignment to be available

387 / 869

Private Types

Private Types

388 / 869

Private Types
Introduction

Introduction

389 / 869

Private Types
Introduction

Introduction

Why does fixing bugs introduce new ones?

Control over visibility is a primary factor
Changes to an abstraction's internals shouldn't break users
Including type representation

Need tool-enforced rules to isolate dependencies
Between implementations of abstractions and their users
In other words, "information hiding"

390 / 869

Private Types
Introduction

Information Hiding
A design technique in which
implementation artifacts are
made inaccessible to users
Based on control of visibility
to those artifacts

A product of
"encapsulation"
Language support provides
rigor

Concept is "software
integrated circuits"

391 / 869

Private Types
Introduction

Views

Specify legal manipulation for objects of a type
Types are characterized by permitted values and operations

Some views are implicit in language
Mode in parameters have a view disallowing assignment

Views may be explicitly specified
Disallowing access to representation
Disallowing assignment

Purpose: control usage in accordance with design
Adherence to interface
Abstract Data Types

392 / 869

Private Types
Implementing Abstract Data Types Via Views

Implementing Abstract Data Types Via Views

393 / 869

Private Types
Implementing Abstract Data Types Via Views

Implementing Abstract Data Types

A combination of constructs in Ada

Not based on single "class" construct, for example

Constituent parts
Packages, with "private part" of package spec
"Private types" declared in packages
Subprograms declared within those packages

394 / 869

Private Types
Implementing Abstract Data Types Via Views

Package Visible and Private Parts for Views

Declarations in visible part are exported to users

Declarations in private part are hidden from users
No compilable references to type's actual representation

package name is
... exported declarations of types, variables, subprograms ...
private
... hidden declarations of types, variables, subprograms ...
end name;

395 / 869

Private Types
Implementing Abstract Data Types Via Views

Declaring Private Types for Views
Partial syntax

type defining_identifier is private;

Private type declaration must occur in visible part

Partial view

Only partial information on the type

Users can reference the type name

But cannot create an object of that type until after the full type
declaration

Full type declaration must appear in private part

Completion is the Full view
Never visible to users
Not visible to designer until reached

package Bounded_Stacks is
type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);
...

private
...
type Stack is record

Top : Positive;
...

end Bounded_Stacks;

396 / 869

Private Types
Implementing Abstract Data Types Via Views

Partial and Full Views of Types

Private type declaration defines a partial view
The type name is visible
Only designer's operations and some predefined operations
No references to full type representation

Full type declaration defines the full view
Fully defined as a record type, scalar, imported type, etc...
Just an ordinary type within the package

Operations available depend upon one's view

397 / 869

Private Types
Implementing Abstract Data Types Via Views

Software Engineering Principles

Encapsulation and abstraction enforced by views
Compiler enforces view effects

Same protection as hiding in a package body
Recall "Abstract Data Machines" idiom

Additional flexibility of types
Unlimited number of objects possible
Passed as parameters
Components of array and record types
Dynamically allocated
et cetera

398 / 869

Private Types
Implementing Abstract Data Types Via Views

Users Declare Objects of the Type

Unlike "abstract data machine" approach

Hence must specify which stack to manipulate
Via parameter

X, Y, Z : Bounded_Stacks.Stack;
...
Push (42, X);
...
if Empty (Y) then
...
Pop (Counter, Z);

399 / 869

Private Types
Implementing Abstract Data Types Via Views

Compile-Time Visibility Protection

No type representation details available outside the package

Therefore users cannot compile code referencing representation

This does not compile

with Bounded_Stacks;
procedure User is

S : Bounded_Stacks.Stack;
begin

S.Top := 1; -- Top is not visible
end User;

400 / 869

Private Types
Implementing Abstract Data Types Via Views

Benefits of Views

Users depend only on visible part of specification
Impossible for users to compile references to private part
Physically seeing private part in source code is irrelevant

Changes to implementation don't affect users
No editing changes necessary for user code

Implementers can create bullet-proof abstractions
If a facility isn't working, you know where to look

Fixing bugs is less likely to introduce new ones

401 / 869

Private Types
Implementing Abstract Data Types Via Views

Quiz
package P is

type Private_T is private;

type Record_T is record

Which component(s) is (are) legal?

A. Component_A : Integer := Private_T'Pos
(Private_T'First);

B. Component_B : Private_T := null;

C. Component_C : Private_T := 0;

D. Component_D : Integer := Private_T'Size;

end record;

Explanations

A. Visible part does not know Private_T is discrete
B. Visible part does not know possible values for Private_T
C. Visible part does not know possible values for Private_T
D. Correct - type will have a known size at run-time

402 / 869

Private Types
Implementing Abstract Data Types Via Views

Quiz
package P is

type Private_T is private;

type Record_T is record

Which component(s) is (are) legal?

A. Component_A : Integer := Private_T'Pos
(Private_T'First);

B. Component_B : Private_T := null;

C. Component_C : Private_T := 0;

D. Component_D : Integer := Private_T'Size;

end record;

Explanations

A. Visible part does not know Private_T is discrete
B. Visible part does not know possible values for Private_T
C. Visible part does not know possible values for Private_T
D. Correct - type will have a known size at run-time

402 / 869

Private Types
Private Part Construction

Private Part Construction

403 / 869

Private Types
Private Part Construction

Private Part and Recompilation

Users can compile their code before the package body is compiled
or even written

Private part is part of the specification
Compiler needs info from private part for users' code, e.g., storage
layouts for private-typed objects

Thus changes to private part require user recompilation

Some vendors avoid "unnecessary" recompilation
Comment additions or changes
Additions which nobody yet references

404 / 869

Private Types
Private Part Construction

Declarative Regions
Declarative region of the spec extends to the body

Anything declared there is visible from that point down
Thus anything declared in specification is visible in body

package Foo is
type Private_T is private;
procedure X (B : in out Private_T);

private
-- Y and Hidden_T are not visible to users
procedure Y (B : in out Private_T);
type Hidden_T is ...;
type Private_T is array (1 .. 3) of Hidden_T;

end Foo;

package body Foo is
-- Z is not visible to users
procedure Z (B : in out Private_T) is ...
procedure Y (B : in out Private_T) is ...
procedure X (B : in out Private_T) is ...

end Foo;
405 / 869

Private Types
Private Part Construction

Full Type Declaration
May be any type

Predefined or user-defined
Including references to
imported types

Contents of private part are
unrestricted

Anything a package
specification may contain
Types, subprograms,
variables, etc.

package P is
type T is private;
...

private
type Vector is array (1.. 10)

of Integer;
function Initial

return Vector;
type T is record

A, B : Vector := Initial;
end record;

end P;

406 / 869

Private Types
Private Part Construction

Deferred Constants

Visible constants of a hidden representation
Value is "deferred" to private part
Value must be provided in private part

Not just for private types, but usually so

package P is
type Set is private;
Null_Set : constant Set; -- exported name
...

private
type Index is range ...
type Set is array (Index) of Boolean;
Null_Set : constant Set := -- definition

(others => False);
end P;

407 / 869

Private Types
Private Part Construction

Quiz
package P is

type Private_T is private;
Object_A : Private_T;
procedure Proc (Param : in out Private_T);

private
type Private_T is new Integer;
Object_B : Private_T;

end package P;

package body P is
Object_C : Private_T;
procedure Proc (Param : in out Private_T) is null;

end P;

Which object definition(s) is (are) legal?

A. Object_A
B. Object_B
C. Object_C
D. None of the above

An object cannot be declared until its type is fully declared. Object_A
could be declared constant, but then it would have to be finalized in
the private section.

408 / 869

Private Types
Private Part Construction

Quiz
package P is

type Private_T is private;
Object_A : Private_T;
procedure Proc (Param : in out Private_T);

private
type Private_T is new Integer;
Object_B : Private_T;

end package P;

package body P is
Object_C : Private_T;
procedure Proc (Param : in out Private_T) is null;

end P;

Which object definition(s) is (are) legal?

A. Object_A
B. Object_B
C. Object_C
D. None of the above

An object cannot be declared until its type is fully declared. Object_A
could be declared constant, but then it would have to be finalized in
the private section.

408 / 869

Private Types
View Operations

View Operations

409 / 869

Private Types
View Operations

View Operations

Reminder: view is the interface you have on the type
User of package has Partial
view

Operations exported by
package

Designer of package has
Full view

Once completion is
reached
All operations based upon
full definition of type

410 / 869

Private Types
View Operations

Users Have the Partial View

Since they are outside package
Basic operations
Exported subprograms

package Bounded_Stacks is
type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);
procedure Pop (Item : out Integer; From : in out Stack);
function Empty (S : Stack) return Boolean;
procedure Clear (S : in out Stack);
function Top (S : Stack) return Integer;

private
...

end Bounded_Stacks;

411 / 869

Private Types
View Operations

User View's Activities

Declarations of objects
Constants and variables
Must call designer's functions for values

C : Complex.Number := Complex.I;

Assignment, equality and inequality, conversions

Designer's declared subprograms

User-declared subprograms
Using parameters of the exported private type
Dependent on designer's operations

412 / 869

Private Types
View Operations

User View Formal Parameters

Dependent on designer's operations for manipulation
Cannot reference type's representation

Can have default expressions of private types

-- external implementation of "Top"
procedure Get_Top (

The_Stack : in out Bounded_Stacks.Stack;
Value : out Integer) is

Local : Integer;
begin

Bounded_Stacks.Pop (Local, The_Stack);
Value := Local;
Bounded_Stacks.Push (Local, The_Stack);

end Get_Top;
413 / 869

Private Types
View Operations

Limited Private

limited is itself a view
Cannot perform assignment, copy, or equality

limited private can restrain user's operation
Actual type does not need to be limited

package UART is
type Instance is limited private;
function Get_Next_Available return Instance;

[...]

declare
A, B : UART.Instance := UART.Get_Next_Available;

begin
if A = B -- Illegal
then

A := B; -- Illegal
end if;

414 / 869

Private Types
When to Use or Avoid Private Types

When to Use or Avoid Private Types

415 / 869

Private Types
When to Use or Avoid Private Types

When to Use Private Types

Implementation may change
Allows users to be unaffected by changes in representation

Normally available operations do not "make sense"
Normally available based upon type's representation
Determined by intent of ADT

A : Valve;
B : Valve;
C : Valve;
...
C := A + B; -- addition not meaningful

Users have no "need to know"
Based upon expected usage

416 / 869

Private Types
When to Use or Avoid Private Types

When to Avoid Private Types

If the abstraction is too simple to justify the effort
But that's the thinking that led to Y2K rework

If normal user interface requires representation-specific operations
that cannot be provided

Those that cannot be redefined by programmers

Would otherwise be hidden by a private type

If Vector is private, indexing of components is annoying

type Vector is array (Positive range <>) of Float;
V : Vector (1 .. 3);
...
V (1) := Alpha; -- Illegal since Vector is private

417 / 869

Private Types
Idioms

Idioms

418 / 869

Private Types
Idioms

Effects of Hiding Type Representation

Makes users independent of representation
Changes cannot require users to alter their code
Software engineering is all about money...

Makes users dependent upon exported operations
Because operations requiring representation info are not available to
users

Expression of values (aggregates, etc.)
Assignment for limited types

Common idioms are a result
Constructor
Selector

419 / 869

Private Types
Idioms

Constructors

Create designer's objects from user's values
Usually functions

package Complex is
type Number is private;
function Make (Real_Part : Float; Imaginary : Float) return Number;

private
type Number is record ...

end Complex;

package body Complex is
function Make (Real_Part : Float; Imaginary_Part : Float)

return Number is ...
end Complex:
...
A : Complex.Number :=

Complex.Make (Real_Part => 2.5, Imaginary => 1.0);
420 / 869

Private Types
Idioms

Procedures As Constructors
Spec

package Complex is
type Number is private;
procedure Make (This : out Number; Real_Part, Imaginary : in Float) ;
...

private
type Number is record

Real_Part, Imaginary : Float;
end record;

end Complex;

Body (partial)

package body Complex is
procedure Make (This : out Number;

Real_Part, Imaginary : in Float) is
begin

This.Real_Part := Real_Part;
This.Imaginary := Imaginary;

end Make;
...

421 / 869

Private Types
Idioms

Selectors
Decompose designer's objects into user's values
Usually functions

package Complex is
type Number is private;
function Real_Part (This: Number) return Float;
...

private
type Number is record

Real_Part, Imaginary : Float;
end record;

end Complex;

package body Complex is
function Real_Part (This : Number) return Float is
begin

return This.Real_Part;
end Real_Part;
...

end Complex;
...
Phase : Complex.Number := Complex.Make (10.0, 5.5);
Object : Float := Complex.Real_Part (Phase);

422 / 869

Private Types
Lab

Lab

423 / 869

Private Types
Lab

Private Types Lab

Requirements
Implement a program to create a map such that

Map key is a description of a flag
Map component content is the set of colors in the flag

Operations on the map should include: Add, Remove, Modify, Get,
Exists, Image

Main program should print out the entire map before exiting

Hints
Should implement a map ADT (to keep track of the flags)

This map will contain all the flags and their color descriptions

Should implement a set ADT (to keep track of the colors)

This set will be the description of the map component

Each ADT should be its own package

At a minimum, the map and set type should be private
424 / 869

Private Types
Lab

Private Types Lab Solution - Color Set
1 package Colors is
2 type Color_T is (Red, Yellow, Green, Blue, Black);
3 type Color_Set_T is private;
4

5 Empty_Set : constant Color_Set_T;
6

7 procedure Add (Set : in out Color_Set_T;
8 Color : Color_T);
9 procedure Remove (Set : in out Color_Set_T;

10 Color : Color_T);
11 function Image (Set : Color_Set_T) return String;
12 private
13 type Color_Set_Array_T is array (Color_T) of Boolean;
14 type Color_Set_T is record
15 Values : Color_Set_Array_T := (others => False);
16 end record;
17 Empty_Set : constant Color_Set_T := (Values => (others => False));
18 end Colors;
19

20 package body Colors is
21 procedure Add (Set : in out Color_Set_T;
22 Color : Color_T) is
23 begin
24 Set.Values (Color) := True;
25 end Add;
26 procedure Remove (Set : in out Color_Set_T;
27 Color : Color_T) is
28 begin
29 Set.Values (Color) := False;
30 end Remove;
31

32 function Image (Set : Color_Set_T;
33 First : Color_T;
34 Last : Color_T)
35 return String is
36 Str : constant String := (if Set.Values (First) then Color_T'Image (First) else "");
37 begin
38 if First = Last then
39 return Str;
40 else
41 return Str & " " & Image (Set, Color_T'Succ (First), Last);
42 end if;
43 end Image;
44 function Image (Set : Color_Set_T) return String is
45 (Image (Set, Color_T'First, Color_T'Last));
46 end Colors;

425 / 869

Private Types
Lab

Private Types Lab Solution - Flag Map (Spec)
1 with Colors;
2 package Flags is
3 type Key_T is (USA, England, France, Italy);
4 type Map_Component_T is private;
5 type Map_T is private;
6

7 procedure Add (Map : in out Map_T;
8 Key : Key_T;
9 Description : Colors.Color_Set_T;

10 Success : out Boolean);
11 procedure Remove (Map : in out Map_T;
12 Key : Key_T;
13 Success : out Boolean);
14 procedure Modify (Map : in out Map_T;
15 Key : Key_T;
16 Description : Colors.Color_Set_T;
17 Success : out Boolean);
18

19 function Exists (Map : Map_T; Key : Key_T) return Boolean;
20 function Get (Map : Map_T; Key : Key_T) return Map_Component_T;
21 function Image (Item : Map_Component_T) return String;
22 function Image (Flag : Map_T) return String;
23 private
24 type Map_Component_T is record
25 Key : Key_T := Key_T'First;
26 Description : Colors.Color_Set_T := Colors.Empty_Set;
27 end record;
28 type Map_Array_T is array (1 .. 100) of Map_Component_T;
29 type Map_T is record
30 Values : Map_Array_T;
31 Length : Natural := 0;
32 end record;
33 end Flags;

426 / 869

Private Types
Lab

Private Types Lab Solution - Flag Map (Body - 1 of 2)
3 function Find (Map : Map_T;
4 Key : Key_T)
5 return Integer is
6 begin
7 for I in 1 .. Map.Length loop
8 if Map.Values (I).Key = Key then
9 return I;

10 end if;
11 end loop;
12 return -1;
13 end Find;
14

15 procedure Add (Map : in out Map_T;
16 Key : Key_T;
17 Description : Colors.Color_Set_T;
18 Success : out Boolean) is
19 Index : constant Integer := Find (Map, Key);
20 begin
21 Success := False;
22 if Index not in Map.Values'Range then
23 declare
24 New_Item : constant Map_Component_T :=
25 (Key => Key,
26 Description => Description);
27 begin
28 Map.Length := Map.Length + 1;
29 Map.Values (Map.Length) := New_Item;
30 Success := True;
31 end;
32 end if;
33 end Add;
34

35 procedure Remove (Map : in out Map_T;
36 Key : Key_T;
37 Success : out Boolean) is
38 Index : constant Integer := Find (Map, Key);
39 begin
40 Success := False;
41 if Index in Map.Values'Range then
42 Map.Values (Index .. Map.Length - 1) :=
43 Map.Values (Index + 1 .. Map.Length);
44 Success := True;
45 end if;
46 end Remove;

427 / 869

Private Types
Lab

Private Types Lab Solution - Flag Map (Body - 2 of 2)
35 procedure Modify (Map : in out Map_T;
36 Key : Key_T;
37 Description : Colors.Color_Set_T;
38 Success : out Boolean) is
39 Index : constant Integer := Find (Map, Key);
40 begin
41 Success := False;
42 if Index in Map.Values'Range then
43 Map.Values (Index).Description := Description;
44 Success := True;
45 end if;
46 end Modify;
47

48 function Exists (Map : Map_T;
49 Key : Key_T)
50 return Boolean is
51 (Find (Map, Key) in Map.Values'Range);
52

53 function Get (Map : Map_T;
54 Key : Key_T)
55 return Map_Component_T is
56 Index : constant Integer := Find (Map, Key);
57 Ret_Val : Map_Component_T;
58 begin
59 if Index in Map.Values'Range then
60 Ret_Val := Map.Values (Index);
61 end if;
62 return Ret_Val;
63 end Get;
64

65 function Image (Item : Map_Component_T) return String is
66 (Item.Key'Image & " => " & Colors.Image (Item.Description));
67

68 function Image (Flag : Map_T) return String is
69 Ret_Val : String (1 .. 1_000);
70 Next : Integer := Ret_Val'First;
71 begin
72 for I in 1 .. Flag.Length loop
73 declare
74 Item : constant Map_Component_T := Flag.Values (I);
75 Str : constant String := Image (Item);
76 begin
77 Ret_Val (Next .. Next + Str'Length) := Image (Item) & ASCII.LF;
78 Next := Next + Str'Length + 1;
79 end;
80 end loop;
81 return Ret_Val (1 .. Next - 1);
82 end Image;

428 / 869

Private Types
Lab

Private Types Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors;
3 with Flags;
4 with Input;
5 procedure Main is
6 Map : Flags.Map_T;
7 begin
8

9 loop
10 Put ("Enter country name (");
11 for Key in Flags.Key_T loop
12 Put (Flags.Key_T'Image (Key) & " ");
13 end loop;
14 Put ("): ");
15 declare
16 Str : constant String := Get_Line;
17 Key : Flags.Key_T;
18 Description : Colors.Color_Set_T;
19 Success : Boolean;
20 begin
21 exit when Str'Length = 0;
22 Key := Flags.Key_T'Value (Str);
23 Description := Input.Get;
24 if Flags.Exists (Map, Key) then
25 Flags.Modify (Map, Key, Description, Success);
26 else
27 Flags.Add (Map, Key, Description, Success);
28 end if;
29 end;
30 end loop;
31

32 Put_Line (Flags.Image (Map));
33 end Main;

429 / 869

Private Types
Summary

Summary

430 / 869

Private Types
Summary

Summary

Tool-enforced support for Abstract Data Types
Same protection as Abstract Data Machine idiom
Capabilities and flexibility of types

May also be limited

Thus additionally no assignment or predefined equality
More on this later

Common interface design idioms have arisen
Resulting from representation independence

Assume private types as initial design choice
Change is inevitable

431 / 869

Access Types In Depth

Access Types In Depth

432 / 869

Access Types In Depth
Introduction

Introduction

433 / 869

Access Types In Depth
Introduction

Access Types Design

Memory-addressed objects are called access types
Objects are associated to pools of memory

With different allocation / deallocation policies
Access objects are guaranteed to always be meaningful

In the absence of Unchecked_Deallocation
And if pool-specific

Ada
type Integer_Pool_Access

is access Integer;
P_A : Integer_Pool_Access

:= new Integer;

type Integer_General_Access
is access all Integer;

G : aliased Integer;
G_A : Integer_General_Access := G'Access;

C++
int * P_C = malloc (sizeof (int));
int * P_CPP = new int;
int * G_C = &Some_Int;

.
434 / 869

Access Types In Depth
Introduction

Access Types - General vs Pool-Specific
General Access Types

Point to any object of
designated type
Useful for creating aliases to
existing objects
Point to existing object via
'Access or created by new
No automatic memory
management

Pool-Specific Access Types
Tightly coupled to
dynamically allocated objects
Used with Ada's controlled
memory management (pools)
Can only point to object
created by new
Memory management tied to
specific storage pool

435 / 869

Access Types In Depth
Introduction

Access Types Can Be Dangerous

Multiple memory issues
Leaks / corruptions

Introduces potential random failures complicated to analyze

Increase the complexity of the data structures

May decrease the performances of the application
Dereferences are slightly more expensive than direct access
Allocations are a lot more expensive than stacking objects

Ada avoids using accesses as much as possible
Arrays are not pointers
Parameters are implicitly passed by reference

Only use them when needed
436 / 869

Access Types In Depth
Introduction

Stack Vs Heap

I : Integer := 0;
J : String := "Some Long String";

I : Access_Int := new Integer'(0);
J : Access_Str := new String'("Some Long String");

437 / 869

Access Types In Depth
Access Types

Access Types

438 / 869

Access Types In Depth
Access Types

Declaration Location

Can be at library level

package P is
type String_Access is access String;

end P;

Can be nested in a procedure

package body P is
procedure Proc is

type String_Access is access String;
begin

...
end Proc;

end P;

Nesting adds non-trivial issues
Creates a nested pool with a nested accessibility
Don't do that unless you know what you are doing! (see later)

439 / 869

Access Types In Depth
Access Types

Null Values

A pointer that does not point to any actual data has a null value
Access types have a default value of null
null can be used in assignments and comparisons

declare
type Acc is access all Integer;
V : Acc;

begin
if V = null then

-- will go here
end if;
V := new Integer'(0);
V := null; -- semantically correct, but memory leak

440 / 869

Access Types In Depth
Access Types

Access Types and Primitives

Subprogram using an access type are primitive of the access type
Not the type of the accessed object

type A_T is access all T;
procedure Proc (V : A_T); -- Primitive of A_T, not T

Primitive of the type can be created with the access mode
Anonymous access type

Details elsewhere

procedure Proc (V : access T); -- Primitive of T

441 / 869

Access Types In Depth
Access Types

Dereferencing Access Types

.all does the access dereference
Lets you access the object pointed to by the pointer

.all is optional for
Access on a component of an array
Access on a component of a record

442 / 869

Access Types In Depth
Access Types

Dereference Examples

type R is record
F1, F2 : Integer;

end record;
type A_Int is access Integer;
type A_String is access all String;
type A_R is access R;
V_Int : A_Int := new Integer;
V_String : A_String := new String'("abc");
V_R : A_R := new R;

V_Int.all := 0;
V_String.all := "cde";
V_String (1) := 'z'; -- similar to V_String.all (1) := 'z';
V_R.all := (0, 0);
V_R.F1 := 1; -- similar to V_R.all.F1 := 1;

443 / 869

Access Types In Depth
Pool-Specific Access Types

Pool-Specific Access Types

444 / 869

Access Types In Depth
Pool-Specific Access Types

Pool-Specific Access Type

An access type is a type

type T is [...]
type T_Access is access T;
V : T_Access := new T;

Conversion is not possible between pool-specific access types

445 / 869

Access Types In Depth
Pool-Specific Access Types

Allocations

Objects are created with the new reserved word

The created object must be constrained
The constraint is given during the allocation

V : String_Access := new String (1 .. 10);

The object can be created by copying an existing object - using a
qualifier

V : String_Access := new String'("This is a String");

446 / 869

Access Types In Depth
Pool-Specific Access Types

Deallocations

Deallocations are unsafe
Multiple deallocations problems
Memory corruptions
Access to deallocated objects

As soon as you use them, you lose the safety of your access

But sometimes, you have to do what you have to do ...
There's no simple way of doing it
Ada provides Ada.Unchecked_Deallocation
Has to be instantiated (it's a generic)
Must work on an object, reset to null afterwards

447 / 869

Access Types In Depth
Pool-Specific Access Types

Deallocation Example

-- generic used to deallocate memory
with Ada.Unchecked_Deallocation;
procedure P is

type An_Access is access A_Type;
-- create instances of deallocation function
-- (object type, access type)
procedure Free is new Ada.Unchecked_Deallocation

(A_Type, An_Access);
V : An_Access := new A_Type;

begin
Free (V);
-- V is now null

end P;

448 / 869

Access Types In Depth
General Access Types

General Access Types

449 / 869

Access Types In Depth
General Access Types

General Access Types

Can point to any pool (including stack)

type T is [...]
type T_Access is access all T;
V : T_Access := new T;

Still distinct type

Conversions are possible

type T_Access_2 is access all T;
V2 : T_Access_2 := T_Access_2 (V); -- legal

450 / 869

Access Types In Depth
General Access Types

Referencing the Stack

By default, stack-allocated objects cannot be referenced - and can
even be optimized into a register by the compiler

aliased declares an object to be referenceable through an access
value

V : aliased Integer;

'Access attribute gives a reference to the object

A : Int_Access := V'Access;

'Unchecked_Access does it without checks

451 / 869

Access Types In Depth
General Access Types

Aliased Objects Examples
type Acc is access all Integer;
V, G : Acc;
I : aliased Integer;
...
V := I'Access;
V.all := 5; -- Same a I := 5
...
procedure P1 is

I : aliased Integer;
begin

G := I'Unchecked_Access;
P2;
-- Necessary to avoid corruption
-- Watch out for any of G's copies!
G := null;

end P1;

procedure P2 is
begin

G.all := 5;
end P2;

452 / 869

Access Types In Depth
General Access Types

Aliased Parameters

To ensure a subprogram parameter always has a valid memory
address, define it as aliased

Ensures 'Access and 'Address are valid for the parameter

procedure Example (Param : aliased Integer);

Object1 : aliased Integer;
Object2 : Integer;

-- This is OK
Example (Object1);

-- Compile error: Object2 could be optimized away
-- or stored in a register
Example (Object2);

-- Compile error: No address available for parameter
Example (123);

453 / 869

Access Types In Depth
General Access Types

Quiz

type One_T is access all Integer;
type Two_T is access Integer;

A : aliased Integer;
B : Integer;

One : One_T;
Two : Two_T;

Which assignment(s) is (are) legal?

A. One := B'Access;
B. One := A'Access;
C. Two := B'Access;
D. Two := A'Access;

'Access is only allowed for general access types (One_T). To use
'Access on an object, the object must be aliased.

454 / 869

Access Types In Depth
General Access Types

Quiz

type One_T is access all Integer;
type Two_T is access Integer;

A : aliased Integer;
B : Integer;

One : One_T;
Two : Two_T;

Which assignment(s) is (are) legal?

A. One := B'Access;
B. One := A'Access;
C. Two := B'Access;
D. Two := A'Access;

'Access is only allowed for general access types (One_T). To use
'Access on an object, the object must be aliased.

454 / 869

Access Types In Depth
Accessibility Checks

Accessibility Checks

455 / 869

Access Types In Depth
Accessibility Checks

Introduction to Accessibility Checks (1/2)
The depth of an object depends on its nesting within declarative
scopes

package body P is
-- Library level, depth 0
O0 : aliased Integer;
procedure Proc is

-- Library level subprogram, depth 1
type Acc1 is access all Integer;
procedure Nested is

-- Nested subprogram, enclosing + 1, here 2
O2 : aliased Integer;

Objects can be referenced by access types that are at same
depth or deeper

An access scope must be ≤ the object scope

type Acc1 (depth 1) can access O0 (depth 0) but not O2 (depth
2)

The compiler checks it statically
Removing checks is a workaround!

Note: Subprogram library units are at depth 1 and not 0
456 / 869

Access Types In Depth
Accessibility Checks

Introduction to Accessibility Checks (2/2)
Issues with nesting

package body P is
type T0 is access all Integer;
A0 : T0;
V0 : aliased Integer;

procedure Proc is
type T1 is access all Integer;
A1 : T1;
V1 : aliased Integer;

begin
A0 := V0'Access;
-- A0 := V1'Access; -- illegal
A0 := V1'Unchecked_Access;
A1 := V0'Access;
A1 := V1'Access;
A1 := T1 (A0);
A1 := new Integer;
-- A0 := T0 (A1); -- illegal

end Proc;
end P;

To avoid having to face these issues, avoid nested access types
457 / 869

Access Types In Depth
Accessibility Checks

Dynamic Accessibility Checks
Following the same rules

Performed dynamically by the runtime

Lots of possible cases
New compiler versions may detect more cases
Using access always requires proper debugging and reviewing

procedure Main is
type Acc is access all Integer;
O : Acc;

procedure Set_Value (V : access Integer) is
begin

O := Acc (V);
end Set_Value;

begin
declare

O2 : aliased Integer := 2;
begin

Set_Value (O2'Access);
end;

end Main;
458 / 869

Access Types In Depth
Accessibility Checks

Getting Around Accessibility Checks

Sometimes it is OK to use unsafe accesses to data

'Unchecked_Access allows access to a variable of an
incompatible accessibility level

Beware of potential problems!

type Acc is access all Integer;
G : Acc;
procedure P is

V : aliased Integer;
begin

G := V'Unchecked_Access;
...
Do_Something (G.all);
G := null; -- This is "reasonable"

end P;
459 / 869

Access Types In Depth
Accessibility Checks

Using Access Types for Recursive Structures

It is not possible to declare recursive structure
But there can be an access to the enclosing type

type Cell; -- partial declaration
type Cell_Access is access all Cell;
type Cell is record -- full declaration

Next : Cell_Access;
Some_Value : Integer;

end record;

460 / 869

Access Types In Depth
Accessibility Checks

Quiz
type Global_Access_T is access all Integer;
Global_Access : Global_Access_T;
Global_Object : aliased Integer;
procedure Proc_Access is

type Local_Access_T is access all Integer;
Local_Access : Local_Access_T;
Local_Object : aliased Integer;

begin

Which assignment(s) is (are) legal?

