
Day 1 - AM

1 / 797

Introduction

Introduction

2 / 797

Introduction
About AdaCore

About AdaCore

3 / 797

Introduction
About AdaCore

The Company

Founded in 1994

Centered around helping developers build safe, secure and
reliable software

Headquartered in New York and Paris
Representatives in countries around the globe

Roots in Open Source software movement
GNAT compiler is part of GNU Compiler Collection (GCC)

4 / 797

Introduction
About This Training

About This Training

5 / 797

Introduction
About This Training

Your Trainer

Experience in software development
Languages
Methodology

Experience teaching this class

6 / 797

Introduction
About This Training

Goals of the training session

What you should know by the end of the training

Syllabus overview
The syllabus is a guide, but we might stray off of it
...and that's OK: we're here to cover your needs

7 / 797

Introduction
About This Training

Course Presentation

Slides

Quizzes

Labs
Hands-on practice
Recommended setup: latest GNAT Studio
Class reflection after some labs

Demos
Depending on the context

Daily schedule

8 / 797

Introduction
About This Training

Styles

This is a definition
this/is/a.path
code is highlighted
commands are emphasised --like-this

Warning
This is a warning

Note
This is an important piece of info

Tip
This is a tip

9 / 797

Basic Types

Basic Types

10 / 797

Basic Types
Modular Types

Modular Types

11 / 797

Basic Types
Modular Types

Bit Pattern Values and Range Constraints

Binary based assignments possible
No Constraint_Error when in range
Even if they would be <= 0 as a signed integer type

procedure Demo is
type Byte is mod 256; -- 0 .. 255
B : Byte;

begin
B := 2#1000_0000#; -- not a negative value

end Demo;

12 / 797

Basic Types
Modular Types

Modular Range Must Be Respected

procedure P_Unsigned is
type Byte is mod 2**8; -- 0 .. 255
B : Byte;
type Signed_Byte is range -128 .. 127;
SB : Signed_Byte;

begin
...
B := -256; -- compile error
SB := -1;
B := Byte (SB); -- run-time error
...

end P_Unsigned;

13 / 797

Basic Types
Modular Types

Safely Converting Signed to Unsigned

Conversion may raise Constraint_Error

Use T'Mod to return argument mod T'Modulus

Universal_Integer argument
So any integer type allowed

procedure Test is
type Byte is mod 2**8; -- 0 .. 255
B : Byte;
type Signed_Byte is range -128 .. 127;
SB : Signed_Byte;

begin
SB := -1;
B := Byte'Mod (SB); -- OK (255)

14 / 797

Basic Types
Modular Types

Package Interfaces

Standard package

Integer types with defined bit length

type My_Base_Integer is new Integer;
pragma Assert (My_Base_Integer'First = -2**31);
pragma Assert (My_Base_Integer'Last = 2**31-1);

- Dealing with hardware registers

Note: Shorter may not be faster for integer maths
Modern 64-bit machines are not efficient at 8-bit maths

type Integer_8 is range -2**7 .. 2**7-1;
for Integer_8'Size use 8;
-- and so on for 16, 32, 64 bit types...

15 / 797

Basic Types
Modular Types

Shift/Rotate Functions

In Interfaces package
Shift_Left
Shift_Right
Shift_Right_Arithmetic
Rotate_Left
etc.

See RM B.2 - The Package Interfaces

16 / 797

Basic Types
Modular Types

Bit-Oriented Operations Example

Assuming Unsigned_16 is used
16-bits modular

with Interfaces;
use Interfaces;
...
procedure Swap (X : in out Unsigned_16) is
begin

X := (Shift_Left (X,8) and 16#FF00#) or
(Shift_Right (X,8) and 16#00FF#);

end Swap;

17 / 797

Basic Types
Modular Types

Why No Implicit Shift and Rotate?

Arithmetic, logical operators available implicitly

Why not Shift, Rotate, etc. ?

By excluding other solutions
As functions in standard → May hide user-defined declarations
As new operators → New operators for a single type
As reserved words → Not upward compatible

18 / 797

Basic Types
Modular Types

Shift/Rotate for User-Defined Types

Must be modular types

Approach 1: use Interfaces's types
Unsigned_8, Unsigned_16 ...

Approach 2: derive from Interfaces's types
Operations are inherited
More on that later

type Byte is new Interfaces.Unsigned_8;

Approach 3: use GNAT's intrinsic
Conditions on function name and type representation
See GNAT UG 8.11

function Shift_Left
(Value : T;
Amount : Natural) return T with Import,

Convention => Intrinsic;
19 / 797

Basic Types
Modular Types

Quiz

type T is mod 256;
V : T := 255;

Which statement(s) is (are) legal?

A. V := V + 1
B. V := 16#ff#
C. V := 256
D. V := 255 + 1

20 / 797

Basic Types
Modular Types

Quiz

type T is mod 256;
V : T := 255;

Which statement(s) is (are) legal?

A. V := V + 1
B. V := 16#ff#
C. V := 256
D. V := 255 + 1

20 / 797

Basic Types
Modular Types

Quiz

with Interfaces; use Interfaces;

type T1 is new Unsigned_8;
V1 : T1 := 255;

type T2 is mod 256;
V2 : T2 := 255;

Which statement(s) is (are) legal?

A. V1 := Rotate_Left (V1, 1)
B. V1 := Positive'First
C. V2 := 1 and V2
D. V2 := Rotate_Left (V2, 1)
E. V2 := T2'Mod (2.0)

21 / 797

Basic Types
Modular Types

Quiz

with Interfaces; use Interfaces;

type T1 is new Unsigned_8;
V1 : T1 := 255;

type T2 is mod 256;
V2 : T2 := 255;

Which statement(s) is (are) legal?

A. V1 := Rotate_Left (V1, 1)
B. V1 := Positive'First
C. V2 := 1 and V2
D. V2 := Rotate_Left (V2, 1)
E. V2 := T2'Mod (2.0)

21 / 797

Basic Types
Representation Values

Representation Values

22 / 797

Basic Types
Representation Values

Enumeration Representation Values
Numeric representation of enumerals

Position, unless redefined

Redefinition syntax

type Enum_T is (Able, Baker, Charlie, David);
for Enum_T use

(Able => 3, Baker => 15, Charlie => 63, David => 255);

Enumerals are ordered logically (not by value)

Prior to Ada 2022
Only way to get value is through Unchecked_Conversion

function Value is new Ada.Unchecked_Conversion
(Enum_T, Integer_8);

I : Integer_8;

begin
I := Value (Charlie);

New attributes in Ada 2022
'Enum_Rep to get representation value

Charlie'Enum_Rep → 63

'Enum_Val to convert integer to enumeral (if possible)

Enum_T'Enum_Val (15) → Baker

Enum_T'Enum_Val (16) → raise Constraint_Error

23 / 797

Basic Types
Representation Values

Order Attributes for All Discrete Types

All discrete types, mostly useful for enumerated types

T'Pos (Input)

"Logical position number" of Input

T'Val (Input)

Converts "logical position number" to T

type Days is (Sun, Mon, Tue, Wed, Thu, Fri, Sat); -- 0 .. 6
Today : Days := Some_Value;
Position : Integer;
...
Position := Days'Pos (Today);
...
Get (Position);
Today := Days'Val (Position);

24 / 797

Basic Types
Representation Values

Quiz

type T is (Left, Top, Right, Bottom);
V : T := Left;

Which of the following proposition(s) are true?

A. T'Value (V) = 1
B. T'Pos (V) = 0
C. T'Image (T'Pos (V)) = Left
D. T'Val (T'Pos (V) - 1) = Bottom

25 / 797

Basic Types
Representation Values

Quiz

type T is (Left, Top, Right, Bottom);
V : T := Left;

Which of the following proposition(s) are true?

A. T'Value (V) = 1
B. T'Pos (V) = 0
C. T'Image (T'Pos (V)) = Left
D. T'Val (T'Pos (V) - 1) = Bottom

25 / 797

Basic Types
Character Types

Character Types

26 / 797

Basic Types
Character Types

Language-Defined Character Types

Character

8-bit Latin-1
Base component of String
Uses attributes 'Image / 'Value

Wide_Character

16-bit Unicode
Base component of Wide_Strings
Uses attributes 'Wide_Image / 'Wide_Value

Wide_Wide_Character

32-bit Unicode
Base component of Wide_Wide_Strings
Uses attributes 'Wide_Wide_Image / 'Wide_Wide_Value

27 / 797

Basic Types
Character Types

Character Oriented Packages

Language-defined

Ada.Characters.Handling

Classification
Conversion

Ada.Characters.Latin_1

Characters as constants

See RM Annex A for details

28 / 797

Basic Types
Character Types

Ada.Characters.Latin_1 Sample Content

package Ada.Characters.Latin_1 is
NUL : constant Character := Character'Val (0);
...
LF : constant Character := Character'Val (10);
VT : constant Character := Character'Val (11);
FF : constant Character := Character'Val (12);
CR : constant Character := Character'Val (13);
...
Commercial_At : constant Character := '@'; -- Character'Val (64)
...
LC_A : constant Character := 'a'; -- Character'Val (97)
LC_B : constant Character := 'b'; -- Character'Val (98)
...
Inverted_Exclamation : constant Character := Character'Val (161);
Cent_Sign : constant Character := Character'Val (162);

...
LC_Y_Diaeresis : constant Character := Character'Val (255);

end Ada.Characters.Latin_1;
29 / 797

Basic Types
Character Types

Ada.Characters.Handling Sample Content
package Ada.Characters.Handling is

function Is_Control (Item : Character) return Boolean;
function Is_Graphic (Item : Character) return Boolean;
function Is_Letter (Item : Character) return Boolean;
function Is_Lower (Item : Character) return Boolean;
function Is_Upper (Item : Character) return Boolean;
function Is_Basic (Item : Character) return Boolean;
function Is_Digit (Item : Character) return Boolean;
function Is_Decimal_Digit (Item : Character) return Boolean renames Is_Digit;
function Is_Hexadecimal_Digit (Item : Character) return Boolean;
function Is_Alphanumeric (Item : Character) return Boolean;
function Is_Special (Item : Character) return Boolean;
function To_Lower (Item : Character) return Character;
function To_Upper (Item : Character) return Character;
function To_Basic (Item : Character) return Character;
function To_Lower (Item : String) return String;
function To_Upper (Item : String) return String;
function To_Basic (Item : String) return String;

...
end Ada.Characters.Handling;

30 / 797

Basic Types
Character Types

Quiz

type T1 is (NUL, A, B, 'C');
for T1 use (NUL => 0, A => 1, B => 2, 'C' => 3);
type T2 is array (Positive range <>) of T1;
Obj : T2 := "CC" & A & NUL;

Which of the following proposition(s) is (are) true

A. The code fails at run-time
B. Obj'Length = 3
C. Obj (1) = 'C'
D. Obj (3) = A

31 / 797

Basic Types
Character Types

Quiz

type T1 is (NUL, A, B, 'C');
for T1 use (NUL => 0, A => 1, B => 2, 'C' => 3);
type T2 is array (Positive range <>) of T1;
Obj : T2 := "CC" & A & NUL;

Which of the following proposition(s) is (are) true

A. The code fails at run-time
B. Obj'Length = 3
C. Obj (1) = 'C'
D. Obj (3) = A

31 / 797

Basic Types
Character Types

Quiz

with Ada.Characters.Latin_1;
use Ada.Characters.Latin_1;
with Ada.Characters.Handling;
use Ada.Characters.Handling;

Which of the following proposition(s) are true?

A. NUL = 0
B. NUL = '\0'
C. Character'Pos (NUL) = 0
D. Is_Control (NUL)

32 / 797

Basic Types
Character Types

Quiz

with Ada.Characters.Latin_1;
use Ada.Characters.Latin_1;
with Ada.Characters.Handling;
use Ada.Characters.Handling;

Which of the following proposition(s) are true?

A. NUL = 0
B. NUL = '\0'
C. Character'Pos (NUL) = 0
D. Is_Control (NUL)

32 / 797

Basic Types
Real Types

Real Types

33 / 797

Basic Types
Real Types

Real Types

Approximations to continuous values
1.0, 1.1, 1.11, 1.111 ... 2.0, ...
Finite hardware → approximations

Floating-point
Variable exponent
Large range
Constant relative precision

Fixed-point
Constant exponent
Limited range
Constant absolute precision
Subdivided into Binary and Decimal

Class focuses on floating-point

34 / 797

Basic Types
Real Types

Real Type (Floating and Fixed) Literals

Must contain a fractional part
No silent promotion

type Phase is digits 8; -- floating-point
OK : Phase := 0.0;
Bad : Phase := 0 ; -- compile error

35 / 797

Basic Types
Real Types

Declaring Floating Point Types

Syntax

type <identifier> is
digits <expression> [range constraint];

digits → minimum number of significant digits
Decimal digits, not bits

Compiler choses representation
From available floating point types
May be more accurate, but not less
If none available → declaration is rejected

System.Max_Digits - constant specifying maximum digits of
precision available for runtime

type Very_Precise_T is digits System.Max_Digits;

Need to do with System; to get visibility
36 / 797

Basic Types
Real Types

Predefined Floating Point Types

Type Float >= 6 digits

Additional implementation-defined types
Long_Float >= 11 digits

General-purpose
Tip

It is best, and easy, to avoid predefined types
To keep portability

37 / 797

Basic Types
Real Types

Floating Point Type Operators

By increasing precedence

relational operator = | /= | < | >= | > | >=

binary adding operator + | -

unary adding operator + | -

multiplying operator * | /

highest precedence operator ** | abs

Note
Exponentiation (**) result will be real

So power must be Integer
Not possible to ask for root
X**0.5 → sqrt (x)

38 / 797

Basic Types
Real Types

Floating Point Type Attributes

Core attributes

type My_Float is digits N; -- N static

My_Float'Digits

Number of digits requested (N)

My_Float'Base'Digits

Number of actual digits

My_Float'Rounding (X)

Integral value nearest to X
Note: Float'Rounding (0.5) = 1 and
Float'Rounding (-0.5) = -1

Model-oriented attributes
Advanced machine representation of the floating-point type
Mantissa, strict mode

39 / 797

Basic Types
Real Types

Numeric Types Conversion

Ada's integer and real are numeric
Holding a numeric value

Special rule: can always convert between numeric types
Explicitly

Warning
Float → Integer causes rounding

declare
N : Integer := 0;
F : Float := 1.5;

begin
N := Integer (F); -- N = 2
F := Float (N); -- F = 2.0

40 / 797

Basic Types
Real Types

Quiz
What is the output of this code?

declare
F : Float := 7.6;
I : Integer := 10;

begin
F := Float (Integer (F) / I);
Put_Line (Float'Image (F));

end;

A. 7.6E-01
B. Compile Error
C. 8.0E-01
D. 0.0

Explanations

A. Result of F := F / Float (I);
B. Result of F := F / I;
C. Result of F := Float (Integer (F)) / Float (I);
D. Integer value of F is 8. Integer result of dividing that by 10 is 0.

Converting to float still gives us 0

41 / 797

Basic Types
Real Types

Quiz
What is the output of this code?

declare
F : Float := 7.6;
I : Integer := 10;

begin
F := Float (Integer (F) / I);
Put_Line (Float'Image (F));

end;

A. 7.6E-01
B. Compile Error
C. 8.0E-01
D. 0.0

Explanations

A. Result of F := F / Float (I);
B. Result of F := F / I;
C. Result of F := Float (Integer (F)) / Float (I);
D. Integer value of F is 8. Integer result of dividing that by 10 is 0.

Converting to float still gives us 0
41 / 797

Basic Types
Subtypes - Full Picture

Subtypes - Full Picture

42 / 797

Basic Types
Subtypes - Full Picture

Implicit Subtype

The declaration

type Typ is range L .. R;

Is short-hand for

type <Anon> is new Predefined_Integer_Type;
subtype Typ is <Anon> range L .. R;

<Anon> is the Base type of Typ

Accessed with Typ'Base

43 / 797

Basic Types
Subtypes - Full Picture

Implicit Subtype Explanation

type <Anon> is new Predefined_Integer_Type;
subtype Typ is <Anon> range L .. R;

Compiler choses a standard integer type that includes L .. R

Integer, Short_Integer, Long_Integer, etc.
Implementation-defined choice, non portable

New anonymous type <Anon> is derived from the predefined type

<Anon> inherits the type's operations (+, - ...)