A. Global_Access := Global_Object'Access;
B. Global_Access := Local_Object'Access;
C. Local_Access := Global_Object'Access;
D. Local_Access := Local_Object'Access;

Explanations

A. Access type has same depth as object
B. Access type is not allowed to have higher level than accessed object
C. Access type has lower depth than accessed object
D. Access type has same depth as object

461 / 869

Access Types In Depth
Accessibility Checks

Quiz
type Global_Access_T is access all Integer;
Global_Access : Global_Access_T;
Global_Object : aliased Integer;
procedure Proc_Access is

type Local_Access_T is access all Integer;
Local_Access : Local_Access_T;
Local_Object : aliased Integer;

begin

Which assignment(s) is (are) legal?

A. Global_Access := Global_Object'Access;
B. Global_Access := Local_Object'Access;
C. Local_Access := Global_Object'Access;
D. Local_Access := Local_Object'Access;

Explanations

A. Access type has same depth as object
B. Access type is not allowed to have higher level than accessed object
C. Access type has lower depth than accessed object
D. Access type has same depth as object

461 / 869

Access Types In Depth
Memory Corruption

Memory Corruption

462 / 869

Access Types In Depth
Memory Corruption

Common Memory Problems (1/3)
Uninitialized pointers

declare
type An_Access is access all Integer;
V : An_Access;

begin
V.all := 5; -- constraint error

Double deallocation

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
Free (V2);

May raise Storage_Error if memory is still protected
(unallocated)

May deallocate a different object if memory has been reallocated

Putting that object in an inconsistent state

463 / 869

Access Types In Depth
Memory Corruption

Common Memory Problems (2/3)

Accessing deallocated memory

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
V2.all := 5;

May raise Storage_Error if memory is still protected
(unallocated)
May modify a different object if memory has been reallocated
(putting that object in an inconsistent state)

464 / 869

Access Types In Depth
Memory Corruption

Common Memory Problems (3/3)

Memory leaks

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V : An_Access := new Integer;

begin
V := null;

Silent problem

Might raise Storage_Error if too many leaks
Might slow down the program if too many page faults

465 / 869

Access Types In Depth
Memory Corruption

How to Fix Memory Problems?

There is no language-defined solution

Use the debugger!

Use additional tools
gnatmem monitor memory leaks
valgrind monitor all the dynamic memory

GNAT.Debug_Pools gives a pool for an access type, raising
explicit exception in case of invalid access
Others...

466 / 869

Access Types In Depth
Anonymous Access Types

Anonymous Access Types

467 / 869

Access Types In Depth
Anonymous Access Types

Anonymous Access Parameters

Parameter modes are of 4 types: in, out, in out, access

The access mode is called anonymous access type

Anonymous access is implicitly general (no need for all)

When used:
Any named access can be passed as parameter
Any anonymous access can be passed as parameter

type Acc is access all Integer;
Aliased_Integer : aliased Integer;
Access_Object : Acc := Aliased_Integer'Access;
procedure P1 (Anon_Access : access Integer) is null;
procedure P2 (Access_Parameter : access Integer) is
begin

P1 (Aliased_Integer'Access);
P1 (Access_Object);
P1 (Access_Parameter);

end P2;
468 / 869

Access Types In Depth
Anonymous Access Types

Anonymous Access Types

Other places can declare an anonymous access

function F return access Integer;
V : access Integer;
type T (V : access Integer) is record

C : access Integer;
end record;
type A is array (Integer range <>) of access Integer;

Do not use them without a clear understanding of accessibility
check rules

469 / 869

Access Types In Depth
Anonymous Access Types

Anonymous Access Constants

constant (instead of all) denotes an access type through which
the referenced object cannot be modified

type CAcc is access constant Integer;
G1 : aliased Integer;
G2 : aliased constant Integer := 123;
V1 : CAcc := G1'Access;
V2 : CAcc := G2'Access;
V1.all := 0; -- illegal

not null denotes an access type for which null value cannot be
accepted

Available in Ada 2005 and later

type NAcc is not null access Integer;
V : NAcc := null; -- illegal

Also works for subprogram parameters

procedure Bar (V1 : access constant Integer);
procedure Foo (V1 : not null access Integer); -- Ada 2005

470 / 869

Access Types In Depth
Memory Management

Memory Management

471 / 869

Access Types In Depth
Memory Management

Simple Linked List

A linked list object typically consists of:
Content
"Indication" of next item in list

Fancier linked lists may reference previous item in list
"Indication" is just a pointer to another linked list object

Therefore, self-referencing
Ada does not allow a record to self-reference

472 / 869

Access Types In Depth
Memory Management

Incomplete Types
In Ada, an incomplete type is just the word type followed by the
type name

Optionally, the name may be followed by (<>) to indicate the full
type may be unconstrained

Ada allows access types to point to an incomplete type
Just about the only thing you can do with an incomplete type!

type Some_Record_T;
type Some_Record_Access_T is access all Some_Record_T;

type Unconstrained_Record_T (<>);
type Unconstrained_Record_Access_T is access all Unconstrained_Record_T;

type Some_Record_T is record
Component : String (1 .. 10);

end record;

type Unconstrained_Record_T (Size : Index_T) is record
Component : String (1 .. Size);

end record;
473 / 869

Access Types In Depth
Memory Management

Linked List in Ada

Now that we have a pointer to the record type (by name), we can
use it in the full definition of the record type

type Some_Record_T is record
Component : String (1 .. 10);
Next : Some_Record_Access_T;

end record;

type Unconstrained_Record_T (Size : Index_T) is record
Component : String (1 .. Size);
Next : Unconstrained_Record_Access_T;
Previous : Unconstrained_Record_Access_T;

end record;

474 / 869

Access Types In Depth
Memory Management

Simplistic Linked List
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Unchecked_Deallocation;
procedure Simple is

type Some_Record_T;
type Some_Record_Access_T is access all Some_Record_T;
type Some_Record_T is record

Component : String (1 .. 10);
Next : Some_Record_Access_T;

end record;

Head : Some_Record_Access_T := null;
Item : Some_Record_Access_T := null;

Line : String (1 .. 10);
Last : Natural;

procedure Free is new Ada.Unchecked_Deallocation
(Some_Record_T, Some_Record_Access_T);

begin

loop
Put ("Enter String: ");
Get_Line (Line, Last);
exit when Last = 0;
Line (Last + 1 .. Line'Last) := (others => ' ');
Item := new Some_Record_T;
Item.all := (Line, Head);
Head := Item;

end loop;

Put_Line ("List");
while Head /= null loop

Put_Line (" " & Head.Component);
Head := Head.Next;

end loop;

Put_Line ("Delete");
Free (Item);
GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool);

end Simple;

475 / 869

Access Types In Depth
Memory Debugging

Memory Debugging

476 / 869

Access Types In Depth
Memory Debugging

GNAT.Debug_Pools

Ada allows the coder to specify where the allocated memory comes
from

Called Storage Pool
Basically, connecting new and Unchecked_Deallocation with
some other code
More details in the next section

type Linked_List_Ptr_T is access all Linked_List_T;
for Linked_List_Ptr_T'storage_pool use Memory_Mgmt.Storage_Pool;

GNAT uses this mechanism in the runtime package
GNAT.Debug_Pools to track allocation/deallocation
with GNAT.Debug_Pools;
package Memory_Mgmt is

Storage_Pool : GNAT.Debug_Pools.Debug_Pool;
end Memory_Mgmt;

477 / 869

Access Types In Depth
Memory Debugging

GNAT.Debug_Pools Spec (Partial)
package GNAT.Debug_Pools is

type Debug_Pool is new System.Checked_Pools.Checked_Pool with private;

generic
with procedure Put_Line (S : String) is <>;
with procedure Put (S : String) is <>;

procedure Print_Info
(Pool : Debug_Pool;
Cumulate : Boolean := False;
Display_Slots : Boolean := False;
Display_Leaks : Boolean := False);

procedure Print_Info_Stdout
(Pool : Debug_Pool;
Cumulate : Boolean := False;
Display_Slots : Boolean := False;
Display_Leaks : Boolean := False);

-- Standard instantiation of Print_Info to print on standard_output.

procedure Dump_Gnatmem (Pool : Debug_Pool; File_Name : String);
-- Create an external file on the disk, which can be processed by gnatmem
-- to display the location of memory leaks.

procedure Print_Pool (A : System.Address);
-- Given an address in memory, it will print on standard output the known
-- information about this address

function High_Water_Mark
(Pool : Debug_Pool) return Byte_Count;

-- Return the highest size of the memory allocated by the pool.

function Current_Water_Mark
(Pool : Debug_Pool) return Byte_Count;

-- Return the size of the memory currently allocated by the pool.

private
-- ...

end GNAT.Debug_Pools;

478 / 869

Access Types In Depth
Memory Debugging

Displaying Debug Information

Simple modifications to our linked list example
Create and use storage pool

with GNAT.Debug_Pools; -- Added
procedure Simple is

Storage_Pool : GNAT.Debug_Pools.Debug_Pool; -- Added
type Some_Record_T;
type Some_Record_Access_T is access all Some_Record_T;
for Some_Record_Access_T'storage_pool

use Storage_Pool; -- Added

Dump info after each new

Item := new Some_Record_T;
GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool); -- Added
Item.all := (Line, Head);

Dump info after free

Free (Item);
GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool); -- Added

479 / 869

Access Types In Depth
Memory Debugging

Execution Results
Enter String: X
Total allocated bytes : 24
Total logically deallocated bytes : 0
Total physically deallocated bytes : 0
Current Water Mark: 24
High Water Mark: 24

Enter String: Y
Total allocated bytes : 48
Total logically deallocated bytes : 0
Total physically deallocated bytes : 0
Current Water Mark: 48
High Water Mark: 48

Enter String:
List

Y
X

Delete
Total allocated bytes : 48
Total logically deallocated bytes : 24
Total physically deallocated bytes : 0
Current Water Mark: 24
High Water Mark: 48

480 / 869

Access Types In Depth
Memory Control

Memory Control

481 / 869

Access Types In Depth
Memory Control

System.Storage_Pools

Mechanism to allow coder control over allocation/deallocation
process

Uses Ada.Finalization.Limited_Controlled to implement
customized memory allocation and deallocation
Must be specified for each access type being controlled
type Boring_Access_T is access Some_T;
-- Storage Pools mechanism not used here
type Important_Access_T is access Some_T;
for Important_Access_T'storage_pool use My_Storage_Pool;
-- Storage Pools mechanism used for Important_Access_T

482 / 869

Access Types In Depth
Memory Control

System.Storage_Pools Spec (Partial)
with Ada.Finalization;
with System.Storage_Elements;
package System.Storage_Pools with Pure is

type Root_Storage_Pool is abstract
new Ada.Finalization.Limited_Controlled with private;

pragma Preelaborable_Initialization (Root_Storage_Pool);

procedure Allocate
(Pool : in out Root_Storage_Pool;
Storage_Address : out System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count)

is abstract;

procedure Deallocate
(Pool : in out Root_Storage_Pool;
Storage_Address : System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count)

is abstract;

function Storage_Size
(Pool : Root_Storage_Pool)
return System.Storage_Elements.Storage_Count

is abstract;

private
-- ...

end System.Storage_Pools;

483 / 869

Access Types In Depth
Memory Control

System.Storage_Pools Explanations

Note Root_Storage_Pool, Allocate, Deallocate, and
Storage_Size are abstract

You must create your own type derived from Root_Storage_Pool
You must create versions of Allocate, Deallocate, and
Storage_Size to allocate/deallocate memory

Parameters
Pool

Memory pool being manipulated
Storage_Address

For Allocate - location in memory where access type will point to
For Deallocate - location in memory where memory should be
released

Size_In_Storage_Elements
Number of bytes needed to contain contents

Alignment
Byte alignment for memory location

484 / 869

Access Types In Depth
Memory Control

System.Storage_Pools Example (Partial)
subtype Index_T is Storage_Count range 1 .. 1_000;
Memory_Block : aliased array (Index_T) of Interfaces.Unsigned_8;
Memory_Used : array (Index_T) of Boolean := (others => False);

procedure Set_In_Use (Start : Index_T;
Length : Storage_Count;
Used : Boolean);

function Find_Free_Block (Length : Storage_Count) return Index_T;

procedure Allocate
(Pool : in out Storage_Pool_T;
Storage_Address : out System.Address;
Size_In_Storage_Elements : Storage_Count;
Alignment : Storage_Count) is
Index : Storage_Count := Find_Free_Block (Size_In_Storage_Elements);

begin
Storage_Address := Memory_Block (Index)'Address;
Set_In_Use (Index, Size_In_Storage_Elements, True);

end Allocate;

procedure Deallocate
(Pool : in out Storage_Pool_T;
Storage_Address : System.Address;
Size_In_Storage_Elements : Storage_Count;
Alignment : Storage_Count) is

begin
for I in Memory_Block'Range loop

if Memory_Block (I)'Address = Storage_Address then
Set_In_Use (I, Size_In_Storage_Elements, False);

end if;
end loop;

end Deallocate;

485 / 869

Access Types In Depth
Advanced Access Type Safety

Advanced Access Type Safety

486 / 869

Access Types In Depth
Advanced Access Type Safety

Elaboration-Only Dynamic Allocation

Common in critical contexts

Rationale:
1 We (might) need dynamically allocated date

e.g. loading configuration data of unknown size

2 Deallocations can cause leaks, corruption

→ Disallow them entirely

3 A dynamically allocated object will need deallocation

→ Unless it never goes out of scope

→ Allow only allocation onto globals
Tip

And restrict allocations to program elaboration
487 / 869

Access Types In Depth
Advanced Access Type Safety

Prevent Heap Deallocations

Ada.Unchecked_Deallocation cannot be used anymore

No heap deallocation is possible
The total number of allocations should be bounded
e.g. elaboration-only allocations

pragma Restrictions
(No_Dependence => Unchecked_Deallocation);

488 / 869

Access Types In Depth
Advanced Access Type Safety

Constant Access at Library Level

type Acc is access T;
procedure Free is new Ada.Unchecked_Deallocation (T, Acc);

A : constant Acc := new T;

A is constant

Cannot be deallocated

489 / 869

Access Types In Depth
Advanced Access Type Safety

Constant Access as Discriminant

type R (A : access T) is limited record

A is constant

Cannot be deallocated

R is limited

Cannot be copied

490 / 869

Access Types In Depth
Advanced Access Type Safety

Idiom: Access to Subtype
Tip

subtype improves access-related code safety

Subtype constraints still apply through the access type

type Values_T is array (Positive range <>) of Integer;
subtype Two_Values_T is Values_T (1 .. 2);
type Two_Values_A is access all Two_Values_T;

function Get return Values_T is (1 => 10);

-- O : aliased Two_Values_T := Get;
-- Runtime FAIL: Constraint check
O : aliased Values_T := Get; -- Single value, bounds are 1 .. 1
-- P : Two_Values_A := O'Access;
-- Compile-time FAIL: Bounds must statically match

491 / 869

Access Types In Depth
Lab

Lab

492 / 869

Access Types In Depth
Lab

Access Types In Depth Lab

Build an application that adds / removes items from a linked list
At any time, user should be able to

Add a new item into the "appropriate" location in the list
Remove an item without changing the position of any other item in
the list
Print the list

This is a multi-step lab! First priority should be understanding
linked lists, then, if you have time, storage pools

Required goals
1 Implement Add functionality

For this step, "appropriate" means either end of the list (but
consistent - always front or always back)

2 Implement Print functionality
3 Implement Delete functionality

493 / 869

Access Types In Depth
Lab

Extra Credit

Complete as many of these as you have time for
1 Use GNAT.Debug_Pools to print out the status of your memory

allocation/deallocation after every new and deallocate
2 Modify Add so that "appropriate" means in a sorted order
3 Implement storage pools where you write your own memory

allocation/deallocation routines

Should still be able to print memory status

494 / 869

Access Types In Depth
Lab

Lab Solution - Database
1 package Database is
2 type Database_T is private;
3 function "=" (L, R : Database_T) return Boolean;
4 function To_Database (Value : String) return Database_T;
5 function From_Database (Value : Database_T) return String;
6 function "<" (L, R : Database_T) return Boolean;
7 private
8 type Database_T is record
9 Value : String (1 .. 100);

10 Length : Natural;
11 end record;
12 end Database;
13

14 package body Database is
15 function "=" (L, R : Database_T) return Boolean is
16 begin
17 return L.Value (1 .. L.Length) = R.Value (1 .. R.Length);
18 end "=";
19 function To_Database (Value : String) return Database_T is
20 Retval : Database_T;
21 begin
22 Retval.Length := Value'Length;
23 Retval.Value (1 .. Retval.Length) := Value;
24 return Retval;
25 end To_Database;
26 function From_Database (Value : Database_T) return String is
27 begin
28 return Value.Value (1 .. Value.Length);
29 end From_Database;
30

31 function "<" (L, R : Database_T) return Boolean is
32 begin
33 return L.Value (1 .. L.Length) < R.Value (1 .. R.Length);
34 end "<";
35 end Database;

495 / 869

Access Types In Depth
Lab

Lab Solution - Database_List (Spec)
1 with Database; use Database;
2 -- Uncomment next line when using debug/storage pools
3 -- with Memory_Mgmt;
4 package Database_List is
5 type List_T is limited private;
6 procedure First (List : in out List_T);
7 procedure Next (List : in out List_T);
8 function End_Of_List (List : List_T) return Boolean;
9 function Current (List : List_T) return Database_T;

10 procedure Insert (List : in out List_T;
11 Component : Database_T);
12 procedure Delete (List : in out List_T;
13 Component : Database_T);
14 function Is_Empty (List : List_T) return Boolean;
15 private
16 type Linked_List_T;
17 type Linked_List_Ptr_T is access all Linked_List_T;
18 -- Uncomment next line when using debug/storage pools
19 -- for Linked_List_Ptr_T'storage_pool use Memory_Mgmt.Storage_Pool;
20 type Linked_List_T is record
21 Next : Linked_List_Ptr_T;
22 Content : Database_T;
23 end record;
24 type List_T is record
25 Head : Linked_List_Ptr_T;
26 Current : Linked_List_Ptr_T;
27 end record;
28 end Database_List;

496 / 869

Access Types In Depth
Lab

Lab Solution - Database_List (Helper Objects)
1 with Interfaces;
2 with Unchecked_Deallocation;
3 package body Database_List is
4 use type Database.Database_T;
5

6 function Is_Empty (List : List_T) return Boolean is
7 begin
8 return List.Head = null;
9 end Is_Empty;

10

11 procedure First (List : in out List_T) is
12 begin
13 List.Current := List.Head;
14 end First;
15

16 procedure Next (List : in out List_T) is
17 begin
18 if not Is_Empty (List) then
19 if List.Current /= null then
20 List.Current := List.Current.Next;
21 end if;
22 end if;
23 end Next;
24

25 function End_Of_List (List : List_T) return Boolean is
26 begin
27 return List.Current = null;
28 end End_Of_List;
29

30 function Current (List : List_T) return Database_T is
31 begin
32 return List.Current.Content;
33 end Current;

497 / 869

Access Types In Depth
Lab

Lab Solution - Database_List (Insert/Delete)
35 procedure Insert (List : in out List_T;
36 Component : Database_T) is
37 New_Component : Linked_List_Ptr_T :=
38 new Linked_List_T'(Next => null, Content => Component);
39 begin
40 if Is_Empty (List) then
41 List.Current := New_Component;
42 List.Head := New_Component;
43 elsif Component < List.Head.Content then
44 New_Component.Next := List.Head;
45 List.Current := New_Component;
46 List.Head := New_Component;
47 else
48 declare
49 Current : Linked_List_Ptr_T := List.Head;
50 begin
51 while Current.Next /= null and then Current.Next.Content < Component
52 loop
53 Current := Current.Next;
54 end loop;
55 New_Component.Next := Current.Next;
56 Current.Next := New_Component;
57 end;
58 end if;
59 -- Uncomment next line when using debug/storage pools
60 -- Memory_Mgmt.Print_Info;
61 end Insert;
62

63 procedure Free is new Unchecked_Deallocation
64 (Linked_List_T, Linked_List_Ptr_T);
65 procedure Delete
66 (List : in out List_T;
67 Component : Database_T) is
68 To_Delete : Linked_List_Ptr_T := null;
69 begin
70 if not Is_Empty (List) then
71 if List.Head.Content = Component then
72 To_Delete := List.Head;
73 List.Head := List.Head.Next;
74 List.Current := List.Head;
75 else
76 declare
77 Previous : Linked_List_Ptr_T := List.Head;
78 Current : Linked_List_Ptr_T := List.Head.Next;
79 begin
80 while Current /= null loop
81 if Current.Content = Component then
82 To_Delete := Current;
83 Previous.Next := Current.Next;
84 end if;
85 Current := Current.Next;
86 end loop;
87 end;
88 List.Current := List.Head;
89 end if;
90 if To_Delete /= null then
91 Free (To_Delete);
92 end if;
93 end if;
94 -- Uncomment next line when using debug/storage pools
95 -- Memory_Mgmt.Print_Info;
96 end Delete;
97 end Database_List;

498 / 869

Access Types In Depth
Lab

Lab Solution - Main
1 with Simple_Io; use Simple_Io;
2 with Database;
3 with Database_List;
4 procedure Main is
5 List : Database_List.List_T;
6 Component : Database.Database_T;
7

8 procedure Add is
9 Value : constant String := Get_String ("Add");

10 begin
11 if Value'Length > 0 then
12 Component := Database.To_Database (Value);
13 Database_List.Insert (List, Component);
14 end if;
15 end Add;
16

17 procedure Delete is
18 Value : constant String := Get_String ("Delete");
19 begin
20 if Value'Length > 0 then
21 Component := Database.To_Database (Value);
22 Database_List.Delete (List, Component);
23 end if;
24 end Delete;
25

26 procedure Print is
27 begin
28 Database_List.First (List);
29 Simple_Io.Print_String ("List");
30 while not Database_List.End_Of_List (List) loop
31 Component := Database_List.Current (List);
32 Print_String (" " & Database.From_Database (Component));
33 Database_List.Next (List);
34 end loop;
35 end Print;
36

37 begin
38 loop
39 case Get_Character ("A=Add D=Delete P=Print Q=Quit") is
40 when 'a' | 'A' => Add;
41 when 'd' | 'D' => Delete;
42 when 'p' | 'P' => Print;
43 when 'q' | 'Q' => exit;
44 when others => null;
45 end case;
46 end loop;
47 end Main;

499 / 869

Access Types In Depth
Lab

Lab Solution - Simple_IO (Spec)

1 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
2 package Simple_Io is
3 function Get_String (Prompt : String)
4 return String;
5 function Get_Number (Prompt : String)
6 return Integer;
7 function Get_Character (Prompt : String)
8 return Character;
9 procedure Print_String (Str : String);

10 procedure Print_Number (Num : Integer);
11 procedure Print_Character (Char : Character);
12 function Get_String (Prompt : String)
13 return Unbounded_String;
14 procedure Print_String (Str : Unbounded_String);
15 end Simple_Io;

500 / 869

Access Types In Depth
Lab

Lab Solution - Simple_IO (Body)
1 with Ada.Text_IO;
2 package body Simple_Io is
3 function Get_String (Prompt : String) return String is
4 Str : String (1 .. 1_000);
5 Last : Integer;
6 begin
7 Ada.Text_IO.Put (Prompt & "> ");
8 Ada.Text_IO.Get_Line (Str, Last);
9 return Str (1 .. Last);

10 end Get_String;
11

12 function Get_Number (Prompt : String) return Integer is
13 Str : constant String := Get_String (Prompt);
14 begin
15 return Integer'Value (Str);
16 end Get_Number;
17

18 function Get_Character (Prompt : String) return Character is
19 Str : constant String := Get_String (Prompt);
20 begin
21 return Str (Str'First);
22 end Get_Character;
23

24 procedure Print_String (Str : String) is
25 begin
26 Ada.Text_IO.Put_Line (Str);
27 end Print_String;
28 procedure Print_Number (Num : Integer) is
29 begin
30 Ada.Text_IO.Put_Line (Integer'Image (Num));
31 end Print_Number;
32 procedure Print_Character (Char : Character) is
33 begin
34 Ada.Text_IO.Put_Line (Character'Image (Char));
35 end Print_Character;
36

37 function Get_String (Prompt : String) return Unbounded_String is
38 begin
39 return To_Unbounded_String (Get_String (Prompt));
40 end Get_String;
41 procedure Print_String (Str : Unbounded_String) is
42 begin
43 Print_String (To_String (Str));
44 end Print_String;
45 end Simple_Io;

501 / 869

Access Types In Depth
Lab

Lab Solution - Memory_Mgmt (Debug Pools)

1 with GNAT.Debug_Pools;
2 package Memory_Mgmt is
3 Storage_Pool : GNAT.Debug_Pools.Debug_Pool;
4 procedure Print_Info;
5 end Memory_Mgmt;
6

7 package body Memory_Mgmt is
8 procedure Print_Info is
9 begin

10 GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool);
11 end Print_Info;
12 end Memory_Mgmt;

502 / 869

Access Types In Depth
Lab

Lab Solution - Memory_Mgmt (Storage Pools Spec)
1 with System.Storage_Components;
2 with System.Storage_Pools;
3 package Memory_Mgmt is
4

5 type Storage_Pool_T is new System.Storage_Pools.Root_Storage_Pool with
6 null record;
7

8 procedure Print_Info;
9

10 procedure Allocate
11 (Pool : in out Storage_Pool_T;
12 Storage_Address : out System.Address;
13 Size_In_Storage_Components : System.Storage_Components.Storage_Count;
14 Alignment : System.Storage_Components.Storage_Count);
15 procedure Deallocate
16 (Pool : in out Storage_Pool_T;
17 Storage_Address : System.Address;
18 Size_In_Storage_Components : System.Storage_Components.Storage_Count;
19 Alignment : System.Storage_Components.Storage_Count);
20 function Storage_Size
21 (Pool : Storage_Pool_T)
22 return System.Storage_Components.Storage_Count;
23

24 Storage_Pool : Storage_Pool_T;
25

26 end Memory_Mgmt;

503 / 869

Access Types In Depth
Lab

Lab Solution - Memory_Mgmt (Storage Pools 1/2)
1 with Ada.Text_IO;
2 with Interfaces;
3 package body Memory_Mgmt is
4 use System.Storage_Components;
5 use type System.Address;
6

7 subtype Index_T is Storage_Count range 1 .. 1_000;
8 Memory_Block : aliased array (Index_T) of Interfaces.Unsigned_8;
9 Memory_Used : array (Index_T) of Boolean := (others => False);

10

11 Current_Water_Mark : Storage_Count := 0;
12 High_Water_Mark : Storage_Count := 0;
13

14 procedure Set_In_Use
15 (Start : Index_T;
16 Length : Storage_Count;
17 Used : Boolean) is
18 begin
19 for I in 0 .. Length - 1 loop
20 Memory_Used (Start + I) := Used;
21 end loop;
22 if Used then
23 Current_Water_Mark := Current_Water_Mark + Length;
24 High_Water_Mark :=
25 Storage_Count'max (High_Water_Mark, Current_Water_Mark);
26 else
27 Current_Water_Mark := Current_Water_Mark - Length;
28 end if;
29 end Set_In_Use;
30

31 function Find_Free_Block
32 (Length : Storage_Count)
33 return Index_T is
34 Consecutive : Storage_Count := 0;
35 begin
36 for I in Memory_Used'Range loop
37 if Memory_Used (I) then
38 Consecutive := 0;
39 else
40 Consecutive := Consecutive + 1;
41 if Consecutive >= Length then
42 return I;
43 end if;
44 end if;
45 end loop;
46 raise Storage_Error;
47 end Find_Free_Block;

504 / 869

Access Types In Depth
Lab

Lab Solution - Memory_Mgmt (Storage Pools 2/2)
49 procedure Allocate
50 (Pool : in out Storage_Pool_T;
51 Storage_Address : out System.Address;
52 Size_In_Storage_Components : Storage_Count;
53 Alignment : Storage_Count) is
54 Index : Storage_Count := Find_Free_Block (Size_In_Storage_Components);
55 begin
56 Storage_Address := Memory_Block (Index)'Address;
57 Set_In_Use (Index, Size_In_Storage_Components, True);
58 end Allocate;
59

60 procedure Deallocate
61 (Pool : in out Storage_Pool_T;
62 Storage_Address : System.Address;
63 Size_In_Storage_Components : Storage_Count;
64 Alignment : Storage_Count) is
65 begin
66 for I in Memory_Block'Range loop
67 if Memory_Block (I)'Address = Storage_Address then
68 Set_In_Use (I, Size_In_Storage_Components, False);
69 end if;
70 end loop;
71 end Deallocate;
72

73 function Storage_Size
74 (Pool : Storage_Pool_T)
75 return System.Storage_Components.Storage_Count is
76 begin
77 return 0;
78 end Storage_Size;
79

80 procedure Print_Info is
81 begin
82 Ada.Text_IO.Put_Line
83 ("Current Water Mark: " & Storage_Count'Image (Current_Water_Mark));
84 Ada.Text_IO.Put_Line
85 ("High Water Mark: " & Storage_Count'Image (High_Water_Mark));
86 end Print_Info;
87

88 end Memory_Mgmt;

505 / 869

Access Types In Depth
Summary

Summary

506 / 869

Access Types In Depth
Summary

Summary

Access types when used with "dynamic" memory allocation can
cause problems

Whether actually dynamic or using managed storage pools, memory
leaks/lack can occur
Storage pools can help diagnose memory issues, but it's still a
usage issue

GNAT.Debug_Pools is useful for debugging memory issues
Mostly in low-level testing
Could integrate it with an error logging mechanism

System.Storage_Pools can be used to control memory usage
Adds overhead

507 / 869

Controlled Types

Controlled Types

508 / 869

Controlled Types
Introduction

Introduction

509 / 869

Controlled Types
Introduction

Constructor / Destructor

Possible to specify behavior of object initialization, finalization,
and assignment

Based on type definition
Type must derive from Controlled or Limited_Controlled in
package Ada.Finalization

This derived type is called a controlled type
User may override any or all subprograms in Ada.Finalization
Default implementation is a null body

510 / 869

Controlled Types
Ada.Finalization

Ada.Finalization

511 / 869

Controlled Types
Ada.Finalization

Package Spec

package Ada.Finalization is

type Controlled is abstract tagged private;
procedure Initialize (Object : in out Controlled)

is null;
procedure Adjust (Object : in out Controlled)

is null;
procedure Finalize (Object : in out Controlled)

is null;

type Limited_Controlled is abstract tagged limited private;
procedure Initialize (Object : in out Limited_Controlled)

is null;
procedure Finalize (Object : in out Limited_Controlled)

is null;

private
-- implementation defined

end Ada.Finalization;
512 / 869

Controlled Types
Ada.Finalization

Uses

Prevent "resource leak"
Logic centralized in service rather than distributed across clients

Examples: heap reclamation, "mutex" unlocking

User-defined assignment

513 / 869

Controlled Types
Ada.Finalization

Initialization

Subprogram Initialize invoked after object created
Either by object declaration or allocator
Only if no explicit initialization expression

Often default initialization expressions on record components are
sufficient

No need for an explicit call to Initialize

Similar to C++ constructor

514 / 869

Controlled Types
Ada.Finalization

Finalization

Subprogram Finalize invoked just before object is destroyed
Leaving the scope of a declared object
Unchecked deallocation of an allocated object

Similar to C++ destructor

515 / 869

Controlled Types
Ada.Finalization

Assignment

Subprogram Adjust invoked as part of an assignment operation

Assignment statement Target := Source; is basically:
Finalize (Target)
Copy Source to Target
Adjust (Target)
Actual rules are more complicated, e.g. to allow cases where Target
and Source are the same object

Typical situations where objects are access values
Finalize does unchecked deallocation or decrements a reference
count
The copy step copies the access value
Adjust either clones a "deep copy" of the referenced object or
increments a reference count

516 / 869

Controlled Types
Example

Example

517 / 869

Controlled Types
Example

Unbounded String Via Access Type

Type contains a pointer to a string type

We want the provider to allocate and free memory "safely"
No sharing
Adjust allocates referenced String
Finalize frees the referenced String
Assignment deallocates target string and assigns copy of source
string to target string

518 / 869

Controlled Types
Example

Unbounded String Usage

with Unbounded_String_Pkg; use Unbounded_String_Pkg;
procedure Test is

U1 : Ustring_T;
begin

U1 := To_Ustring_T ("Hello");
declare

U2 : Ustring_T;
begin

U2 := To_Ustring_T ("Goodbye");
U1 := U2; -- Reclaims U1 memory

end; -- Reclaims U2 memory
end Test; -- Reclaims U1 memory

519 / 869

Controlled Types
Example

Unbounded String Definition

with Ada.Finalization; use Ada.Finalization;
package Unbounded_String_Pkg is

-- Implement unbounded strings
type Ustring_T is private;
function "=" (L, R : Ustring_T) return Boolean;
function To_Ustring_T (Item : String) return Ustring_T;
function To_String (Item : Ustring_T) return String;
function Length (Item : Ustring_T) return Natural;
function "&" (L, R : Ustring_T) return Ustring_T;

private
type String_Ref is access String;
type Ustring_T is new Controlled with record

Ref : String_Ref := new String (1 .. 0);
end record;
procedure Finalize (Object : in out Ustring_T);
procedure Adjust (Object : in out Ustring_T);

end Unbounded_String_Pkg;
520 / 869

Controlled Types
Example

Unbounded String Implementation
with Ada.Unchecked_Deallocation;
package body Unbounded_String_Pkg is

procedure Free_String is new Ada.Unchecked_Deallocation
(String, String_Ref);

function "=" (L, R : Ustring_T) return Boolean is
(L.Ref.all = R.Ref.all);

function To_Ustring_T (Item : String) return Ustring_T is
(Controlled with Ref => new String'(Item));

function To_String (Item : Ustring_T) return String is
(Item.Ref.all);

function Length (Item : Ustring_T) return Natural is
(Item.Ref.all'Length);

function "&" (L, R : Ustring_T) return Ustring_T is
(Controlled with Ref => new String'(L.Ref.all & R.Ref.all);

procedure Finalize (Object : in out Ustring_T) is
begin

Free_String (Object.Ref);
end Finalize;

procedure Adjust (Object : in out Ustring_T) is
begin

Object.Ref := new String'(Object.Ref.all);
end Adjust;

end Unbounded_String_Pkg;

521 / 869

Controlled Types
Example

Finalizable Aspect
Uses the GNAT-specific with Finalizable aspect

type Ctrl is record
Id : Natural := 0;

end record
with Finalizable => (Initialize => Initialize,

Adjust => Adjust,
Finalize => Finalize,
Relaxed_Finalization => True);

procedure Adjust (Obj : in out Ctrl);
procedure Finalize (Obj : in out Ctrl);
procedure Initialize (Obj : in out Ctrl);

Initialize, Adjust same definition as previously

Finalize has the No_Raise aspect: it cannot raise exceptions

Relaxed_Finalization

Performance on-par with C++'s destructor
No automatic finalization of heap-allocated objects

522 / 869

Controlled Types
Lab

Lab

523 / 869

Controlled Types
Lab

Controlled Types Lab

Requirements
Create a simplistic secure key tracker system

Keys should be unique
Keys cannot be copied
When a key is no longer in use, it is returned back to the system

Interface should contain the following methods

Generate a new key
Return a generated key
Indicate how many keys are in service
Return a string describing the key

Create a main program to generate / destroy / print keys

Hints
Need to return a key when out-of-scope OR on user request
Global data to track used keys

524 / 869

Controlled Types
Lab

Controlled Types Lab Solution - Keys (Spec)

1 with Ada.Finalization;
2 package Keys_Pkg is
3

4 type Key_T is limited private;
5 function Generate return Key_T;
6 procedure Destroy (Key : Key_T);
7 function In_Use return Natural;
8 function Image (Key : Key_T) return String;
9

10 private
11 type Key_T is new Ada.Finalization.Limited_Controlled with record
12 Value : Character;
13 end record;
14 procedure Initialize (Key : in out Key_T);
15 procedure Finalize (Key : in out Key_T);
16

17 end Keys_Pkg;
525 / 869

Controlled Types
Lab

Controlled Types Lab Solution - Keys (Body)
1 package body Keys_Pkg is
2 Global_In_Use : array (Character range 'a' .. 'z') of Boolean :=
3 (others => False);
4

5 pragma Warnings (Off);
6 function Next_Available return Character is
7 begin
8 for C in Global_In_Use'Range loop
9 if not Global_In_Use (C) then

10 return C;
11 end if;
12 end loop;
13 -- we ran out of keys! exception if we get here
14 end Next_Available;
15 pragma Warnings (On);
16

17 function In_Use return Natural is
18 Ret_Val : Natural := 0;
19 begin
20 for Flag of Global_In_Use loop
21 Ret_Val := Ret_Val + (if Flag then 1 else 0);
22 end loop;
23 return Ret_Val;
24 end In_Use;
25

26 function Generate return Key_T is
27 begin
28 return X : Key_T;
29 end Generate;
30

31 procedure Destroy (Key : Key_T) is
32 begin
33 Global_In_Use (Key.Value) := False;
34 end Destroy;
35

36 function Image (Key : Key_T) return String is
37 ("KEY: " & Key.Value);
38

39 procedure Initialize (Key : in out Key_T) is
40 begin
41 Key.Value := Next_Available;
42 Global_In_Use (Key.Value) := True;
43 end Initialize;
44

45 procedure Finalize (Key : in out Key_T) is
46 begin
47 Global_In_Use (Key.Value) := False;
48 end Finalize;
49 end Keys_Pkg;

526 / 869

Controlled Types
Lab

Controlled Types Lab Solution - Main
1 with Keys_Pkg;
2 with Ada.Text_IO; use Ada.Text_IO;
3 procedure Main is
4

5 procedure Generate (Count : Natural) is
6 Keys : array (1 .. Count) of Keys_Pkg.Key_T;
7 begin
8 Put_Line ("In use: " & Integer'Image (Keys_Pkg.In_Use));
9 for Key of Keys

10 loop
11 Put_Line (" " & Keys_Pkg.Image (Key));
12 end loop;
13 end Generate;
14

15 begin
16 Put_Line ("In use: " & Integer'Image (Keys_Pkg.In_Use));
17

18 Generate (4);
19 Put_Line ("In use: " & Integer'Image (Keys_Pkg.In_Use));
20

21 end Main;
527 / 869

Controlled Types
Summary

Summary

528 / 869

Controlled Types
Summary

Summary

Controlled types allow access to object construction, assignment,
destruction

Ada.Finalization can be expensive to use
Other mechanisms may be more efficient

But require more rigor in usage

529 / 869

Expert Resource Management

Expert Resource Management

530 / 869

Expert Resource Management
Indefinite Private

Indefinite Private

531 / 869

Expert Resource Management
Indefinite Private

Limited Private

type T is limited private;

Same interface as private
Removes = and /=
Removes assignments
Removes copies

Note
Private type is a view

Completion should provide at least the same set of
features
Completion can be a limited record
... but doesn't have to

532 / 869

Expert Resource Management
Indefinite Private

Limited Private
No assignment: user cannot duplicate a key
No equality: user cannot check two keys are the same
Private type: user cannot access or change the issued date

package Key_Stuff is
type Key is limited private;
function Make_Key (...) return Key;
...

package body Key_Stuff is
function Make_Key (...) return Key is
begin

return New_Key: Key do
New_Key.Issued := Today;
...

end return;
end Make_Key;

Warning
Definite type
User doesn't have to call Make_Key

533 / 869

Expert Resource Management
Indefinite Private

Indefinite Private
Indefinite: user must use the constructors
Delegated constant objects are static constructors

package Binary_Trees is
type Tree_T (<>) is private;

Empty_Tree : constant Tree_T;

type Nodes_T is ...
type Edges_T is ...
procedure Make (Nodes : Nodes_T; Edges : Edges_T);
...

private
type Tree_T is record
...

Empty_Tree : constant Tree_T := ...;

end Binary_Trees;

Tip
Type completion can be definite

534 / 869

Expert Resource Management
Indefinite Private

Opaque Pointers

User can instantiate
Completion is an access
Concrete type being pointed to is incomplete
Implementation is done entirely within the body

package Black_Boxes is
type Box_T is private;
procedure Foo (B : Box_T);

private
type Internal_Box_T; -- incomplete
type Box_T is access all Internal_Box_T;

end Black_Boxes;

535 / 869

Expert Resource Management
Indefinite Private

Example: A String Holder (1/2)
Implementation not discussed here

package String_Holders is
type Info is limited private;

function Contains (Obj : Info; Str : String) return Boolean
with Ghost;

function Equals (Left, Right : Info) return Boolean
with Ghost;

Tip
These are only used for contracts, hence the Ghost
aspect

function To_Info (Str : String) return Info
with Post => Contains (To_Info'Result, S);

function To_String (Obj : Info)
return String

with Post => Contains (Obj, To_String'Result);

procedure Copy (To : in out Info;
From : Info)

with Post => Equals (To, From);

procedure Append (Obj : in out Info;
Str : String)

with Post => Contains (Obj, To_String (Obj)'Old & S);

procedure Destroy (Obj : in out Info);

536 / 869

Expert Resource Management
Indefinite Private

Example: A String Holder (2/2)

private
type Info is access String;

function To_String_Internal (Obj : Info) return String
is (if Obj = null then "" else Obj.all);

Tip
This can be used by contracts implementation below,
and child packages

function Contains (Obj : Info; Str : String) return Boolean
is (Obj /= null and then Obj.all = Str);

function Equals (Left, Right : Info) return Boolean
is (To_String_Internal (Left)

= To_String_Internal (Right));
537 / 869

Expert Resource Management
Reference Counting Using Controlled Types

Reference Counting Using Controlled Types

538 / 869

Expert Resource Management
Reference Counting Using Controlled Types

Global Overview
Idiom for counting object references

Safe deallocation
No memory leak
Efficient
All access must then be using it

Any refcounted type must derive from Refcounted

Tagged
Get a Ref through Set
Turn a Ref into an access through Get

package Ref_Counter is
type Refcounted is abstract tagged private;
procedure Free (Self : in out Refcounted) is null;

type Refcounted_Access is access all Refcounted'Class;
type Ref is tagged private;

procedure Set (Self : in out Ref; Data : Refcounted'Class);
function Get (Self : Ref) return Refcounted_Access;
procedure Finalize (P : in out Ref);
procedure Adjust (P : in out Ref);

private
type Refcounted is abstract tagged record

Refcount : Integer := 0;
end record;

type Ref is new Ada.Finalization.Controlled with record
Data : Refcounted_Access;

end record;

539 / 869

Expert Resource Management
Reference Counting Using Controlled Types

Implementation Details
procedure Set (Self : in out Ref; Data : Refcounted'Class)

Tip
This procedure is safe

Ref default value is null
Clears up any previously used Ref

is
D : constant Refcounted_Access := new Refcounted'Class'(Data);

begin
if Self.Data /= null then

Finalize (Self); -- decrement old reference count
end if;

Self.Data := D;
Adjust (Self); -- increment reference count (set to 1)

end Set;

overriding procedure Adjust (P : in out Ref)

Note
Called for all new references

Warning
Data might be null

is
begin

if P.Data /= null then
P.Data.Refcount := P.Data.Refcount + 1;

end if;
end Adjust;

540 / 869

Expert Resource Management
Logger

Logger

541 / 869

Expert Resource Management
Logger

Public Interface

Logger uses a file for writing
limited cannot be copied, or compared
procedure Put_Line for logging

type Logger (Filename : not null access constant String)
is tagged limited private;

procedure Put_Line
(L : Logger; S : String);

542 / 869

Expert Resource Management
Logger

Implementation: Private part

type Logger (Filename : not null access constant String)
is new Ada.Finalization.Limited_Controlled with

Note
Limited_Controlled
Maintains a handle to the log file

record
Logfile : Ada.Text_IO.File_Type;

end record;

procedure Initialize (L : in out Logger);
-- opens the file
procedure Finalize (L : in out Logger);
-- closes the file

543 / 869

Expert Resource Management
Logger

Implementation: Body
Trivial

Tip
Once the hard part of designing the interface is done,
implementation is trivial.

with Ada.Text_IO; use Ada.Text_IO;

package body Loggers is
procedure Initialize (L : in out Logger) is
begin

Create (L.Logfile, Out_File, L.Filename.all);
Put_Line (L, "Starting");

end Initialize;

procedure Put_Line (L : Logger; S : String) is
begin

Put_Line ("Logger: " & S);
Put_Line (L.Logfile, S);

end Put_Line;

procedure Finalize
(L : in out Logger) is

begin
Put_Line (L, "Closing");
Close (L.Logfile);

end Finalize;
end Loggers;

544 / 869

Expert Resource Management
Refcounting Wrapper for External C Objects

Refcounting Wrapper for External C Objects

545 / 869

Expert Resource Management
Refcounting Wrapper for External C Objects

Context

From https://blog.adacore.com/the-road-to-a-thick-opengl-
binding-for-ada-part-2

OpenGL API create various objects like textures or vertex buffers

Creating them gives us an ID
Can then be used to refer to the object

Simple approach: Manually reclaiming them
Could cause leaks

Refcount approach: automatic ID management
From an Ada wrapper
Automatic reclaim once the last reference vanishes

546 / 869

https://blog.adacore.com/the-road-to-a-thick-opengl-binding-for-ada-part-2
https://blog.adacore.com/the-road-to-a-thick-opengl-binding-for-ada-part-2

Expert Resource Management
Refcounting Wrapper for External C Objects

Wrapper Interface

type GL_Object is abstract tagged private

Implements smart pointer logic

procedure Initialize_Id (Object : in out GL_Object);

procedure Clear (Object : in out GL_Object);

function Initialized (Object : GL_Object) return Boolean;

Derived by the actual object types

procedure Internal_Create_Id
(Object : GL_Object; Id : out UInt) is abstract;

procedure Internal_Release_Id
(Object : GL_Object; Id : UInt) is abstract;

Example usage

type Shader (Kind : Shader_Type) is new GL_Object with null record;
547 / 869

Expert Resource Management
Refcounting Wrapper for External C Objects

Wrapper Implementation: Private part

Object ID's holder: GL_Object_Reference

All derived types have a handle to this

type GL_Object_Reference;
type GL_Object_Reference_Access is access all GL_Object_Reference;

type GL_Object is abstract new Ada.Finalization.Controlled
with record
Reference : GL_Object_Reference_Access := null;

end record;

Controlled type implementing ref-counting

overriding procedure Adjust (Object : in out GL_Object);
-- Increases reference count.

overriding procedure Finalize (Object : in out GL_Object);
-- Decreases reference count.
-- Destroys underlying resource when it reaches zero.

548 / 869

Expert Resource Management
Refcounting Wrapper for External C Objects

Wrapper Implementation: Full Picture

GL_Object

GL_Object_Reference

GL_Object_Reference_Access

+ Reference: GL_Object_Reference_Access

+ GL_Id: Uint
+ Reference_Count: Natural
+ Is_Owner: Boolean

Shader

abstract

+

inherits

contains

accesses

type GL_Object_Reference is record
GL_Id : UInt;
Reference_Count : Natural;
Is_Owner : Boolean;

end record;
549 / 869

Expert Resource Management
Refcounting Wrapper for External C Objects

Adjust Completion

Adjust is called every time a new reference is created
Increments the ref-counter

overriding procedure Adjust (Object : in out GL_Object) is
begin

if Object.Reference /= null then
Object.Reference.Reference_Count := @ + 1;

end if;
end Adjust;

550 / 869

Expert Resource Management
Refcounting Wrapper for External C Objects

Finalize Completion
Note

Finalize should always be idempotent
Compiler might call it multiple times on the same
object
In particular when exceptions occur

overriding procedure Finalize (Object : in out GL_Object) is
Ref : GL_Object_Reference_Access

renames Object.Reference;
begin

Warning
Do not decrement the reference counter for every call

A given object will own only one reference
-- Idempotence: the next call to Finalize will have no effect
Ref := null;

if Ref /= null then
Ref.Reference_Count := @ - 1;
if Ref.Reference_Count = 0 then

Free (Ref.all); -- Call to user-defined primitive
Unchecked_Free (Ref);

end if;
end if;

551 / 869

Expert Resource Management
GNAT Semaphores

GNAT Semaphores

552 / 869

Expert Resource Management
GNAT Semaphores

Semaphores

Shared counters

Multitask-safe
Support priorities from "Real-time Systems" LRM Annex D

Counting_Semaphore and Binary_Semaphore

protected types
Counting holds an Integer
Binary holds a Boolean

Priority ceiling (LRM D.3)
For pragma Locking_Policy (Ceiling_Locking)
Protects against priority inversions

553 / 869

Expert Resource Management
GNAT Semaphores

Interface

protected type Counting_Semaphore
(Initial_Value : Natural;
[...]

entry Seize;
-- Blocks caller until/unless the semaphore's internal counter is
-- greater than zero. Decrements the semaphore's internal counter when
-- executed.

procedure Release;
-- Increments the semaphore's internal counter

protected type Binary_Semaphore
(Initially_Available : Boolean;

subtype Mutual_Exclusion is Binary_Semaphore
(Initially_Available => True,
Ceiling => Default_Ceiling);

554 / 869

Expert Resource Management
GNAT Semaphores

Idiom: Scope Locks
Automatic release

type Scope_Lock (Lock : access Mutual_Exclusion) is
new Ada.Finalization.Limited_Controlled with null record;

procedure Initialize (This : in out Scope_Lock) is
begin

This.Lock.Seize;
end Initialize;

procedure Finalize (This : in out Scope_Lock) is
begin

This.Lock.Release;
end Finalize;

Mutex : aliased Mutual_Exclusion;

State : Integer := 0;

procedure Operation_1 is
S : Scope_Lock (Mutex’Access);

begin
State := State + 1; -- for example...
Put_Line ("State is now" & State'Img);

end Operation_1;

555 / 869

Expert Resource Management
Task Safe Interfaces

Task Safe Interfaces

556 / 869

Expert Resource Management
Task Safe Interfaces

Problem Statement

Designing task-safe code requires using dedicated constructs
How to reuse the components?
How to refactor task-unsafe code into task-safe version?

557 / 869

Expert Resource Management
Task Safe Interfaces

Access Protected

Access to protected objects' subprograms
type P is access protected procedure (args...)

type F is access protected function (args...) return ...

type Work_Id is tagged limited private;

type Work_Handler is
access protected procedure (T : Work_Id);

558 / 869

Expert Resource Management
Task Safe Interfaces

Synchronized Interface
synchronized interface can be inherited by task/protected
types

type Counter_I is synchronized interface;
procedure Increment (Counter : in out Counter_I) is abstract;

task type Counter_Task_T is new Counter_I with
-- Always implemented as an entry for tasks
entry Increment;

end task;

protected type Counter_Prot_T is new Counter_I with
procedure Increment;

end Counter_Prot_T;

Also present:
task interface meant for tasks only
protected interface meant for protected types only

Warning
Only available in full-tasking runtimes

559 / 869

Expert Resource Management
Task Safe Interfaces

Standard Library Queues Interface

In Ada.Containers
Synchronized_Queue_Interfaces interface

Tip
Provides a portable interface

generic
type Element_Type is private;

package Ada.Containers.Synchronized_Queue_Interfaces is
type Queue is synchronized interface;

560 / 869

Expert Resource Management
Task Safe Interfaces

Standard Library Queues Implementations

Four implementations
Tip

Recommended over rolling-out one's own queue
implementation

Synchronized implementations
Unbounded_Synchronized_Queues
Bounded_Synchronized_Queues
As protected types
With priority ceiling

Priority implementations
Unbounded_Priority_Queues

Bounded_Priotiry_Queues

As protected types

Elements provide Get_Priority

Used for sorting elements
561 / 869

Expert Resource Management
Task Safe Interfaces

Example: Scheduler Interface

type Scheduler_I;
type Maybe_Work_Item_I is access protected procedure;
type Work_Item_I is not null access protected procedure;

type Scheduler_I is synchronized interface;
procedure Queue (S : in out Scheduler_I; W : Work_Item_I) is abstract;
procedure Execute_Next (S : in out Scheduler_I) is abstract;

type Work_Items_Array is array (Positive range <>)
of Maybe_Work_Item_I;

protected type Scheduler_T (Size : Positive) is new Scheduler_I with
procedure Queue (W : Work_Item_I);
entry Execute_Next;

private
Number_Of_Items : Natural := 0;
Items : Work_Items_Array (1 .. Size);

end Scheduler_T;
562 / 869

Expert Resource Management
Task Safe Interfaces

Example: Scheduler (Body)

protected body Scheduler_T is
procedure Queue (W : Work_Item_I) is
begin

Number_Of_Items := Number_Of_Items + 1;
Items (Number_Of_Items) := Maybe_Work_Item_I (W);

end Queue;

entry Execute_Next
when Number_Of_Items > 0

is
W : Work_Item_I := Work_Item_I (Items (Number_Of_Items));

begin
Number_Of_Items := Number_Of_Items - 1;
W.all;

end Execute_Next;
end Scheduler_T;

563 / 869

Genericity

Genericity

564 / 869

Genericity
Introduction

Introduction

565 / 869

Genericity
Introduction

The Notion of a Pattern
Sometimes algorithms can be abstracted from types and
subprograms

procedure Swap_Int (Left, Right : in out Integer) is
V : Integer := Left;

begin
Left := Right;
Right := V;

end Swap_Int;

procedure Swap_Bool (Left, Right : in out Boolean) is
V : Boolean := Left;

begin
Left := Right;
Right := V;

end Swap_Bool;

It would be nice to extract these properties in some common
pattern, and then just replace the parts that need to be replaced

procedure Swap (Left, Right : in out (Integer | Boolean)) is
V : (Integer | Boolean) := Left;

begin
Left := Right;
Right := V;

end Swap;

566 / 869

Genericity
Introduction

Solution: Generics

A generic unit is a unit that does not exist
It is a pattern based on properties
The instantiation applies the pattern to certain parameters

567 / 869

Genericity
Introduction

Ada Generic Compared to C++ Template
Ada Generic
-- specification
generic

type T is private;
procedure Swap (L, R : in out T);

-- implementation
procedure Swap (L, R : in out T) is

Tmp : T := L;
begin

L := R;
R := Tmp;

end Swap;

-- instance
procedure Swap_F is new Swap (Float);

C++ Template
// prototype
template <class T>
void Swap (T & L, T & R);

// implementation
template <class T>
void Swap (T & L, T & R) {

T Tmp = L;
L = R;
R = Tmp;

}

// instance
int x, y;
Swap<int>(x,y);

568 / 869

Genericity
Creating Generics

Creating Generics

569 / 869

Genericity
Creating Generics

Declaration
Subprograms

generic
type T is private;

procedure Swap (L, R : in out T);

Packages

generic
type T is private;

package Stack is
procedure Push (Item : T);

end Stack;

Body is required
Will be specialized and compiled for each instance

Children of generic units have to be generic themselves

generic
package Stack.Utilities is

procedure Print (S : Stack_T);
570 / 869

Genericity
Creating Generics

Usage

Instantiated with the new keyword

-- Standard library
function Convert is new Ada.Unchecked_Conversion

(Integer, Array_Of_4_Bytes);
-- Callbacks
procedure Parse_Tree is new Tree_Parser

(Visitor_Procedure);
-- Containers, generic data-structures
package Integer_Stack is new Stack (Integer);

Advanced usages for testing, proof, meta-programming

571 / 869

Genericity
Creating Generics

Quiz

Which one(s) of the following can be made generic?

generic
type T is private;

<code goes here>

A. package
B. record
C. function
D. array

Only packages, functions, and procedures, can be made generic.

572 / 869

Genericity
Creating Generics

Quiz

Which one(s) of the following can be made generic?

generic
type T is private;

<code goes here>

A. package
B. record
C. function
D. array

Only packages, functions, and procedures, can be made generic.

572 / 869

Genericity
Generic Data

Generic Data

573 / 869

Genericity
Generic Data

Generic Types Parameters (1/3)

A generic parameter is a template

It specifies the properties the generic body can rely on

generic
type T1 is private;
type T2 (<>) is private;
type T3 is limited private;

package Parent is

The actual parameter must be no more restrictive then the
generic contract

574 / 869

Genericity
Generic Data

Generic Types Parameters (2/3)

Generic formal parameter tells generic what it is allowed to do
with the type

type T1 is (<>); Discrete type; 'First, 'Succ, etc available
type T2 is range <>; Signed Integer type; appropriate mathematic operations allowed
type T3 is digits <>; Floating point type; appropriate mathematic operations allowed
type T4; Incomplete type; can only be used as target of access
type T5 is tagged private; tagged type; can extend the type
type T6 is private; No knowledge about the type other than assignment, comparison, object creation allowed
type T7 (<>) is private; (<>) indicates type can be unconstrained, so any object has to be initialized

575 / 869

Genericity
Generic Data

Generic Types Parameters (3/3)
The usage in the generic has to follow the contract

Generic Subprogram
generic

type T (<>) is private;
procedure P (V : T);
procedure P (V : T) is

X1 : T := V; -- OK, can constrain by initialization
X2 : T; -- Compilation error, no constraint to this

begin
Instantiations
type Limited_T is limited null record;

-- unconstrained types are accepted
procedure P1 is new P (String);

-- type is already constrained
-- (but generic will still always initialize objects)
procedure P2 is new P (Integer);

-- Illegal: the type can't be limited because the generic
-- thinks it can make copies
procedure P3 is new P (Limited_T);

576 / 869

Genericity
Generic Data

Generic Parameters Can Be Combined
Consistency is checked at compile-time

generic
type T (<>) is private;
type Acc is access all T;
type Index is (<>);
type Arr is array (Index range <>) of Acc;

function Component (Source : Arr;
Position : Index)
return T;

type String_Ptr is access all String;
type String_Array is array (Integer range <>)

of String_Ptr;

function String_Component is new Component
(T => String,
Acc => String_Ptr,
Index => Integer,
Arr => String_Array);

577 / 869

Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is (are) legal instantiation(s)?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

578 / 869

Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is (are) legal instantiation(s)?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

578 / 869

Genericity
Generic Formal Data

Generic Formal Data

579 / 869

Genericity
Generic Formal Data

Generic Constants/Variables As Parameters
Variables can be specified on
the generic contract
The mode specifies the way
the variable can be used:

in → read only
in out → read write

Generic variables can be
defined after generic types

Generic package
generic

type Component_T is private;
Array_Size : Positive;
High_Watermark : in out Component_T;

package Repository is
Generic instance
V : Float;
Max : Float;

procedure My_Repository is new Repository
(Component_T => Float,
Array_size => 10,
High_Watermark => Max);

580 / 869

Genericity
Generic Formal Data

Generic Subprogram Parameters
Subprograms can be defined in the generic contract

Must be introduced by with to differ from the generic unit

generic
type T is private;
with function Less_Than (L, R : T) return Boolean;

function Max (L, R : T) return T;

function Max (L, R : T) return T is
begin

if Less_Than (L, R) then
return R;

else
return L;

end if;
end Max;

type Something_T is null record;
function Less_Than (L, R : Something_T) return Boolean;
procedure My_Max is new Max (Something_T, Less_Than);

581 / 869

Genericity
Generic Formal Data

Generic Subprogram Parameters Defaults

is <> - matching subprogram is taken by default

is null - null procedure is taken by default
Only available in Ada 2005 and later

generic
type T is private;
with function Is_Valid (P : T) return Boolean is <>;
with procedure Error_Message (P : T) is null;

procedure Validate (P : T);

function Is_Valid_Record (P : Record_T) return Boolean;

procedure My_Validate is new Validate (Record_T,
Is_Valid_Record);

-- Is_Valid maps to Is_Valid_Record
-- Error_Message maps to a null procedure

582 / 869

Genericity
Generic Formal Data

Quiz
generic

type Component_T is (<>);
Last : in out Component_T;

procedure Write (P : Component_T);

Numeric : Integer;
Enumerated : Boolean;
Floating_Point : Float;

Which of the following piece(s) of code is (are) legal?

A. procedure Write_A is new Write (Integer, Numeric)
B. procedure Write_B is new Write (Boolean, Enumerated)
C. procedure Write_C is new Write (Integer, Integer'Pos

(Numeric))
D. procedure Write_D is new Write (Float,

Floating_Point)

A. Legal
B. Legal
C. The second generic parameter has to be a variable
D. The first generic parameter has to be discrete

583 / 869

Genericity
Generic Formal Data

Quiz
generic

type Component_T is (<>);
Last : in out Component_T;

procedure Write (P : Component_T);

Numeric : Integer;
Enumerated : Boolean;
Floating_Point : Float;

Which of the following piece(s) of code is (are) legal?