Typ, subtype of <Anon> is created with range L .. R

Typ'Base will return the type <Anon>

44 / 797

Basic Types
Subtypes - Full Picture

Stand-Alone (Sub)Type Names

Denote all the values of the type or subtype
Unless explicitly constrained

subtype Constrained_Sub is Integer range 0 .. 10;
subtype Just_A_Rename is Integer;
X : Just_A_Rename;
...
for I in Constrained_Sub loop

X := I;
end loop;

45 / 797

Basic Types
Subtypes - Full Picture

Subtypes Localize Dependencies
Single points of change
Relationships captured in code
No subtypes

type Vector is array (1 .. 12) of Some_Type;

K : Integer range 0 .. 12 := 0; -- anonymous subtype
Values : Vector;
...
if K in 1 .. 12 then ...
for J in Integer range 1 .. 12 loop ...

Subtypes

type Counter is range 0 .. 12;
subtype Index is Counter range 1 .. Counter'Last;
type Vector is array (Index) of Some_Type;

K : Counter := 0;
Values : Vector;
...
if K in Index then ...
for J in Index loop ...

46 / 797

Basic Types
Subtypes - Full Picture

Subtypes May Enhance Performance

Provides compiler with more information
Redundant checks can more easily be identified

subtype Index is Integer range 1 .. Max;
type Vector is array (Index) of Float;
K : Index;
Values : Vector;
...
K := Some_Value; -- range checked here
Values (K) := 0.0; -- so no range check needed here

47 / 797

Basic Types
Subtypes - Full Picture

Subtypes Don't Cause Overloading

Illegal code: re-declaration of F

type A is new Integer;
subtype B is A;
function F return A is (0);
function F return B is (1);

48 / 797

Basic Types
Subtypes - Full Picture

Default Values and Option Types

Not allowed: Defaults on new type only
subtype is still the same type

Note: Default value may violate subtype constraints
Compiler error for static definition
Constraint_Error otherwise

type Tertiary_Switch is (Off, On, Neither)
with Default_Value => Neither;

subtype Toggle_Switch is Tertiary_Switch
range Off .. On;

Safe : Toggle_Switch := Off;
Implicit : Toggle_Switch; -- compile error: out of range

Tip
Using a meaningless value (Neither) to extend the
range of the type is turning it into an option type . This
idiom is very rich and allows for e.g. "in-flow" errors
handling.

49 / 797

Basic Types
Subtypes - Full Picture

Attributes Reflect the Underlying Type

type Color is
(White, Red, Yellow, Green, Blue, Brown, Black);

subtype Rainbow is Color range Red .. Blue;

T'First and T'Last respect constraints
Rainbow'First → Red but Color'First → White
Rainbow'Last → Blue but Color'Last → Black

Other attributes reflect base type
Color'Succ (Blue) = Brown = Rainbow'Succ (Blue)
Color'Pos (Blue) = 4 = Rainbow'Pos (Blue)
Color'Val (0) = White = Rainbow'Val (0)

Assignment must still satisfy target constraints

Shade : Color range Red .. Blue := Brown; -- run-time error
Hue : Rainbow := Rainbow'Succ (Blue); -- run-time error

50 / 797

Basic Types
Subtypes - Full Picture

Valid attribute

The_Type'Valid is a Boolean
True → the current representation for the given scalar is valid

procedure Main is
subtype Small_T is Integer range 1 .. 3;
Big : aliased Integer := 0;
Small : Small_T with Address => Big'Address;

begin
for V in 0 .. 5 loop

Big := V;
Put_Line (Big'Image & " => " & Boolean'Image (Small'Valid));

end loop;
end Main;

0 => FALSE
1 => TRUE
2 => TRUE
3 => TRUE
4 => FALSE
5 => FALSE

51 / 797

Basic Types
Subtypes - Full Picture

Idiom: Extended Ranges

Count / Positive_Count

Sometimes as Type_Ext (extended) / Type

For counting vs indexing
An index goes from 1 to max length
A count goes from 0 to max length

-- ARM A.10.1
package Text_IO is

...
type Count is range 0 .. implementation-defined;
subtype Pos_Count is Count range 1 .. Count'Last;

52 / 797

Basic Types
Subtypes - Full Picture

Idiom: Partition
Useful for splitting-up large enums

Warning
Be careful about checking that the partition is complete
when items are added/removed.
With a case, the compiler automatically checks that for
you.

Tip
Can have non-consecutive values with the Predicate
aspect.

type Commands_T is (Lights_On, Lights_Off, Read, Write, Accelerate, Stop);
-- Complete partition of the commands
subtype IO_Commands_T is Commands_T range Read .. Write;
subtype Lights_Commands_T is Commands_T range Lights_On .. Lights_Off;
subtype Movement_Commands_T is Commands_T range Accelerate .. Stop;

subtype Physical_Commands_T is Commands_T
with Predicate => Physical_Commands_T in Lights_Commands_T | Movement_Commands_T;

procedure Execute_Light_Command (C : Lights_Commands_T);

procedure Execute_Command (C : Commands_T) is
begin

case C in -- partition must be exhaustive
when Lights_Commands_T => Execute_Light_Command (C);

...
53 / 797

Basic Types
Subtypes - Full Picture

Idiom: Subtypes as Local Constraints
Can replace defensive code

Can be very useful in some identified cases

Subtypes accept dynamic bounds, unlike types

Checks happen through type-system
Can be disabled with -gnatp , unlike conditionals
Can also be a disadvantage

Warning
Do not use for checks that should always happen, even
in production.

Constrain input range

subtype Incrementable_Integer is Integer range Integer'First .. Integer'Last - 1;
function Increment (I : Incrementable_Integer) return Integer;

Constrain output range

subtype Valid_Fingers_T is Integer range 1 .. 5;
Fingers : Valid_Fingers_T := Prompt_And_Get_Integer ("Give me the number of a finger");

Constrain array index

procedure Read_Index_And_Manipulate_Char (S : String) is
subtype S_Index is Positive range S'Range;
I : constant S_Index := Read_Positive;
C : Character renames S (I);

54 / 797

Basic Types
Subtypes - Full Picture

Quiz

1 type T1 is range 0 .. 10;
2 function "-" (V : T1) return T1;
3 subtype T2 is T1 range 1 .. 9;
4 function "-" (V : T2) return T2;
5

6 Obj : T2 := -T2 (1);

Which function is executed at line 6?

A. The one at line 2
B. The one at line 4
C. A predefined "-" operator for integer types
D. None: The code is illegal

The type is used for the overload profile, and here both T1 and T2 are
of type T1, which means line 4 is actually a redeclaration, which is
forbidden.

55 / 797

Basic Types
Subtypes - Full Picture

Quiz

1 type T1 is range 0 .. 10;
2 function "-" (V : T1) return T1;
3 subtype T2 is T1 range 1 .. 9;
4 function "-" (V : T2) return T2;
5

6 Obj : T2 := -T2 (1);

Which function is executed at line 6?

A. The one at line 2
B. The one at line 4
C. A predefined "-" operator for integer types
D. None: The code is illegal

The type is used for the overload profile, and here both T1 and T2 are
of type T1, which means line 4 is actually a redeclaration, which is
forbidden.

55 / 797

Basic Types
Subtypes - Full Picture

Quiz

type T is range 0 .. 10;
subtype S is T range 1 .. 9;

What is the value of S'Succ (S (9))?

A. 9
B. 10
C. None, this fails at run-time
D. None, this does not compile

T'Succ and T'Pred are defined on the type, not the subtype.

56 / 797

Basic Types
Subtypes - Full Picture

Quiz

type T is range 0 .. 10;
subtype S is T range 1 .. 9;

What is the value of S'Succ (S (9))?

A. 9
B. 10
C. None, this fails at run-time
D. None, this does not compile

T'Succ and T'Pred are defined on the type, not the subtype.

56 / 797

Basic Types
Subtypes - Full Picture

Quiz

type T is new Integer range 0 .. Integer'Last;
subtype S is T range 0 .. 10;

Obj : S;

What is the result of Obj := S'Last + 1?

A. 0
B. 11
C. None, this fails at run-time
D. None, this does not compile

57 / 797

Basic Types
Subtypes - Full Picture

Quiz

type T is new Integer range 0 .. Integer'Last;
subtype S is T range 0 .. 10;

Obj : S;

What is the result of Obj := S'Last + 1?

A. 0
B. 11
C. None, this fails at run-time
D. None, this does not compile

57 / 797

Record Types

Record Types

58 / 797

Record Types
Introduction

Introduction

59 / 797

Record Types
Introduction

Syntax and Examples

Syntax (simplified)

type T is record
Component_Name : Type [:= Default_Value];
...

end record;

type T_Empty is null record;

Example

type Record1_T is record
Component1 : Integer;
Component2 : Boolean;

end record;

Records can be discriminated as well

type T (Size : Natural := 0) is record
Text : String (1 .. Size);

end record;
60 / 797

Record Types
Components Rules

Components Rules

61 / 797

Record Types
Components Rules

Characteristics of Components
Heterogeneous types allowed

Referenced by name

May be no components, for empty records

No anonymous types (e.g., arrays) allowed

type Record_1 is record
This_Is_Not_Legal : array (1 .. 3) of Integer;

end record;

No constant components

type Record_2 is record
This_Is_Not_Legal : constant Integer := 123;

end record;

No recursive definitions

type Record_3 is record
This_Is_Not_Legal : Record_3;

end record;

No indefinite types

type Record_5 is record
This_Is_Not_Legal : String;
But_This_Is_Legal : String (1 .. 10);

end record;

62 / 797

Record Types
Components Rules

Multiple Declarations

Multiple declarations are allowed (like objects)

type Several is record
A, B, C : Integer := F;

end record;

Equivalent to

type Several is record
A : Integer := F;
B : Integer := F;
C : Integer := F;

end record;

63 / 797

Record Types
Components Rules

"Dot" Notation for Components Reference

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
Arrival : Date;
...
Arrival.Day := 27; -- components referenced by name
Arrival.Month := November;
Arrival.Year := 1990;

Can reference nested components

Employee
.Birth_Date

.Month := March;
64 / 797

Record Types
Components Rules

Quiz

type Record_T is record
-- Definition here

end record;

Which record definition(s) is (are) legal?

A. Component_1 : array (1 .. 3) of Boolean
B. Component_2, Component_3 : Integer
C. Component_1 : Record_T
D. Component_1 : constant Integer := 123

A. Anonymous types not allowed
B. Correct
C. No recursive definition
D. No constant component

65 / 797

Record Types
Components Rules

Quiz

type Record_T is record
-- Definition here

end record;

Which record definition(s) is (are) legal?

A. Component_1 : array (1 .. 3) of Boolean
B. Component_2, Component_3 : Integer
C. Component_1 : Record_T
D. Component_1 : constant Integer := 123

A. Anonymous types not allowed
B. Correct
C. No recursive definition
D. No constant component

65 / 797

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don't specify its size.

66 / 797

Record Types
Components Rules

Quiz

type Cell is record
Val : Integer;
Message : String;

end record;

Is the definition legal?

A. Yes
B. No

A record definition cannot have a component of an indefinite type.
String is indefinite if you don't specify its size.

66 / 797

Record Types
Operations

Operations

67 / 797

Record Types
Operations

Available Operations

Predefined
Equality (and thus inequality)

if A = B then

Assignment

A := B;

User-defined
Subprograms

68 / 797

Record Types
Operations

Assignment Examples

declare
type Complex is record

Real : Float;
Imaginary : Float;

end record;
...
Phase1 : Complex;
Phase2 : Complex;

begin
...

-- object reference
Phase1 := Phase2; -- entire object reference
-- component references
Phase1.Real := 2.5;
Phase1.Real := Phase2.Real;

end;
69 / 797

Record Types
Operations

Limited Types - Quick Intro

A record type can be limited
And some other types, described later

limited types cannot be copied or compared
As a result then cannot be assigned
May still be modified component-wise

type Lim is limited record
A, B : Integer;

end record;

L1, L2 : Lim := Create_Lim (1, 2); -- Initial value OK

L1 := L2; -- Illegal
if L1 /= L2 then -- Illegal
[...]

70 / 797

Record Types
Aggregates

Aggregates

71 / 797

Record Types
Aggregates

Aggregates

Literal values for composite types
As for arrays
Default value / selector: <>, others

Can use both named and positional
Unambiguous

Example:

(Pos_1_Value,
Pos_2_Value,
Component_3 => Pos_3_Value,
Component_4 => <>, -- Default value (Ada 2005)
others => Remaining_Value)

72 / 797

Record Types
Aggregates

Record Aggregate Examples

type Color_T is (Red);
type Car_T is record

Color : Color_T;
Plate_No : String (1 .. 6);
Year : Natural;

end record;
type Complex_T is record

Real : Float;
Imaginary : Float;

end record;

declare
Car : Car_T := (Red, "ABC123", Year => 2_022);
Phase : Complex_T := (1.2, 3.4);

begin
Phase := (Real => 5.6, Imaginary => 7.8);

end;
73 / 797

Record Types
Aggregates

Aggregate Completeness
All component values must
be accounted for

Including defaults via box
Allows compiler to check for
missed components
Type definition
type Struct is record

A : Integer;
B : Integer;
C : Integer;
D : Integer;

end record;
S : Struct;

Compiler will not catch the
missing component
S.A := 10;
S.B := 20;
S.C := 12;
Send (S);
Aggregate must be complete
- compiler error
S := (10, 20, 12);
Send (S);

74 / 797

Record Types
Aggregates

Named Associations

Any order of associations

Provides more information to the reader
Can mix with positional

Restriction
Must stick with named associations once started

type Complex is record
Real : Float;
Imaginary : Float;

end record;
Phase : Complex := (0.0, 0.0);
...
Phase := (10.0, Imaginary => 2.5);
Phase := (Imaginary => 12.5, Real => 0.212);
Phase := (Imaginary => 12.5, 0.212); -- illegal

75 / 797

Record Types
Aggregates

Nested Aggregates

type Months_T is (January, February, ..., December);
type Date is record

Day : Integer range 1 .. 31;
Month : Months_T;
Year : Integer range 0 .. 2099;

end record;
type Person is record

Born : Date;
Hair : Color;

end record;
John : Person := ((21, November, 1990), Brown);
Julius : Person := ((2, August, 1995), Blond);
Heather : Person := ((2, March, 1989), Hair => Blond);
Megan : Person := (Hair => Blond,

Born => (16, December, 2001));
76 / 797

Record Types
Aggregates

Aggregates with Only One Component

Must use named form
Same reason as array aggregates

type Singular is record
A : Integer;

end record;

S : Singular := (3); -- illegal
S : Singular := (3 + 1); -- illegal
S : Singular := (A => 3 + 1); -- required

77 / 797

Record Types
Aggregates

Aggregates with others

Indicates all components not yet specified (like arrays)
All others get the same value

They must be the exact same type

type Poly is record
A : Float;
B, C, D : Integer;

end record;

P : Poly := (2.5, 3, others => 0);

type Homogeneous is record
A, B, C : Integer;

end record;

Q : Homogeneous := (others => 10);
78 / 797

Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type Record_T is record

A, B, C : Integer;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

The aggregate is incomplete. The aggregate must specify all
components. You could use box notation (A => 1, others => <>)

79 / 797

Record Types
Aggregates

Quiz

What is the result of building and running this code?

procedure Main is
type Record_T is record

A, B, C : Integer;
end record;

V : Record_T := (A => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

The aggregate is incomplete. The aggregate must specify all
components. You could use box notation (A => 1, others => <>)

79 / 797

Record Types
Aggregates

Quiz
What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer;
D : My_Integer;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

All components associated to a value using others must be of the
same type.