A. procedure Write_A is new Write (Integer, Numeric)
B. procedure Write_B is new Write (Boolean, Enumerated)
C. procedure Write_C is new Write (Integer, Integer'Pos

(Numeric))
D. procedure Write_D is new Write (Float,

Floating_Point)

A. Legal
B. Legal
C. The second generic parameter has to be a variable
D. The first generic parameter has to be discrete

583 / 869

Genericity
Generic Formal Data

Quiz
Given the following generic function:

generic
type Some_T is private;
with function "+" (L : Some_T; R : Integer) return Some_T is <>;

function Incr (Param : Some_T) return Some_T;

function Incr (Param : Some_T) return Some_T is
begin

return Param + 1;
end Incr;

And the following declarations:

type Record_T is record
Component : Integer;

end record;
function Add (L : Record_T; I : Integer) return Record_T is

((Component => L.Component + I))
function Weird (L : Integer; R : Integer) return Integer is (0);

Which of the following instantiation(s) is/are not legal?

A. function IncrA is new Incr (Integer, Weird);
B. function IncrB is new Incr (Record_T, Add);
C. function IncrC is new Incr (Record_T);
D. function IncrD is new Incr (Integer);

with function "+" (L : Some_T; R : Integer) return Some_T is <>;
indicates that if no function for + is passed in, find (if possible) a
matching definition at the point of instantiation.

A. Weird matches the subprogram profile, so Incr will use Weird
when doing addition for Integer

B. Add matches the subprogram profile, so Incr will use Add when
doing the addition for Record_T

C. There is no matching + operation for Record_T, so that
instantiation fails to compile

D. Because there is no parameter for the generic formal parameter +,
the compiler will look for one in the scope of the instantiation.
Because the instantiating type is numeric, the inherited + operator
is found

584 / 869

Genericity
Generic Formal Data

Quiz
Given the following generic function:

generic
type Some_T is private;
with function "+" (L : Some_T; R : Integer) return Some_T is <>;

function Incr (Param : Some_T) return Some_T;

function Incr (Param : Some_T) return Some_T is
begin

return Param + 1;
end Incr;

And the following declarations:

type Record_T is record
Component : Integer;

end record;
function Add (L : Record_T; I : Integer) return Record_T is

((Component => L.Component + I))
function Weird (L : Integer; R : Integer) return Integer is (0);

Which of the following instantiation(s) is/are not legal?

A. function IncrA is new Incr (Integer, Weird);
B. function IncrB is new Incr (Record_T, Add);
C. function IncrC is new Incr (Record_T);
D. function IncrD is new Incr (Integer);

with function "+" (L : Some_T; R : Integer) return Some_T is <>;
indicates that if no function for + is passed in, find (if possible) a
matching definition at the point of instantiation.

A. Weird matches the subprogram profile, so Incr will use Weird
when doing addition for Integer

B. Add matches the subprogram profile, so Incr will use Add when
doing the addition for Record_T

C. There is no matching + operation for Record_T, so that
instantiation fails to compile

D. Because there is no parameter for the generic formal parameter +,
the compiler will look for one in the scope of the instantiation.
Because the instantiating type is numeric, the inherited + operator
is found

584 / 869

Genericity
Generic Completion

Generic Completion

585 / 869

Genericity
Generic Completion

Implications at Compile-Time

The body needs to be visible when compiling the user code
Therefore, when distributing a component with generics to be
instantiated, the code of the generic must come along

586 / 869

Genericity
Generic Completion

Generic and Freezing Points

A generic type freezes the type and needs the full view
May force separation between its declaration (in spec) and
instantiations (in private or body)

generic
type X is private;

package Base is
V : access X;

end Base;

package P is
type X is private;
-- illegal
package B is new Base (X);

private
type X is null record;

end P;
587 / 869

Genericity
Generic Completion

Generic Incomplete Parameters

A generic type can be incomplete
Allows generic instantiations before full type definition
Restricts the possible usages (only access)

generic
type X; -- incomplete

package Base is
V : access X;

end Base;

package P is
type X is private;
-- legal
package B is new Base (X);

private
type X is null record;

end P;
588 / 869

Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is (are) legal for G_P's body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

589 / 869

Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is (are) legal for G_P's body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

589 / 869

Genericity
Generic Completion

Genericity Lab

Requirements
Create a record structure containing multiple components

Need subprograms to convert the record to a string, and compare
the order of two records
Lab prompt package Data_Type contains a framework

Create a generic list implementation

Need subprograms to add items to the list, sort the list, and print
the list

The main program should:

Add many records to the list
Sort the list
Print the list

Hints
Sort routine will need to know how to compare components
Print routine will need to know how to print one component

590 / 869

Genericity
Generic Completion

Genericity Lab Solution - Generic (Spec)
1 generic
2 type Component_T is private;
3 Max_Size : Natural;
4 with function ">" (L, R : Component_T) return Boolean is <>;
5 with function Image (Component : Component_T) return String;
6 package Generic_List is
7

8 type List_T is private;
9

10 procedure Add (This : in out List_T;
11 Item : in Component_T);
12 procedure Sort (This : in out List_T);
13 procedure Print (List : List_T);
14

15 private
16 subtype Index_T is Natural range 0 .. Max_Size;
17 type List_Array_T is array (1 .. Index_T'Last) of Component_T;
18

19 type List_T is record
20 Values : List_Array_T;
21 Length : Index_T := 0;
22 end record;
23 end Generic_List;

591 / 869

Genericity
Generic Completion

Genericity Lab Solution - Generic (Body)
1 with Ada.Text_io; use Ada.Text_IO;
2 package body Generic_List is
3

4 procedure Add (This : in out List_T;
5 Item : in Component_T) is
6 begin
7 This.Length := This.Length + 1;
8 This.Values (This.Length) := Item;
9 end Add;

10

11 procedure Sort (This : in out List_T) is
12 Temp : Component_T;
13 begin
14 for I in 1 .. This.Length loop
15 for J in 1 .. This.Length - I loop
16 if This.Values (J) > This.Values (J + 1) then
17 Temp := This.Values (J);
18 This.Values (J) := This.Values (J + 1);
19 This.Values (J + 1) := Temp;
20 end if;
21 end loop;
22 end loop;
23 end Sort;
24

25 procedure Print (List : List_T) is
26 begin
27 for I in 1 .. List.Length loop
28 Put_Line (Integer'Image (I) & ") " & Image (List.Values (I)));
29 end loop;
30 end Print;
31

32 end Generic_List;

592 / 869

Genericity
Generic Completion

Genericity Lab Solution - Main
1 with Data_Type;
2 with Generic_List;
3 procedure Main is
4 package List is new Generic_List (Component_T => Data_Type.Record_T,
5 Max_Size => 20,
6 ">" => Data_Type.">",
7 Image => Data_Type.Image);
8

9 My_List : List.List_T;
10 Component : Data_Type.Record_T;
11

12 begin
13 List.Add (My_List, (Integer_Component => 111,
14 Character_Component => 'a'));
15 List.Add (My_List, (Integer_Component => 111,
16 Character_Component => 'z'));
17 List.Add (My_List, (Integer_Component => 111,
18 Character_Component => 'A'));
19 List.Add (My_List, (Integer_Component => 999,
20 Character_Component => 'B'));
21 List.Add (My_List, (Integer_Component => 999,
22 Character_Component => 'Y'));
23 List.Add (My_List, (Integer_Component => 999,
24 Character_Component => 'b'));
25 List.Add (My_List, (Integer_Component => 112,
26 Character_Component => 'a'));
27 List.Add (My_List, (Integer_Component => 998,
28 Character_Component => 'z'));
29

30 List.Sort (My_List);
31 List.Print (My_List);
32 end Main;

593 / 869

Genericity
Summary

Summary

594 / 869

Genericity
Summary

Generic Routines Vs Common Routines
package Helper is

type Float_T is digits 6;
generic

type Type_T is digits <>;
Min : Type_T;
Max : Type_T;

function In_Range_Generic (X : Type_T) return Boolean;
function In_Range_Common (X : Float_T;

Min : Float_T;
Max : Float_T)
return Boolean;

end Helper;

procedure User is
type Speed_T is new Float_T range 0.0 .. 100.0;
B : Boolean;
function Valid_Speed is new In_Range_Generic

(Speed_T, Speed_T'First, Speed_T'Last);
begin

B := Valid_Speed (12.3);
B := In_Range_Common (12.3, Speed_T'First, Speed_T'Last);

595 / 869

Genericity
Summary

Summary

Generics are useful for copying code that works the same just for
different types

Sorting, containers, etc

Properly written generics only need to be tested once
But testing / debugging can be more difficult

Generic instantiations are best done at compile time
At the package level
Can be run time expensive when done in subprogram scope

596 / 869

Tagged Derivation

Tagged Derivation

597 / 869

Tagged Derivation
Introduction

Introduction

598 / 869

Tagged Derivation
Introduction

Object-Oriented Programming with Tagged Types

For record types

type T is tagged record
...

Child types can add new components (attributes)

Object of a child type can be substituted for base type

Primitive (method) can dispatch at run-time depending on the
type at call-site

Types can be extended by other packages
Conversion and qualification to base type is allowed

Private data is encapsulated through privacy

599 / 869

Tagged Derivation
Introduction

Tagged Derivation Ada Vs C++

type T1 is tagged record
Member1 : Integer;

end record;

procedure Attr_F (This : T1);

type T2 is new T1 with record
Member2 : Integer;

end record;

overriding procedure Attr_F (
This : T2);

procedure Attr_F2 (This : T2);

class T1 {
public:

int Member1;
virtual void Attr_F(void);

};

class T2 : public T1 {
public:

int Member2;
virtual void Attr_F(void);
virtual void Attr_F2(void);

};

600 / 869

Tagged Derivation
Tagged Derivation

Tagged Derivation

601 / 869

Tagged Derivation
Tagged Derivation

Difference with Simple Derivation

Tagged derivation can change the structure of a type
Keywords tagged record and with record

type Root is tagged record
F1 : Integer;

end record;

type Child is new Root with record
F2 : Integer;

end record;

Conversion is only allowed from child to parent

V1 : Root;
V2 : Child;
...
V1 := Root (V2);
V2 := Child (V1); -- illegal

602 / 869

Tagged Derivation
Tagged Derivation

Primitives

Child cannot remove a primitive

Child can add new primitives

Controlling parameter
Parameters the subprogram is a primitive of
For tagged types, all should have the same type

type Root1 is tagged null record;
type Root2 is tagged null record;

procedure P1 (V1 : Root1;
V2 : Root1);

procedure P2 (V1 : Root1;
V2 : Root2); -- illegal

603 / 869

Tagged Derivation
Tagged Derivation

Freeze Point for Tagged Types

Freeze point definition does not change
A variable of the type is declared
The type is derived
The end of the scope is reached

Declaring tagged type primitives past freeze point is forbidden

type Root is tagged null record;

procedure Prim (V : Root);

type Child is new Root with null record; -- freeze root

procedure Prim2 (V : Root); -- illegal

V : Child; -- freeze child

procedure Prim3 (V : Child); -- illegal
604 / 869

Tagged Derivation
Tagged Derivation

Overriding Indicators
Optional overriding and not overriding indicators

type Shape_T is tagged record
Name : String (1..10);

end record;

-- primitives of "Shape_T"
function Get_Name (S : Shape_T) return String;
procedure Set_Name (S : in out Shape_T);

-- Derive "Point" from Shape_T
type Point_T is new Shape_T with record

Origin : Coord_T;
end Point_T;

-- Get_Name is inherited
-- We want to _change_ the behavior of Set_Name
overriding procedure Set_Name (P : in out Point_T);
-- We want to _add_ a new primitive
not overriding procedure Set_Origin (P : in out Point_T);

605 / 869

Tagged Derivation
Tagged Derivation

Prefix Notation

Tagged types primitives can be called as usual

The call can use prefixed notation
If the first argument is a controlling parameter
No need for use or use type for visibility

-- Prim1 visible even without *use Pkg*
X.Prim1;

declare
use Pkg;

begin
Prim1 (X);

end;

606 / 869

Tagged Derivation
Tagged Derivation

Quiz
Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
Object : T1;
procedure P (O : T1) is null;

D. package Nested is
type T1 is tagged null record;

end Nested;
use Nested;
procedure P (O : T1) is null;

A. Primitive (same scope)
B. Primitive (T1 is not yet frozen)
C. T1 is frozen by the object declaration
D. Primitive must be declared in same scope as type

607 / 869

Tagged Derivation
Tagged Derivation

Quiz
Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
Object : T1;
procedure P (O : T1) is null;

D. package Nested is
type T1 is tagged null record;

end Nested;
use Nested;
procedure P (O : T1) is null;

A. Primitive (same scope)
B. Primitive (T1 is not yet frozen)
C. T1 is frozen by the object declaration
D. Primitive must be declared in same scope as type

607 / 869

Tagged Derivation
Tagged Derivation

Quiz

with Shapes; -- Defines tagged type Shape, with primitive P
with Colors; use Colors; -- Defines tagged type Color, with primitive P
with Weights; -- Defines tagged type Weight, with primitive P
use type Weights.Weight;

procedure Main is
The_Shape : Shapes.Shape;
The_Color : Colors.Color;
The_Weight : Weights.Weight;

Which statement(s) is (are) valid?

A. The_Shape.P
B. P (The_Shape)
C. P (The_Color)
D. P (The_Weight)

D. use type only gives visibility to operators; needs to be
use all type

608 / 869

Tagged Derivation
Tagged Derivation

Quiz

with Shapes; -- Defines tagged type Shape, with primitive P
with Colors; use Colors; -- Defines tagged type Color, with primitive P
with Weights; -- Defines tagged type Weight, with primitive P
use type Weights.Weight;

procedure Main is
The_Shape : Shapes.Shape;
The_Color : Colors.Color;
The_Weight : Weights.Weight;

Which statement(s) is (are) valid?

A. The_Shape.P
B. P (The_Shape)
C. P (The_Color)
D. P (The_Weight)

D. use type only gives visibility to operators; needs to be
use all type

608 / 869

Tagged Derivation
Tagged Derivation

Quiz
Which code block(s) is (are) legal?

A. type A1 is record
Component1 : Integer;

end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Component2 : Integer;
end record;
type B2 is new B1 with
record

Component2b :
Integer;
end record;

C. type C1 is tagged
record

Component3 : Integer;
end record;
type C2 is new C1 with
record

Component3 : Integer;
end record;

D. type D1 is tagged
record

Component1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

609 / 869

Tagged Derivation
Tagged Derivation

Quiz
Which code block(s) is (are) legal?

A. type A1 is record
Component1 : Integer;

end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Component2 : Integer;
end record;
type B2 is new B1 with
record

Component2b :
Integer;
end record;

C. type C1 is tagged
record

Component3 : Integer;
end record;
type C2 is new C1 with
record

Component3 : Integer;
end record;

D. type D1 is tagged
record

Component1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

609 / 869

Tagged Derivation
Extending Tagged Types

Extending Tagged Types

610 / 869

Tagged Derivation
Extending Tagged Types

How Do You Extend a Tagged Type?
Premise of a tagged type is to extend an existing type

In general, that means we want to add more components
We can extend a tagged type by adding components

package Animals is
type Animal_T is tagged record

Age : Natural;
end record;

end Animals;

with Animals; use Animals;
package Mammals is

type Mammal_T is new Animal_T with record
Number_Of_Legs : Natural;

end record;
end Mammals;

with Mammals; use Mammals;
package Canines is

type Canine_T is new Mammal_T with record
Domesticated : Boolean;

end record;
end Canines;

611 / 869

Tagged Derivation
Extending Tagged Types

Tagged Aggregate

At initialization, all components (including inherited) must have a
value

Animal : Animal_T := (Age => 1);
Mammal : Mammal_T := (Age => 2,

Number_Of_Legs => 2);
Canine : Canine_T := (Age => 2,

Number_Of_Legs => 4,
Domesticated => True);

But we can also "seed" the aggregate with a parent object

Mammal := (Animal with Number_Of_Legs => 4);
Canine := (Animal with Number_Of_Legs => 4,

Domesticated => False);
Canine := (Mammal with Domesticated => True);

612 / 869

Tagged Derivation
Extending Tagged Types

Private Tagged Types

But data hiding says types should be private!

So we can define our base type as private
package Animals is

type Animal_T is tagged private;
function Get_Age (P : Animal_T) return Natural;
procedure Set_Age (P : in out Animal_T; A : Natural);

private
type Animal_T is tagged record

Age : Natural;
end record;

end Animals;

And still allow derivation
with Animals;
package Mammals is

type Mammal_T is new Animals.Animal_T with record
Number_Of_Legs : Natural;

end record;

But now the only way to get access to Age is with accessor
subprograms

613 / 869

Tagged Derivation
Extending Tagged Types

Private Extensions

In the previous slide, we exposed the components for Mammal_T!

Better would be to make the extension itself private

package Mammals is
type Mammal_T is new Animals.Animal_T with private;

private
type Mammal_T is new Animals.Animal_T with record

Number_Of_Legs : Natural;
end record;

end Mammals;

614 / 869

Tagged Derivation
Extending Tagged Types

Aggregates with Private Tagged Types

Remember, an aggregate must specify values for all components
But with private types, we can't see all the components!

So we need to use the "seed" method:

procedure Inside_Mammals_Pkg is
Animal : Animal_T := Animals.Create;
Mammal : Mammal_T;

begin
Mammal := (Animal with Number_Of_Legs => 4);
Mammal := (Animals.Create with Number_Of_Legs => 4);

end Inside_Mammals_Pkg;

Note that we cannot use others => <> for components that are
not visible to us

Mammal := (Number_Of_Legs => 4,
others => <>); -- Compile Error

615 / 869

Tagged Derivation
Extending Tagged Types

Null Extensions

To create a new type with no additional components
We still need to "extend" the record - we just do it with an empty
record

type Dog_T is new Canine_T with null record;

We still need to specify the "added" components in an aggregate

C : Canine_T := Canines.Create;
Dog1 : Dog_T := C; -- Compile Error
Dog2 : Dog_T := (C with null record);

616 / 869

Tagged Derivation
Extending Tagged Types

Quiz
Given the following code:

package Parents is
type Parent_T is tagged private;
function Create return Parent_T;

private
type Parent_T is tagged record

Id : Integer;
end record;

end Parents;

with Parents; use Parents;
package Children is

P : Parent_T;
type Child_T is new Parent_T with record

Count : Natural;
end record;
function Create (C : Natural) return Child_T;

end Children;

Which completion(s) of Create is (are) valid?

A. function Create return Child_T is (Parents.Create
with Count => 0);

B. function Create return Child_T is (others => <>);
C. function Create return Child_T is (0, 0);
D. function Create return Child_T is (P with Count =>

0);

Explanations

A. Correct - Parents.Create returns Parent_T
B. Cannot use others to complete private part of an aggregate
C. Aggregate has no visibility to Id component, so cannot assign
D. Correct - P is a Parent_T

617 / 869

Tagged Derivation
Extending Tagged Types

Quiz
Given the following code:

package Parents is
type Parent_T is tagged private;
function Create return Parent_T;

private
type Parent_T is tagged record

Id : Integer;
end record;

end Parents;

with Parents; use Parents;
package Children is

P : Parent_T;
type Child_T is new Parent_T with record

Count : Natural;
end record;
function Create (C : Natural) return Child_T;

end Children;

Which completion(s) of Create is (are) valid?

A. function Create return Child_T is (Parents.Create
with Count => 0);

B. function Create return Child_T is (others => <>);
C. function Create return Child_T is (0, 0);
D. function Create return Child_T is (P with Count =>

0);

Explanations

A. Correct - Parents.Create returns Parent_T
B. Cannot use others to complete private part of an aggregate
C. Aggregate has no visibility to Id component, so cannot assign
D. Correct - P is a Parent_T

617 / 869

Tagged Derivation
Lab

Lab

618 / 869

Tagged Derivation
Lab

Tagged Derivation Lab

Requirements
Create a type structure that could be used in a business

A person has some defining characteristics
An employee is a person with some employment information
A staff member is an employee with specific job information

Create primitive operations to read and print the objects

Create a main program to test the objects and operations

Hints
Use overriding and not overriding as appropriate (Ada 2005 and
above)
Data hiding is important!

619 / 869

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Spec)
1 package Employee is
2 type Person_T is tagged private;
3 subtype Name_T is String (1 .. 6);
4 type Date_T is record
5 Year : Positive;
6 Month : Positive;
7 Day : Positive;
8 end record;
9 type Job_T is (Sales, Engineer, Bookkeeping);

10

11 procedure Set_Name (O : in out Person_T;
12 Value : Name_T);
13 function Name (O : Person_T) return Name_T;
14 procedure Set_Birth_Date (O : in out Person_T;
15 Value : Date_T);
16 function Birth_Date (O : Person_T) return Date_T;
17 procedure Print (O : Person_T);
18

19 type Employee_T is new Person_T with private;
20 not overriding procedure Set_Start_Date (O : in out Employee_T;
21 Value : Date_T);
22 not overriding function Start_Date (O : Employee_T) return Date_T;
23 overriding procedure Print (O : Employee_T);
24

25 type Position_T is new Employee_T with private;
26 not overriding procedure Set_Job (O : in out Position_T;
27 Value : Job_T);
28 not overriding function Job (O : Position_T) return Job_T;
29 overriding procedure Print (O : Position_T);
30

31 private
32 type Person_T is tagged record
33 The_Name : Name_T;
34 The_Birth_Date : Date_T;
35 end record;
36

37 type Employee_T is new Person_T with record
38 The_Employee_Id : Positive;
39 The_Start_Date : Date_T;
40 end record;
41

42 type Position_T is new Employee_T with record
43 The_Job : Job_T;
44 end record;
45 end Employee;

620 / 869

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Partial Body)
1 with Ada.Text_IO; use Ada.Text_IO;
2 package body Employee is
3

4 function Image (Date : Date_T) return String is
5 (Date.Year'Image & " -" & Date.Month'Image & " -" & Date.Day'Image);
6

7 procedure Set_Name (O : in out Person_T;
8 Value : Name_T) is
9 begin

10 O.The_Name := Value;
11 end Set_Name;
12 function Name (O : Person_T) return Name_T is (O.The_Name);
13

14 procedure Set_Birth_Date (O : in out Person_T;
15 Value : Date_T) is
16 begin
17 O.The_Birth_Date := Value;
18 end Set_Birth_Date;
19 function Birth_Date (O : Person_T) return Date_T is (O.The_Birth_Date);
20

21 procedure Print (O : Person_T) is
22 begin
23 Put_Line ("Name: " & O.Name);
24 Put_Line ("Birthdate: " & Image (O.Birth_Date));
25 end Print;
26

27 not overriding procedure Set_Start_Date (O : in out Employee_T;
28 Value : Date_T) is
29 begin
30 O.The_Start_Date := Value;
31 end Set_Start_Date;
32 not overriding function Start_Date (O : Employee_T) return Date_T is
33 (O.The_Start_Date);
34

35 overriding procedure Print (O : Employee_T) is
36 begin
37 Print (Person_T (O)); -- Use parent "Print"
38 Put_Line ("Startdate: " & Image (O.Start_Date));
39 end Print;
40

621 / 869

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Employee;
3 procedure Main is
4 Applicant : Employee.Person_T;
5 Employ : Employee.Employee_T;
6 Staff : Employee.Position_T;
7

8 begin
9 Applicant.Set_Name ("Wilma ");

10 Applicant.Set_Birth_Date ((Year => 1_234,
11 Month => 12,
12 Day => 1));
13

14 Employ.Set_Name ("Betty ");
15 Employ.Set_Birth_Date ((Year => 2_345,
16 Month => 11,
17 Day => 2));
18 Employ.Set_Start_Date ((Year => 3_456,
19 Month => 10,
20 Day => 3));
21

22 Staff.Set_Name ("Bambam");
23 Staff.Set_Birth_Date ((Year => 4_567,
24 Month => 9,
25 Day => 4));
26 Staff.Set_Start_Date ((Year => 5_678,
27 Month => 8,
28 Day => 5));
29 Staff.Set_Job (Employee.Engineer);
30

31 Applicant.Print;
32 Employ.Print;
33 Staff.Print;
34 end Main;

622 / 869

Tagged Derivation
Summary

Summary

623 / 869

Tagged Derivation
Summary

Summary

Tagged derivation
Building block for OOP types in Ada

Primitives rules for tagged types are trickier
Primitives forbidden below freeze point
Unique controlling parameter
Tip: Keep the number of tagged type per package low

624 / 869

Multiple Inheritance

Multiple Inheritance

625 / 869

Multiple Inheritance
Introduction

Introduction

626 / 869

Multiple Inheritance
Introduction

Multiple Inheritance Is Forbidden in Ada

There are potential conflicts with multiple inheritance
Some languages allow it: ambiguities have to be resolved when
entities are referenced
Ada forbids it to improve integration

type Graphic is tagged record
X, Y : Float;

end record;
function Get_X (V : Graphic) return Float;

type Shape is tagged record
X, Y : Float;

end record;
function Get_X (V : Shape) return Float;

type Displayable_Shape is new Shape and Graphic with ...
627 / 869

Multiple Inheritance
Introduction

Multiple Inheritance - Safe Case
If only one type has concrete operations and components, this is
fine

type Graphic is abstract tagged null record;
function Get_X (V : Graphic) return Float is abstract;

type Shape is tagged record
X, Y : Float;

end record;
function Get_X (V : Shape) return Float;

type Displayable_Shape is new Shape and Graphic with ...

This is the definition of an interface (as in Java)

type Graphic is interface;
function Get_X (V : Graphic) return Float is abstract;

type Shape is tagged record
X, Y : Float;

end record;
function Get_X (V : Shape) return Float;

type Displayable_Shape is new Shape and Graphic with ...
628 / 869

Multiple Inheritance
Interfaces

Interfaces

629 / 869

Multiple Inheritance
Interfaces

Interfaces - Rules

An interface is a tagged type marked interface, containing
Abstract primitives
Null primitives
No components

Null subprograms provide default empty bodies to primitives that
can be overridden

type I is interface;
procedure P1 (V : I) is abstract;
procedure P2 (V : access I) is abstract
function F return I is abstract;
procedure P3 (V : I) is null;

Note: null can be applied to any procedure (not only used for
interfaces)

630 / 869

Multiple Inheritance
Interfaces

Interface Derivation
An interface can be derived from another interface, adding
primitives

type I1 is interface;
procedure P1 (V : I) is abstract;
type I2 is interface and I1;
Procedure P2 (V : I) is abstract;

A tagged type can derive from several interfaces and can derive
from one interface several times

type I1 is interface;
type I2 is interface and I1;
type I3 is interface;

type R is new I1 and I2 and I3 ...

A tagged type can derive from a single tagged type and several
interfaces

type I1 is interface;
type I2 is interface and I1;
type R1 is tagged null record;

type R2 is new R1 and I1 and I2 ...
631 / 869

Multiple Inheritance
Interfaces

Interfaces and Privacy

If the partial view of the type is tagged, then both the partial and
the full view must expose the same interfaces

package Types is

type I1 is interface;
type R is new I1 with private;

private

type R is new I1 with record ...

632 / 869

Multiple Inheritance
Interfaces

Limited Tagged Types and Interfaces

When a tagged type is limited in the hierarchy, the whole hierarchy
has to be limited

Conversions to interfaces are "just conversions to a view"
A view may have more constraints than the actual object

limited interfaces can be implemented by BOTH limited types
and non-limited types

Non-limited interfaces have to be implemented by non-limited
types

633 / 869

Multiple Inheritance
Lab

Lab

634 / 869

Multiple Inheritance
Lab

Multiple Inheritance Lab

Requirements
Create a tagged type to define shapes

Possible components could include location of shape

Create an interface to draw lines

Possible accessor functions could include line color and width

Create a new type inheriting from both of the above for a
"printable object"

Implement a way to print the object using Ada.Text_IO
Does not have to be fancy!