80 / 797

Record Types
Aggregates

Quiz
What is the result of building and running this code?

procedure Main is
type My_Integer is new Integer;
type Record_T is record

A, B, C : Integer;
D : My_Integer;

end record;

V : Record_T := (others => 1);
begin

Put_Line (Integer'Image (V.A));
end Main;

A. 0
B. 1
C. Compilation error
D. Run-time error

All components associated to a value using others must be of the
same type.

80 / 797

Record Types
Aggregates

Quiz
type Nested_T is record

Component : Integer;
end record;
type Record_T is record

One : Integer;
Two : Character;
Three : Integer;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment(s) is (are) legal?

A. X := (1, '2', Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

81 / 797

Record Types
Aggregates

Quiz
type Nested_T is record

Component : Integer;
end record;
type Record_T is record

One : Integer;
Two : Character;
Three : Integer;
Four : Nested_T;

end record;
X, Y : Record_T;
Z : constant Nested_T := (others => -1);

Which assignment(s) is (are) legal?

A. X := (1, '2', Three => 3, Four => (6))
B. X := (Two => '2', Four => Z, others => 5)
C. X := Y
D. X := (1, '2', 4, (others => 5))

A. Four must use named association
B. others valid: One and Three are Integer
C. Valid but Two is not initialized
D. Positional for all components

81 / 797

Record Types
Aggregates

Delta Aggregates
Ada 2022

A Record can use a delta aggregate just like an array

type Coordinate_T is record
X, Y, Z : Float;

end record;
Location : constant Coordinate_T := (1.0, 2.0, 3.0);

Prior to Ada 2022, you would copy and then modify

declare
New_Location : Coordinate_T := Location;

begin
New_Location.Z := 0.0;
-- OR
New_Location := (Z => 0.0, others => <>);

end;

Now in Ada 2022 we can just specify the change during the copy

New_Location : Coordinate_T := (Location with delta Z => 0.0);

Note for record delta aggregates you must use named notation
82 / 797

Record Types
Default Values

Default Values

83 / 797

Record Types
Default Values

Component Default Values

type Complex is
record

Real : Float := 0.0;
Imaginary : Float := 0.0;

end record;
-- all components use defaults
Phasor : Complex;
-- all components must be specified
I : constant Complex := (0.0, 1.0);

84 / 797

Record Types
Default Values

Default Component Value Evaluation

Occurs when object is elaborated
Not when the type is elaborated

Not evaluated if explicitly overridden

type Structure is
record

A : Integer;
R : Time := Clock;

end record;
-- Clock is called for S1
S1 : Structure;
-- Clock is not called for S2
S2 : Structure := (A => 0, R => Yesterday);

85 / 797

Record Types
Default Values

Defaults Within Record Aggregates

Specified via the box notation

Value for the component is thus taken as for a stand-alone object
declaration

So there may or may not be a defined default!

Can only be used with "named association" form
But can mix forms, unlike array aggregates

type Complex is
record

Real : Float := 0.0;
Imaginary : Float := 0.0;

end record;
Phase := (42.0, Imaginary => <>);

86 / 797

Record Types
Default Values

Default Initialization Via Aspect Clause

Not definable for entire record type
Components of scalar types take type's default if no explicit
default value specified by record type

type Toggle_Switch is (Off, On)
with Default_Value => Off;

type Controller is record
-- Off unless specified during object initialization
Override : Toggle_Switch;
-- default for this component
Enable : Toggle_Switch := On;

end record;
C : Controller; -- Override => off, Enable => On
D : Controller := (On, Off); -- All defaults replaced

87 / 797

Record Types
Default Values

Quiz

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

88 / 797

Record Types
Default Values

Quiz

function Next return Natural; -- returns next number starting with 1

type Record_T is record
A, B : Integer := Next;
C : Integer := Next;

end record;
R : Record_T := (C => 100, others => <>);

What is the value of R?

A. (1, 2, 3)
B. (1, 1, 100)
C. (1, 2, 100)
D. (100, 101, 102)

Explanations

A. C => 100
B. Multiple declaration calls Next twice
C. Correct
D. C => 100 has no effect on A and B

88 / 797

Record Types
Variant Records

Variant Records

89 / 797

Record Types
Variant Records

Variant Record Types

Variant record can use a discriminant to specify alternative lists
of components

Also called discriminated record type
Different objects may have different components
All objects still share the same type

Kind of storage overlay
Similar to union in C
But preserves type checking
And object size is related to discriminant

Aggregate assignment is allowed

90 / 797

Record Types
Variant Records

Immutable Variant Record
Discriminant must be set at creation time and cannot be modified

2 type Person_Group is (Student, Faculty);
3 type Person (Group : Person_Group) is
4 record
5 -- Components common across all discriminants
6 -- (must appear before variant part)
7 Age : Positive;
8 case Group is -- Variant part of record
9 when Student => -- 1st variant

10 Gpa : Float range 0.0 .. 4.0;
11 when Faculty => -- 2nd variant
12 Pubs : Positive;
13 end case;
14 end record;

In a variant record, a discriminant can be used to specify the
variant part (line 8)

Similar to case statements (all values must be covered)
Components listed will only be visible if choice matches discriminant
Component names need to be unique (even across discriminants)
Variant part must be end of record (hence only one variant part
allowed)

Discriminant is treated as any other component
But is a constant in an immutable variant record

Note that discriminants can be used for other purposes than the variant
part

91 / 797

Record Types
Variant Records

Immutable Variant Record Example
Each object of Person has three components, but it depends on
Group

Pat : Person (Student);
Sam : Person := (Faculty, 33, 5);

Pat has Group, Age, and Gpa
Sam has Group, Age, and Pubs
Aggregate specifies all components, including the discriminant

Compiler can detect some problems, but more often clashes are
run-time errors

procedure Do_Something (Param : in out Person) is
begin

Param.Age := Param.Age + 1;
Param.Pubs := Param.Pubs + 1;

end Do_Something;

Pat.Pubs := 3; would generate a compiler warning because
compiler knows Pat is a Student

warning: Constraint_Error will be raised at run time
Do_Something (Pat); generates a run-time error, because only at
runtime is the discriminant for Param known

raised CONSTRAINT_ERROR : discriminant check failed

Pat := Sam; would be a compiler warning because the
constraints do not match

92 / 797

Record Types
Variant Records

Mutable Variant Record

Type will become mutable if its discriminant has a default value
and we instantiate the object without specifying a discriminant

2 type Person_Group is (Student, Faculty);
3 type Person (Group : Person_Group := Student) is -- default value
4 record
5 Age : Positive;
6 case Group is
7 when Student =>
8 Gpa : Float range 0.0 .. 4.0;
9 when Faculty =>

10 Pubs : Positive;
11 end case;
12 end record;

Pat : Person; is mutable
Sam : Person (Faculty); is not mutable

Declaring an object with an explicit discriminant value (Faculty)
makes it immutable

93 / 797

Record Types
Variant Records

Mutable Variant Record Example

Each object of Person has three components, but it depends on
Group

Pat : Person := (Student, 19, 3.9);
Sam : Person (Faculty);

You can only change the discriminant of Pat, but only via a whole
record assignment, e.g:

if Pat.Group = Student then
Pat := (Faculty, Pat.Age, 1);

else
Pat := Sam;

end if;
Update (Pat);

But you cannot change the discriminant of Sam

Sam := Pat; will give you a run-time error if Pat.Group is not
Faculty

And the compiler will not warn about this!
94 / 797

Record Types
Variant Records

Quiz

type Variant_T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

Variant_Object : Variant_T (1);

Which component(s) does Variant_Object contain?

A. Variant_Object.I, Variant_Object.B
B. Variant_Object.N
C. None: Compilation error
D. None: Run-time error

95 / 797

Record Types
Variant Records

Quiz

type Variant_T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

Variant_Object : Variant_T (1);

Which component(s) does Variant_Object contain?

A. Variant_Object.I, Variant_Object.B
B. Variant_Object.N
C. None: Compilation error
D. None: Run-time error

95 / 797

Record Types
Variant Records

Quiz
type Variant_T (Floating : Boolean := False) is record

case Floating is
when False =>

I : Integer;
when True =>

F : Float;
end case;
Flag : Character;

end record;

Variant_Object : Variant_T (True);

Which component does Variant_Object contain?

A. Variant_Object.F, Variant_Object.Flag
B. Variant_Object.F
C. None: Compilation error
D. None: Run-time error

The variant part cannot be followed by a component declaration
(Flag : Character here)

96 / 797

Record Types
Variant Records

Quiz
type Variant_T (Floating : Boolean := False) is record

case Floating is
when False =>

I : Integer;
when True =>

F : Float;
end case;
Flag : Character;

end record;

Variant_Object : Variant_T (True);

Which component does Variant_Object contain?

A. Variant_Object.F, Variant_Object.Flag
B. Variant_Object.F
C. None: Compilation error
D. None: Run-time error

The variant part cannot be followed by a component declaration
(Flag : Character here)

96 / 797

Record Types
Lab

Lab

97 / 797

Record Types
Lab

Record Types Lab

Requirements
Create a simple First-In/First-Out (FIFO) queue record type and
object

Allow the user to:
Add ("push") items to the queue
Remove ("pop") the next item to be serviced from the queue
(Print this item to ensure the order is correct)

When the user is done manipulating the queue, print out the
remaining items in the queue

Hints
Queue record should at least contain:

Array of items
Index into array where next item will be added

98 / 797

Record Types
Lab

Record Types Lab Solution - Declarations

1 with Ada.Text_IO; use Ada.Text_IO;
2 procedure Main is
3

4 type Name_T is array (1 .. 6) of Character;
5 type Index_T is range 0 .. 1_000;
6 type Queue_T is array (Index_T range 1 .. 1_000) of Name_T;
7

8 type Fifo_Queue_T is record
9 Next_Available : Index_T := 1;

10 Last_Served : Index_T := 0;
11 Queue : Queue_T := (others => (others => ' '));
12 end record;
13

14 Queue : Fifo_Queue_T;
15 Choice : Integer;

99 / 797

Record Types
Lab

Record Types Lab Solution - Implementation
17 begin
18

19 loop
20 Put ("1 = add to queue | 2 = remove from queue | others => done: ");
21 Choice := Integer'Value (Get_Line);
22 if Choice = 1 then
23 Put ("Enter name: ");
24 Queue.Queue (Queue.Next_Available) := Name_T (Get_Line);
25 Queue.Next_Available := Queue.Next_Available + 1;
26 elsif Choice = 2 then
27 if Queue.Next_Available = 1 then
28 Put_Line ("Nobody in line");
29 else
30 Queue.Last_Served := Queue.Last_Served + 1;
31 Put_Line ("Now serving: " & String (Queue.Queue (Queue.Last_Served)));
32 end if;
33 else
34 exit;
35 end if;
36 New_Line;
37 end loop;
38

39 Put_Line ("Remaining in line: ");
40 for Index in Queue.Last_Served + 1 .. Queue.Next_Available - 1 loop
41 Put_Line (" " & String (Queue.Queue (Index)));
42 end loop;
43

44 end Main;

100 / 797

Record Types
Summary

Summary

101 / 797

Record Types
Summary

Summary

Heterogeneous types allowed for components

Default initial values allowed for components
Evaluated when each object elaborated, not the type
Not evaluated if explicit initial value specified

Aggregates express literals for composite types
Can mix named and positional forms

102 / 797

Day 1 - PM

103 / 797

Discriminated Records

Discriminated Records

104 / 797

Discriminated Records
Introduction

Introduction

105 / 797

Discriminated Records
Introduction

Discriminated Record Types

Discriminated record type
Different objects may have different components and/or different
sizes
All objects still share the same type

Similar to union in C
But preserves type checking

Except in the case of an Unchecked_Union (seen later)

And object size is related to discriminant

Aggregate assignment is allowed
Provided constraints are correct

106 / 797

Discriminated Records
Introduction

Defining a Discriminated Record

Record type with a discriminant
Discriminant controls behavior of the record

Part of record definition

Can be read as any other component
But can only be modified by object assignment (sometimes)

Sample definitions (completions appear later in this module)

type Employee_T (Kind : Category_T) is record ...
type Mutable_T (Kind : Category_T := Employee) is record ...
type Vstring (Last : Natural := 0) is record ...
type C_Union_T (View : natural := 0) is record ...

107 / 797

Discriminated Records
Variant Records

Variant Records

108 / 797

Discriminated Records
Variant Records

What is a Variant Record?
A variant record uses the discriminant to determine which
components are currently accessible

type Category_T is (Employee, Contractor);
type Employee_T (Kind : Category_T) is record

Name : String_T;
DOB : Date_T;
case Kind is

when Employee =>
Pay_Rate : Pay_T;

when Contractor =>
Hourly_Rate : Contractor_Rate_T;

end case;
end record;

An_Employee : Employee_T (Employee);
Some_Contractor : Employee_T (Contractor);

Note that the case block must be the last part of the record
definition

Therefore only one per record

Variant records are considered the same type
So you can have

procedure Print (Item : Employee_T);

Print (An_Employee);
Print (Some_Contractor);

109 / 797

Discriminated Records
Variant Records

Immutable Variant Record

In an immutable variant record the discriminant has no default
value

It is an indefinite type , similar to an unconstrained array
So you must add a constraint (discriminant) when creating an
object
But it can be unconstrained when used as a parameter

For example

24 Pat : Employee_T (Employee);
25 Sam : Employee_T :=
26 (Kind => Contractor,
27 Name => From_String ("Sam"),
28 DOB => "2000/01/01",
29 Hourly_Rate => 123.45);
30 Illegal : Employee_T; -- indefinite

110 / 797

Discriminated Records
Variant Records

Immutable Variant Record Usage

Compiler can detect some problems

begin
Pat.Hourly_Rate := 12.3;

end;

warning: component not present in subtype of
"Employee_T" defined at line 24

But more often clashes are run-time errors

32 procedure Print (Item : Employee_T) is
33 begin
34 Print (Item.Pay_Rate);

raised CONSTRAINT_ERROR : print.adb:34 discriminant
check failed

Pat := Sam; would be a compiler warning because the
constraints do not match

111 / 797

Discriminated Records
Variant Records

Mutable Variant Record
To add flexibility, we can make the type mutable by specifying a
default value for the discriminant

type Mutable_T (Kind : Category_T := Employee) is record
Name : String_T;
DOB : Date_T;
case Kind is

when Employee =>
Pay_Rate : Pay_T;

when Contractor =>
Hourly_Rate : Contractor_Rate_T;

end record;

Pat : Mutable_T;
Sam : Mutable_T (Contractor);

Making the variant mutable creates a definite type
An object can be created without a constraint (Pat)
Or we can create in immutable object where the discriminant
cannot change (Sam)
And we can create an array whose component is mutable

112 / 797

Discriminated Records
Variant Records

Mutable Variant Record Example

You can only change the discriminant of Pat, but only via a whole
record assignment, e.g:

if Pat.Group = Student then
Pat := (Faculty, Pat.Age, 1);

else
Pat := Sam;

end if;
Update (Pat);

But you cannot change the discriminant like a regular component

Pat.Kind := Contractor; -- compile error

error: assignment to discriminant not allowed

And you cannot change the discriminant of Sam

Sam := Pat; will give you a run-time error if Pat.Kind is not
Contractor

And the compiler will not warn about this!
113 / 797

Discriminated Records
Variant Records

Quiz

type Variant_T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

Variant_Object : Variant_T (1);

Which component(s) does Variant_Object contain?

A. Variant_Object.I, Variant_Object.B
B. Variant_Object.N
C. None: Compilation error
D. None: Run-time error

114 / 797

Discriminated Records
Variant Records

Quiz

type Variant_T (Sign : Integer) is record
case Sign is
when Integer'First .. -1 =>

I : Integer;
B : Boolean;

when others =>
N : Natural;

end case;
end record;

Variant_Object : Variant_T (1);

Which component(s) does Variant_Object contain?