Create a "printable object" type to draw something (rectangle,
triangle, etc)

Hints
This example is taken from Barnes' Programming in Ada 2012
Section 21.2

635 / 869

Multiple Inheritance
Lab

Inheritance Lab Solution - Data Types

1 package Base_Types is
2

3 type Coordinate_T is record
4 X_Coord : Integer;
5 Y_Coord : Integer;
6 end record;
7 function Image (Coord : Coordinate_T) return String is
8 ("(" & Coord.X_Coord'Image & "," &
9 Coord.Y_Coord'Image & ")");

10

11 type Line_T is array (1 .. 2) of Coordinate_T;
12 type Lines_T is array (Natural range <>) of Line_T;
13

14 type Color_T is mod 256;
15 type Width_T is range 1 .. 10;
16

17 end Base_Types;
636 / 869

Multiple Inheritance
Lab

Inheritance Lab Solution - Shapes
1 with Base_Types;
2 package Geometry is
3

4 -- Create a tagged type to define shapes
5 type Object_T is abstract tagged private;
6

7 -- Create accessor functions for some common component
8 function Origin (Object : Object_T'Class) return Base_Types.Coordinate_T;
9

10 private
11

12 type Object_T is abstract tagged record
13 The_Origin : Base_Types.Coordinate_T;
14 end record;
15

16 function Origin (Object : Object_T'Class) return Base_Types.Coordinate_T is
17 (Object.The_Origin);
18

19 end Geometry;
637 / 869

Multiple Inheritance
Lab

Inheritance Lab Solution - Drawing (Spec)
1 with Base_Types;
2 package Line_Draw is
3

4 type Object_T is interface;
5

6 -- Create accessor functions for some line attributes
7 procedure Set_Color (Object : in out Object_T;
8 Color : in Base_Types.Color_T)
9 is abstract;

10 function Color (Object : Object_T) return Base_Types.Color_T
11 is abstract;
12

13 procedure Set_Pen_Width (Object : in out Object_T;
14 Width : in Base_Types.Width_T)
15 is abstract;
16 function Pen_Width (Object : Object_T) return Base_Types.Width_T
17 is abstract;
18

19 function Convert (Object : Object_T) return Base_Types.Lines_T
20 is abstract;
21

22 procedure Print (Object : Object_T'Class);
23

24 end Line_Draw;
638 / 869

Multiple Inheritance
Lab

Inheritance Lab Solution - Drawing (Body)

1 with Ada.Text_IO;
2 package body Line_Draw is
3

4 procedure Print (Object : Object_T'Class) is
5 Lines : constant Base_Types.Lines_T := Object.Convert;
6 begin
7 for Index in Lines'Range loop
8 Ada.Text_IO.Put_Line ("Line" & Index'Image);
9 Ada.Text_IO.Put_Line

10 (" From: " & Base_Types.Image (Lines (Index) (1)));
11 Ada.Text_IO.Put_Line
12 (" To: " & Base_Types.Image (Lines (Index) (2)));
13 end loop;
14 end Print;
15

16 end Line_Draw;
639 / 869

Multiple Inheritance
Lab

Inheritance Lab Solution - Printable Object
1 with Geometry;
2 with Line_Draw;
3 with Base_Types;
4 package Printable_Object is
5 type Object_T is
6 abstract new Geometry.Object_T and Line_Draw.Object_T with private;
7 procedure Set_Color (Object : in out Object_T;
8 Color : Base_Types.Color_T);
9 function Color (Object : Object_T) return Base_Types.Color_T;

10

11 procedure Set_Pen_Width (Object : in out Object_T;
12 Width : Base_Types.Width_T);
13 function Pen_Width (Object : Object_T) return Base_Types.Width_T;
14 private
15 type Object_T is
16 abstract new Geometry.Object_T and Line_Draw.Object_T with record
17 The_Color : Base_Types.Color_T := 0;
18 The_Pen_Width : Base_Types.Width_T := 1;
19 end record;
20 end Printable_Object;
21

22 package body Printable_Object is
23 procedure Set_Color (Object : in out Object_T;
24 Color : Base_Types.Color_T) is
25 begin
26 Object.The_Color := Color;
27 end Set_Color;
28 function Color (Object : Object_T) return Base_Types.Color_T is (Object.The_Color);
29

30 procedure Set_Pen_Width (Object : in out Object_T;
31 Width : Base_Types.Width_T) is
32 begin
33 Object.The_Pen_Width := Width;
34 end Set_Pen_Width;
35 function Pen_Width (Object : Object_T) return Base_Types.Width_T is (Object.The_Pen_Width);
36 end Printable_Object;

640 / 869

Multiple Inheritance
Lab

Inheritance Lab Solution - Rectangle
1 with Base_Types;
2 with Printable_Object;
3

4 package Rectangle is
5 subtype Lines_T is Base_Types.Lines_T (1 .. 4);
6

7 type Object_T is new Printable_Object.Object_T with private;
8

9 procedure Set_Lines (Object : in out Object_T;
10 Lines : Lines_T);
11 function Lines (Object : Object_T) return Lines_T;
12

13 private
14

15 type Object_T is new Printable_Object.Object_T with record
16 Lines : Lines_T;
17 end record;
18

19 function Convert (Object : Object_T) return Base_Types.Lines_T is
20 (Object.Lines);
21 end Rectangle;
22

23 package body Rectangle is
24 procedure Set_Lines (Object : in out Object_T;
25 Lines : Lines_T) is
26 begin
27 Object.Lines := Lines;
28 end Set_Lines;
29

30 function Lines (Object : Object_T) return Lines_T is (Object.Lines);
31 end Rectangle;

641 / 869

Multiple Inheritance
Lab

Inheritance Lab Solution - Main

1 with Base_Types;
2 with Rectangle;
3 procedure Main is
4

5 Object : Rectangle.Object_T;
6 Line1 : constant Base_Types.Line_T :=
7 ((1, 1), (1, 10));
8 Line2 : constant Base_Types.Line_T :=
9 ((6, 6), (6, 15));

10 Line3 : constant Base_Types.Line_T :=
11 ((1, 1), (6, 6));
12 Line4 : constant Base_Types.Line_T :=
13 ((1, 10), (6, 15));
14 begin
15 Object.Set_Lines ((Line1, Line2, Line3, Line4));
16 Object.Print;
17 end Main;

642 / 869

Multiple Inheritance
Summary

Summary

643 / 869

Multiple Inheritance
Summary

Summary

Interfaces must be used for multiple inheritance
Usually combined with tagged types, but not necessary
By using only interfaces, only accessors are allowed

Typically there are other ways to do the same thing
In our example, the conversion routine could be common to simplify
things

But interfaces force the compiler to determine when operations are
missing

644 / 869

Polymorphism

Polymorphism

645 / 869

Polymorphism
Introduction

Introduction

646 / 869

Polymorphism
Introduction

Introduction

'Class operator to categorize classes of types

Type classes allow dispatching calls
Abstract types
Abstract subprograms

Runtime call dispatch vs compile-time call dispatching

647 / 869

Polymorphism
Classes of Types

Classes of Types

648 / 869

Polymorphism
Classes of Types

Classes

In Ada, a Class denotes an inheritance subtree

Class of Root is the class of Root and all its children

Type Root'Class can designate any object typed after type of
class of Root

type Root is tagged null record;
type Child1 is new Root with null record;
type Child2 is new Root with null record;
type Grand_Child1 is new Child1 with null record;
-- Root'Class = {Root, Child1, Child2, Grand_Child1}
-- Child1'Class = {Child1, Grand_Child1}
-- Child2'Class = {Child2}
-- Grand_Child1'Class = {Grand_Child1}

Objects of type Root'Class have at least the properties of Root
Components of Root
Primitives of Root

649 / 869

Polymorphism
Classes of Types

Indefinite Type
A class-wide type is an indefinite type

Just like an unconstrained array or a record with a discriminant

Properties and constraints of indefinite types apply
Can be used for parameter declarations
Can be used for variable declaration with initialization

procedure Main is
type Animal is tagged null record;
type Dog is new Animal with null record;
procedure Handle_Animal (Some_Animal : in out Animal'Class) is null;
My_Dog : Dog;
Pet : Dog'Class := My_Dog;
Pet_Animal : Animal'Class := Pet;
Pet_Dog : Animal'Class := My_Dog;
-- initialization required in class-wide declaration
Bad_Animal : Animal'Class; -- compile error
Bad_Dog : Dog'Class; -- compile error

begin
Handle_Animal (Pet);
Handle_Animal (My_Dog);

end Main;
650 / 869

Polymorphism
Classes of Types

Testing the Type of an Object
The tag of an object denotes its type
It can be accessed through the 'Tag attribute
Applies to both objects and types
Membership operator is available to check the type against a
hierarchy

type Parent is tagged null record;
type Child is new Parent with null record;
Parent_Obj : Parent; -- Parent_Obj'Tag = Parent'Tag
Child_Obj : Child; -- Child_Obj'Tag = Child'Tag
Parent_Class_1 : Parent'Class := Parent_Obj;

-- Parent_Class_1'Tag = Parent'Tag
Parent_Class_2 : Parent'Class := Child_Obj;

-- Parent_Class_2'Tag = Child'Tag
Child_Class : Child'Class := Child (Parent_Class_2);

-- Child_Class'Tag = Child'Tag

B1 : Boolean := Parent_Class_1 in Parent'Class; -- True
B2 : Boolean := Parent_Class_1'Tag = Child'Tag; -- False
B3 : Boolean := Child_Class'Tag = Parent'Tag; -- False
B4 : Boolean := Child_Class in Child'Class; -- True

651 / 869

Polymorphism
Classes of Types

Abstract Types

A tagged type can be declared abstract

Then, abstract tagged types:
cannot be instantiated
can have abstract subprograms (with no implementation)
Non-abstract derivation of an abstract type must override and
implement abstract subprograms

652 / 869

Polymorphism
Classes of Types

Abstract Types Ada Vs C++
Ada

type Animal is abstract tagged record
Number_Of_Eyes : Integer;

end record;
procedure Feed (The_Animal : Animal) is abstract;
procedure Pet (The_Animal : Animal);
type Dog is abstract new Animal with null record;
type Bulldog is new Dog with null record;

overriding -- Ada 2005 and later
procedure Feed (The_Animal : Bulldog);

C++

class Animal {
public:

int Number_Of_Eyes;
virtual void Feed (void) = 0;
virtual void Pet (void);

};
class Dog : public Animal {
};
class Bulldog {

public:
virtual void Feed (void);

};

653 / 869

Polymorphism
Classes of Types

Relation to Primitives

Warning: Subprograms with parameter of type Root'Class are not
primitives of Root

type Root is tagged null record;
procedure Not_A_Primitive (Param : Root'Class);
type Child is new Root with null record;
-- This does not override Not_A_Primitive!
overriding procedure Not_A_Primitive (Param : Child'Class);

654 / 869

Polymorphism
Classes of Types

'Class and Prefix Notation

Prefix notation rules apply when the first parameter is of a class-wide
type

type Animal is tagged null record;
procedure Handle_Animal (Some_Animal : Animal'Class);
type Cat is new Animal with null record;

Stray_Animal : Animal;
Pet_Animal : Animal'Class := Animal'(others => <>);
...
Handle_Animal (Stray_Animal);
Handle_Animal (Pet_Animal);
Stray_Animal.Handle_Animal;
Pet_Animal.Handle_Animal;

655 / 869

Polymorphism
Dispatching and Redispatching

Dispatching and Redispatching

656 / 869

Polymorphism
Dispatching and Redispatching

Calls on Class-Wide Types (1/3)

Any subprogram expecting a Root object can be called with a
Animal'Class object

type Animal is tagged null record;
procedure Feed (The_Animal : Animal);

type Dog is new Animal with null record;
procedure Feed (The_Dog : Dog);

Stray_Dog : Animal'Class := [...]
My_Dog : Dog'Class := [...]

begin
Feed (Stray_Dog);
Feed (My_Dog);

657 / 869

Polymorphism
Dispatching and Redispatching

Calls on Class-Wide Types (2/3)

The actual type of the object is not known at compile time
The right type will be selected at run-time

Ada
declare

Stray : Animal'Class :=
Animal'(others => <>);

My_Dog : Animal'Class :=
Dog'(others => <>);

begin
Stray.Feed; -- calls Feed of Animal
My_Dog.Feed; -- calls Feed of Dog

C++
Animal * Stray =

new Animal ();
Animal * My_Dog = new Dog ();
Stray->Feed ();
My_Dog->Feed ();

658 / 869

Polymorphism
Dispatching and Redispatching

Calls on Class-Wide Types (3/3)

It is still possible to force a call to be static using a conversion of
view

Ada
declare

Stray : Animal'Class :=
Animal'(others => <>);

My_Dog : Animal'Class :=
Dog'(others => <>);

begin
Animal (Stray).Feed; -- calls Feed of Animal
Animal (My_Dog).Feed; -- calls Feed of Animal

C++
Animal * Stray =

new Animal ();
Animal * My_Dog = new Dog ();
((Animal) *Stray).Feed ();
((Animal) *My_Dog).Feed ();

659 / 869

Polymorphism
Dispatching and Redispatching

Definite and Class-Wide Views

In C++, dispatching occurs only on pointers
In Ada, dispatching occurs only on class-wide views

type Animal is tagged null record;
procedure Groom (The_Animal : Animal);
procedure Give_Treat (The_Animal : Animal);
type Dog is new Animal with null record;
overriding procedure Give_Treat (The_Dog : Dog);
procedure Groom (The_Animal : Animal) is
begin

Give_Treat (The_Animal); -- always calls Give_Treat from Animal
end Groom;
procedure Main is

My_Dog : Animal'Class :=
Dog'(others => <>);

begin
-- Calls Groom from the implicitly overridden subprogram
-- Calls Give_Treat from Animal!
My_Dog.Groom;

660 / 869

Polymorphism
Dispatching and Redispatching

Redispatching

tagged types are always passed by reference
The original object is not copied

Therefore, it is possible to convert them to different views

type Animal is tagged null record;
procedure Feed (An_Animal : Animal);
procedure Pet (An_Animal : Animal);
type Cat is new Animal with null record;
overriding procedure Pet (A_Cat : Cat);

661 / 869

Polymorphism
Dispatching and Redispatching

Redispatching Example

procedure Feed (Anml : Animal) is
Fish : Animal'Class renames

Animal'Class (Anml); -- naming of a view
begin

Pet (Anml); -- static: uses the definite view
Pet (Animal'Class (Anml)); -- dynamic: (redispatching)
Pet (Fish); -- dynamic: (redispatching)

-- Ada 2005 "distinguished receiver" syntax
Anml.Pet; -- static: uses the definite view
Animal'Class (Anml).Pet; -- dynamic: (redispatching)
Fish.Pet; -- dynamic: (redispatching)

end Feed;

662 / 869

Polymorphism
Dispatching and Redispatching

Quiz
package Robots is

type Robot is tagged null record;
function Service_Code (The_Bot : Robot) return Integer is (101);
type Appliance_Robot is new Robot with null record;
function Service_Code (The_Bot : Appliance_Robot) return Integer is (201);
type Vacuum_Robot is new Appliance_Robot with null record;
function Service_Code (The_Bot : Vacuum_Robot) return Integer is (301);

end Robots;

with Robots; use Robots;
procedure Main is

Robot_Object : Robot'Class := Vacuum_Robot'(others => <>);

What is the value returned by
Service_Code (Appliance_Robot'Class (Robot_Object));?

A. 301
B. 201
C. 101
D. Compilation error

Explanations

A. Correct
B. Would be correct if Robot_Object was a Appliance_Robot -

Appliance_Robot'Class leaves the object as Vacuum_Robot
C. Object is initialized to something in Robot'Class, but it doesn't

have to be Robot
D. Would be correct if function parameter types were 'Class

663 / 869

Polymorphism
Dispatching and Redispatching

Quiz
package Robots is

type Robot is tagged null record;
function Service_Code (The_Bot : Robot) return Integer is (101);
type Appliance_Robot is new Robot with null record;
function Service_Code (The_Bot : Appliance_Robot) return Integer is (201);
type Vacuum_Robot is new Appliance_Robot with null record;
function Service_Code (The_Bot : Vacuum_Robot) return Integer is (301);

end Robots;

with Robots; use Robots;
procedure Main is

Robot_Object : Robot'Class := Vacuum_Robot'(others => <>);

What is the value returned by
Service_Code (Appliance_Robot'Class (Robot_Object));?

A. 301
B. 201
C. 101
D. Compilation error

Explanations

A. Correct
B. Would be correct if Robot_Object was a Appliance_Robot -

Appliance_Robot'Class leaves the object as Vacuum_Robot
C. Object is initialized to something in Robot'Class, but it doesn't

have to be Robot
D. Would be correct if function parameter types were 'Class

663 / 869

Polymorphism
Exotic Dispatching Operations

Exotic Dispatching Operations

664 / 869

Polymorphism
Exotic Dispatching Operations

Multiple Dispatching Operands
Primitives with multiple dispatching operands are allowed if all
operands are of the same type

type Animal is tagged null record;
procedure Interact (Left : Animal; Right : Animal);
type Dog is new Animal with null record;
overriding procedure Interact (Left : Dog; Right : Dog);

At call time, all actual parameters' tags have to match, either
statically or dynamically

Animal_1, Animal_2 : Animal;
Dog_1, Dog_2 : Dog;
Any_Animal_1 : Animal'Class := Animal_1;
Any_Animal_2 : Animal'Class := Animal_2;
Dog_Animal : Animal'Class := Dog_1;
...
Interact (Animal_1, Animal_2); -- static: ok
Interact (Animal_1, Dog_1); -- static: error
Interact (Any_Animal_1, Any_Animal_2); -- dynamic: ok
Interact (Any_Animal_1, Dog_Animal); -- dynamic: error
Interact (Animal_1, Any_Animal_1); -- static: error
Interact (Animal'Class (Animal_1), Any_Animal_1); -- dynamic: ok

665 / 869

Polymorphism
Exotic Dispatching Operations

Special Case for Equality

Overriding the default equality for a tagged type involves the use
of a function with multiple controlling operands
As in general case, static types of operands have to be the same
If dynamic types differ, equality returns false instead of raising
exception

type Animal is tagged null record;
function "=" (Left : Animal; Right : Animal) return Boolean;
type Dog is new Animal with null record;
overriding function "=" (Left : Dog; Right : Dog) return Boolean;
Animal_1, Animal_2 : Animal;
Dog_1, Dog_2 : Child;
Any_Animal_1 : Animal'Class := Animal_1;
Any_Animal_2 : Animal'Class := Animal_2;
Dog_Animal : Animal'Class := Dog_1;
...
-- overridden "=" called via dispatching
if Any_Animal_1 = Any_Animal_2 then [...]
if Any_Animal_1 = Dog_Animal then [...] -- returns false

666 / 869

Polymorphism
Exotic Dispatching Operations

Controlling Result (1/2)
The controlling operand may be the return type

This is known as the constructor pattern

type Animal is tagged null record;
function Feed_Treats (Number_Of_Treats : Integer) return Animal;

If the child adds components, all such subprograms have to be
overridden

type Animal is tagged null record;
function Feed_Treats (Number_Of_Treats : Integer) return Animal;

type Dog is new Animal with null record;
-- OK, Feed_Treats is implicitly inherited

type Bulldog is new Animal with record
Has_Underbite : Boolean;

end record;
-- ERROR no implicitly inherited function Feed_Treats

Primitives returning abstract types have to be abstract

type Animal is abstract tagged null record;
function Feed_Treats (Number_Of_Treats : Integer) return Animal is abstract;

667 / 869

Polymorphism
Exotic Dispatching Operations

Controlling Result (2/2)
Primitives returning tagged types can be used in a static context

type Animal is tagged null record;
function Feed return Animal;
type Dog is new Animal with null record;
function Feed return Dog;
Fed_Animal : Animal := Feed;

In a dynamic context, the type has to be known to correctly
dispatch

Fed_Animal : Animal'Class :=
Animal'(Feed); -- Static call to Animal primitive

Another_Fed_Animal : Animal'Class := Fed_Animal;
Fed_Dog : Animal'Class := Dog'(Feed); -- Static call to Dog primitive
Starving_Animal : Animal'Class := Feed; -- Error - ambiguous expression
...
Fed_Animal := Feed; -- Dispatching call to Animal primitive
Another_Fed_Animal := Feed; -- Dispatching call to Animal primitive
Fed_Dog := Feed; -- Dispatching call to Dog primitive

No dispatching is possible when returning access types
668 / 869

Polymorphism
Lab

Lab

669 / 869

Polymorphism
Lab

Polymorphism Lab

Requirements
Create a multi-level types hierarchy of shapes

Level 1: Shape → Quadrilateral | Triangle
Level 2: Quadrilateral → Square

Types should have the following primitive operations

Description
Number of sides
Perimeter

Create a main program that has multiple shapes

Create a nested subprogram that takes any shape and prints all
appropriate information

Hints
Top-level type should be abstract

But can have concrete operations

Nested subprogram in main should take a shape class parameter
670 / 869

Polymorphism
Lab

Polymorphism Lab Solution - Shapes (Spec)
1 package Shapes is
2 type Length_T is new Natural;
3 type Lengths_T is array (Positive range <>) of Length_T;
4 subtype Description_T is String (1 .. 10);
5

6 type Shape_T is abstract tagged record
7 Description : Description_T;
8 end record;
9 function Get_Description (Shape : Shape_T'Class) return Description_T;

10 function Number_Of_Sides (Shape : Shape_T) return Natural is abstract;
11 function Perimeter (Shape : Shape_T) return Length_T is abstract;
12

13 type Quadrilateral_T is new Shape_T with record
14 Lengths : Lengths_T (1 .. 4);
15 end record;
16 function Number_Of_Sides (Shape : Quadrilateral_T) return Natural;
17 function Perimeter (Shape : Quadrilateral_T) return Length_T;
18

19 type Square_T is new Quadrilateral_T with null record;
20 function Perimeter (Shape : Square_T) return Length_T;
21

22 type Triangle_T is new Shape_T with record
23 Lengths : Lengths_T (1 .. 3);
24 end record;
25 function Number_Of_Sides (Shape : Triangle_T) return Natural;
26 function Perimeter (Shape : Triangle_T) return Length_T;
27 end Shapes;

671 / 869

Polymorphism
Lab

Polymorphism Lab Solution - Shapes (Body)
1 package body Shapes is
2

3 function Perimeter (Lengths : Lengths_T) return Length_T is
4 Ret_Val : Length_T := 0;
5 begin
6 for I in Lengths'First .. Lengths'Last
7 loop
8 Ret_Val := Ret_Val + Lengths (I);
9 end loop;

10 return Ret_Val;
11 end Perimeter;
12

13 function Get_Description (Shape : Shape_T'Class) return Description_T is
14 (Shape.Description);
15

16 function Number_Of_Sides (Shape : Quadrilateral_T) return Natural is
17 (4);
18 function Perimeter (Shape : Quadrilateral_T) return Length_T is
19 (Perimeter (Shape.Lengths));
20

21 function Perimeter (Shape : Square_T) return Length_T is
22 (4 * Shape.Lengths (Shape.Lengths'First));
23

24 function Number_Of_Sides (Shape : Triangle_T) return Natural is
25 (3);
26 function Perimeter (Shape : Triangle_T) return Length_T is
27 (Perimeter (Shape.Lengths));
28 end Shapes;

672 / 869

Polymorphism
Lab

Polymorphism Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Shapes; use Shapes;
3 procedure Main is
4

5 Rectangle : constant Shapes.Quadrilateral_T :=
6 (Description => "rectangle ",
7 Lengths => (10, 20, 10, 20));
8 Triangle : constant Shapes.Triangle_T :=
9 (Description => "triangle ",

10 Lengths => (200, 300, 400));
11 Square : constant Shapes.Square_T :=
12 (Description => "square ",
13 Lengths => (5_000, 5_000, 5_000, 5_000));
14

15 procedure Describe (Shape : Shapes.Shape_T'Class) is
16 begin
17 Put_Line (Shape.Get_Description);
18 Put_Line
19 (" Number of sides:" & Integer'Image (Shape.Number_Of_Sides));
20 Put_Line (" Perimeter:" & Shapes.Length_T'Image (Shape.Perimeter));
21 end Describe;
22 begin
23

24 Describe (Rectangle);
25 Describe (Triangle);
26 Describe (Square);
27 end Main;

673 / 869

Polymorphism
Summary

Summary

674 / 869

Polymorphism
Summary

Summary

'Class attribute
Allows subprograms to be used for multiple versions of a type

Dispatching
Abstract types require concrete versions

Abstract subprograms allow template definitions

Need an implementation for each abstract type referenced

Runtime call dispatch vs compile-time call dispatching
Compiler resolves appropriate call where it can
Runtime resolves appropriate call where it can
If not resolved, exception

675 / 869

Exceptions In-Depth

Exceptions In-Depth

676 / 869

Exceptions In-Depth
Introduction

Introduction

677 / 869

Exceptions In-Depth
Introduction

Rationale for Exceptions

Textual separation from normal processing

Rigorous Error Management
Cannot be ignored, unlike status codes from routines
Example: running out of gasoline in an automobile

package Automotive is
type Vehicle is record

Fuel_Quantity, Fuel_Minimum : Float;
Oil_Temperature : Float;
...

end record;
Fuel_Exhausted : exception;
procedure Consume_Fuel (Car : in out Vehicle);
...

end Automotive;
678 / 869

Exceptions In-Depth
Introduction

Semantics Overview

Exceptions become active by being raised
Failure of implicit language-defined checks
Explicitly by application

Exceptions occur at run-time
A program has no effect until executed

May be several occurrences active at same time
One per task

Normal execution abandoned when they occur
Error processing takes over in response
Response specified by exception handlers
Handling the exception means taking action in response
Other tasks need not be affected

679 / 869

Exceptions In-Depth
Introduction

Semantics Example: Raising

package body Automotive is
function Current_Consumption return Float is

...
end Current_Consumption;
procedure Consume_Fuel (Car : in out Vehicle) is
begin

if Car.Fuel_Quantity <= Car.Fuel_Minimum then
raise Fuel_Exhausted;

else -- decrement quantity
Car.Fuel_Quantity := Car.Fuel_Quantity -

Current_Consumption;
end if;

end Consume_Fuel;
...

end Automotive;
680 / 869

Exceptions In-Depth
Introduction

Semantics Example: Handling

procedure Joy_Ride is
Hot_Rod : Automotive.Vehicle;
Bored : Boolean := False;
use Automotive;

begin
while not Bored loop

Steer_Aimlessly (Bored);
-- error situation cannot be ignored
Consume_Fuel (Hot_Rod);

end loop;
Drive_Home;

exception
when Fuel_Exhausted =>

Push_Home;
end Joy_Ride;

681 / 869

Exceptions In-Depth
Introduction

Handler Part Is Skipped Automatically

If no exceptions are active, returns normally

begin
...

-- if we get here, skip to end
exception

when Name1 =>
...
when Name2 | Name3 =>
...
when Name4 =>
...

end;

682 / 869

Exceptions In-Depth
Handlers

Handlers

683 / 869

Exceptions In-Depth
Handlers

Exception Handler Part

Contains the exception handlers within a frame
Within block statements, subprograms, tasks, etc.

Separates normal processing code from abnormal

Starts with the reserved word exception

Optional

begin
sequence_of_statements

[exception
exception_handler
{ exception handler }]

end

684 / 869

Exceptions In-Depth
Handlers

Exception Handlers Syntax

Associates exception names with statements to execute in response

If used, others must appear at the end, by itself
Associates statements with all other exceptions

Syntax

exception_handler ::=
when exception_choice { | exception_choice } =>

sequence_of_statements
exception_choice ::= exception_name | others

685 / 869

Exceptions In-Depth
Handlers

Similarity to Case Statements

Both structure and meaning

Exception handler

...
exception

when Constraint_Error | Storage_Error | Program_Error =>
...
when others =>
...

end;

Case statement

case exception_name is
when Constraint_Error | Storage_Error | Program_Error =>
...
when others =>
...

end case;
686 / 869

Exceptions In-Depth
Handlers

Handlers Don't "Fall Through"

begin
...
raise Name3;
-- code here is not executed
...

exception
when Name1 =>

-- not executed
...

when Name2 | Name3 =>
-- executed
...

when Name4 =>
-- not executed
...

end;
687 / 869

Exceptions In-Depth
Handlers

When an Exception Is Raised
Normal processing is
abandoned
Handler for active exception
is executed, if any
Control then goes to the
caller
If handled, caller continues
normally, otherwise repeats
the above

Caller
...
Joy_Ride;
Do_Something_At_Home;
...
Callee
procedure Joy_Ride is

...
begin

...
Drive_Home;

exception
when Fuel_Exhausted =>

Push_Home;
end Joy_Ride;

688 / 869

Exceptions In-Depth
Handlers

Handling Specific Statements' Exceptions

begin
loop

Prompting : loop
Put (Prompt);
Get_Line (Filename, Last);
exit when Last > Filename'First - 1;

end loop Prompting;
begin

Open (F, In_File, Filename (1..Last));
exit;

exception
when Name_Error =>

Put_Line ("File '" & Filename (1..Last) &
"' was not found.");

end;
end loop;

689 / 869

Exceptions In-Depth
Handlers

Exception Handler Content
No restrictions

Block statements,
subprogram calls, etc.

Do whatever makes sense

begin
...

exception
when Some_Error =>

declare
New_Data : Some_Type;

begin
P (New_Data);
...

end;
end;

690 / 869

Exceptions In-Depth
Handlers

Quiz
1 procedure Main is
2 A, B, C, D : Integer range 0 .. 100;
3 begin
4 A := 1; B := 2; C := 3; D := 4;
5 begin
6 D := A - C + B;
7 exception
8 when others => Put_Line ("One");
9 D := 1;

10 end;
11 D := D + 1;
12 begin
13 D := D / (A - C + B);
14 exception
15 when others => Put_Line ("Two");
16 D := -1;
17 end;
18 exception
19 when others =>
20 Put_Line ("Three");
21 end Main;

What will get printed?
A. One, Two, Three
B. Two, Three
C. Two
D. Three

Explanations
A. Although (A - C) is not in the range

of natural, the range is only checked
on assignment, which is after the
addition of B, so One is never printed

B. Correct
C. If we reach Two, the assignment on

line 16 will cause Three to be reached
D. Divide by 0 on line 13 causes an

exception, so Two must be called

691 / 869

Exceptions In-Depth
Handlers

Quiz
1 procedure Main is
2 A, B, C, D : Integer range 0 .. 100;
3 begin
4 A := 1; B := 2; C := 3; D := 4;
5 begin
6 D := A - C + B;
7 exception
8 when others => Put_Line ("One");
9 D := 1;

10 end;
11 D := D + 1;
12 begin
13 D := D / (A - C + B);
14 exception
15 when others => Put_Line ("Two");
16 D := -1;
17 end;
18 exception
19 when others =>
20 Put_Line ("Three");
21 end Main;

What will get printed?
A. One, Two, Three
B. Two, Three
C. Two
D. Three

Explanations
A. Although (A - C) is not in the range

of natural, the range is only checked
on assignment, which is after the
addition of B, so One is never printed

B. Correct
C. If we reach Two, the assignment on

line 16 will cause Three to be reached
D. Divide by 0 on line 13 causes an

exception, so Two must be called

691 / 869

Exceptions In-Depth
Implicitly and Explicitly Raised Exceptions

Implicitly and Explicitly Raised Exceptions

692 / 869

Exceptions In-Depth
Implicitly and Explicitly Raised Exceptions

Implicitly-Raised Exceptions

Correspond to language-defined checks

Can happen by statement execution

K := -10; -- where K must be greater than zero

Can happen by declaration elaboration

Doomed : array (Positive) of Big_Type;

693 / 869

Exceptions In-Depth
Implicitly and Explicitly Raised Exceptions

Some Language-Defined Exceptions

Constraint_Error

Violations of constraints on range, index, etc.

Program_Error

Runtime control structure violated (function with no return ...)

Storage_Error

Insufficient storage is available

For a complete list see RM Q-4

694 / 869

Exceptions In-Depth
Implicitly and Explicitly Raised Exceptions

Explicitly-Raised Exceptions
Raised by application via
raise statements

Named exception becomes
active

Syntax
raise_statement ::= raise; |

raise exception_name
[with string_expression];

Note "with string_expression" only
available in Ada 2005 and later
A raise by itself is only
allowed in handlers

if Unknown (User_ID) then
raise Invalid_User;

end if;

if Unknown (User_ID) then
raise Invalid_User

with "Attempt by " &
Image (User_ID);

end if;

695 / 869

Exceptions In-Depth
Language-Defined Exceptions

Language-Defined Exceptions

696 / 869

Exceptions In-Depth
Language-Defined Exceptions

Constraint_Error

Caused by violations of constraints on range, index, etc.