A. Variant_Object.I, Variant_Object.B
B. Variant_Object.N
C. None: Compilation error
D. None: Run-time error

114 / 797

Discriminated Records
Variant Records

Quiz
2 type Coord_T is record
3 X, Y : Float;
4 end record;
5
6 type Kind_T is (Circle, Line);
7 type Shape_T (Kind : Kind_T := Line) is record
8 Origin : Coord_T;
9 case Kind is

10 when Line =>
11 End_Point : Coord_T;
12 when Circle =>
13 End_Point : Coord_T;
14 end case;
15 end record;
16
17 A_Circle : Shape_T :=
18 (Circle, (1.0, 2.0), (3.0, 4.0));
19 A_Line : Shape_T (Line) :=
20 (Circle, (1.0, 2.0), (3.0, 4.0));

What happens when you try to build
and run this code?

A. Run-time error
B. Compilation error on an object
C. Compilation error on a type
D. No problems

If you fix the compilation error (by changing the name of one of
the End_Point components), then

You would get a warning on line 20 (because A_Line is constrained
to be a Line

incorrect value for discriminant "Kind"

If you then ran the executable, you would get an exception

CONSTRAINT_ERROR : test.adb:20 discriminant check
failed

115 / 797

Discriminated Records
Variant Records

Quiz
2 type Coord_T is record
3 X, Y : Float;
4 end record;
5
6 type Kind_T is (Circle, Line);
7 type Shape_T (Kind : Kind_T := Line) is record
8 Origin : Coord_T;
9 case Kind is

10 when Line =>
11 End_Point : Coord_T;
12 when Circle =>
13 End_Point : Coord_T;
14 end case;
15 end record;
16
17 A_Circle : Shape_T :=
18 (Circle, (1.0, 2.0), (3.0, 4.0));
19 A_Line : Shape_T (Line) :=
20 (Circle, (1.0, 2.0), (3.0, 4.0));

What happens when you try to build
and run this code?

A. Run-time error
B. Compilation error on an object
C. Compilation error on a type
D. No problems

If you fix the compilation error (by changing the name of one of
the End_Point components), then

You would get a warning on line 20 (because A_Line is constrained
to be a Line

incorrect value for discriminant "Kind"

If you then ran the executable, you would get an exception

CONSTRAINT_ERROR : test.adb:20 discriminant check
failed

115 / 797

Discriminated Records
Discriminant Record Array Size Idiom

Discriminant Record Array Size Idiom

116 / 797

Discriminated Records
Discriminant Record Array Size Idiom

Vectors of Varying Lengths

In Ada, array objects must be fixed length

S : String (1 .. 80);
A : array (M .. K*L) of Integer;

We would like an object with a maximum length and a variable
current length

Like a queue or a stack

Need two pieces of data
Array contents
Location of last valid component

For common usage, we want this to be a type (probably a record)
Maximum size array for contents
Index for last valid component

117 / 797

Discriminated Records
Discriminant Record Array Size Idiom

Simple Vector of Varying Length
Not unconstrained - we have to define a maximum length to make
it a definite type

type Simple_Vstring is
record

Last : Natural range 0 .. Max_Length := 0;
Data : String (1 .. Max_Length) := (others => ' ');

end record;

Obj1 : Simple_Vstring := (0, (others => '-'));
Obj2 : Simple_Vstring := (0, (others => '+'));
Obj3 : Simple_Vstring;

Issue - Operations need to consider Last component
Obj1 = Obj2 will be false

Can redefine = to be something like

if Obj1.Data (1 .. Obj1.Last) = Obj2.Data (1 .. Obj2.Last)

Same thing with concatentation

Obj3.Last := Obj1.Last + Obj2.Last;
Obj3.Data (1 .. Obj3.Last) := Obj1.Data (1 .. Obj1.Last) &

Obj2.Data (1 .. Obj2.Last)

Other Issues
Every object has same maximum length
Last needs to be maintained by program logic

118 / 797

Discriminated Records
Discriminant Record Array Size Idiom

Vector of Varying Length via Discriminated Records

Discriminant can serve as bound of array component

type Vstring (Last : Natural := 0) is
record

Data : String (1 .. Last) := (others => ' ');
end record;

Mutable objects vs immutable objects
With default discriminant value (mutable), objects can be copied
even if lengths are different
With no default discriminant value (immutable), objects of different
lengths cannot be copied (and we can't change the length)

119 / 797

Discriminated Records
Discriminant Record Array Size Idiom

Object Creation
When a mutable object is created, runtime assumes largest
possible value

So this example is a problem

type Vstring (Last : Natural := 0) is record
Data : String (1 .. Last) := (others => ' ');

end record;

Good : Vstring (10);
Bad : Vstring;

Compiler warning

warning: creation of "Vstring" object may raise
Storage_Error

Run-time error

raised STORAGE_ERROR : EXCEPTION_STACK_OVERFLOW

Better implementation

subtype Length_T is natural range 0 .. 1_000;
type Vstring (Last : Length_T := 0) is record

Data : String (1 .. Last) := (others => ' ');
end record;

Good : Vstring (10);
Also_Good : Vstring;

120 / 797

Discriminated Records
Discriminant Record Array Size Idiom

Simplifying Operations

With mutable discriminated records, operations are simpler

Obj : Simple_Vstring;
Obj1 : Simple_Vstring := (6, " World");

Creation

function Make (S : String)
return Vstring is (S'length, S);

Obj2 : Simple_Vstring := Make ("Hello");

Equality: Obj1 = Obj2

Data is exactly the correct length
if Data or Last is different, equality fails

Concatentation

Obj := (Obj1.Last + Obj2.Last,
Obj1.Data & Obj2.Data);

121 / 797

Discriminated Records
Discriminant Record Array Size Idiom

Quiz

type R (Size : Integer := 0) is record
S : String (1 .. Size);

end record;

Which proposition(s) will compile and run without error?

A. V : R := (6, "Hello")
B. V : R := (5, "Hello")
C. V : R (5) := (5, S => "Hello")
D. V : R (6) := (6, S => "Hello")

Choices A and B are mutable: the runtime assumes Size can be
Positive'Last, so component S will cause a run-time error. Choice
D tries to copy a 5-character string into a 6-character string, also
generating a run-time error.

122 / 797

Discriminated Records
Discriminant Record Array Size Idiom

Quiz

type R (Size : Integer := 0) is record
S : String (1 .. Size);

end record;

Which proposition(s) will compile and run without error?

A. V : R := (6, "Hello")
B. V : R := (5, "Hello")
C. V : R (5) := (5, S => "Hello")
D. V : R (6) := (6, S => "Hello")

Choices A and B are mutable: the runtime assumes Size can be
Positive'Last, so component S will cause a run-time error. Choice
D tries to copy a 5-character string into a 6-character string, also
generating a run-time error.

122 / 797

Discriminated Records
Interfacing with C

Interfacing with C

123 / 797

Discriminated Records
Interfacing with C

Passing Records Between Ada and C

Your Ada code needs to call C that looks like this:

struct Struct_T {
int Component1;
char Component2;
float Component3;

};

int DoSomething (struct Struct_T);

Ada has mechanisms that will allow you to
Call DoSomething
Build a record that is binary-compatible to Struct_T

124 / 797

Discriminated Records
Interfacing with C

Building a C-Compatible Record

To build an Ada record for Struct_T, start with a regular record:

type Struct_T is record
Component1 : Interfaces.C.int;
Component2 : Interfaces.C.char;
Component3 : Interfaces.C.C_Float;

end record;

We use types from Interfaces.C to map directly to the C types

But the Ada compiler needs to know that the record layout must
match C

So we add an aspect to enforce it

type Struct_T is record
Component1 : Interfaces.C.int;
Component2 : Interfaces.C.char;
Component3 : Interfaces.C.C_Float;

end record with Convention => C_Pass_By_Copy;
125 / 797

Discriminated Records
Interfacing with C

Mapping Ada to C Unions
Discriminant records are similar to C's union, but with a limitation

Only one part of the record is available at any time

So, you create the equivalent of this C union

union Union_T {
int Component1;
char Component2;
float Component3;

};

By using a discriminant record and adding aspect
Unchecked_Union

type C_Union_T (View : natural := 0) is record
case View is
when 0 => Component1 : Interfaces.C.int;
when 1 => Component2 : Interfaces.C.char;
when 2 => Component3 : Interfaces.C.C_Float;
when others => null;
end case;

end record with Convention => C_Pass_By_Copy,
Unchecked_Union;

This tells the compiler not to reserve space in the record for the
discriminant

126 / 797

Discriminated Records
Interfacing with C

Quiz
union Union_T {

struct Record_T component1;
char component2[11];
float component3;

};

type C_Union_T (Flag : Natural := 1) is record
case Sign is
when 1 =>

One : Record_T;
when 2 =>

Two : String(1 .. 11);
when 3 =>

Three : Float;
end case;

end record;

C_Object : C_Union_T;

Which component does C_Object contain?

A. C_Object.One
B. C_Object.Two
C. None: Compilation error
D. None: Run-time error

The variant case must cover all the possible values of Natural.

127 / 797

Discriminated Records
Interfacing with C

Quiz
union Union_T {

struct Record_T component1;
char component2[11];
float component3;

};

type C_Union_T (Flag : Natural := 1) is record
case Sign is
when 1 =>

One : Record_T;
when 2 =>

Two : String(1 .. 11);
when 3 =>

Three : Float;
end case;

end record;

C_Object : C_Union_T;

Which component does C_Object contain?

A. C_Object.One
B. C_Object.Two
C. None: Compilation error
D. None: Run-time error

The variant case must cover all the possible values of Natural.
127 / 797

Discriminated Records
Lab

Lab

128 / 797

Discriminated Records
Lab

Discriminated Records Lab

Requirements for a simplistic employee database
Create a package to handle varying length strings using variant
records

Create a package to create employee data in a variant record
Store first name, last name, and hourly pay rate for all employees
Supervisors must also include the project they are supervising
Managers must also include the number of employees they are
managing and the department name

Main program should read employee information from the console
Any number of any type of employees can be entered in any order
When data entry is done, print out all appropriate information for
each employee

Hints
Create concatenation functions for your varying length string type
Is it easier to create an input function for each employee category,
or a common one?

129 / 797

Discriminated Records
Lab

Discriminated Records Lab Solution - Vstring
1 package Vstring is
2 Max_String_Length : constant := 1_000;
3 subtype Index_T is Integer range 0 .. Max_String_Length;
4 type Vstring_T (Length : Index_T := 0) is record
5 Text : String (1 .. Length);
6 end record;
7 function To_Vstring (Str : String) return Vstring_T;
8 function To_String (Vstr : Vstring_T) return String;
9 function "&" (L, R : Vstring_T) return Vstring_T;

10 function "&" (L : String; R : Vstring_T) return Vstring_T;
11 function "&" (L : Vstring_T; R : String) return Vstring_T;
12 end Vstring;
13

14 package body Vstring is
15 function To_Vstring (Str : String) return Vstring_T is
16 ((Length => Str'Length, Text => Str));
17 function To_String (Vstr : Vstring_T) return String is
18 (Vstr.Text);
19 function "&" (L, R : Vstring_T) return Vstring_T is
20 Ret_Val : constant String := L.Text & R.Text;
21 begin
22 return (Length => Ret_Val'Length, Text => Ret_Val);
23 end "&";
24

25 function "&" (L : String; R : Vstring_T) return Vstring_T is
26 Ret_Val : constant String := L & R.Text;
27 begin
28 return (Length => Ret_Val'Length, Text => Ret_Val);
29 end "&";
30

31 function "&" (L : Vstring_T; R : String) return Vstring_T is
32 Ret_Val : constant String := L.Text & R;
33 begin
34 return (Length => Ret_Val'Length, Text => Ret_Val);
35 end "&";
36 end Vstring;

130 / 797

Discriminated Records
Lab

Discriminated Records Lab Solution - Employee (Spec)
1 with Vstring; use Vstring;
2 package Employee is
3

4 type Category_T is (Staff, Supervisor, Manager);
5 type Pay_T is delta 0.01 range 0.0 .. 1_000.00;
6

7 type Employee_T (Category : Category_T := Staff) is record
8 Last_Name : Vstring.Vstring_T;
9 First_Name : Vstring.Vstring_T;

10 Hourly_Rate : Pay_T;
11 case Category is
12 when Staff =>
13 null;
14 when Supervisor =>
15 Project : Vstring.Vstring_T;
16 when Manager =>
17 Department : Vstring.Vstring_T;
18 Staff_Count : Natural;
19 end case;
20 end record;
21

22 function Get_Staff return Employee_T;
23 function Get_Supervisor return Employee_T;
24 function Get_Manager return Employee_T;
25

26 end Employee;

131 / 797

Discriminated Records
Lab

Discriminated Records Lab Solution - Employee (Body)
1 with Ada.Text_IO; use Ada.Text_IO;
2 package body Employee is
3 function Read (Prompt : String) return String is
4 begin
5 Put (Prompt & " > ");
6 return Get_Line;
7 end Read;
8

9 function Get_Staff return Employee_T is
10 Ret_Val : Employee_T (Staff);
11 begin
12 Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
13 Ret_Val.First_Name := To_Vstring (Read ("First name"));
14 Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
15 return Ret_Val;
16 end Get_Staff;
17

18 function Get_Supervisor return Employee_T is
19 Ret_Val : Employee_T (Supervisor);
20 begin
21 Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
22 Ret_Val.First_Name := To_Vstring (Read ("First name"));
23 Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
24 Ret_Val.Project := To_Vstring (Read ("Project"));
25 return Ret_Val;
26 end Get_Supervisor;
27

28 function Get_Manager return Employee_T is
29 Ret_Val : Employee_T (Manager);
30 begin
31 Ret_Val.Last_Name := To_Vstring (Read ("Last name"));
32 Ret_Val.First_Name := To_Vstring (Read ("First name"));
33 Ret_Val.Hourly_Rate := Pay_T'Value (Read ("Hourly rate"));
34 Ret_Val.Department := To_Vstring (Read ("Department"));
35 Ret_Val.Staff_Count := Integer'Value (Read ("Staff count"));
36 return Ret_Val;
37 end Get_Manager;
38 end Employee;

132 / 797

Discriminated Records
Lab

Discriminated Records Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Employee;
3 with Vstring; use Vstring;
4 procedure Main is
5 procedure Print (Member : Employee.Employee_T) is
6 First_Line : constant Vstring.Vstring_T :=
7 Member.First_Name & " " & Member.Last_Name & " " &
8 Member.Hourly_Rate'Image;
9 begin

10 Put_Line (Vstring.To_String (First_Line));
11 case Member.Category is
12 when Employee.Supervisor =>
13 Put_Line (" Project: " & Vstring.To_String (Member.Project));
14 when Employee.Manager =>
15 Put_Line (" Overseeing " & Member.Staff_Count'Image & " in " &
16 Vstring.To_String (Member.Department));
17 when others => null;
18 end case;
19 end Print;
20

21 List : array (1 .. 1_000) of Employee.Employee_T;
22 Count : Natural := 0;
23 begin
24 loop
25 Put_Line ("E => Employee");
26 Put_Line ("S => Supervisor");
27 Put_Line ("M => Manager");
28 Put ("E/S/M (any other to stop): ");
29 declare
30 Choice : constant String := Get_Line;
31 begin
32 case Choice (1) is
33 when 'E' | 'e' =>
34 Count := Count + 1;
35 List (Count) := Employee.Get_Staff;
36 when 'S' | 's' =>
37 Count := Count + 1;
38 List (Count) := Employee.Get_Supervisor;
39 when 'M' | 'm' =>
40 Count := Count + 1;
41 List (Count) := Employee.Get_Manager;
42 when others =>
43 exit;
44 end case;
45 end;
46 end loop;
47

48 for Item of List (1 .. Count) loop
49 Print (Item);
50 end loop;
51 end Main;

133 / 797

Discriminated Records
Summary

Summary

134 / 797

Discriminated Records
Summary

Properties of Discriminated Record Types

Rules
Case choices for variants must partition possible values for
discriminant
Component names must be unique across all variants

Style
Typical processing is via a case statement that "dispatches" based
on discriminant
This centralized functional processing is in contrast to decentralized
object-oriented approach

135 / 797

Private Types

Private Types

136 / 797

Private Types
Introduction

Introduction

137 / 797

Private Types
Introduction

Introduction

Why does fixing bugs introduce new ones?

Control over visibility is a primary factor
Changes to an abstraction's internals shouldn't break users
Including type representation

Need tool-enforced rules to isolate dependencies
Between implementations of abstractions and their users
In other words, "information hiding"

138 / 797

Private Types
Introduction

Information Hiding
A design technique in which
implementation artifacts are
made inaccessible to users
Based on control of visibility
to those artifacts

A product of
"encapsulation"
Language support provides
rigor

Concept is "software
integrated circuits"

139 / 797

Private Types
Introduction

Views

Specify legal manipulation for objects of a type
Types are characterized by permitted values and operations

Some views are implicit in language
Mode in parameters have a view disallowing assignment

Views may be explicitly specified
Disallowing access to representation
Disallowing assignment

Purpose: control usage in accordance with design
Adherence to interface
Abstract Data Types

140 / 797

Private Types
Implementing Abstract Data Types Via Views

Implementing Abstract Data Types Via Views

141 / 797

Private Types
Implementing Abstract Data Types Via Views

Implementing Abstract Data Types

A combination of constructs in Ada

Not based on single "class" construct, for example

Constituent parts
Packages, with "private part" of package spec
"Private types" declared in packages
Subprograms declared within those packages

142 / 797

Private Types
Implementing Abstract Data Types Via Views

Package Visible and Private Parts for Views

Declarations in visible part are exported to users

Declarations in private part are hidden from users
No compilable references to type's actual representation

package name is
... exported declarations of types, variables, subprograms ...
private
... hidden declarations of types, variables, subprograms ...
end name;

143 / 797

Private Types
Implementing Abstract Data Types Via Views

Declaring Private Types for Views
Partial syntax

type defining_identifier is private;

Private type declaration must occur in visible part
Partial view

Only partial information on the type

Users can reference the type name
But cannot create an object of that type until after the full type
declaration

Full type declaration must appear in private part
Completion is the Full view
Never visible to users
Not visible to designer until reached

package Bounded_Stacks is
type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);
...

private
...
type Stack is record

Top : Positive;
...

end Bounded_Stacks;

144 / 797

Private Types
Implementing Abstract Data Types Via Views

Partial and Full Views of Types

Private type declaration defines a partial view
The type name is visible
Only designer's operations and some predefined operations
No references to full type representation

Full type declaration defines the full view
Fully defined as a record type, scalar, imported type, etc...
Just an ordinary type within the package

Operations available depend upon one's view

145 / 797

Private Types
Implementing Abstract Data Types Via Views

Software Engineering Principles

Encapsulation and abstraction enforced by views
Compiler enforces view effects

Same protection as hiding in a package body
Recall "Abstract Data Machines" idiom

Additional flexibility of types
Unlimited number of objects possible
Passed as parameters
Components of array and record types
Dynamically allocated
et cetera

146 / 797

Private Types
Implementing Abstract Data Types Via Views

Users Declare Objects of the Type

Unlike "abstract data machine" approach

Hence must specify which stack to manipulate
Via parameter

X, Y, Z : Bounded_Stacks.Stack;
...
Push (42, X);
...
if Empty (Y) then
...
Pop (Counter, Z);

147 / 797

Private Types
Implementing Abstract Data Types Via Views

Compile-Time Visibility Protection

No type representation details available outside the package

Therefore users cannot compile code referencing representation

This does not compile

with Bounded_Stacks;
procedure User is

S : Bounded_Stacks.Stack;
begin

S.Top := 1; -- Top is not visible
end User;

148 / 797

Private Types
Implementing Abstract Data Types Via Views

Benefits of Views

Users depend only on visible part of specification
Impossible for users to compile references to private part
Physically seeing private part in source code is irrelevant

Changes to implementation don't affect users
No editing changes necessary for user code

Implementers can create bullet-proof abstractions
If a facility isn't working, you know where to look

Fixing bugs is less likely to introduce new ones

149 / 797

Private Types
Implementing Abstract Data Types Via Views

Quiz
package P is

type Private_T is private;

type Record_T is record

Which component(s) is (are) legal?

A. Component_A : Integer := Private_T'Pos
(Private_T'First);

B. Component_B : Private_T := null;

C. Component_C : Private_T := 0;

D. Component_D : Integer := Private_T'Size;

end record;

Explanations

A. Visible part does not know Private_T is discrete
B. Visible part does not know possible values for Private_T
C. Visible part does not know possible values for Private_T
D. Correct - type will have a known size at run-time

150 / 797

Private Types
Implementing Abstract Data Types Via Views

Quiz
package P is

type Private_T is private;

type Record_T is record

Which component(s) is (are) legal?

A. Component_A : Integer := Private_T'Pos
(Private_T'First);

B. Component_B : Private_T := null;

C. Component_C : Private_T := 0;

D. Component_D : Integer := Private_T'Size;

end record;

Explanations

A. Visible part does not know Private_T is discrete
B. Visible part does not know possible values for Private_T
C. Visible part does not know possible values for Private_T
D. Correct - type will have a known size at run-time

150 / 797

Private Types
Private Part Construction

Private Part Construction

151 / 797

Private Types
Private Part Construction

Private Part and Recompilation

Users can compile their code before the package body is compiled
or even written

Private part is part of the specification
Compiler needs info from private part for users' code, e.g., storage
layouts for private-typed objects

Thus changes to private part require user recompilation

Some vendors avoid "unnecessary" recompilation
Comment additions or changes
Additions which nobody yet references

152 / 797

Private Types
Private Part Construction

Declarative Regions
Declarative region of the spec extends to the body

Anything declared there is visible from that point down
Thus anything declared in specification is visible in body

package Foo is
type Private_T is private;
procedure X (B : in out Private_T);

private
-- Y and Hidden_T are not visible to users
procedure Y (B : in out Private_T);
type Hidden_T is ...;
type Private_T is array (1 .. 3) of Hidden_T;

end Foo;

package body Foo is
-- Z is not visible to users
procedure Z (B : in out Private_T) is ...
procedure Y (B : in out Private_T) is ...
procedure X (B : in out Private_T) is ...

end Foo;
153 / 797

Private Types
Private Part Construction

Full Type Declaration
May be any type

Predefined or user-defined
Including references to
imported types

Contents of private part are
unrestricted

Anything a package
specification may contain
Types, subprograms,
variables, etc.

package P is
type T is private;
...

private
type Vector is array (1.. 10)

of Integer;
function Initial

return Vector;
type T is record

A, B : Vector := Initial;
end record;

end P;

154 / 797

Private Types
Private Part Construction

Deferred Constants

Visible constants of a hidden representation
Value is "deferred" to private part
Value must be provided in private part

Not just for private types, but usually so

package P is
type Set is private;
Null_Set : constant Set; -- exported name
...

private
type Index is range ...
type Set is array (Index) of Boolean;
Null_Set : constant Set := -- definition

(others => False);
end P;

155 / 797

Private Types
Private Part Construction

Quiz
package P is

type Private_T is private;
Object_A : Private_T;
procedure Proc (Param : in out Private_T);

private
type Private_T is new Integer;
Object_B : Private_T;

end package P;

package body P is
Object_C : Private_T;
procedure Proc (Param : in out Private_T) is null;

end P;

Which object definition(s) is (are) legal?

A. Object_A
B. Object_B
C. Object_C
D. None of the above

An object cannot be declared until its type is fully declared. Object_A
could be declared constant, but then it would have to be finalized in
the private section.

156 / 797

Private Types
Private Part Construction

Quiz
package P is

type Private_T is private;
Object_A : Private_T;
procedure Proc (Param : in out Private_T);

private
type Private_T is new Integer;
Object_B : Private_T;

end package P;

package body P is
Object_C : Private_T;
procedure Proc (Param : in out Private_T) is null;

end P;

Which object definition(s) is (are) legal?

A. Object_A
B. Object_B
C. Object_C
D. None of the above

An object cannot be declared until its type is fully declared. Object_A
could be declared constant, but then it would have to be finalized in
the private section.

156 / 797

Private Types
View Operations

View Operations

157 / 797

Private Types
View Operations

View Operations

Reminder: view is the interface you have on the type
User of package has Partial
view

Operations exported by
package

Designer of package has
Full view

Once completion is
reached
All operations based upon
full definition of type

158 / 797

Private Types
View Operations

Users Have the Partial View

Since they are outside package
Basic operations
Exported subprograms

package Bounded_Stacks is
type Stack is private;
procedure Push (Item : in Integer; Onto : in out Stack);
procedure Pop (Item : out Integer; From : in out Stack);
function Empty (S : Stack) return Boolean;
procedure Clear (S : in out Stack);
function Top (S : Stack) return Integer;

private
...

end Bounded_Stacks;

159 / 797

Private Types
View Operations

User View's Activities

Declarations of objects
Constants and variables
Must call designer's functions for values

C : Complex.Number := Complex.I;

Assignment, equality and inequality, conversions

Designer's declared subprograms

User-declared subprograms
Using parameters of the exported private type
Dependent on designer's operations

160 / 797

Private Types
View Operations

User View Formal Parameters

Dependent on designer's operations for manipulation
Cannot reference type's representation

Can have default expressions of private types

-- external implementation of "Top"
procedure Get_Top (

The_Stack : in out Bounded_Stacks.Stack;
Value : out Integer) is

Local : Integer;
begin

Bounded_Stacks.Pop (Local, The_Stack);
Value := Local;
Bounded_Stacks.Push (Local, The_Stack);

end Get_Top;
161 / 797

Private Types
View Operations

Limited Private

limited is itself a view
Cannot perform assignment, copy, or equality

limited private can restrain user's operation
Actual type does not need to be limited

package UART is
type Instance is limited private;
function Get_Next_Available return Instance;

[...]

declare
A, B : UART.Instance := UART.Get_Next_Available;

begin
if A = B -- Illegal
then

A := B; -- Illegal
end if;

162 / 797

Private Types
When to Use or Avoid Private Types

When to Use or Avoid Private Types

163 / 797

Private Types
When to Use or Avoid Private Types

When to Use Private Types

Implementation may change
Allows users to be unaffected by changes in representation

Normally available operations do not "make sense"
Normally available based upon type's representation
Determined by intent of ADT

A : Valve;
B : Valve;
C : Valve;
...
C := A + B; -- addition not meaningful

Users have no "need to know"
Based upon expected usage

164 / 797

Private Types
When to Use or Avoid Private Types

When to Avoid Private Types

If the abstraction is too simple to justify the effort
But that's the thinking that led to Y2K rework

If normal user interface requires representation-specific operations
that cannot be provided

Those that cannot be redefined by programmers

Would otherwise be hidden by a private type

If Vector is private, indexing of components is annoying

type Vector is array (Positive range <>) of Float;
V : Vector (1 .. 3);
...
V (1) := Alpha; -- Illegal since Vector is private

165 / 797

Private Types
Idioms

Idioms

166 / 797

Private Types
Idioms

Effects of Hiding Type Representation

Makes users independent of representation
Changes cannot require users to alter their code
Software engineering is all about money...

Makes users dependent upon exported operations
Because operations requiring representation info are not available to
users

Expression of values (aggregates, etc.)
Assignment for limited types

Common idioms are a result
Constructor
Selector

167 / 797

Private Types
Idioms

Constructors

Create designer's objects from user's values
Usually functions

package Complex is
type Number is private;
function Make (Real_Part : Float; Imaginary : Float) return Number;

private
type Number is record ...

end Complex;

package body Complex is
function Make (Real_Part : Float; Imaginary_Part : Float)

return Number is ...
end Complex:
...
A : Complex.Number :=

Complex.Make (Real_Part => 2.5, Imaginary => 1.0);
168 / 797

Private Types
Idioms

Procedures As Constructors
Spec

package Complex is
type Number is private;
procedure Make (This : out Number; Real_Part, Imaginary : in Float) ;
...

private
type Number is record

Real_Part, Imaginary : Float;
end record;

end Complex;

Body (partial)

package body Complex is
procedure Make (This : out Number;

Real_Part, Imaginary : in Float) is
begin

This.Real_Part := Real_Part;
This.Imaginary := Imaginary;

end Make;
...

169 / 797

Private Types
Idioms

Selectors
Decompose designer's objects into user's values
Usually functions

package Complex is
type Number is private;
function Real_Part (This: Number) return Float;
...

private
type Number is record

Real_Part, Imaginary : Float;
end record;

end Complex;

package body Complex is
function Real_Part (This : Number) return Float is
begin

return This.Real_Part;
end Real_Part;
...

end Complex;
...
Phase : Complex.Number := Complex.Make (10.0, 5.5);
Object : Float := Complex.Real_Part (Phase);

170 / 797

Private Types
Lab

Lab

171 / 797

Private Types
Lab

Private Types Lab

Requirements
Implement a program to create a map such that

Map key is a description of a flag
Map component content is the set of colors in the flag

Operations on the map should include: Add, Remove, Modify, Get,
Exists, Image

Main program should print out the entire map before exiting

Hints
Should implement a map ADT (to keep track of the flags)

This map will contain all the flags and their color descriptions

Should implement a set ADT (to keep track of the colors)
This set will be the description of the map component

Each ADT should be its own package

At a minimum, the map and set type should be private
172 / 797

Private Types
Lab

Private Types Lab Solution - Color Set
1 package Colors is
2 type Color_T is (Red, Yellow, Green, Blue, Black);
3 type Color_Set_T is private;
4

5 Empty_Set : constant Color_Set_T;
6

7 procedure Add (Set : in out Color_Set_T;
8 Color : Color_T);
9 procedure Remove (Set : in out Color_Set_T;

10 Color : Color_T);
11 function Image (Set : Color_Set_T) return String;
12 private
13 type Color_Set_Array_T is array (Color_T) of Boolean;
14 type Color_Set_T is record
15 Values : Color_Set_Array_T := (others => False);
16 end record;
17 Empty_Set : constant Color_Set_T := (Values => (others => False));
18 end Colors;
19

20 package body Colors is
21 procedure Add (Set : in out Color_Set_T;
22 Color : Color_T) is
23 begin
24 Set.Values (Color) := True;
25 end Add;
26 procedure Remove (Set : in out Color_Set_T;
27 Color : Color_T) is
28 begin
29 Set.Values (Color) := False;
30 end Remove;
31

32 function Image (Set : Color_Set_T;
33 First : Color_T;
34 Last : Color_T)
35 return String is
36 Str : constant String := (if Set.Values (First) then Color_T'Image (First) else "");
37 begin
38 if First = Last then
39 return Str;
40 else
41 return Str & " " & Image (Set, Color_T'Succ (First), Last);
42 end if;
43 end Image;
44 function Image (Set : Color_Set_T) return String is
45 (Image (Set, Color_T'First, Color_T'Last));
46 end Colors;

173 / 797

Private Types
Lab

Private Types Lab Solution - Flag Map (Spec)
1 with Colors;
2 package Flags is
3 type Key_T is (USA, England, France, Italy);
4 type Map_Component_T is private;
5 type Map_T is private;
6

7 procedure Add (Map : in out Map_T;
8 Key : Key_T;
9 Description : Colors.Color_Set_T;

10 Success : out Boolean);
11 procedure Remove (Map : in out Map_T;
12 Key : Key_T;
13 Success : out Boolean);
14 procedure Modify (Map : in out Map_T;
15 Key : Key_T;
16 Description : Colors.Color_Set_T;
17 Success : out Boolean);
18

19 function Exists (Map : Map_T; Key : Key_T) return Boolean;
20 function Get (Map : Map_T; Key : Key_T) return Map_Component_T;
21 function Image (Item : Map_Component_T) return String;
22 function Image (Flag : Map_T) return String;
23 private
24 type Map_Component_T is record
25 Key : Key_T := Key_T'First;
26 Description : Colors.Color_Set_T := Colors.Empty_Set;
27 end record;
28 type Map_Array_T is array (1 .. 100) of Map_Component_T;
29 type Map_T is record
30 Values : Map_Array_T;
31 Length : Natural := 0;
32 end record;
33 end Flags;