The most common exceptions encountered

K : Integer range 1 .. 10;
...
K := -1;

L : array (1 .. 100) of Some_Type;
...
L (400) := SomeValue;

697 / 869

Exceptions In-Depth
Language-Defined Exceptions

Program_Error

When runtime control structure is violated
Elaboration order errors and function bodies

When implementation detects bounded errors
Discussed momentarily

function F return Some_Type is
begin

if something then
return Some_Value;

end if; -- program error - no return statement
end F;

698 / 869

Exceptions In-Depth
Language-Defined Exceptions

Storage_Error

When insufficient storage is available

Potential causes
Declarations
Explicit allocations
Implicit allocations

Data : array (1..1e20) of Big_Type;

699 / 869

Exceptions In-Depth
Language-Defined Exceptions

Explicitly-Raised Exceptions
Raised by application via
raise statements

Named exception becomes
active

Syntax
raise_statement ::= raise; |

raise exception_name
[with string_expression];

with string_expression
only available in Ada 2005
and later

A raise by itself is only
allowed in handlers (more
later)

if Unknown (User_ID) then
raise Invalid_User;

end if;

if Unknown (User_ID) then
raise Invalid_User

with "Attempt by " &
Image (User_ID);

end if;

700 / 869

Exceptions In-Depth
User-Defined Exceptions

User-Defined Exceptions

701 / 869

Exceptions In-Depth
User-Defined Exceptions

User-Defined Exceptions

Syntax

defining_identifier_list : exception;

Behave like predefined exceptions
Scope and visibility rules apply
Referencing as usual
Some minor differences

Exception identifiers' use is restricted
raise statements
Handlers
Renaming declarations

702 / 869

Exceptions In-Depth
User-Defined Exceptions

User-Defined Exceptions Example

An important part of the abstraction
Designer specifies how component can be used

package Stack is
Underflow, Overflow : exception;
procedure Push (Item : in Integer);
...

end Stack;

package body Stack is
procedure Push (Item : in Integer) is
begin

if Top = Index'Last then
raise Overflow;

end if;
Top := Top + 1;
Values (Top) := Item;

end Push;
...

703 / 869

Exceptions In-Depth
Propagation

Propagation

704 / 869

Exceptions In-Depth
Propagation

Propagation

Control does not return to point of raising
Termination Model

When a handler is not found in a block statement
Re-raised immediately after the block

When a handler is not found in a subprogram
Propagated to caller at the point of call

Propagation is dynamic, back up the call chain
Not based on textual layout or order of declarations

Propagation stops at the main subprogram
Main completes abnormally unless handled

705 / 869

Exceptions In-Depth
Propagation

Propagation Demo

1 procedure Do_Something is
2 Error : exception;
3 procedure Unhandled is
4 begin
5 Maybe_Raise (1);
6 end Unhandled;
7 procedure Handled is
8 begin
9 Unhandled;

10 Maybe_Raise (2);
11 exception
12 when Error =>
13 Print ("Handle 1 or 2");
14 end Handled;

16 begin -- Do_Something
17 Maybe_Raise (3);
18 Handled;
19 exception
20 when Error =>
21 Print ("Handle 3");
22 end Do_Something;

706 / 869

Exceptions In-Depth
Propagation

Termination Model

When control goes to handler, it continues from here

procedure Joy_Ride is
begin

loop
Steer_Aimlessly;

-- If next line raises Fuel_Exhausted, go to handler
Consume_Fuel;

end loop;
exception

when Fuel_Exhausted => -- Handler
Push_Home;
-- Resume from here: loop has been exited

end Joy_Ride;
707 / 869

Exceptions In-Depth
Propagation

Quiz
2 Main_Problem : exception;
3 I : Integer;
4 function F (P : Integer) return Integer is
5 begin
6 if P > 0 then
7 return P + 1;
8 elsif P = 0 then
9 raise Main_Problem;

10 end if;
11 end F;
12 begin
13 I := F(Input_Value);
14 Put_Line ("Success");
15 exception
16 when Constraint_Error => Put_Line ("Constraint Error");
17 when Program_Error => Put_Line ("Program Error");
18 when others => Put_Line ("Unknown problem");

What will get printed if Input_Value on line 13 is Integer'Last?

A. Unknown Problem
B. Success
C. Constraint Error
D. Program Error

Explanations

A. "Unknown Problem" is printed by the when others due to the
raise on line 9 when P is 0

B. "Success" is printed when 0 < P < Integer'Last
C. Trying to add 1 to P on line 7 generates a Constraint_Error
D. Program_Error will be raised by F if P < 0 (no return

statement found)

708 / 869

Exceptions In-Depth
Propagation

Quiz
2 Main_Problem : exception;
3 I : Integer;
4 function F (P : Integer) return Integer is
5 begin
6 if P > 0 then
7 return P + 1;
8 elsif P = 0 then
9 raise Main_Problem;

10 end if;
11 end F;
12 begin
13 I := F(Input_Value);
14 Put_Line ("Success");
15 exception
16 when Constraint_Error => Put_Line ("Constraint Error");
17 when Program_Error => Put_Line ("Program Error");
18 when others => Put_Line ("Unknown problem");

What will get printed if Input_Value on line 13 is Integer'Last?

A. Unknown Problem
B. Success
C. Constraint Error
D. Program Error

Explanations

A. "Unknown Problem" is printed by the when others due to the
raise on line 9 when P is 0

B. "Success" is printed when 0 < P < Integer'Last
C. Trying to add 1 to P on line 7 generates a Constraint_Error
D. Program_Error will be raised by F if P < 0 (no return

statement found)

708 / 869

Exceptions In-Depth
Partial and Nested Handlers

Partial and Nested Handlers

709 / 869

Exceptions In-Depth
Partial and Nested Handlers

Partially Handling Exceptions
Handler eventually re-raises
the current exception
Achieved using raise by
itself, since re-raising

Current active exception is
then propagated to caller

procedure Joy_Ride is
...

begin
while not Bored loop

Steer_Aimlessly (Bored);
Consume_Fuel (Hot_Rod);

end loop;
exception

when Fuel_Exhausted =>
Pull_Over;
raise; -- no gas available

end Joy_Ride;

710 / 869

Exceptions In-Depth
Partial and Nested Handlers

Typical Partial Handling Example
Log (or display) the error and re-raise to caller

Same exception or another one

procedure Get (Item : out Integer; From : in File) is
begin

Ada.Integer_Text_IO.Get (From, Item);
exception

when Ada.Text_IO.End_Error =>
Display_Error ("Attempted read past end of file");
raise Error;

when Ada.Text_IO.Mode_Error =>
Display_Error ("Read from file opened for writing");
raise Error;

when Ada.Text_IO.Status_Error =>
Display_Error ("File must be opened prior to use");
raise Error;

when others =>
Display_Error ("Error in Get (Integer) from file");
raise;

end Get;
711 / 869

Exceptions In-Depth
Partial and Nested Handlers

Exceptions Raised During Elaboration

I.e., those occurring before the begin

Go immediately to the caller

No handlers in that frame are applicable
Could reference declarations that failed to elaborate!

procedure P (Output : out BigType) is
-- storage error handled by caller
N : array (Positive) of BigType;
...

begin
...

exception
when Storage_Error =>

-- failure to define N not handled here
Output := N (1); -- if it was, this wouldn't work
...

end P;
712 / 869

Exceptions In-Depth
Partial and Nested Handlers

Handling Elaboration Exceptions

procedure Test is
procedure P is

X : Positive := 0; -- Constraint_Error!
begin

...
exception

when Constraint_Error =>
Ada.Text_IO.Put_Line ("Got it in P");

end P;
begin

P;
exception

when Constraint_Error =>
Ada.Text_IO.Put_Line ("Got Constraint_Error in Test");

end Test;
713 / 869

Exceptions In-Depth
Partial and Nested Handlers

Quiz
with Ada.Text_IO; use Ada.Text_IO;
procedure Exception_Test (Input_Value : Integer) is

Known_Problem : exception;
function F (P : Integer) return Integer is
begin

if P > 0 then
return P * P;

end if;
exception

when others => raise Known_Problem;
end F;
procedure P (X : Integer) is

A : array (1 .. F (X)) of Float;
begin

A := (others => 0.0);
exception

when others => raise Known_Problem;
end P;

begin
P (Input_Value);
Put_Line ("Success");

exception
when Known_Problem => Put_Line ("Known problem");
when others => Put_Line ("Unknown problem");

end Exception_Test;

What will get printed for these values of Input_Value?

A. Integer'Last

Known Problem

B. Integer'First

Unknown Problem

C. 10000

Unknown Problem

D. 100

Success

Explanations

A → When F is called with a large P, its own exception handler
captures the exception and raises Constraint_Error (which the main
exception handler processes)

B/C → When the creation of A fails (due to Program_Error from
passing F a negative number or Storage_Error from passing F a large
number), then P raises an exception during elaboration, which is
propagated to Main

714 / 869

Exceptions In-Depth
Partial and Nested Handlers

Quiz
with Ada.Text_IO; use Ada.Text_IO;
procedure Exception_Test (Input_Value : Integer) is

Known_Problem : exception;
function F (P : Integer) return Integer is
begin

if P > 0 then
return P * P;

end if;
exception

when others => raise Known_Problem;
end F;
procedure P (X : Integer) is

A : array (1 .. F (X)) of Float;
begin

A := (others => 0.0);
exception

when others => raise Known_Problem;
end P;

begin
P (Input_Value);
Put_Line ("Success");

exception
when Known_Problem => Put_Line ("Known problem");
when others => Put_Line ("Unknown problem");

end Exception_Test;

What will get printed for these values of Input_Value?

A. Integer'Last Known Problem
B. Integer'First Unknown Problem
C. 10000 Unknown Problem
D. 100 Success

Explanations

A → When F is called with a large P, its own exception handler
captures the exception and raises Constraint_Error (which the main
exception handler processes)

B/C → When the creation of A fails (due to Program_Error from
passing F a negative number or Storage_Error from passing F a large
number), then P raises an exception during elaboration, which is
propagated to Main

714 / 869

Exceptions In-Depth
Partial and Nested Handlers

Exceptions Raised in Exception Handlers
Go immediately to caller
unless also handled
Goes to caller in any case, as
usual

begin
...

exception
when Some_Error =>

declare
New_Data : Some_Type;

begin
P(New_Data);
...

exception
when ...

end;
end;

715 / 869

Exceptions In-Depth
Exceptions As Objects

Exceptions As Objects

716 / 869

Exceptions In-Depth
Exceptions As Objects

Exceptions Are Not Objects

May not be manipulated
May not be components of composite types
May not be passed as parameters

Some differences for scope and visibility
May be propagated out of scope

717 / 869

Exceptions In-Depth
Exceptions As Objects

Example Propagation Beyond Scope

package P is
procedure Q;

end P;
package body P is

Error : exception;
procedure Q is
begin

...
raise Error;

end Q;
end P;

with P;
procedure Client is
begin

P.Q;
exception

-- not visible
when P.Error =>

...
-- captured here
when others =>

...
end Client;

718 / 869

Exceptions In-Depth
Exceptions As Objects

Mechanism to Treat Exceptions As Objects
For raising and handling, and more
Standard Library

package Ada.Exceptions is
type Exception_Id is private;
procedure Raise_Exception (E : Exception_Id;

Message : String := "");
...
type Exception_Occurrence is limited private;
function Exception_Name (X : Exception_Occurrence)

return String;
function Exception_Message (X : Exception_Occurrence)

return String;
function Exception_Information (X : Exception_Occurrence)

return String;
procedure Reraise_Occurrence (X : Exception_Occurrence);
procedure Save_Occurrence (

Target : out Exception_Occurrence;
Source : Exception_Occurrence);

...
end Ada.Exceptions;

719 / 869

Exceptions In-Depth
Exceptions As Objects

Exception Occurrence

Syntax associates an object with active exception

when defining_identifier : exception_name ... =>

A constant view representing active exception

Used with operations defined for the type

exception
when Caught_Exception : others =>

Put (Exception_Name (Caught_Exception));

720 / 869

Exceptions In-Depth
Exceptions As Objects

Exception_Occurrence Query Functions

Exception_Name
Returns full expanded name of the exception in string form

Simple short name if space-constrained

Predefined exceptions appear as just simple short name

Exception_Message
Returns string value specified when raised, if any

Exception_Information
Returns implementation-defined string content

Should include both exception name and message content

Presumably includes debugging information

Location where exception occurred
Language-defined check that failed (if such)

721 / 869

Exceptions In-Depth
Exceptions As Objects

User Subprogram Parameter Example
with Ada.Exceptions; use Ada.Exceptions;
procedure Display_Exception

(Error : in Exception_Occurrence)
is

Msg : constant String := Exception_Message (Error);
Info : constant String := Exception_Information (Error);

begin
New_Line;
if Info /= "" then

Put ("Exception information => ");
Put_Line (Info);

elsif Msg /= "" then
Put ("Exception message => ");
Put_Line (Msg);

else
Put ("Exception name => ");
Put_Line (Exception_Name (Error));

end if;
end Display_Exception;

722 / 869

Exceptions In-Depth
Exceptions As Objects

Exception Identity

Attribute 'Identity converts exceptions to the type

package Ada.Exceptions is
...
type Exception_Id is private;
...
procedure Raise_Exception (E : in Exception_Id;

Message : in String := "");
...

end Ada.Exceptions;

Primary use is raising exceptions procedurally

Foo : exception;
...
Ada.Exceptions.Raise_Exception (Foo'Identity,

Message => "FUBAR!");
723 / 869

Exceptions In-Depth
Exceptions As Objects

Re-Raising Exceptions Procedurally

Typical raise mechanism

begin
...

exception
when others =>

Cleanup;
raise;

end;

Procedural raise mechanism

begin
...

exception
when X : others =>

Cleanup;
Ada.Exceptions.Reraise_Occurrence (X);

end;
724 / 869

Exceptions In-Depth
Exceptions As Objects

Copying Exception_Occurrence Objects

Via procedure Save_Occurrence
No assignment operation since is a limited type

Error : Exception_Occurrence;

begin
...

exception
when X : others =>

Cleanup;
Ada.Exceptions.Save_Occurrence (X, Target => Error);

end;

725 / 869

Exceptions In-Depth
Exceptions As Objects

Re-Raising Outside Dynamic Call Chain
procedure Demo is

package Exceptions is new
Limited_Ended_Lists (Exception_Occurrence,

Save_Occurrence);
Errors : Exceptions.List;
Iteration : Exceptions.Iterator;
procedure Normal_Processing

(Troubles : in out Exceptions.List) is ...
begin

Normal_Processing (Errors);
Iteration.Initialize (Errors);
while Iteration.More loop

declare
Next_Error : Exception_Occurrence;

begin
Iteration.Read (Next_Error);
Put_Line (Exception_Information (Next_Error));
if Exception_Identity (Next_Error) =

Trouble.Fatal_Error'Identity
then

Reraise_Occurrence (Next_Error);
end if;

end;
end loop;
Put_Line ("Done");

end Demo;

726 / 869

Exceptions In-Depth
Raise Expressions

Raise Expressions

727 / 869

Exceptions In-Depth
Raise Expressions

Raise Expressions

Expression raising specified exception at run-time

Foo : constant Integer := (case X is
when 1 => 10,
when 2 => 20,
when others => raise Error);

728 / 869

Exceptions In-Depth
In Practice

In Practice

729 / 869

Exceptions In-Depth
In Practice

Fulfill Interface Promises to Clients
If handled and not re-raised, normal processing continues at point
of client's call
Hence caller expectations must be satisfied

procedure Get (Reading : out Sensor_Reading) is
begin

...
Reading := New_Value;
...

exceptions
when Some_Error =>

Reading := Default_Value;
end Get;

function Foo return Some_Type is
begin

...
return Determined_Value;
...

exception
when Some_Error =>

return Default_Value; -- error if this isn't here
end Foo;

730 / 869

Exceptions In-Depth
In Practice

Allow Clients to Avoid Exceptions

Callee

package Stack is
Overflow : exception;
Underflow : exception;
function Full return Boolean;
function Empty return Boolean;
procedure Push (Item : in Some_Type);
procedure Pop (Item : out Some_Type);

end Stack;

Caller

if not Stack.Empty then
Stack.Pop (...); -- will not raise Underflow

731 / 869

Exceptions In-Depth
In Practice

You Can Suppress Run-Time Checks

Syntax (could use a compiler switch instead)

pragma Suppress (check-name [, [On =>] name]);

Language-defined checks emitted by compiler

Compiler may ignore request if unable to comply

Behavior will be unpredictable if exceptions occur
Raised within the region of suppression
Propagated into region of suppression

pragma Suppress (Range_Check);
pragma Suppress (Index_Check, On => Table);

732 / 869

Exceptions In-Depth
In Practice

Error Classifications

Some errors must be detected at run-time
Corresponding to the predefined exceptions

Bounded Errors
Need not be detected prior to/during execution if too hard

If not detected, range of possible effects is bounded

Possible effects are specified per error

Example: evaluating an un-initialized scalar variable

It might "work"!

Erroneous Execution
Need not be detected prior to/during execution if too hard
If not detected, range of possible effects is not bounded
Example: Occurrence of a suppressed check

733 / 869

Exceptions In-Depth
Lab

Lab

734 / 869

Exceptions In-Depth
Lab

Exceptions In-Depth Lab

(Simplified) Calculator

Overview
Create an application that allows users to enter a simple calculation
and get a result

Goal
Application should allow user to add, subtract, multiply, and divide
We want to track exceptions without actually "interrupting" the
application
When the user has finished entering data, the application should
report the errors found

735 / 869

Exceptions In-Depth
Lab

Project Requirements

Exception Tracking
Input errors should be flagged (e.g. invalid operator, invalid
numbers)
Divide by zero should be it's own special case exception
Operational errors (overflow, etc) should be flagged in the list of
errors

Driver
User should be able to enter a string like "1 + 2" and the program
will print "3"
User should not be interrupted by error messages
When user is done entering data, print all errors (raised exceptions)

Extra Credit
Allow multiple operations on a line

736 / 869

Exceptions In-Depth
Lab

Exceptions In-Depth Lab Solution - Calculator (Spec)

1 package Calculator is
2 Formatting_Error : exception;
3 Divide_By_Zero : exception;
4 type Integer_T is range -1_000 .. 1_000;
5 function Add
6 (Left, Right : String)
7 return Integer_T;
8 function Subtract
9 (Left, Right : String)

10 return Integer_T;
11 function Multiply
12 (Left, Right : String)
13 return Integer_T;
14 function Divide
15 (Top, Bottom : String)
16 return Integer_T;
17 end Calculator;

737 / 869

Exceptions In-Depth
Lab

Exceptions In-Depth Lab Solution - Main
1 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Calculator; use Calculator;
4 with Debug_Pkg;
5 with Input; use Input;
6 procedure Main is
7 Illegal_Operator : exception;
8 procedure Parser
9 (Str : String;

10 Left : out Unbounded_String;
11 Operator : out Unbounded_String;
12 Right : out Unbounded_String) is
13 I : Integer := Str'First;
14 begin
15 while I <= Str'Length and then Str (I) /= ' ' loop
16 Left := Left & Str (I);
17 I := I + 1;
18 end loop;
19 while I <= Str'Length and then Str (I) = ' ' loop
20 I := I + 1;
21 end loop;
22 while I <= Str'Length and then Str (I) /= ' ' loop
23 Operator := Operator & Str (I);
24 I := I + 1;
25 end loop;
26 while I <= Str'Length and then Str (I) = ' ' loop
27 I := I + 1;
28 end loop;
29 while I <= Str'Length and then Str (I) /= ' ' loop
30 Right := Right & Str (I);
31 I := I + 1;
32 end loop;
33 end Parser;
34 begin
35 loop
36 declare
37 Left, Operator, Right : Unbounded_String;
38 Input : constant String := Get_String ("Sequence");
39 begin
40 exit when Input'Length = 0;
41 Parser (Input, Left, Operator, Right);
42 case Component (Operator, 1) is
43 when '+' =>
44 Put_Line
45 (" => " &
46 Integer_T'Image (Add (To_String (Left), To_String (Right))));
47 when '-' =>
48 Put_Line
49 (" => " &
50 Integer_T'Image
51 (Subtract (To_String (Left), To_String (Right))));
52 when '*' =>
53 Put_Line
54 (" => " &
55 Integer_T'Image
56 (Multiply (To_String (Left), To_String (Right))));
57 when '/' =>
58 Put_Line
59 (" => " &
60 Integer_T'Image
61 (Divide (To_String (Left), To_String (Right))));
62 when others =>
63 raise Illegal_Operator;
64 end case;
65 exception
66 when The_Err : others =>
67 Debug_Pkg.Save_Occurrence (The_Err);
68 end;
69 end loop;
70 Debug_Pkg.Print_Exceptions;
71 end Main;

738 / 869

Exceptions In-Depth
Lab

Exceptions In-Depth Lab Solution - Calculator (Body)
1 package body Calculator is
2 function Value
3 (Str : String)
4 return Integer_T is
5 begin
6 return Integer_T'Value (Str);
7 exception
8 when Constraint_Error =>
9 raise Formatting_Error;

10 end Value;
11 function Add
12 (Left, Right : String)
13 return Integer_T is
14 begin
15 return Value (Left) + Value (Right);
16 end Add;
17 function Subtract
18 (Left, Right : String)
19 return Integer_T is
20 begin
21 return Value (Left) - Value (Right);
22 end Subtract;
23 function Multiply
24 (Left, Right : String)
25 return Integer_T is
26 begin
27 return Value (Left) * Value (Right);
28 end Multiply;
29 function Divide
30 (Top, Bottom : String)
31 return Integer_T is
32 begin
33 if Value (Bottom) = 0 then
34 raise Divide_By_Zero;
35 else
36 return Value (Top) / Value (Bottom);
37 end if;
38 end Divide;
39 end Calculator;

739 / 869

Exceptions In-Depth
Lab

Exceptions In-Depth Lab Solution - Debug
1 with Ada.Exceptions;
2 package Debug_Pkg is
3 procedure Save_Occurrence (X : Ada.Exceptions.Exception_Occurrence);
4 procedure Print_Exceptions;
5 end Debug_Pkg;
6

7 with Ada.Exceptions;
8 with Ada.Text_IO;
9 use type Ada.Exceptions.Exception_Id;

10 package body Debug_Pkg is
11 Exceptions : array (1 .. 100) of Ada.Exceptions.Exception_Occurrence;
12 Next_Available : Integer := 1;
13 procedure Save_Occurrence (X : Ada.Exceptions.Exception_Occurrence) is
14 begin
15 Ada.Exceptions.Save_Occurrence (Exceptions (Next_Available), X);
16 Next_Available := Next_Available + 1;
17 end Save_Occurrence;
18 procedure Print_Exceptions is
19 begin
20 for I in 1 .. Next_Available - 1 loop
21 declare
22 E : Ada.Exceptions.Exception_Occurrence renames Exceptions (I);
23 Flag : Character := ' ';
24 begin
25 if Ada.Exceptions.Exception_Identity (E) =
26 Constraint_Error'Identity
27 then
28 Flag := '*';
29 end if;
30 Ada.Text_IO.Put_Line
31 (Flag & " " & Ada.Exceptions.Exception_Information (E));
32 end;
33 end loop;
34 end Print_Exceptions;
35 end Debug_Pkg;

740 / 869

Exceptions In-Depth
Summary

Summary

741 / 869

Exceptions In-Depth
Summary

Exceptions Are Not Always Appropriate
What does it mean to have
an unexpected error in a
safety-critical application?

Maybe there's no
reasonable response

742 / 869

Exceptions In-Depth
Summary

Relying on Exception Raising Is Risky
They may be suppressed

By runtime environment
By build switches

Not recommended

function Tomorrow (Today : Days) return Days is
begin

return Days'Succ (Today);
exception

when Constraint_Error =>
return Days'First;

end Tomorrow;

Recommended

function Tomorrow (Today : Days) return Days is
begin

if Today = Days'Last then
return Days'First;

else
return Days'Succ (Today);

end if;
end Tomorrow;

743 / 869

Exceptions In-Depth
Summary

Summary

Should be for unexpected errors

Give clients the ability to avoid them

If handled, caller should see normal effect
Mode out parameters assigned
Function return values provided

Package Ada.Exceptions provides views as objects
For both raising and special handling
Especially useful for debugging

Re-raising exceptions is a typical scenario

Suppressing checks is allowed but requires care
Testing only proves presence of errors, not absence
Exceptions may occur anyway, with unpredictable effects

744 / 869

Tasking

Tasking

745 / 869

Tasking
Introduction

Introduction

746 / 869

Tasking
Introduction

Concurrency Mechanisms

Task
Active
Rendezvous: Client / Server model
Server entries
Client entry calls
Typically maps to OS threads

Protected object
Passive
Monitors protected data
Restricted set of operations
Concurrency-safe semantics
No thread overhead
Very portable

Object-Oriented
Synchronized interfaces
Protected objects inheritance

747 / 869

Tasking
Introduction

A Simple Task
Concurrent code execution via task

limited types (No copies allowed)

procedure Main is
task type Simple_Task_T;
task body Simple_Task_T is
begin

loop
delay 1.0;
Put_Line ("T");

end loop;
end Simple_Task_T;
Simple_Task : Simple_Task_T;
-- This task starts when Simple_Task is elaborated

begin
loop

delay 1.0;
Put_Line ("Main");

end loop;
end;

A task is started when its declaration scope is elaborated

Its enclosing scope exits when all tasks have finished
748 / 869

Tasking
Tasks

Tasks

749 / 869

Tasking
Tasks

Rendezvous Definitions
Server declares several entry

Client calls entries like subprograms

Server accept the client calls

At each standalone accept, server task blocks
Until a client calls the related entry

task type Msg_Box_T is
entry Start;
entry Receive_Message (S : String);

end Msg_Box_T;

task body Msg_Box_T is
begin

loop
accept Start;
Put_Line ("start");

accept Receive_Message (S : String) do
Put_Line ("receive " & S);

end Receive_Message;
end loop;

end Msg_Box_T;

T : Msg_Box_T;

750 / 869

Tasking
Tasks

Rendezvous Entry Calls

Upon calling an entry, client blocks
Until server reaches end of its accept block

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
T.Receive_Message ("2");

May be executed as follows:

calling start
start -- May switch place with line below
calling receive 1 -- May switch place with line above
receive 1
calling receive 2
-- Blocked until another task calls Start

751 / 869

Tasking
Tasks

Rendezvous with a Task

accept statement
Wait on single entry
If entry call waiting: Server handles it
Else: Server waits for an entry call

select statement
Several entries accepted at the same time
Can time-out on the wait
Can be not blocking if no entry call waiting
Can terminate if no clients can possibly make entry call
Can conditionally accept a rendezvous based on a guard
expression

752 / 869

Tasking
Tasks

Accepting a Rendezvous

Simple accept statement
Used by a server task to indicate a willingness to provide the service
at a given point

Selective accept statement (later in these slides)
Wait for more than one rendezvous at any time
Time-out if no rendezvous within a period of time
Withdraw its offer if no rendezvous is immediately available
Terminate if no clients can possibly call its entries
Conditionally accept a rendezvous based on a guard expression

753 / 869

Tasking
Tasks

Example: Task - Declaration

package Tasks is

task T is
entry Start;
entry Receive_Message (V : String);

end T;

end Tasks;

754 / 869

Tasking
Tasks

Example: Task - Body

with Ada.Text_IO; use Ada.Text_IO;

package body Tasks is

task body T is
begin

loop
accept Start do

Put_Line ("Start");
end Start;

accept Receive_Message (V : String) do
Put_Line ("Receive " & V);

end Receive_Message;
end loop;

end T;

end Tasks;
755 / 869

Tasking
Tasks

Example: Main

with Ada.Text_IO; use Ada.Text_IO;
with Tasks; use Tasks;

procedure Main is
begin

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
-- Locks until somebody calls Start
T.Receive_Message ("2");

end Main;

756 / 869

Tasking
Tasks

Quiz
task type T is

entry Go;
end T;

task body T is
begin

accept Go do
loop

null;
end loop;

end Go;
end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Run-time error
C. The calling task hangs
D. My_Task hangs

757 / 869

Tasking
Tasks

Quiz
task type T is

entry Go;
end T;

task body T is
begin

accept Go do
loop

null;
end loop;

end Go;
end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Run-time error
C. The calling task hangs
D. My_Task hangs

757 / 869

Tasking
Tasks

Quiz
task type T is

entry Go;
end T;

task body T is
begin

accept Go;
loop

null;
end loop;

end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Run-time error
C. The calling task hangs
D. My_Task hangs

758 / 869

Tasking
Tasks

Quiz
task type T is

entry Go;
end T;

task body T is
begin

accept Go;
loop

null;
end loop;

end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Run-time error
C. The calling task hangs
D. My_Task hangs

758 / 869

Tasking
Tasks

Quiz

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

task type T is
entry Hello;
entry Goodbye;

end T;
task body T is
begin

loop
accept Hello do

Put_Line ("Hello");
end Hello;
accept Goodbye do

Put_Line ("Goodbye");
end Goodbye;

end loop;
Put_Line ("Finished");

end T;
Task_Instance : T;

begin
Task_Instance.Hello;
Task_Instance.Goodbye;
Put_Line ("Done");

end Main;

What is the output of this
program?

A. Hello, Goodbye, Finished,
Done

B. Hello, Goodbye, Finished
C. Hello, Goodbye, Done
D. Hello, Goodbye

- Entries Hello and Goodbye are
reached (so "Hello" and
"Goodbye" are printed).
- After Goodbye, task returns to
Main (so "Done" is printed) but
the loop in the task never finishes
(so "Finished" is never printed).

759 / 869

Tasking
Tasks

Quiz

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

task type T is
entry Hello;
entry Goodbye;

end T;
task body T is
begin

loop
accept Hello do

Put_Line ("Hello");
end Hello;
accept Goodbye do

Put_Line ("Goodbye");
end Goodbye;

end loop;
Put_Line ("Finished");

end T;
Task_Instance : T;

begin
Task_Instance.Hello;
Task_Instance.Goodbye;
Put_Line ("Done");

end Main;

What is the output of this
program?

A. Hello, Goodbye, Finished,
Done

B. Hello, Goodbye, Finished
C. Hello, Goodbye, Done
D. Hello, Goodbye

- Entries Hello and Goodbye are
reached (so "Hello" and
"Goodbye" are printed).
- After Goodbye, task returns to
Main (so "Done" is printed) but
the loop in the task never finishes
(so "Finished" is never printed).