174 / 797

Private Types
Lab

Private Types Lab Solution - Flag Map (Body - 1 of 2)
3 function Find (Map : Map_T;
4 Key : Key_T)
5 return Integer is
6 begin
7 for I in 1 .. Map.Length loop
8 if Map.Values (I).Key = Key then
9 return I;

10 end if;
11 end loop;
12 return -1;
13 end Find;
14

15 procedure Add (Map : in out Map_T;
16 Key : Key_T;
17 Description : Colors.Color_Set_T;
18 Success : out Boolean) is
19 Index : constant Integer := Find (Map, Key);
20 begin
21 Success := False;
22 if Index not in Map.Values'Range then
23 declare
24 New_Item : constant Map_Component_T :=
25 (Key => Key,
26 Description => Description);
27 begin
28 Map.Length := Map.Length + 1;
29 Map.Values (Map.Length) := New_Item;
30 Success := True;
31 end;
32 end if;
33 end Add;
34

35 procedure Remove (Map : in out Map_T;
36 Key : Key_T;
37 Success : out Boolean) is
38 Index : constant Integer := Find (Map, Key);
39 begin
40 Success := False;
41 if Index in Map.Values'Range then
42 Map.Values (Index .. Map.Length - 1) :=
43 Map.Values (Index + 1 .. Map.Length);
44 Success := True;
45 end if;
46 end Remove;

175 / 797

Private Types
Lab

Private Types Lab Solution - Flag Map (Body - 2 of 2)
35 procedure Modify (Map : in out Map_T;
36 Key : Key_T;
37 Description : Colors.Color_Set_T;
38 Success : out Boolean) is
39 Index : constant Integer := Find (Map, Key);
40 begin
41 Success := False;
42 if Index in Map.Values'Range then
43 Map.Values (Index).Description := Description;
44 Success := True;
45 end if;
46 end Modify;
47

48 function Exists (Map : Map_T;
49 Key : Key_T)
50 return Boolean is
51 (Find (Map, Key) in Map.Values'Range);
52

53 function Get (Map : Map_T;
54 Key : Key_T)
55 return Map_Component_T is
56 Index : constant Integer := Find (Map, Key);
57 Ret_Val : Map_Component_T;
58 begin
59 if Index in Map.Values'Range then
60 Ret_Val := Map.Values (Index);
61 end if;
62 return Ret_Val;
63 end Get;
64

65 function Image (Item : Map_Component_T) return String is
66 (Item.Key'Image & " => " & Colors.Image (Item.Description));
67

68 function Image (Flag : Map_T) return String is
69 Ret_Val : String (1 .. 1_000);
70 Next : Integer := Ret_Val'First;
71 begin
72 for I in 1 .. Flag.Length loop
73 declare
74 Item : constant Map_Component_T := Flag.Values (I);
75 Str : constant String := Image (Item);
76 begin
77 Ret_Val (Next .. Next + Str'Length) := Image (Item) & ASCII.LF;
78 Next := Next + Str'Length + 1;
79 end;
80 end loop;
81 return Ret_Val (1 .. Next - 1);
82 end Image;

176 / 797

Private Types
Lab

Private Types Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Colors;
3 with Flags;
4 with Input;
5 procedure Main is
6 Map : Flags.Map_T;
7 begin
8

9 loop
10 Put ("Enter country name (");
11 for Key in Flags.Key_T loop
12 Put (Flags.Key_T'Image (Key) & " ");
13 end loop;
14 Put ("): ");
15 declare
16 Str : constant String := Get_Line;
17 Key : Flags.Key_T;
18 Description : Colors.Color_Set_T;
19 Success : Boolean;
20 begin
21 exit when Str'Length = 0;
22 Key := Flags.Key_T'Value (Str);
23 Description := Input.Get;
24 if Flags.Exists (Map, Key) then
25 Flags.Modify (Map, Key, Description, Success);
26 else
27 Flags.Add (Map, Key, Description, Success);
28 end if;
29 end;
30 end loop;
31

32 Put_Line (Flags.Image (Map));
33 end Main;

177 / 797

Private Types
Summary

Summary

178 / 797

Private Types
Summary

Summary

Tool-enforced support for Abstract Data Types
Same protection as Abstract Data Machine idiom
Capabilities and flexibility of types

May also be limited

Thus additionally no assignment or predefined equality
More on this later

Common interface design idioms have arisen
Resulting from representation independence

Assume private types as initial design choice
Change is inevitable

179 / 797

Limited Types

Limited Types

180 / 797

Limited Types
Introduction

Introduction

181 / 797

Limited Types
Introduction

Views

Specify how values and objects may be manipulated

Are implicit in much of the language semantics
Constants are just variables without any assignment view
Task types, protected types implicitly disallow assignment
Mode in formal parameters disallow assignment

Variable : Integer := 0;
...
-- P's view of X prevents modification
procedure P(X : in Integer) is
begin

...
end P;
...
P(Variable);

182 / 797

Limited Types
Introduction

Limited Type Views' Semantics

Prevents copying via predefined assignment
Disallows assignment between objects
Must make your own copy procedure if needed

type File is limited ...
...
F1, F2 : File;
...
F1 := F2; -- compile error

Prevents incorrect comparison semantics
Disallows predefined equality operator
Make your own equality function = if needed

183 / 797

Limited Types
Introduction

Inappropriate Copying Example

type File is ...
F1, F2 : File;
...
Open (F1);
Write (F1, "Hello");
-- What is this assignment really trying to do?
F2 := F1;

184 / 797

Limited Types
Introduction

Intended Effects of Copying

type File is ...
F1, F2 : File;
...
Open (F1);
Write (F1, "Hello");
Copy (Source => F1, Target => F2);

185 / 797

Limited Types
Declarations

Declarations

186 / 797

Limited Types
Declarations

Limited Type Declarations

Syntax
Additional keyword limited added to record type declaration

type defining_identifier is limited record
component_list

end record;

Are always record types unless also private
More in a moment...

187 / 797

Limited Types
Declarations

Approximate Analog in C++

class Stack {
public:

Stack ();
void Push (int X);
void Pop (int& X);
...

private:
...
// assignment operator hidden
Stack& operator= (const Stack& other);

}; // Stack

188 / 797

Limited Types
Declarations

Spin Lock Example

with Interfaces;
package Multiprocessor_Mutex is

-- prevent copying of a lock
type Spin_Lock is limited record

Flag : Interfaces.Unsigned_8;
end record;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);
pragma Inline (Lock, Unlock);

end Multiprocessor_Mutex;

189 / 797

Limited Types
Declarations

Parameter Passing Mechanism

Always "by-reference" if explicitly limited
Necessary for various reasons (task and protected types, etc)
Advantageous when required for proper behavior

By definition, these subprograms would be called concurrently
Cannot operate on copies of parameters!

procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

190 / 797

Limited Types
Declarations

Composites with Limited Types

Composite containing a limited type becomes limited as well
Example: Array of limited components

Array becomes a limited type

Prevents assignment and equality loop-holes

declare
-- if we can't copy component S, we can't copy User_Type
type User_Type is record -- limited because S is limited

S : File;
...

end record;
A, B : User_Type;

begin
A := B; -- not legal since limited
...

end;
191 / 797

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

L1, L2 : T;
B : Boolean;

Which statement(s) is (are) legal?

A. L1.I := 1
B. L1 := L2
C. B := (L1 = L2)
D. B := (L1.I = L2.I)

192 / 797

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

L1, L2 : T;
B : Boolean;

Which statement(s) is (are) legal?

A. L1.I := 1
B. L1 := L2
C. B := (L1 = L2)
D. B := (L1.I = L2.I)

192 / 797

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

Which of the following declaration(s) is (are) legal?

A. function "+" (A : T) return T is (A)
B. function "-" (A : T) return T is (I => -A.I)
C. function "=" (A, B : T) return Boolean is (True)
D. function "=" (A, B : T) return Boolean is (A.I =

T'(I => B.I).I)

193 / 797

Limited Types
Declarations

Quiz

type T is limited record
I : Integer;

end record;

Which of the following declaration(s) is (are) legal?

A. function "+" (A : T) return T is (A)
B. function "-" (A : T) return T is (I => -A.I)
C. function "=" (A, B : T) return Boolean is (True)
D. function "=" (A, B : T) return Boolean is (A.I =

T'(I => B.I).I)

193 / 797

Limited Types
Declarations

Quiz
package P is

type T is limited null record;
type R is record

F1 : Integer;
F2 : T;

end record;
end P;

with P;
procedure Main is

T1, T2 : P.T;
R1, R2 : P.R;

begin

Which assignment(s) is (are) legal?

A. T1 := T2;
B. R1 := R2;
C. R1.F1 := R2.F1;
D. R2.F2 := R2.F2;

Explanations

A. T1 and T2 are limited types
B. R1 and R2 contain limited types so they are also limited
C. Theses components are not limited types
D. These components are of a limited type

194 / 797

Limited Types
Declarations

Quiz
package P is

type T is limited null record;
type R is record

F1 : Integer;
F2 : T;

end record;
end P;

with P;
procedure Main is

T1, T2 : P.T;
R1, R2 : P.R;

begin

Which assignment(s) is (are) legal?

A. T1 := T2;
B. R1 := R2;
C. R1.F1 := R2.F1;
D. R2.F2 := R2.F2;

Explanations

A. T1 and T2 are limited types
B. R1 and R2 contain limited types so they are also limited
C. Theses components are not limited types
D. These components are of a limited type

194 / 797

Limited Types
Creating Values

Creating Values

195 / 797

Limited Types
Creating Values

Creating Values

Initialization is not assignment (but looks like it)!

Via limited constructor functions
Functions returning values of limited types

Via an aggregate

limited aggregate when used for a limited type

type Spin_Lock is limited record
Flag : Interfaces.Unsigned_8;

end record;
...
Mutex : Spin_Lock := (Flag => 0); -- limited aggregate

196 / 797

Limited Types
Creating Values

Limited Constructor Functions
Allowed wherever limited
aggregates are allowed
More capable (can perform
arbitrary computations)
Necessary when limited type
is also private

Users won't have visibility
required to express
aggregate contents

function F return Spin_Lock
is
begin

...
return (Flag => 0);

end F;

197 / 797

Limited Types
Creating Values

Writing Limited Constructor Functions

Remember - copying is not allowed

function F return Spin_Lock is
Local_X : Spin_Lock;

begin
...
return Local_X; -- this is a copy - not legal
-- (also illegal because of pass-by-reference)

end F;

Global_X : Spin_Lock;
function F return Spin_Lock is
begin

...
-- This is not legal staring with Ada2005
return Global_X; -- this is a copy

end F;
198 / 797

Limited Types
Creating Values

"Built In-Place"

Limited aggregates and functions, specifically

No copying done by implementation
Values are constructed in situ

Mutex : Spin_Lock := (Flag => 0);

function F return Spin_Lock is
begin

return (Flag => 0);
end F;

199 / 797

Limited Types
Creating Values

Quiz
type T is limited record

I : Integer;
end record;

Which piece(s) of code is (are) a legal constructor for T?

A. function F return T is
begin

return T (I => 0);
end F;

B. function F return T is
Val : Integer := 0;

begin
return (I => Val);

end F;

C. function F return T is
Ret : T := (I => 0);

begin
return Ret;

end F;

D. function F return T is
begin

return (0);
end F;

200 / 797

Limited Types
Creating Values

Quiz
type T is limited record

I : Integer;
end record;

Which piece(s) of code is (are) a legal constructor for T?

A. function F return T is
begin

return T (I => 0);
end F;

B. function F return T is
Val : Integer := 0;

begin
return (I => Val);

end F;

C. function F return T is
Ret : T := (I => 0);

begin
return Ret;

end F;

D. function F return T is
begin

return (0);
end F;

200 / 797

Limited Types
Creating Values

Quiz
package P is

type T is limited record
F1 : Integer;
F2 : Character;

end record;
Zero : T := (0, ' ');
One : constant T := (1, 'a');
Two : T;
function F return T;

end P;

Which is a correct completion of F?

A. return (3, 'c');

B. Two := (2, 'b');
return Two;

C. return One;

D. return Zero;

A contains an "in-place" return. The rest all rely on other objects,
which would require an (illegal) copy.

201 / 797

Limited Types
Creating Values

Quiz
package P is

type T is limited record
F1 : Integer;
F2 : Character;

end record;
Zero : T := (0, ' ');
One : constant T := (1, 'a');
Two : T;
function F return T;

end P;

Which is a correct completion of F?

A. return (3, 'c');

B. Two := (2, 'b');
return Two;

C. return One;

D. return Zero;

A contains an "in-place" return. The rest all rely on other objects,
which would require an (illegal) copy.

201 / 797

Limited Types
Extended Return Statements

Extended Return Statements

202 / 797

Limited Types
Extended Return Statements

Function Extended Return Statements

Extended return

Result is expressed as an object

More expressive than aggregates

Handling of unconstrained types

Syntax (simplified):

return identifier : subtype [:= expression];

return identifier : subtype
[do

sequence_of_statements ...
end return];

203 / 797

Limited Types
Extended Return Statements

Extended Return Statements Example

-- Implicitly limited array
type Spin_Lock_Array (Positive range <>) of Spin_Lock;

function F return Spin_Lock_Array is
begin

return Result : Spin_Lock_Array (1 .. 10) do
...

end return;
end F;

204 / 797

Limited Types
Extended Return Statements

Expression / Statements Are Optional

Without sequence (returns default if any)

function F return Spin_Lock is
begin

return Result : Spin_Lock;
end F;

With sequence

function F return Spin_Lock is
X : Interfaces.Unsigned_8;

begin
-- compute X ...
return Result : Spin_Lock := (Flag => X);

end F;

205 / 797

Limited Types
Extended Return Statements

Statements Restrictions

No nested extended return

Simple return statement allowed
Without expression
Returns the value of the declared object immediately

function F return Spin_Lock is
begin

return Result : Spin_Lock do
if Set_Flag then

Result.Flag := 1;
return; -- returns 'Result'

end if;
Result.Flag := 0;

end return; -- Implicit return
end F;

206 / 797

Limited Types
Extended Return Statements

Quiz
type T is limited record

I : Integer;
end record;

function F return T is
begin

-- F body...
end F;

O : T := F;

Which declaration(s) of F is (are) valid?

A. return Return : T := (I => 1)

B. return Result : T

C. return Value := (others => 1)

D. return R : T do
R.I := 1;

end return;

A. Using return reserved keyword
B. OK, default value
C. Extended return must specify type
D. OK

207 / 797

Limited Types
Extended Return Statements

Quiz
type T is limited record

I : Integer;
end record;

function F return T is
begin

-- F body...
end F;

O : T := F;

Which declaration(s) of F is (are) valid?

A. return Return : T := (I => 1)

B. return Result : T

C. return Value := (others => 1)

D. return R : T do
R.I := 1;

end return;

A. Using return reserved keyword
B. OK, default value
C. Extended return must specify type
D. OK

207 / 797

Limited Types
Combining Limited and Private Views

Combining Limited and Private Views

208 / 797

Limited Types
Combining Limited and Private Views

Limited Private Types

A combination of limited and private views
No client compile-time visibility to representation
No client assignment or predefined equality

The typical design idiom for limited types

Syntax
Additional reserved word limited added to private type
declaration

type defining_identifier is limited private;

209 / 797

Limited Types
Combining Limited and Private Views

Limited Private Type Rationale (1)

package Multiprocessor_Mutex is
-- copying is prevented
type Spin_Lock is limited record

-- but users can see this!
Flag : Interfaces.Unsigned_8;

end record;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);
pragma Inline (Lock, Unlock);

end Multiprocessor_Mutex;

210 / 797

Limited Types
Combining Limited and Private Views

Limited Private Type Rationale (2)

package MultiProcessor_Mutex is
-- copying is prevented AND users cannot see contents
type Spin_Lock is limited private;
procedure Lock (The_Lock : in out Spin_Lock);
procedure Unlock (The_Lock : in out Spin_Lock);
pragma Inline (Lock, Unlock);

private
type Spin_Lock is ...

end MultiProcessor_Mutex;

211 / 797

Limited Types
Combining Limited and Private Views

Limited Private Type Completions

Clients have the partial view as limited and private
The full view completion can be any kind of type
Not required to be a record type just because the partial view is
limited

package P is
type Unique_ID_T is limited private;
...

private
type Unique_ID_T is range 1 .. 10;

end P;

212 / 797

Limited Types
Combining Limited and Private Views

Write-Only Register Example

package Write_Only is
type Byte is limited private;
type Word is limited private;
type Longword is limited private;
procedure Assign (Input : in Unsigned_8;

To : in out Byte);
procedure Assign (Input : in Unsigned_16;

To : in out Word);
procedure Assign (Input : in Unsigned_32;

To : in out Longword);
private

type Byte is new Unsigned_8;
type Word is new Unsigned_16;
type Longword is new Unsigned_32;

end Write_Only;
213 / 797

Limited Types
Combining Limited and Private Views

Explicitly Limited Completions

Completion in Full view includes word limited
Optional
Requires a record type as the completion

package MultiProcessor_Mutex is
type Spin_Lock is limited private;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

private
type Spin_Lock is limited -- full view is limited as well

record
Flag : Interfaces.Unsigned_8;

end record;
end MultiProcessor_Mutex;

214 / 797

Limited Types
Combining Limited and Private Views

Effects of Explicitly Limited Completions

Allows no internal copying too
Forces parameters to be passed by-reference

package MultiProcessor_Mutex is
type Spin_Lock is limited private;
procedure Lock (This : in out Spin_Lock);
procedure Unlock (This : in out Spin_Lock);

private
type Spin_Lock is limited record

Flag : Interfaces.Unsigned_8;
end record;

end MultiProcessor_Mutex;

215 / 797

Limited Types
Combining Limited and Private Views

Automatically Limited Full View
When other limited types are used in the representation
Recall composite types containing limited types are limited too

package Foo is
type Legal is limited private;
type Also_Legal is limited private;
type Not_Legal is private;
type Also_Not_Legal is private;

private
type Legal is record

S : A_Limited_Type;
end record;
type Also_Legal is limited record

S : A_Limited_Type;
end record;
type Not_Legal is limited record

S : A_Limited_Type;
end record;
type Also_Not_Legal is record

S : A_Limited_Type;
end record;

end Foo;
216 / 797

Limited Types
Combining Limited and Private Views

Quiz
package P is

type Priv is private;
private

type Lim is limited null record;
-- Complete Here

end P;

Which of the following piece(s) of code is (are) legal?

A. type Priv is record
E : Lim;

end record;

B. type Priv is record
E : Float;

end record;

C. type A is array (1 .. 10) of Lim;
type Priv is record

F : A;
end record;

D. type Priv is record
Component : Integer := Lim'Size;

end record;

A. E has limited type, partial view of Priv must be
limited private

B. F has limited type, partial view of Priv must be
limited private

217 / 797

Limited Types
Combining Limited and Private Views

Quiz
package P is

type Priv is private;
private

type Lim is limited null record;
-- Complete Here

end P;

Which of the following piece(s) of code is (are) legal?

A. type Priv is record
E : Lim;

end record;

B. type Priv is record
E : Float;

end record;

C. type A is array (1 .. 10) of Lim;
type Priv is record

F : A;
end record;

D. type Priv is record
Component : Integer := Lim'Size;

end record;

A. E has limited type, partial view of Priv must be
limited private

B. F has limited type, partial view of Priv must be
limited private

217 / 797

Limited Types
Combining Limited and Private Views

Quiz

package P is
type L1_T is limited private;
type L2_T is limited private;
type P1_T is private;
type P2_T is private;

private
type L1_T is limited record

Component : Integer;
end record;
type L2_T is record

Component : Integer;
end record;
type P1_T is limited record

Component : L1_T;
end record;
type P2_T is record

Component : L2_T;
end record;

end P;

What will happen when the above code
is compiled?

A. Type P1_T will generate a
compile error

B. Type P2_T will generate a
compile error

C. Both type P1_T and type P2_T
will generate compile errors

D. The code will compile successfully

Full definition of P1_T adds
restrictions, which is not allowed.
P2_T contains a component
whose visible view is limited,
the internal view is not limited
so P2_T is not limited.

218 / 797

Limited Types
Combining Limited and Private Views

Quiz

package P is
type L1_T is limited private;
type L2_T is limited private;
type P1_T is private;
type P2_T is private;

private
type L1_T is limited record

Component : Integer;
end record;
type L2_T is record

Component : Integer;
end record;
type P1_T is limited record

Component : L1_T;
end record;
type P2_T is record

Component : L2_T;
end record;

end P;

What will happen when the above code
is compiled?

A. Type P1_T will generate a
compile error

B. Type P2_T will generate a
compile error

C. Both type P1_T and type P2_T
will generate compile errors

D. The code will compile successfully

Full definition of P1_T adds
restrictions, which is not allowed.
P2_T contains a component
whose visible view is limited,
the internal view is not limited
so P2_T is not limited.

218 / 797

Limited Types
Lab

Lab

219 / 797

Limited Types
Lab

Limited Types Lab

Requirements
Create an employee record data type consisting of a name, ID,
hourly pay rate

ID should be a unique value generated for every record

Create a timecard record data type consisting of an employee
record, hours worked, and total pay

Create a main program that generates timecards and prints their
contents

Hints
If the ID is unique, that means we cannot copy employee records

220 / 797

Limited Types
Lab

Limited Types Lab Solution - Employee Data (Spec)
1 package Employee_Data is
2

3 subtype Name_T is String (1 .. 6);
4 type Employee_T is limited private;
5 type Hourly_Rate_T is delta 0.01 digits 6 range 0.0 .. 999.99;
6 type Id_T is range 999 .. 9_999;
7

8 function Create (Name : Name_T;
9 Rate : Hourly_Rate_T := 0.0)

10 return Employee_T;
11 function Id (Employee : Employee_T)
12 return Id_T;
13 function Name (Employee : Employee_T)
14 return Name_T;
15 function Rate (Employee : Employee_T)
16 return Hourly_Rate_T;
17

18 private
19 type Employee_T is limited record
20 Name : Name_T := (others => ' ');
21 Rate : Hourly_Rate_T := 0.0;
22 Id : Id_T := Id_T'First;
23 end record;
24 end Employee_Data;

221 / 797

Limited Types
Lab

Limited Types Lab Solution - Timecards (Spec)
1 with Employee_Data;
2 package Timecards is
3

4 type Hours_Worked_T is digits 3 range 0.0 .. 24.0;
5 type Pay_T is digits 6;
6 type Timecard_T is limited private;
7

8 function Create (Name : Employee_Data.Name_T;
9 Rate : Employee_Data.Hourly_Rate_T;

10 Hours : Hours_Worked_T)
11 return Timecard_T;
12

13 function Id (Timecard : Timecard_T)
14 return Employee_Data.Id_T;
15 function Name (Timecard : Timecard_T)
16 return Employee_Data.Name_T;
17 function Rate (Timecard : Timecard_T)
18 return Employee_Data.Hourly_Rate_T;
19 function Pay (Timecard : Timecard_T)
20 return Pay_T;
21 function Image (Timecard : Timecard_T)
22 return String;
23

24 private
25 type Timecard_T is limited record
26 Employee : Employee_Data.Employee_T;
27 Hours_Worked : Hours_Worked_T := 0.0;
28 Pay : Pay_T := 0.0;
29 end record;
30 end Timecards;

222 / 797

Limited Types
Lab

Limited Types Lab Solution - Employee Data (Body)
1 package body Employee_Data is
2

3 Last_Used_Id : Id_T := Id_T'First;
4

5 function Create (Name : Name_T;
6 Rate : Hourly_Rate_T := 0.0)
7 return Employee_T is
8 begin
9 return Ret_Val : Employee_T do

10 Last_Used_Id := Id_T'Succ (Last_Used_Id);
11 Ret_Val.Name := Name;
12 Ret_Val.Rate := Rate;
13 Ret_Val.Id := Last_Used_Id;
14 end return;
15 end Create;
16

17 function Id (Employee : Employee_T) return Id_T is
18 (Employee.Id);
19 function Name (Employee : Employee_T) return Name_T is
20 (Employee.Name);
21 function Rate (Employee : Employee_T) return Hourly_Rate_T is
22 (Employee.Rate);
23

24 end Employee_Data;
223 / 797

Limited Types
Lab

Limited Types Lab Solution - Timecards (Body)
1 package body Timecards is
2

3 function Create (Name : Employee_Data.Name_T;
4 Rate : Employee_Data.Hourly_Rate_T;
5 Hours : Hours_Worked_T)
6 return Timecard_T is
7 begin
8 return
9 (Employee => Employee_Data.Create (Name, Rate),

10 Hours_Worked => Hours,
11 Pay => Pay_T (Hours) * Pay_T (Rate));
12 end Create;
13

14 function Id (Timecard : Timecard_T) return Employee_Data.Id_T is
15 (Employee_Data.Id (Timecard.Employee));
16 function Name (Timecard : Timecard_T) return Employee_Data.Name_T is
17 (Employee_Data.Name (Timecard.Employee));
18 function Rate (Timecard : Timecard_T) return Employee_Data.Hourly_Rate_T is
19 (Employee_Data.Rate (Timecard.Employee));
20 function Pay (Timecard : Timecard_T) return Pay_T is
21 (Timecard.Pay);
22

23 function Image
24 (Timecard : Timecard_T)
25 return String is
26 Name_S : constant String := Name (Timecard);
27 Id_S : constant String :=
28 Employee_Data.Id_T'Image (Employee_Data.Id (Timecard.Employee));
29 Rate_S : constant String :=
30 Employee_Data.Hourly_Rate_T'Image
31 (Employee_Data.Rate (Timecard.Employee));
32 Hours_S : constant String :=
33 Hours_Worked_T'Image (Timecard.Hours_Worked);
34 Pay_S : constant String := Pay_T'Image (Timecard.Pay);
35 begin
36 return
37 Name_S & " (" & Id_S & ") => " & Hours_S & " hours * " & Rate_S &
38 "/hour = " & Pay_S;
39 end Image;
40 end Timecards;

224 / 797

Limited Types
Lab

Limited Types Lab Solution - Main

1 with Ada.Text_IO; use Ada.Text_IO;
2 with Timecards;
3 procedure Main is
4

5 One : constant Timecards.Timecard_T := Timecards.Create
6 (Name => "Fred ",
7 Rate => 1.1,
8 Hours => 2.2);
9 Two : constant Timecards.Timecard_T := Timecards.Create

10 (Name => "Barney",
11 Rate => 3.3,
12 Hours => 4.4);
13

14 begin
15 Put_Line (Timecards.Image (One));
16 Put_Line (Timecards.Image (Two));
17 end Main;

225 / 797

Limited Types
Summary

Summary

226 / 797

Limited Types
Summary

Summary

Limited view protects against improper operations
Incorrect equality semantics
Copying via assignment

Enclosing composite types are limited too
Even if they don't use keyword limited themselves

Limited types are always passed by-reference

Extended return statements work for any type
Ada 2005 and later

Don't make types limited unless necessary
Users generally expect assignment to be available

227 / 797

Day 2 - AM

228 / 797

Advanced Data Hiding

Advanced Data Hiding

229 / 797

Advanced Data Hiding
Type Views

Type Views

230 / 797

Advanced Data Hiding
Type Views

Capabilities / Constraints of a Type

Constraints in a type declaration
Reduce the set of operations available on a type
limited
Discriminants
abstract

Capabilities in a type declaration
Extends or modifies the set of operations available on a type
tagged
Tagged extensions

231 / 797

Advanced Data Hiding
Type Views

Partial Vs Full View of a Type

If the partial view declares capabilities, the full view must
provide them

Full view may provide supplementary capabilities undeclared in the
partial view

If the full has constraints, the partial view must declare them
Partial view may declare supplementary constraint that the full view
doesn't have

package P is
type T is limited private;
-- Does not need to declare any capability
-- Declares a constraint: limited

private
type T is tagged null record;
-- Declares a capability: tagged
-- Does not need to declare any constraint

end P;
232 / 797

Advanced Data Hiding
Type Views

Discriminants

Discriminants with no default must be declared both on the partial
and full view

package P is
type T (V : Integer) is private;

private
type T (V : Integer) is null record;

end P;

Discriminants with default (in the full view) may be omitted by
the partial view

package P is
type T1 (V : Integer := 0) is private;
type T2 is private;

private
type T1 (V : Integer := 0) is null record;
type T2 (V : Integer := 0) is null record;

end P;
233 / 797

Advanced Data Hiding
Type Views

Unknown Constraint

It is possible to establish that the type is unconstrained without
any more information
Definite and indefinite types can complete the private declaration

package P is
type T1 (<>) is private;
type T2 (<>) is private;
type T3 (<>) is private;

private
type T1 (V : Integer) is null record;
type T2 is array (Integer range <>) of Integer;
type T3 is range 1 .. 10;

end P;

234 / 797

Advanced Data Hiding
Type Views

Limited

Limited property can apply only to the partial view
If the full view is implicitly limited, the partial view has to be
explicitly limited

package P is
type T1 is limited private;
type T2 is limited private;
type T3 is limited private;

private
type T1 is limited null record;
type T2 is record

V : T1;
end record;
type T3 is range 1 .. 10;

end P;
235 / 797

Advanced Data Hiding
Type Views

Tagged

If the partial view is tagged, the full view has to be tagged

The partial view can hide the fact that the type is tagged in the
full view

package P is
type T1 is private;
type T2 is tagged private;
type T3 is tagged private;

private
type T1 is tagged null record;
type T2 is tagged null record;
type T3 is new T2 with null record;

end P;

236 / 797

Advanced Data Hiding
Type Views

Private Primitives
Primitives can be either public or private

Privacy is orthogonal with type hierarchy
Derived types may not have access to private primitives

Child packages can access private part
and call the private primitive directly

A primitive that has to be derived must be public
Abstract, constructor...

package P is
type T is private;
-- abstract must be public
procedure Execute (Obj : T) is abstract;
-- constructor must be public
function Make return T;

private
procedure Internal_Reset (Obj : T); -- can be private

end package P;
237 / 797

Advanced Data Hiding
Type Views

Tagged Extension

The partial view may declare an extension
The actual extension can be done on the same type, or on any of
its children

package P is
type Root is tagged private;
type Child is new Root with private;
type Grand_Child is new Root with private;

private
type Root is tagged null record;
type Child is new Root with null record;
type Grand_Child is new Child with null record;

end P;

238 / 797

Advanced Data Hiding
Type Views

Tagged Abstract

Partial view may be abstract even if Full view is not

If Full view is abstract, private view has to be so

package P is
type T1 is abstract tagged private;
type T2 is abstract tagged private;

private
type T1 is abstract tagged null record;
type T2 is tagged null record;

end P;

Abstract primitives have to be public (otherwise, clients couldn't
derive)

239 / 797

Advanced Data Hiding
Type Views

Protection Idiom

It is possible to declare an object that can't be copied, and has to
be initialized through a constructor function

package P is
type T (<>) is limited private;
function F return T;

private
type T is null record;

end P;

Helps keeping track of the object usage

240 / 797

Advanced Data Hiding
Type Views

Quiz

type T is private;

Which completion(s) is (are) correct for the type T?

A. type T is tagged null record
B. type T is limited null record
C. type T is array (1 .. 10) of Integer
D. type T is abstract tagged null record

A. Can declare supplementary capability
B. Cannot add further constraint
C. Note: an unconstrained range <> would be incorrect
D. Abstract is a constraint

241 / 797

Advanced Data Hiding
Type Views

Quiz

type T is private;

Which completion(s) is (are) correct for the type T?