759 / 869

Tasking
Protected Objects

Protected Objects

760 / 869

Tasking
Protected Objects

Protected Objects

Multitask-safe accessors to get and set state
No direct state manipulation
No concurrent modifications
limited types (No copies allowed)

761 / 869

Tasking
Protected Objects

Protected: Functions and Procedures

A function can get the state
Multiple-Readers
Protected data is read-only
Concurrent call to function is allowed
No concurrent call to procedure

A procedure can set the state
Single-Writer

No concurrent call to either procedure or function

In case of concurrency, other callers get blocked
Until call finishes

Support for read-only locks depends on OS
Windows has no support for those
In that case, function are blocking as well

762 / 869

Tasking
Protected Objects

Protected: Limitations

No potentially blocking action
select, accept, entry call, delay, abort

task creation or activation

Some standard lib operations, eg. IO

Depends on implementation

May raise Program_Error or deadlocks

Will cause performance and portability issues

pragma Detect_Blocking forces a proactive run-time detection

Solve by deferring blocking operations
Using eg. a FIFO

763 / 869

Tasking
Protected Objects

Protected: Lock-Free Implementation

GNAT-Specific

Generates code without any locks

Best performance

No deadlock possible

Very constrained
No reference to entities outside the scope
No direct or indirect entry, goto, loop, procedure call
No access dereference
No composite parameters
See GNAT RM 2.100

protected Object
with Lock_Free is

764 / 869

Tasking
Protected Objects

Example: Protected Objects - Declaration

package Protected_Objects is

protected Object is

procedure Set (Prompt : String; V : Integer);
function Get (Prompt : String) return Integer;

private
Local : Integer := 0;

end Object;

end Protected_Objects;

765 / 869

Tasking
Protected Objects

Example: Protected Objects - Body
with Ada.Text_IO; use Ada.Text_IO;

package body Protected_Objects is

protected body Object is

procedure Set (Prompt : String; V : Integer) is
Str : constant String := "Set " & Prompt & V'Image;

begin
Local := V;
Put_Line (Str);

end Set;

function Get (Prompt : String) return Integer is
Str : constant String := "Get " & Prompt & Local'Image;

begin
Put_Line (Str);
return Local;

end Get;

end Object;

end Protected_Objects;
766 / 869

Tasking
Protected Objects

Quiz
protected O is

function Get return Integer;
procedure Set (V : Integer);

private
Val, Access_Count : Integer := 0;

end O;

protected body O is
function Get return Integer is
begin

Access_count := Access_Count + 1;
return Val;

end Get;

procedure Set (V : Integer) is
begin

Access_count := Access_Count + 1;
Val := V;

end Set;
end O;

What is the result of compiling and running this code?

A. No error
B. Compilation error
C. Run-time error

Cannot set Access_Count from a function

767 / 869

Tasking
Protected Objects

Quiz
protected O is

function Get return Integer;
procedure Set (V : Integer);

private
Val, Access_Count : Integer := 0;

end O;

protected body O is
function Get return Integer is
begin

Access_count := Access_Count + 1;
return Val;

end Get;

procedure Set (V : Integer) is
begin

Access_count := Access_Count + 1;
Val := V;

end Set;
end O;

What is the result of compiling and running this code?

A. No error
B. Compilation error
C. Run-time error

Cannot set Access_Count from a function

767 / 869

Tasking
Protected Objects

Quiz
protected P is

procedure Initialize (V : Integer);
procedure Increment;
function Decrement return Integer;
function Query return Integer;

private
Object : Integer := 0;

end P;

Which completion(s) of P is (are) illegal?

A. procedure Initialize (V : Integer) is
begin

Object := V;
end Initialize;

B. procedure Increment is
begin

Object := Object + 1;
end Increment;

C. function Decrement return Integer is
begin

Object := Object - 1;
return Object;

end Decrement;

D. function Query return Integer is begin
return Object;

end Query;

A. Legal
B. Legal - subprograms do not need parameters
C. Functions in a protected object cannot modify global objects
D. Legal

768 / 869

Tasking
Protected Objects

Quiz
protected P is

procedure Initialize (V : Integer);
procedure Increment;
function Decrement return Integer;
function Query return Integer;

private
Object : Integer := 0;

end P;

Which completion(s) of P is (are) illegal?

A. procedure Initialize (V : Integer) is
begin

Object := V;
end Initialize;

B. procedure Increment is
begin

Object := Object + 1;
end Increment;

C. function Decrement return Integer is
begin

Object := Object - 1;
return Object;

end Decrement;

D. function Query return Integer is begin
return Object;

end Query;

A. Legal
B. Legal - subprograms do not need parameters
C. Functions in a protected object cannot modify global objects
D. Legal

768 / 869

Tasking
Delays

Delays

769 / 869

Tasking
Delays

Delay Keyword

delay keyword part of tasking
Blocks for a time
Relative: Blocks for at least Duration
Absolute: Blocks until no earlier than Calendar.Time or
Real_Time.Time

with Calendar;

procedure Main is
Relative : Duration := 1.0;
Absolute : Calendar.Time

:= Calendar.Time_Of (2030, 10, 01);
begin

delay Relative;
delay until Absolute;

end Main;
770 / 869

Tasking
Task and Protected Types

Task and Protected Types

771 / 869

Tasking
Task and Protected Types

Task Activation

Instantiated tasks start running when activated

On the stack
When enclosing declarative part finishes elaborating

On the heap
Immediately at instantiation

task type First_T is ...
type First_T_A is access all First_T;

task body First_T is ...
...
declare

V1 : First_T;
V2 : First_T_A;

begin -- V1 is activated
V2 := new First_T; -- V2 is activated immediately

772 / 869

Tasking
Task and Protected Types

Single Declaration
Instantiate an anonymous task (or protected) type
Declares an object of that type

task type Task_T is
entry Start;

end Task_T;

type Task_Ptr_T is access all Task_T;

task body Task_T is
begin

accept Start;
end Task_T;
...

V1 : Task_T;
V2 : Task_Ptr_T;

begin
V1.Start;
V2 := new Task_T;
V2.all.Start;

773 / 869

Tasking
Task and Protected Types

Task Scope

Nesting is possible in any declarative block

Scope has to wait for tasks to finish before ending

At library level: program ends only when all tasks finish

package P is
task type T;

end P;

package body P is
task body T is

loop
delay 1.0;
Put_Line ("tick");

end loop;
end T;

Task_Instance : T;
end P;

774 / 869

Tasking
Task and Protected Types

Waiting on Different Entries

It is convenient to be able to accept several entries

The select statements can wait simultaneously on a list of entries
For task only
It accepts the first one that is requested

select
accept Receive_Message (V : String)
do

Put_Line ("Message : " & V);
end Receive_Message;

or
accept Stop;

exit;
end select;

775 / 869

Tasking
Task and Protected Types

Guard Conditions
accept may depend on a guard condition with when

Evaluated when entering select

May use a guard condition , that only accepts entries on a
boolean condition

Condition is evaluated when the task reaches it

task body T is
Val : Integer;
Initialized : Boolean := False;

begin
loop

select
accept Put (V : Integer) do

Val := V;
Initialized := True;

end Put;
or

when Initialized =>
accept Get (V : out Integer) do

V := Val;
end Get;

end select;
end loop;

end T;

776 / 869

Tasking
Task and Protected Types

Protected Object Entries

Special kind of protected procedure

May use a barrier which is evaluated when
A task calls an entry
A protected entry or procedure is exited

Several tasks can be waiting on the same entry

Only one may be re-activated when the barrier is relieved

protected body Stack is
entry Push (V : Integer) when Size < Buffer'Length is
...
entry Pop (V : out Integer) when Size > 0 is
...

end Object;
777 / 869

Tasking
Task and Protected Types

Discriminated Protected or Task types

Discriminant can be an access or discrete type

Resulting type is indefinite
Unless mutable

Example: counter shared between tasks

protected type Counter_T is
procedure Increment;

end Counter_T

task type My_Task (Counter : not null access Counter_T) is [...]

task body My_Task is
begin

Counter.Increment;
[...]

778 / 869

Tasking
Task and Protected Types

Using discriminant for Real-Time aspects

protected type Protected_With_Priority (Prio : System.Priority)
with Priority => Prio

is

779 / 869

Tasking
Task and Protected Types

Example: Protected Objects - Declaration

package Protected_Objects is

protected type Object is
procedure Set (Caller : Character; V : Integer);
function Get return Integer;
procedure Initialize (My_Id : Character);

private

Local : Integer := 0;
Id : Character := ' ';

end Object;

O1, O2 : Object;

end Protected_Objects;
780 / 869

Tasking
Task and Protected Types

Example: Protected Objects - Body
with Ada.Text_IO; use Ada.Text_IO;

package body Protected_Objects is

protected body Object is

procedure Initialize (My_Id : Character) is
begin

Id := My_Id;
end Initialize;

procedure Set (Caller : Character; V : Integer) is
begin

Local := V;
Put_Line ("Task-" & Caller & " Object-" & Id & " => " & V'Image);

end Set;

function Get return Integer is
begin

return Local;
end Get;

end Object;

end Protected_Objects;
781 / 869

Tasking
Task and Protected Types

Example: Tasks - Declaration

package Tasks is
task type T is

entry Start
(Id : Character; Initial_1, Initial_2 : Integer);

entry Receive_Message (Delta_1, Delta_2 : Integer);
end T;

T1, T2 : T;
end Tasks;

782 / 869

Tasking
Task and Protected Types

Example: Tasks - Body
task body T is

My_Id : Character := ' ';
...
accept Start (Id : Character; Initial_1, Initial_2 : Integer) do

My_Id := Id;
O1.Set (My_Id, Initial_1);
O2.Set (My_Id, Initial_2);

end Start;

loop
accept Receive_Message (Delta_1, Delta_2 : Integer) do

declare
New_1 : constant Integer := O1.Get + Delta_1;
New_2 : constant Integer := O2.Get + Delta_2;

begin
O1.Set (My_Id, New_1);
O2.Set (My_Id, New_2);

end;
end Receive_Message;

end loop;
783 / 869

Tasking
Task and Protected Types

Example: Main

with Tasks; use Tasks;
with Protected_Objects; use Protected_Objects;

procedure Test_Protected_Objects is
begin

O1.Initialize ('X');
O2.Initialize ('Y');
T1.Start ('A', 1, 2);
T2.Start ('B', 1_000, 2_000);
T1.Receive_Message (1, 2);
T2.Receive_Message (10, 20);

-- Ugly...
abort T1;
abort T2;

end Test_Protected_Objects;
784 / 869

Tasking
Task and Protected Types

Quiz
procedure Main is

protected type O is
entry P;

private
Ok : Boolean := False;

end O;

protected body O is
entry P when not Ok is
begin

Ok := True;
end P;

end O;
begin

O.P;
end Main;

What is the result of compiling and running this code?

A. Ok = True
B. Nothing
C. Compilation error
D. Run-time error

O is a protected type, needs instantiation

785 / 869

Tasking
Task and Protected Types

Quiz
procedure Main is

protected type O is
entry P;

private
Ok : Boolean := False;

end O;

protected body O is
entry P when not Ok is
begin

Ok := True;
end P;

end O;
begin

O.P;
end Main;

What is the result of compiling and running this code?

A. Ok = True
B. Nothing
C. Compilation error
D. Run-time error

O is a protected type, needs instantiation
785 / 869

Tasking
Some Advanced Concepts

Some Advanced Concepts

786 / 869

Tasking
Some Advanced Concepts

Waiting with a Delay
A select statement may time-out using delay or delay until

Resume execution at next statement

Multiple delay allowed
Useful when the value is not hard-coded

loop
select

accept Receive_Message (V : String) do
Put_Line ("Message : " & V);

end Receive_Message;
or

delay 50.0;
Put_Line ("Don't wait any longer");
exit;

end select;
end loop;

Task will wait up to 50 seconds for Receive_Message. If no message
is received, it will write to the console, and then restart the loop. (If
the exit wasn't there, the loop would exit the first time no message
was received.)

787 / 869

Tasking
Some Advanced Concepts

Calling an Entry with a Delay Protection

A call to entry blocks the task until the entry is accept 'ed
Wait for a given amount of time with select ... delay
Only one entry call is allowed
No accept statement is allowed

task Msg_Box is
entry Receive_Message (V : String);

end Msg_Box;

procedure Main is
begin

select
Msg_Box.Receive_Message ("A");

or
delay 50.0;

end select;
end Main;

Procedure will wait up to 50 seconds for Receive_Message to be
accepted before it gives up

788 / 869

Tasking
Some Advanced Concepts

The Delay Is Not a Timeout

The time spent by the client is actually not bounded
Delay's timer stops on accept
The call blocks until end of server-side statements

In this example, the total delay is up to 1010 s

task body Msg_Box is
accept Receive_Message (S : String) do

delay 1000.0;
end Receive_Message;

...
procedure Client is
begin

select
Msg_Box.Receive_Message ("My_Message")

or
delay 10.0;

end select;
789 / 869

Tasking
Some Advanced Concepts

Non-blocking Accept or Entry
Using else

Task skips the accept or entry call if they are not ready to be
entered

On an accept

select
accept Receive_Message (V : String) do

Put_Line ("T: Receive " & V);
end Receive_Message;

else
Put_Line ("T: Nothing received");

end select;

As caller on an entry

select
T.Stop;

else
Put_Line ("No stop");

end select;

delay is not allowed in this case
790 / 869

Tasking
Some Advanced Concepts

Issues with "Double Non-Blocking"
For accept ... else the server peeks into the queue

Server does not wait

For <entry-call> ... else the caller looks for a waiting server

If both use it, the entry will never be called

Server

select
accept Receive_Message (V : String) do

Put_Line ("T: Receive " & V);
end Receive_Message;

else
Put_Line ("T: Nothing received");

end select;

Caller

select
T.Receive_Message ("1");

else
Put_Line ("No message sent");

end select;
791 / 869

Tasking
Some Advanced Concepts

Terminate Alternative

An entry can't be called anymore if all tasks calling it are over

Handled through or terminate alternative
Terminates the task if all others are terminated
Or are blocked on or terminate themselves

Task is terminated immediately
No additional code executed

select
accept Entry_Point

or
terminate;

end select;

792 / 869

Tasking
Some Advanced Concepts

Select on Protected Objects Entries

Same as select but on task entries
With a delay part

select
O.Push (5);

or
delay 10.0;
Put_Line ("Delayed overflow");

end select;

or with an else part

select
O.Push (5);

else
Put_Line ("Overflow");

end select;
793 / 869

Tasking
Some Advanced Concepts

Queue

Protected entry, procedure, and tasks entry are activated by
one task at a time

Mutual exclusion section

Other tasks trying to enter are queued
In First-In First-Out (FIFO) by default

When the server task terminates, tasks still queued receive
Tasking_Error

794 / 869

Tasking
Some Advanced Concepts

Queuing Policy

Queuing policy can be set using

pragma Queuing_Policy (<policy_identifier>);

The following policy_identifier are available
FIFO_Queuing (default)
Priority_Queuing

FIFO_Queuing
First-in First-out, classical queue

Priority_Queuing
Takes into account priority
Priority of the calling task at time of call

795 / 869

Tasking
Some Advanced Concepts

Setting Task Priority

GNAT available priorities are 0 .. 30, see gnat/system.ads
Tasks with the highest priority are prioritized more
Priority can be set statically

task type T
with Priority => <priority_level>
is ...

Priority can be set dynamically

with Ada.Dynamic_Priorities;

task body T is
begin

Ada.Dynamic_Priorities.Set_Priority (10);
end T;

796 / 869

Tasking
Some Advanced Concepts

requeue Instruction

requeue can be called in any entry (task or protected)

Puts the requesting task back into the queue
May be handled by another entry
Or the same one...

Reschedule the processing for later

entry Extract (Qty : Integer) when True is
begin

if not Try_Extract (Qty) then
requeue Extract;

end if;
end Extract;

Same parameter values will be used on the queue
797 / 869

Tasking
Some Advanced Concepts

requeue Tricks

Only an accepted call can be requeued

Accepted entries are waiting for end

Not in a select ... or delay ... else anymore

So the following means the client blocks for 2 seconds

task body Select_Requeue_Quit is
begin

accept Receive_Message (V : String) do
requeue Receive_Message;

end Receive_Message;
delay 2.0;

end Select_Requeue_Quit;
...
select

Select_Requeue_Quit.Receive_Message ("Hello");
or

delay 0.1;
end select;

798 / 869

Tasking
Some Advanced Concepts

Abort Statements
abort stops the tasks immediately

From an external caller
No cleanup possible
Highly unsafe - should be used only as last resort

procedure Main is
task type T;

task body T is
begin

loop
delay 1.0;
Put_Line ("A");

end loop;
end T;

Task_Instance : T;
begin

delay 10.0;
abort Task_Instance;

end;
799 / 869

Tasking
Some Advanced Concepts

select ... then abort

select can call abort
Can abort anywhere in the processing
Highly unsafe

800 / 869

Tasking
Some Advanced Concepts

Multiple Select Example

loop
select

accept Receive_Message (V : String) do
Put_Line ("Select_Loop_Task Receive: " & V);

end Receive_Message;
or

accept Send_Message (V : String) do
Put_Line ("Select_Loop_Task Send: " & V);

end Send_Message;
or when Termination_Flag =>

accept Stop;
or

delay 0.5;
Put_Line

("No more waiting at" & Day_Duration'Image (Seconds (Clock)));
exit;

end select;
end loop;

801 / 869

Tasking
Some Advanced Concepts

Example: Main

with Ada.Text_IO; use Ada.Text_IO;
with Task_Select; use Task_Select;

procedure Main is
begin

Select_Loop_Task.Receive_Message ("1");
Select_Loop_Task.Send_Message ("A");
Select_Loop_Task.Send_Message ("B");
Select_Loop_Task.Receive_Message ("2");
Select_Loop_Task.Stop;

exception
when Tasking_Error =>

Put_Line ("Expected exception: Entry not reached");
end Main;

802 / 869

Tasking
Some Advanced Concepts

Quiz
task T is

entry E1;
entry E2;

end T;
...
task body Other_Task is
begin

select
T.E1;

or
T.E2;

end select;
end Other_Task;

What is the result of compiling and running this code?

A. T.E1 is called
B. Nothing
C. Compilation error
D. Run-time error

A select entry call can only call one entry at a time.

803 / 869

Tasking
Some Advanced Concepts

Quiz
task T is

entry E1;
entry E2;

end T;
...
task body Other_Task is
begin

select
T.E1;

or
T.E2;

end select;
end Other_Task;

What is the result of compiling and running this code?

A. T.E1 is called
B. Nothing
C. Compilation error
D. Run-time error

A select entry call can only call one entry at a time.
803 / 869

Tasking
Some Advanced Concepts

Quiz
procedure Main is

task T is
entry A;

end T;

task body T is
begin

select
accept A;
Put ("A");

else
delay 1.0;

end select;
end T;

begin
select

T.A;
else

delay 1.0;
end select;

end Main;

What is the output of this code?
A. "AAAAA..."
B. Nothing
C. Compilation error
D. Run-time error

Common mistake: Main and T
won't wait on each other and will
both execute their delay
statement only.

.
804 / 869

Tasking
Some Advanced Concepts

Quiz
procedure Main is

task T is
entry A;

end T;

task body T is
begin

select
accept A;
Put ("A");

else
delay 1.0;

end select;
end T;

begin
select

T.A;
else

delay 1.0;
end select;

end Main;

What is the output of this code?
A. "AAAAA..."
B. Nothing
C. Compilation error
D. Run-time error

Common mistake: Main and T
won't wait on each other and will
both execute their delay
statement only.

.
804 / 869

Tasking
Some Advanced Concepts

Quiz
procedure Main is

task type T is
entry A;

end T;

task body T is
begin

select
accept A;

or
terminate;

end select;

Put_Line ("Terminated");
end T;

My_Task : T;
begin

null;
end Main;

What is the output of this code?

A. "Terminated"
B. Nothing
C. Compilation error
D. Run-time error

T is terminated at the end of Main

805 / 869

Tasking
Some Advanced Concepts

Quiz
procedure Main is

task type T is
entry A;

end T;

task body T is
begin

select
accept A;

or
terminate;

end select;

Put_Line ("Terminated");
end T;

My_Task : T;
begin

null;
end Main;

What is the output of this code?

A. "Terminated"
B. Nothing
C. Compilation error
D. Run-time error

T is terminated at the end of Main

805 / 869

Tasking
Some Advanced Concepts

Quiz
procedure Main is
begin

select
delay 2.0;

then abort
loop

delay 1.5;
Put ("A");

end loop;
end select;

Put ("B");
end Main;

What is the output of this code?

A. "A"
B. "AAAA..."
C. "AB"
D. Compilation error
E. Run-time error

then abort aborts the select only, not Main.

806 / 869

Tasking
Some Advanced Concepts

Quiz
procedure Main is
begin

select
delay 2.0;

then abort
loop

delay 1.5;
Put ("A");

end loop;
end select;

Put ("B");
end Main;

What is the output of this code?

A. "A"
B. "AAAA..."
C. "AB"
D. Compilation error
E. Run-time error

then abort aborts the select only, not Main.
806 / 869

Tasking
Some Advanced Concepts

Quiz
procedure Main is

Ok : Boolean := False

protected type O is
entry P;

end O;

protected body O is
begin

entry P when Ok is
Put_Line ("OK");

end P;
end O;

Protected_Instance : O;

begin
Protected_Instance.P;

end Main;

What is the result of compiling and running this code?

A. OK = True
B. Nothing
C. Compilation error
D. Run-time error

Stuck on waiting for Ok to be set, Main will never terminate.

807 / 869

Tasking
Some Advanced Concepts

Quiz
procedure Main is

Ok : Boolean := False

protected type O is
entry P;

end O;

protected body O is
begin

entry P when Ok is
Put_Line ("OK");

end P;
end O;

Protected_Instance : O;

begin
Protected_Instance.P;

end Main;

What is the result of compiling and running this code?

A. OK = True
B. Nothing
C. Compilation error
D. Run-time error

Stuck on waiting for Ok to be set, Main will never terminate.
807 / 869

Tasking
Some Advanced Concepts

Standard "Embedded" Tasking Profiles

Better performances but more constrained
Ravenscar profile

Ada 2005
No select
No entry for tasks
Single entry for protected types
No entry queues

Jorvik profile
Ada 2022
Less constrained, still performant
Any number of entry for protected types
Entry queues

See RM D.13

808 / 869

Tasking
Tasking Control

Tasking Control

809 / 869

Tasking
Tasking Control

Synchronous Task Control
Primitives synchronization mechanisms and two-stage suspend
operation

No critical section
More lightweight than protected objects

Package exports a Suspension_Object type
Values are True and False, initially False

Such objects are awaited by (at most) one task

But can be set by several tasks

package Ada.Synchronous_Task_Control is
type Suspension_Object is limited private;
procedure Set_True (S : in out Suspension_Object);
procedure Set_False (S : in out Suspension_Object);
procedure Suspend_Until_True (S : in out Suspension_Object);
function Current_State (S : Suspension_Object) return Boolean;

private
...

end Ada.Synchronous_Task_Control;
810 / 869

Tasking
Tasking Control

Timing Events
User-defined actions executed at a specified wall-clock time

Calls back an access protected procedure

Do not require a task or a delay statement

package Ada.Real_Time.Timing_Events is
type Timing_Event is tagged limited private;
type Timing_Event_Handler is

access protected procedure
(Event : in out Timing_Event);

procedure Set_Handler
(Event : in out Timing_Event;
At_Time : Time;
Handler : Timing_Event_Handler);

function Current_Handler
(Event : Timing_Event)
return Timing_Event_Handler;

procedure Cancel_Handler
(Event : in out Timing_Event;
Cancelled : out Boolean);

function Time_Of_Event
(Event : Timing_Event)
return Time;

private
...

end Ada.Real_Time.Timing_Events;

811 / 869

Tasking
Tasking Control

Execution Time Clocks

Not specific to Ravenscar / Jorvik

Each task has an associated CPU time clock
Accessible via function call

Clocks starts at creation time
Before activation

Measures the task's total execution time
Including calls to libraries, O/S services...
But not including time in a blocked or suspended state

System and runtime also execute code
As well as interrupt handlers
Their execution time clock assignment is implementation-defined

812 / 869

Tasking
Tasking Control

Partition Elaboration Control

Library units are elaborated in a partially-defined order
They can declare tasks and interrupt handlers

Once elaborated, tasks start executing

Interrupts may occur as soon as hardware is enabled

May be during elaboration

This can cause race conditions
Not acceptable for certification

pragma Partition_Elaboration_Policy

813 / 869

Tasking
Tasking Control

Partition Elaboration Policy

pragma Partition_Elaboration_Policy

Defined in RM Annex H "High Integrity Systems"

Controls tasks' activation

Controls interrupt attachment

Always relative to library units' elaboration

Concurrent policy
Activation at the end of declaration's scope elaboration
Ada default policy

Sequential policy
Deferred activation and attachment until all library units are
activated
Easier scheduling analysis

814 / 869

Tasking
Lab

Lab

815 / 869

Tasking
Lab

Tasking In Depth Lab

Requirements
Create a datastore to set/inspect multiple "registers"

Individual registers can be read/written by multiple tasks

Create a "monitor" capability that will periodically update each
register

Each register has it's own update frequency

Main program should print register values on request

Hints
Datastore needs to control access to its contents
One task per register is easier than one task trying to maintain
multiple update frequencies

816 / 869

Tasking
Lab

Tasking In Depth Lab Solution - Datastore
1 package Datastore is
2 type Register_T is (One, Two, Three);
3

4 function Read (Register : Register_T) return Integer;
5 procedure Write (Register : Register_T;
6 Value : Integer);
7 end Datastore;
8

9 package body Datastore is
10 type Register_Data_T is array (Register_T) of Integer;
11

12 protected Registers is
13 function Read (Register : Register_T) return Integer;
14 procedure Write (Register : Register_T;
15 Value : Integer);
16 private
17 Register_Data : Register_Data_T;
18 end Registers;
19

20 protected body Registers is
21 function Read (Register : Register_T) return Integer is
22 (Register_Data (Register));
23 procedure Write (Register : Register_T;
24 Value : Integer) is
25 begin
26 Register_Data (Register) := Value;
27 end Write;
28 end Registers;
29

30 function Read (Register : Register_T) return Integer is
31 (Registers.Read (Register));
32 procedure Write (Register : Register_T;
33 Value : Integer) is
34 begin
35 Registers.Write (Register, Value);
36 end Write;
37 end Datastore;

817 / 869

Tasking
Lab

Tasking In Depth Lab Solution - Monitor Task Type
1 with Datastore;
2 package Counter is
3 task type Counter_T is
4 entry Initialize (Register : Datastore.Register_T;
5 Value : Integer;
6 Increment : Integer;
7 Delay_Time : Duration);
8 end Counter_T;
9 end Counter;

10

11 package body Counter is
12 task body Counter_T is
13 O_Register : Datastore.Register_T;
14 O_Increment : Integer;
15 O_Delay : Duration;
16 Initialized : Boolean := False;
17 begin
18 loop
19 select
20 accept Initialize (Register : Datastore.Register_T;
21 Value : Integer;
22 Increment : Integer;
23 Delay_Time : Duration) do
24 O_Register := Register;
25 O_Increment := Increment;
26 O_Delay := Delay_Time;
27 Datastore.Write (Register => O_Register,
28 Value => Value);
29 Initialized := True;
30 end Initialize;
31 or
32 delay O_Delay;
33 if Initialized then
34 Datastore.Write (Register => O_Register,
35 Value => Datastore.Read (O_Register) + O_Increment);
36 end if;
37 end select;
38 end loop;
39 end Counter_T;
40 end Counter;

818 / 869

Tasking
Lab

Tasking In Depth Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Counter; use Counter;
3 with Datastore; use Datastore;
4 procedure Main is
5 Counters : array (Register_T) of Counter_T;
6

7 function Get (Prompt : String) return Integer is
8 begin
9 Put (" " & Prompt & ">");

10 return Integer'Value (Get_Line);
11 end Get;
12

13 procedure Print is
14 begin
15 for Register in Register_T loop
16 Put_Line (Register'Image & " =>" & Integer'Image (Datastore.Read (Register)));
17 end loop;
18 end Print;
19

20 begin
21 for Register in Register_T loop
22 Put_Line ("Register " & Register'Image);
23 declare
24 V : constant Integer := Get ("Initial value");
25 I : constant Integer := Get ("Increment");
26 D : constant Integer := Get ("Delay in tenths");
27 begin
28 Counters (Register).Initialize (Register => Register,
29 Value => V,
30 Increment => I,
31 Delay_Time => Duration (D) / 10.0);
32 end;
33 end loop;
34

35 loop
36 Put_Line ("Enter Q to quit, any other value to print registers");
37 declare
38 Str : constant String := Get_Line;
39 begin
40 exit when Str'Length > 0 and then (Str (Str'First) in 'Q' | 'q');
41 Print;
42 end;
43 end loop;
44

45 for Register in Register_T loop
46 abort Counters (Register);
47 end loop;
48 end Main;

819 / 869

Tasking
Summary

Summary

820 / 869

Tasking
Summary

Summary

Tasks are language-based concurrency mechanisms
Typically implemented as threads
Not necessarily for truly parallel operations
Originally for task-switching / time-slicing

Multiple mechanisms to synchronize tasks
Delay
Rendezvous
Queues
Protected Objects

821 / 869

Ada Contracts

Ada Contracts

822 / 869

Ada Contracts
Introduction

Introduction

823 / 869

Ada Contracts
Introduction

Design-By-Contract

Source code acting in roles of client and supplier under a binding
contract

Contract specifies requirements or guarantees
"A specification of a software element that affects its use by
potential clients." (Bertrand Meyer)

Supplier provides services

Guarantees specific functional behavior
Has requirements for guarantees to hold

Client utilizes services

Guarantees supplier's conditions are met
Requires result to follow the subprogram's guarantees

824 / 869

Ada Contracts
Introduction

Ada Contracts

Ada contracts include enforcement
At compile-time: specific constructs, features, and rules
At run-time: language-defined and user-defined exceptions

Facilities as part of the language definition
Range specifications
Parameter modes
Generic contracts
OOP interface types
Work well, but on a restricted set of use-cases

Contract aspects to be more expressive
Carried by subprograms
... or by types (seen later)
Can have arbitrary conditions, more versatile

825 / 869

Ada Contracts
Introduction

Assertion

Boolean expression expected to be True

Said to hold when True

Language-defined pragma

The Ada.Assertions.Assert subprogram can wrap it

pragma Assert (not Full (Stack));
-- stack is not full
pragma Assert (Stack_Length = 0,

Message => "stack was not empty");
-- stack is empty

Raises language-defined Assertion_Error exception if expression
does not hold

package Ada.Assertions is
Assertion_Error : exception;
procedure Assert (Check : in Boolean);
procedure Assert (Check : in Boolean; Message : in String);

end Ada.Assertions;
826 / 869

Ada Contracts
Introduction

Defensive Programming
Should be replaced by subprogram contracts when possible

procedure Push (S : Stack) is
Entry_Length : constant Positive := Length (S);

begin
pragma Assert (not Is_Full (S)); -- entry condition
[...]
pragma Assert (Length (S) = Entry_Length + 1); -- exit condition

end Push;

Subprogram contracts are an assertion mechanism
Not a drop-in replacement for all defensive code

procedure Force_Acquire (P : Peripheral) is
begin

if not Available (P) then
-- Corrective action
Force_Release (P);
pragma Assert (Available (P));

end if;

Acquire (P);
end;

827 / 869

Ada Contracts
Introduction

Quiz

Which of the following statements is (are) correct?

A. Contract principles apply only to newer versions of the language
B. Contract should hold even for unique conditions and corner cases
C. Contract principles were first implemented in Ada
D. You cannot be both supplier and client

Explanations

A. No, but design-by-contract aspects were fully integrated into Ada
2012

B. Yes, special case should be included in the contract
C. No, in eiffel, in 1986!
D. No, in fact you are always both, even the Main has a caller!

828 / 869

Ada Contracts
Introduction

Quiz

Which of the following statements is (are) correct?

A. Contract principles apply only to newer versions of the language
B. Contract should hold even for unique conditions and corner

cases
C. Contract principles were first implemented in Ada
D. You cannot be both supplier and client

Explanations

A. No, but design-by-contract aspects were fully integrated into Ada
2012

B. Yes, special case should be included in the contract
C. No, in eiffel, in 1986!
D. No, in fact you are always both, even the Main has a caller!

828 / 869

Ada Contracts
Introduction

Quiz

Which of the following statements is (are) correct?

A. Assertions can be used in declarations
B. Assertions can be used in expressions
C. Any corrective action should happen before contract checks
D. Assertions must be checked using pragma Assert

Explanations

A. Will be checked at elaboration
B. No assertion expression, but raise expression exists
C. Exceptions as flow-control adds complexity, prefer a proactive if

to a (reactive) exception handler
D. You can call Ada.Assertions.Assert, or even directly

raise Assertion_Error

829 / 869

Ada Contracts
Introduction

Quiz

Which of the following statements is (are) correct?

A. Assertions can be used in declarations
B. Assertions can be used in expressions
C. Any corrective action should happen before contract checks
D. Assertions must be checked using pragma Assert

Explanations

A. Will be checked at elaboration
B. No assertion expression, but raise expression exists
C. Exceptions as flow-control adds complexity, prefer a proactive if

to a (reactive) exception handler
D. You can call Ada.Assertions.Assert, or even directly

raise Assertion_Error

829 / 869

Ada Contracts
Introduction

Quiz

Which of the following statements is (are) correct?

A. Defensive coding is a good practice
B. Contracts can replace all defensive code
C. Contracts are executable constructs
D. Having exhaustive contracts will prevent runtime errors

Explanations

A. Principles are sane, contracts extend those
B. See previous slide example
C. e.g. generic contracts are resolved at compile-time
D. A failing contract will cause a runtime error, only extensive

(dynamic / static) analysis of contracted code may provide
confidence in the absence of runtime errors (AoRTE)

830 / 869

Ada Contracts
Introduction

Quiz

Which of the following statements is (are) correct?

A. Defensive coding is a good practice
B. Contracts can replace all defensive code
C. Contracts are executable constructs
D. Having exhaustive contracts will prevent runtime errors

Explanations

A. Principles are sane, contracts extend those
B. See previous slide example
C. e.g. generic contracts are resolved at compile-time
D. A failing contract will cause a runtime error, only extensive

(dynamic / static) analysis of contracted code may provide
confidence in the absence of runtime errors (AoRTE)

830 / 869

Ada Contracts
Preconditions and Postconditions

Preconditions and Postconditions

831 / 869

Ada Contracts
Preconditions and Postconditions

Subprogram-based Assertions

Explicit part of a subprogram's specification
Unlike defensive code

Precondition
Assertion expected to hold prior to subprogram call

Postcondition
Assertion expected to hold after subprogram return

Requirements and guarantees on both supplier and client

Syntax uses aspects

procedure Push (This : in out Stack_T;
Value : Content_T)

with Pre => not Full (This),
Post => not Empty (This)

and Top (This) = Value;
832 / 869

Ada Contracts
Preconditions and Postconditions

Requirements / Guarantees: Quiz

Given the following piece of code

procedure Start is
begin

...
Turn_On;
...

procedure Turn_On
with Pre => Has_Power,

Post => Is_On;

Complete the table in terms of requirements and guarantees

Client (Start) Supplier (Turn_On)
Pre (Has_Power)

Requirement Guarantee

Post (Is_On)

Guarantee Requirement

833 / 869

Ada Contracts
Preconditions and Postconditions

Requirements / Guarantees: Quiz

Given the following piece of code

procedure Start is
begin

...
Turn_On;
...

procedure Turn_On
with Pre => Has_Power,

Post => Is_On;

Complete the table in terms of requirements and guarantees

Client (Start) Supplier (Turn_On)
Pre (Has_Power) Requirement Guarantee
Post (Is_On) Guarantee Requirement

833 / 869

Ada Contracts
Preconditions and Postconditions

Examples
package Stack_Pkg is

procedure Push (Item : in Integer) with
Pre => not Full,
Post => not Empty and then Top = Item;

procedure Pop (Item : out Integer) with
Pre => not Empty,
Post => not Full;

function Pop return Integer with
Pre => not Empty,
Post => not Full;

function Top return Integer with
Pre => not Empty;

function Empty return Boolean;
function Full return Boolean;

end Stack_Pkg;

package body Stack_Pkg is
Values : array (1 .. 100) of Integer;
Current : Natural := 0;

-- Push/Pop cannot fail because preconditions prevent it
procedure Push (Item : in Integer) is
begin

Current := Current + 1;
Values (Current) := Item;

end Push;

procedure Pop (Item : out Integer) is
begin

Item := Values (Current);
Current := Current - 1;

end Pop;

function Pop return Integer is
Item : constant Integer := Values (Current);

begin
Current := Current - 1;
return Item;

end Pop;

function Top return Integer is (Values (Current));
function Empty return Boolean is (Current not in Values'Range);
function Full return Boolean is (Current >= Values'Length);

end Stack_Pkg;

834 / 869

Ada Contracts
Preconditions and Postconditions

Preconditions

Define obligations on client for successful call
Precondition specifies required conditions
Clients must meet precondition for supplier to succeed

Boolean expressions
Arbitrary complexity
Specified via aspect name Pre

Checked prior to call by client
Assertion_Error raised if false

procedure Push (This : in out Stack; Value : Content)
with Pre => not Full (This);

835 / 869

Ada Contracts
Preconditions and Postconditions

Postconditions

Define obligations on supplier
Specify guaranteed conditions after call

Boolean expressions (same as preconditions)
Specified via aspect name Post

Content as for preconditions, plus some extras

Checked after corresponding subprogram call
Assertion_Error raised if false

procedure Push (This : in out Stack; Value : Content)
with Pre => not Full (This),

Post => not Empty (This) and Top (This) = Value;
...
function Top (This : Stack) return Content

with Pre => not Empty (This);
836 / 869

Ada Contracts
Preconditions and Postconditions

Postcondition 'Old Attribute

Values as they were just before the call

Uses language-defined attribute 'Old

Can be applied to most any visible object

limited types are forbidden
May be expensive

Expression can be arbitrary
Typically out, in out parameters and globals

procedure Increment (This : in out Integer) with
Pre => This < Integer'Last,
Post => This = This'Old + 1;

837 / 869

Ada Contracts
Preconditions and Postconditions

Function Postcondition 'Result Attribute

function result can be manipulated with 'Result

838 / 869

Ada Contracts
Preconditions and Postconditions

Preconditions and Postconditions Example

Multiple aspects separated by commas

procedure Push (This : in out Stack;
Value : Content)

with Pre => not Full (This),
Post => not Empty (This) and Top (This) = Value;

839 / 869

Ada Contracts
Preconditions and Postconditions

Quiz

function Area (L : Positive; H : Positive) return Positive is
(L * H)

with Pre => ?

Which pre-condition is necessary for Area to calculate the correct result
for all values L and H?

A. L > 0 and H > 0
B. L < Positive'Last and H < Positive'Last
C. L * H in Positive
D. None of the above

Explanations

A. Parameters are Positive, so this is unnecessary
B. Overflow for large numbers
C. Classic trap: the check itself may cause an overflow!

The correct precondition would be
Integer'Last / L <= H

to prevent overflow errors on the range check.

840 / 869

Ada Contracts
Preconditions and Postconditions

Quiz

function Area (L : Positive; H : Positive) return Positive is
(L * H)

with Pre => ?

Which pre-condition is necessary for Area to calculate the correct result
for all values L and H?

A. L > 0 and H > 0
B. L < Positive'Last and H < Positive'Last
C. L * H in Positive
D. None of the above

Explanations

A. Parameters are Positive, so this is unnecessary
B. Overflow for large numbers
C. Classic trap: the check itself may cause an overflow!

The correct precondition would be
Integer'Last / L <= H

to prevent overflow errors on the range check.
840 / 869

Ada Contracts
Preconditions and Postconditions

Quiz

type Index_T is range 1 .. 100;
-- Database initialized such that value for component at I = I
Database : array (Index_T) of Integer;
-- Set the value for component Index to Value and
-- then increment Index by 1
function Set_And_Move (Value : Integer;

Index : in out Index_T)
return Boolean

with Post => ...

Given the following expressions, what is their value if they are evaluated
in the postcondition of the call Set_And_Move (-1, 10)

Database'Old (Index)

11 Use new index in copy of original Database

Database (Index`Old)

-1 Use copy of original index in current Database

Database (Index)'Old

10 Evaluation of Database (Index) before call

841 / 869

Ada Contracts
Preconditions and Postconditions

Quiz

type Index_T is range 1 .. 100;
-- Database initialized such that value for component at I = I
Database : array (Index_T) of Integer;
-- Set the value for component Index to Value and
-- then increment Index by 1
function Set_And_Move (Value : Integer;

Index : in out Index_T)
return Boolean

with Post => ...

Given the following expressions, what is their value if they are evaluated
in the postcondition of the call Set_And_Move (-1, 10)

Database'Old (Index) 11 Use new index in copy of original Database
Database (Index`Old) -1 Use copy of original index in current Database
Database (Index)'Old 10 Evaluation of Database (Index) before call

841 / 869

Ada Contracts
Preconditions and Postconditions

Separations of Concerns
Pre and Post fit together

function Val return Integer
with Post => F'Result /= 0

is (if Val_Raw > 0 then Val_Raw else 1);

procedure Process (I : Integer)
with Pre => I /= 0

is (Set_Output (10 / I));

[...]

Process (Val);

Review of interface: guaranteed to work
What is returned by Val is always valid for Process
Need to check implementations

Review of implementation
Val always returns a value that is /= 0
Process accepts any value that is /= 0

Great separation of concerns
a team (Clients) could be in charge of reviewing the interface part
another team (Suppliers) could be in charge of reviewing the
implementation part
both would use the contracts as a common understanding
Tools can do an automated review / validation: GNAT Static
Analysis Suite, SPARK

842 / 869

Ada Contracts
Preconditions and Postconditions

No Secret Precondition Requirements

Client should be able to guarantee them
Enforced by the compiler

package P is
function Foo return Bar

with Pre => Hidden; -- illegal private reference
private

function Hidden return Boolean;
end P;

843 / 869

Ada Contracts
Preconditions and Postconditions

Postconditions Are Good Documentation

procedure Reset
(Unit : in out DMA_Controller;
Stream : DMA_Stream_Selector)

with Post =>
not Enabled (Unit, Stream) and
Operating_Mode (Unit, Stream) = Normal_Mode and
Selected_Channel (Unit, Stream) = Channel_0 and
not Double_Buffered (Unit, Stream) and
Priority (Unit, Stream) = Priority_Low and
(for all Interrupt in DMA_Interrupt =>

not Interrupt_Enabled (Unit, Stream, Interrupt));

844 / 869

Ada Contracts
Preconditions and Postconditions

Contracts Code Reuse
Contracts are about usage and behaviour

Not optimization
Not implementation details
Abstraction level is typically high

Extracting them to function is a good idea
Code as documentation, executable specification
Completes the interface that the client has access to
Allows for code reuse

procedure Withdraw (This : in out Account;
Amount : Currency) with

Pre => Open (This) and Funds_Available (This, Amount),
Post => Balance (This) = Balance (This)'Old - Amount;

...
function Funds_Available (This : Account;

Amount : Currency)
return Boolean is

(Amount > 0.0 and then Balance (This) >= Amount)
with Pre => Open (This);

A function may be unavoidable
Referencing private type components

845 / 869

Ada Contracts
Preconditions and Postconditions

Assertion Policy
Assertions checks can be controlled with
pragma Assertion_Policy

pragma Assertion_Policy
(Pre => Check,
Post => Ignore);

Fine granularity over assertion kinds and policy identifiers

https://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_rm/
implementation_defined_pragmas.html#pragma-assertion-policy

Certain advantage over explicit checks which are harder to disable
Conditional compilation via global constant Boolean

procedure Push (This : in out Stack; Value : Content) is
begin

if Debugging then
if Full (This) then

raise Overflow;
end if;

end if;
846 / 869

https://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_rm/implementation_defined_pragmas.html#pragma-assertion-policy
https://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_rm/implementation_defined_pragmas.html#pragma-assertion-policy

Ada Contracts
Type Invariants

Type Invariants

847 / 869

Ada Contracts
Type Invariants

Strong Typing

Ada supports strong typing

type Small_Integer_T is range -1_000 .. 1_000;
type Enumerated_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
type Array_T is array (1 .. 3) of Boolean;

What if we need stronger enforcement?
Number must be even
Subset of non-consecutive enumerals
Array should always be sorted

Type Invariant
Property of type that is always true on external reference
Guarantee to client, similar to subprogram postcondition

Subtype Predicate
Property of type that is always true, unconditionally
Can add arbitrary constraints to a type, unlike the "basic" type
system

848 / 869

Ada Contracts
Type Invariants

Examples
package Bank is

type Account_T is private with Type_Invariant => Consistent_Balance (Account_T);
type Currency_T is delta 0.01 digits 12;
function Consistent_Balance (This : Account_T) return Boolean;
procedure Open (This : in out Account_T; Initial_Deposit : Currency_T);

private
type Vector_T is array (1 .. 100) of Currency_T;
type Transaction_Vector_T is record

Values : Vector_T;
Count : Natural := 0;

end record;
type Account_T is record -- initial state MUST satisfy invariant

Current_Balance : Currency_T := 0.0;
Withdrawals : Transaction_Vector_T;
Deposits : Transaction_Vector_T;

end record;
end Bank;

package body Bank is
function Total (This : Transaction_Vector_T) return Currency_T is

Result : Currency_T := 0.0;
begin

for I in 1 .. This.Count loop -- no iteration if list empty
Result := Result + This.Values (I);

end loop;
return Result;

end Total;
function Consistent_Balance (This : Account_T) return Boolean is

(Total (This.Deposits) - Total (This.Withdrawals) = This.Current_Balance);
procedure Open (This : in out Account_T; Initial_Deposit : Currency_T) is
begin

This.Current_Balance := Initial_Deposit;
-- if we checked, the invariant would be false here!
This.Withdrawals.Count := 0;
This.Deposits.Count := 1;
This.Deposits.Values (1) := Initial_Deposit;

end Open; -- invariant is now true
end Bank;

849 / 869

Ada Contracts
Type Invariants

Type Invariant

Applied to private types

Evaluated as postcondition of creation, evaluation, or return object
When objects first created

Assignment by clients

Type conversions

Creates new instances

Not evaluated on internal state changes
Internal routine calls
Internal assignments

Remember - these are abstract data types

850 / 869

Ada Contracts
Type Invariants

Invariant Over Object Lifetime (Calls)

Exported Routine Call

Exported Routine Call

Imported Routine Call

Automatic
Type Invariant

Check

No invariant checks

Raise
Assertion_Error

Exception

851 / 869

Ada Contracts
Type Invariants

Example Type Invariant

A bank account balance must always be consistent
Consistent Balance: Total Deposits - Total Withdrawals = Balance

package Bank is
type Account is private with

Type_Invariant => Consistent_Balance (Account);
...
-- Called automatically for all Account objects
function Consistent_Balance (This : Account)

return Boolean;
...

private
...

end Bank;

852 / 869

Ada Contracts
Type Invariants

Invariants Don't Apply Internally

No checking within supplier package
Otherwise there would be no way to implement anything!

Only matters when clients can observe state

procedure Open (This : in out Account;
Name : in String;
Initial_Deposit : in Currency) is

begin
This.Owner := To_Unbounded_String (Name);
This.Current_Balance := Initial_Deposit;
-- invariant would be false here!
This.Withdrawals := Transactions.Empty_Vector;
This.Deposits := Transactions.Empty_Vector;
This.Deposits.Append (Initial_Deposit);
-- invariant is now true

end Open;
853 / 869

Ada Contracts
Type Invariants

Quiz

package P is
type Some_T is private;
procedure Do_Something (X : in out Some_T);

private
function Counter (I : Integer) return Boolean;
type Some_T is new Integer with

Type_Invariant => Counter (Integer (Some_T));
end P;

package body P is
function Local_Do_Something (X : Some_T)

return Some_T is
Z : Some_T := X + 1;

begin
return Z;

end Local_Do_Something;
procedure Do_Something (X : in out Some_T) is
begin

X := X + 1;
X := Local_Do_Something (X);

end Do_Something;
function Counter (I : Integer)

return Boolean is
(True);

end P;

If Do_Something is called from
outside of P, how many times is
Counter called?

A. 1
B. 2
C. 3
D. 4

Type Invariants are only evaluated
on entry into and exit from
externally visible subprograms. So
Counter is called when entering
and exiting Do_Something - not
Local_Do_Something, even
though a new instance of Some_T
is created

854 / 869

Ada Contracts
Type Invariants

Quiz

package P is
type Some_T is private;
procedure Do_Something (X : in out Some_T);

private
function Counter (I : Integer) return Boolean;
type Some_T is new Integer with

Type_Invariant => Counter (Integer (Some_T));
end P;

package body P is
function Local_Do_Something (X : Some_T)

return Some_T is
Z : Some_T := X + 1;

begin
return Z;

end Local_Do_Something;
procedure Do_Something (X : in out Some_T) is
begin

X := X + 1;
X := Local_Do_Something (X);

end Do_Something;
function Counter (I : Integer)

return Boolean is
(True);

end P;

If Do_Something is called from
outside of P, how many times is
Counter called?

A. 1
B. 2
C. 3
D. 4

Type Invariants are only evaluated
on entry into and exit from
externally visible subprograms. So
Counter is called when entering
and exiting Do_Something - not
Local_Do_Something, even
though a new instance of Some_T
is created

854 / 869

Ada Contracts
Subtype Predicates

Subtype Predicates

855 / 869

Ada Contracts
Subtype Predicates

Examples
with Ada.Exceptions; use Ada.Exceptions;
with Ada.Text_IO; use Ada.Text_IO;
procedure Predicates is

subtype Even_T is Integer with Dynamic_Predicate => Even_T mod 2 = 0;
type Serial_Baud_Rate_T is range 110 .. 115_200 with

Static_Predicate => Serial_Baud_Rate_T in -- Non-contiguous range
2_400 | 4_800 | 9_600 | 14_400 | 19_200 | 28_800 | 38_400 | 56_000;

-- This must be dynamic because "others" will be evaluated at run-time
subtype Vowel_T is Character with Dynamic_Predicate =>

(case Vowel_T is when 'A' | 'E' | 'I' | 'O' | 'U' => True, when others => False);

type Table_T is array (Integer range <>) of Integer;
subtype Sorted_Table_T is Table_T (1 .. 5) with

Dynamic_Predicate =>
(for all K in Sorted_Table_T'Range =>

(K = Sorted_Table_T'First or else Sorted_Table_T (K - 1) <= Sorted_Table_T (K)));

J : Even_T;
Values : Sorted_Table_T := (1, 3, 5, 7, 9);

begin
begin

Put_Line ("J is" & J'Image);
J := Integer'Succ (J); -- assertion failure here
Put_Line ("J is" & J'Image);
J := Integer'Succ (J); -- or maybe here
Put_Line ("J is" & J'Image);

exception
when The_Err : others =>

Put_Line (Exception_Message (The_Err));
end;

for Baud in Serial_Baud_Rate_T loop
Put_Line (Baud'Image);

end loop;

Put_Line (Vowel_T'Image (Vowel_T'Succ ('A')));
Put_Line (Vowel_T'Image (Vowel_T'Pred ('Z')));

begin
Values (3) := 0; -- not an exception
Values := (1, 3, 0, 7, 9); -- exception

exception
when The_Err : others =>

Put_Line (Exception_Message (The_Err));
end;

end Predicates;

856 / 869

Ada Contracts
Subtype Predicates

Predicates

Assertion expected to hold for all objects of given type

Expressed as any legal boolean expression in Ada
Quantified and conditional expressions
Boolean function calls

Two forms in Ada
Static Predicates

Specified via aspect named Static_Predicate

Dynamic Predicates
Specified via aspect named Dynamic_Predicate

Can apply to type or subtype

857 / 869

Ada Contracts
Subtype Predicates

Why Two Predicate Forms?

Static Dynamic

Content More Restricted Less Restricted
Placement Less Restricted More Restricted

Static predicates can be used in more contexts
More restrictions on content
Can be used in places Dynamic Predicates cannot

Dynamic predicates have more expressive power
Fewer restrictions on content
Not as widely available

858 / 869

Ada Contracts
Subtype Predicates

Subtype Predicate Examples

Dynamic Predicate

subtype Even is Integer with Dynamic_Predicate =>
Even mod 2 = 0; -- Boolean expression
-- (Even indicates "current instance")

Static Predicate

type Serial_Baud_Rate is range 110 .. 115200
with Static_Predicate => Serial_Baud_Rate in

-- Non-contiguous range
110 | 300 | 600 | 1200 | 2400 | 4800 |
9600 | 14400 | 19200 | 28800 | 38400 | 56000 |
57600 | 115200;

859 / 869

Ada Contracts
Subtype Predicates

Predicate Checking

Calls inserted automatically by compiler

Violations raise exception Assertion_Error

When predicate does not hold (evaluates to False)

Checks are done before value change
Same as language-defined constraint checks

Associated variable is unchanged when violation is detected

860 / 869

Ada Contracts
Subtype Predicates

Predicate Expression Content

Reference to value of type itself, i.e., "current instance"

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = 0;

J, K : Even := 42;

Any visible object or function in scope
Does not have to be defined before use
Relaxation of "declared before referenced" rule of linear elaboration
Intended especially for (expression) functions declared in same
package spec

861 / 869

Ada Contracts
Subtype Predicates

Static Predicates

Static means known at compile-time, informally
Language defines meaning formally (RM 3.2.4)

Allowed in contexts in which compiler must be able to verify
properties

Content restrictions on predicate are necessary

Ordinary Ada static expressions

Static membership test selected by current instance

Example

type Serial_Baud_Rate is range 110 .. 115200
with Static_Predicate => Serial_Baud_Rate in

-- Non-contiguous range
110 | 300 | 600 | 1200 | 2400 | 4800 | 9600 |
14400 | 19200 | 28800 | 38400 | 56000 | 57600 | 115200;

862 / 869

Ada Contracts
Subtype Predicates

Dynamic Predicate Expression Content

Any arbitrary boolean expression
Hence all allowed static predicates' content

Plus additional operators, etc.

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = 0;

subtype Vowel is Character with Dynamic_Predicate =>
(case Vowel is
when 'A' | 'E' | 'I' | 'O' | 'U' => True,
when others => False); -- evaluated at run-time

Plus calls to functions
User-defined
Language-defined

863 / 869

Ada Contracts
Subtype Predicates

Beware Accidental Recursion in Predicate
Involves functions because predicates are expressions

Caused by checks on function arguments

Infinitely recursive example

type Sorted_Table is array (1 .. N) of Integer with
Dynamic_Predicate => Sorted (Sorted_Table);

-- on call, predicate is checked!
function Sorted (T : Sorted_Table) return Boolean;

Non-recursive example

type Sorted_Table is array (1 .. N) of Integer with
Dynamic_Predicate =>
(for all K in Sorted_Table'Range =>

(K = Sorted_Table'First
or else Sorted_Table (K - 1) <= Sorted_Table (K)));

Type-based example

type Table is array (1 .. N) of Integer;
subtype Sorted_Table is Table with

Dynamic_Predicate => Sorted (Sorted_Table);
function Sorted (T : Table) return Boolean;

864 / 869

Ada Contracts
Subtype Predicates

Quiz
type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
function Is_Weekday (D : Days_T) return Boolean is

(D /= Sun and then D /= Sat);

Which of the following is a valid subtype predicate?

A. subtype T is Days_T with
Static_Predicate => T in Sun | Sat;

B. subtype T is Days_T with Static_Predicate =>
(if T = Sun or else T = Sat then True else False);

C. subtype T is Days_T with
Static_Predicate => not Is_Weekday (T);

D. subtype T is Days_T with
Static_Predicate =>

case T is when Sat | Sun => True,
when others => False;

Explanations

A. Correct
B. If statement not allowed in a predicate
C. Function call not allowed in Static_Predicate (this would be

OK for Dynamic_Predicate)
D. Missing parentheses around case expression

865 / 869

Ada Contracts
Subtype Predicates

Quiz
type Days_T is (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
function Is_Weekday (D : Days_T) return Boolean is

(D /= Sun and then D /= Sat);

Which of the following is a valid subtype predicate?

A. subtype T is Days_T with
Static_Predicate => T in Sun | Sat;

B. subtype T is Days_T with Static_Predicate =>
(if T = Sun or else T = Sat then True else False);

C. subtype T is Days_T with
Static_Predicate => not Is_Weekday (T);

D. subtype T is Days_T with
Static_Predicate =>

case T is when Sat | Sun => True,
when others => False;

Explanations

A. Correct
B. If statement not allowed in a predicate
C. Function call not allowed in Static_Predicate (this would be

OK for Dynamic_Predicate)
D. Missing parentheses around case expression

865 / 869

Ada Contracts
Summary

Summary

866 / 869

Ada Contracts
Summary

Working with Type Invariants

They are not completely foolproof
External corruption is possible
Requires dubious usage

Violations are intended to be supplier bugs
But not necessarily so, since not always bullet-proof

However, reasonable designs will be foolproof

867 / 869

Ada Contracts
Summary

Type Invariants Vs Predicates

Type Invariants are valid at external boundary
Useful for complex types - type may not be consistent during an
operation

Predicates are like other constraint checks
Checked on declaration, assignment, calls, etc

868 / 869

Ada Contracts
Summary

Contract-Based Programming Benefits

Facilitates building software with reliability built-in
Software cannot work well unless "well" is carefully defined
Clarifies design by defining obligations/benefits

Enhances readability and understandability
Specification contains explicitly expressed properties of code

Improves testability but also likelihood of passing!

Aids in debugging

Facilitates tool-based analysis
Compiler checks conformance to obligations
Static analyzers (e.g., SPARK, GNAT Static Analysis Suite) can
verify explicit preconditions and postconditions

869 / 869

	Introduction
	About AdaCore
	About This Training

	Basic Types
	Introduction
	Discrete Numeric Types
	Modular Types
	Enumeration Types
	Representation Values
	Character Types
	Real Types
	Base Type
	Miscellaneous
	Subtypes
	Subtypes - Full Picture
	Lab
	Summary

	Record Types
	Introduction
	Components Rules
	Operations
	Aggregates
	Default Values
	Variant Records
	Lab
	Summary

	Discriminated Records
	Introduction
	Variant Records
	Discriminant Record Array Size Idiom
	Interfacing with C
	Lab
	Summary

	Array Types
	Introduction
	Constrained Array Types
	Unconstrained Array Types
	Attributes
	Operations
	Looping Over Array Components
	Aggregates
	Detour - 'Image for Complex Types
	Anonymous Array Types
	Lab
	Summary

	Type Derivation
	Introduction
	Simple Derivation
	Primitives
	Freeze Point
	Summary

	Expressions
	Introduction
	Membership Tests
	Qualified Names
	Conditional Expressions
	Quantified Expressions
	Lab
	Summary

	Limited Types
	Introduction
	Declarations
	Creating Values
	Extended Return Statements
	Combining Limited and Private Views
	Lab
	Summary

	Private Types
	Introduction
	Implementing Abstract Data Types Via Views
	Private Part Construction
	View Operations
	When to Use or Avoid Private Types
	Idioms
	Lab
	Summary

	Access Types In Depth
	Introduction
	Access Types
	Pool-Specific Access Types
	General Access Types
	Accessibility Checks
	Memory Corruption
	Anonymous Access Types
	Memory Management
	Memory Debugging
	Memory Control
	Advanced Access Type Safety
	Lab
	Summary

	Controlled Types
	Introduction
	Ada.Finalization
	Example
	Lab
	Summary

	Expert Resource Management
	Indefinite Private
	Reference Counting Using Controlled Types
	Logger
	Refcounting Wrapper for External C Objects
	GNAT Semaphores
	Task Safe Interfaces

	Genericity
	Introduction
	Creating Generics
	Generic Data
	Generic Formal Data
	Generic Completion
	Summary

	Tagged Derivation
	Introduction
	Tagged Derivation
	Extending Tagged Types
	Lab
	Summary

	Multiple Inheritance
	Introduction
	Interfaces
	Lab
	Summary

	Polymorphism
	Introduction
	Classes of Types
	Dispatching and Redispatching
	Exotic Dispatching Operations
	Lab
	Summary

	Exceptions In-Depth
	Introduction
	Handlers
	Implicitly and Explicitly Raised Exceptions
	Language-Defined Exceptions
	User-Defined Exceptions
	Propagation
	Partial and Nested Handlers
	Exceptions As Objects
	Raise Expressions
	In Practice
	Lab
	Summary

	Tasking
	Introduction
	Tasks
	Protected Objects
	Delays
	Task and Protected Types
	Some Advanced Concepts
	Tasking Control
	Lab
	Summary

	Ada Contracts
	Introduction
	Preconditions and Postconditions
	Type Invariants
	Subtype Predicates
	Summary