A. type T is tagged null record
B. type T is limited null record
C. type T is array (1 .. 10) of Integer
D. type T is abstract tagged null record

A. Can declare supplementary capability
B. Cannot add further constraint
C. Note: an unconstrained range <> would be incorrect
D. Abstract is a constraint

241 / 797

Advanced Data Hiding
Incomplete Types

Incomplete Types

242 / 797

Advanced Data Hiding
Incomplete Types

Incomplete Types

An incomplete type is a premature view on a type
Does specify the type name
Can specify the type discriminants
Can specify if the type is tagged

It can be used in contexts where minimum representation
information is required

In declaration of access types
In subprograms specifications (only if the body has full visibility on
the representation)
As formal parameter of generics accepting an incomplete type

243 / 797

Advanced Data Hiding
Incomplete Types

How to Get an Incomplete Type View?

From an explicit declaration

type T;
type T_Access is access all T;
type T is record

V : T_Access;
end record;

From a limited with (see section on packages)

From an incomplete generic formal parameter (see section on
generics)

generic
type T;
with procedure Proc (V : T);

package P is
...

end P;
244 / 797

Advanced Data Hiding
Incomplete Types

Type Completion Deferred to the Body

In the private part of a package, it is possible to defer the
completion of an incomplete type to the body
This allows to completely hide the implementation of a type

package P is
...

private
type T;
procedure P (V : T);
X : access T;

end P;
package body P is

type T is record
A, B : Integer;

end record;
...

end P;
245 / 797

Advanced Data Hiding
Incomplete Types

Quiz

type T;

In the same scope, which of the following types is (are) legal?

A. type Acc is access T

B. type Arr is array (1 .. 10) of T

C. type T2 is new T

D. type T2 is record
Acc : access T;

end record;

A. Can access the type
B. Cannot use the type as a component
C. Cannot derive from an incomplete type
D. Be careful about the use of an anonymous type here!

246 / 797

Advanced Data Hiding
Incomplete Types

Quiz

type T;

In the same scope, which of the following types is (are) legal?

A. type Acc is access T

B. type Arr is array (1 .. 10) of T

C. type T2 is new T

D. type T2 is record
Acc : access T;

end record;

A. Can access the type
B. Cannot use the type as a component
C. Cannot derive from an incomplete type
D. Be careful about the use of an anonymous type here!

246 / 797

Advanced Data Hiding
Incomplete Types

Quiz

package Pkg is
type T is private;

private
-- Declarations Here

Which of the following declaration(s) is (are) valid?

A. type T is array (Positive range <>) of Integer

B. type T is tagged null record

C. type T is limited null record

D. type T_Arr is array (Positive range <>) of T;
type T is new Integer;

A. Cannot complete with an unconstrained type
B. Can complete with the tagged capability
C. Cannot complete with a limited constraint
D. Even though T is private, it can be used as component

247 / 797

Advanced Data Hiding
Incomplete Types

Quiz

package Pkg is
type T is private;

private
-- Declarations Here

Which of the following declaration(s) is (are) valid?

A. type T is array (Positive range <>) of Integer

B. type T is tagged null record

C. type T is limited null record

D. type T_Arr is array (Positive range <>) of T;
type T is new Integer;

A. Cannot complete with an unconstrained type
B. Can complete with the tagged capability
C. Cannot complete with a limited constraint
D. Even though T is private, it can be used as component

247 / 797

Advanced Data Hiding
Private Library Units

Private Library Units

248 / 797

Advanced Data Hiding
Private Library Units

Child Units and Privacy

Normally, a child public part cannot view a parent private part

package Root is
private

type T is range 1..10;
end Root;

package Root.Child is
X1 : T; -- illegal

private
X2 : T;

end Root.Child;

Private child can view the private part
Used for "implementation details"

249 / 797

Advanced Data Hiding
Private Library Units

Importing a Private Child

A private package can view its parent private part

A private package's usage (view) is
Restricted to the Private descendents of their parent
Visible from parent's body
Visible from public sibling's private section, and body
Visible from private siblings (public, private, body)

package Root is
private

type T is range 1..10;
end Root;

private package Root.Child is
X1 : T;

private
X2 : T;

end Root.Child;

with Root.Child; -- illegal
procedure Main is
begin

Root.Child.X1 := 10; -- illegal
end Main;

250 / 797

Advanced Data Hiding
Private Library Units

Private Children and with

private package Root.Child1 is
type T is range 1 .. 10;

end Root.Child1;
Public package spec cannot with a private
package

1 with Root.Private_Child;
2 package Root.Bad_Child is
3 Object1 : Root.Private_Child.T;
4 procedure Proc2;
5 private
6 Object2 : Root.Private_Child.T;
7 end Root.Bad_Child;

root-bad_child.ads:1:06: error:
current unit must also be private
descendant of "Root"

But it can with a sibling private package
from its body
package Root.Good_Child is

procedure Proc2;
end Root.Good_Child;

with Root.Private_Child;
package body Root.Good_Child is

Object1 : Root.Private_Child.T;
Object2 : Root.Private_Child.T;
procedure Proc2 is null;

end Root.Good_Child;

251 / 797

Advanced Data Hiding
Private Library Units

private with

The parent and its children can private with a private package
From anywhere
View given stays private

private with Root.Child1;
package Root.Child2 is

X1 : Root.Child1.T; -- illegal
private

X2 : Root.Child1.T;
end Root.Child2;

Clients of Root.Child2 don't have any visibility on Root.Child1

252 / 797

Advanced Data Hiding
Private Library Units

Children "Inherit" From Private Properties of Parent
Private property always refers to the direct parent
Public children of private packages stay private to the outside
world
Private children of private packages restrain even more the
accessibility

package Root is
end Root;

private package Root.Child is
-- with allowed on Root body
-- with allowed on Root children
-- with forbidden outside of Root

end Root.Child;

package Root.Child.Grand1 is
-- with allowed on Root body
-- with allowed on Root children
-- with forbidden outside of Root

end Root.Child.Grand1;

private package Root.Child.Grand2 is
-- with allowed on Root.Child body
-- with allowed on Root.Child children
-- with forbidden outside of Root.Child
-- with forbidden on Root
-- with forbidden on Root children

end Root.Child1.Grand2;

253 / 797

Advanced Data Hiding
Lab

Lab

254 / 797

Advanced Data Hiding
Lab

Advanced Data Hiding Lab
Requirements

Create a package defining a message type whose implementation is
solely in the body

You will need accessor functions to set / get the content
Create a function to return a string representation of the message
contents

Create another package that defines the types needed for a linked
list of messages

Each message in the list should have an identifier not visible to any
clients

Create a package containing simple operations on the list
Typical operations like list creation and list traversal
Create a subprogram to print the list contents

Have your main program add items to the list and then print the list

Hints
You will need to employ some (but not necessarily all) of the
techniques discussed in this module

255 / 797

Advanced Data Hiding
Lab

Advanced Data Hiding Lab Solution - Message Type
1 package Messages is
2 type Message_T is private;
3

4 procedure Set_Content (Message : in out Message_T;
5 Value : Integer);
6 function Content (Message : Message_T) return Integer;
7 function Image (Message : Message_T) return String;
8

9 private
10 type Message_Content_T;
11 type Message_T is access Message_Content_T;
12 end Messages;
13

14 package body Messages is
15 type Message_Content_T is new Integer;
16

17 procedure Set_Content (Message : in out Message_T;
18 Value : Integer) is
19 New_Value : constant Message_Content_T := Message_Content_T (Value);
20 begin
21 if Message = null then
22 Message := new Message_Content_T'(New_Value);
23 else
24 Message.all := New_Value;
25 end if;
26 end Set_Content;
27

28 function Content (Message : Message_T) return Integer is
29 (Integer (Message.all));
30 function Image (Message : Message_T) return String is
31 ("**" & Message_Content_T'Image (Message.all));
32 end Messages;

256 / 797

Advanced Data Hiding
Lab

Advanced Data Hiding Lab Solution - Message List Type

1 package Messages.List_Types is
2 type List_T is private;
3 private
4 type List_Content_T;
5 type List_T is access List_Content_T;
6 type Id_Type is range 1_000 .. 9_999;
7 type List_Content_T is record
8 Id : Id_Type;
9 Content : Message_T;

10 Next : List_T;
11 end record;
12 end Messages.List_Types;

257 / 797

Advanced Data Hiding
Lab

Advanced Data Hiding Lab Solution - Message List
Operations

1 package Messages.List_Types.Operations is
2 procedure Append (List : in out List_T;
3 Item : Message_T);
4 function Next (List : List_T) return List_T;
5 function Is_Null (List : List_T) return Boolean;
6 function Image (Message : List_T) return String;
7 end Messages.List_Types.Operations;
8

9 package body Messages.List_Types.Operations is
10 Id : Id_Type := Id_Type'First;
11

12 procedure Append (List : in out List_T;
13 Item : Message_T) is
14 begin
15 if List = null then
16 List := new List_Content_T'(Id => Id, Content => Item, Next => null);
17 else
18 List.Next := new List_Content_T'(Id => Id, Content => Item, Next => null);
19 end if;
20 Id := Id_Type'Succ (Id);
21 end Append;
22

23 function Next (List : List_T) return List_T is (List.Next);
24 function Is_Null (List : List_T) return Boolean is (List = null);
25

26 function Image (Message : List_T) return String is
27 begin
28 if Is_Null (Message) then
29 return "" & ASCII.LF;
30 else
31 return "id: " & Id_Type'Image (Message.Id) & " => " &
32 Image (Message.Content) & ASCII.LF & Image (Message.Next);
33 end if;
34 end Image;
35 end Messages.List_Types.Operations;

258 / 797

Advanced Data Hiding
Lab

Advanced Data Hiding Lab Solution - Main
1 with Ada.Text_IO;
2 with Messages;
3 with Messages.List_Types;
4 with Messages.List_Types.Operations;
5 procedure Main is
6 package Types renames Messages.List_Types;
7 package Operations renames Messages.List_Types.Operations;
8

9 List : Types.List_T;
10 Head : Types.List_T;
11

12 function Convert (Value : Integer) return Messages.Message_T is
13 Ret_Value : Messages.Message_T;
14 begin
15 Messages.Set_Content (Ret_Value, Value);
16 return Ret_Value;
17 end Convert;
18

19 procedure Add_One (Value : Integer) is
20 begin
21 Operations.Append (List, Convert (Value));
22 List := Operations.Next (List);
23 end Add_One;
24

25 begin
26 Operations.Append (List, Convert (1));
27 Head := List;
28 Add_One (23);
29 Add_One (456);
30 Add_One (78);
31 Add_One (9);
32 Ada.Text_IO.Put_Line (Operations.Image (Head));
33 end Main;

259 / 797

Advanced Data Hiding
Summary

Summary

260 / 797

Advanced Data Hiding
Summary

Summary

Ada has many mechanisms for data hiding / control

Start by fully understanding supplier / client relationship

Need to balance simplicity of interfaces with complexity of
structure

Small number of relationship per package with many packages

Fewer packages with more relationships in each package

No set standard
Varies from project to project
Can even vary within a code base

261 / 797

Access Types In Depth

Access Types In Depth

262 / 797

Access Types In Depth
Introduction

Introduction

263 / 797

Access Types In Depth
Introduction

Access Types Design

Memory-addressed objects are called access types
Objects are associated to pools of memory

With different allocation / deallocation policies
Access objects are guaranteed to always be meaningful

In the absence of Unchecked_Deallocation
And if pool-specific

Ada
type Integer_Pool_Access

is access Integer;
P_A : Integer_Pool_Access

:= new Integer;

type Integer_General_Access
is access all Integer;

G : aliased Integer;
G_A : Integer_General_Access := G'Access;

C++
int * P_C = malloc (sizeof (int));
int * P_CPP = new int;
int * G_C = &Some_Int;

.
264 / 797

Access Types In Depth
Introduction

Access Types - General vs Pool-Specific
General Access Types

Point to any object of
designated type
Useful for creating aliases to
existing objects
Point to existing object via
'Access or created by new
No automatic memory
management

Pool-Specific Access Types
Tightly coupled to
dynamically allocated objects
Used with Ada's controlled
memory management (pools)
Can only point to object
created by new
Memory management tied to
specific storage pool

265 / 797

Access Types In Depth
Introduction

Access Types Can Be Dangerous

Multiple memory issues
Leaks / corruptions

Introduces potential random failures complicated to analyze

Increase the complexity of the data structures

May decrease the performances of the application
Dereferences are slightly more expensive than direct access
Allocations are a lot more expensive than stacking objects

Ada avoids using accesses as much as possible
Arrays are not pointers
Parameters are implicitly passed by reference

Only use them when needed
266 / 797

Access Types In Depth
Introduction

Stack Vs Heap

I : Integer := 0;
J : String := "Some Long String";

I : Access_Int := new Integer'(0);
J : Access_Str := new String'("Some Long String");

267 / 797

Access Types In Depth
Access Types

Access Types

268 / 797

Access Types In Depth
Access Types

Declaration Location

Can be at library level

package P is
type String_Access is access String;

end P;

Can be nested in a procedure

package body P is
procedure Proc is

type String_Access is access String;
begin

...
end Proc;

end P;

Nesting adds non-trivial issues
Creates a nested pool with a nested accessibility
Don't do that unless you know what you are doing! (see later)

269 / 797

Access Types In Depth
Access Types

Null Values

A pointer that does not point to any actual data has a null value
Access types have a default value of null
null can be used in assignments and comparisons

declare
type Acc is access all Integer;
V : Acc;

begin
if V = null then

-- will go here
end if;
V := new Integer'(0);
V := null; -- semantically correct, but memory leak

270 / 797

Access Types In Depth
Access Types

Access Types and Primitives

Subprogram using an access type are primitive of the access type
Not the type of the accessed object

type A_T is access all T;
procedure Proc (V : A_T); -- Primitive of A_T, not T

Primitive of the type can be created with the access mode
Anonymous access type

Details elsewhere

procedure Proc (V : access T); -- Primitive of T

271 / 797

Access Types In Depth
Access Types

Dereferencing Access Types

.all does the access dereference
Lets you access the object pointed to by the pointer

.all is optional for
Access on a component of an array
Access on a component of a record

272 / 797

Access Types In Depth
Access Types

Dereference Examples

type R is record
F1, F2 : Integer;

end record;
type A_Int is access Integer;
type A_String is access all String;
type A_R is access R;
V_Int : A_Int := new Integer;
V_String : A_String := new String'("abc");
V_R : A_R := new R;

V_Int.all := 0;
V_String.all := "cde";
V_String (1) := 'z'; -- similar to V_String.all (1) := 'z';
V_R.all := (0, 0);
V_R.F1 := 1; -- similar to V_R.all.F1 := 1;

273 / 797

Access Types In Depth
Pool-Specific Access Types

Pool-Specific Access Types

274 / 797

Access Types In Depth
Pool-Specific Access Types

Pool-Specific Access Type

An access type is a type

type T is [...]
type T_Access is access T;
V : T_Access := new T;

Conversion is not possible between pool-specific access types

275 / 797

Access Types In Depth
Pool-Specific Access Types

Allocations

Objects are created with the new reserved word

The created object must be constrained
The constraint is given during the allocation

V : String_Access := new String (1 .. 10);

The object can be created by copying an existing object - using a
qualifier

V : String_Access := new String'("This is a String");

276 / 797

Access Types In Depth
Pool-Specific Access Types

Deallocations

Deallocations are unsafe
Multiple deallocations problems
Memory corruptions
Access to deallocated objects

As soon as you use them, you lose the safety of your access

But sometimes, you have to do what you have to do ...
There's no simple way of doing it
Ada provides Ada.Unchecked_Deallocation
Has to be instantiated (it's a generic)
Must work on an object, reset to null afterwards

277 / 797

Access Types In Depth
Pool-Specific Access Types

Deallocation Example

-- generic used to deallocate memory
with Ada.Unchecked_Deallocation;
procedure P is

type An_Access is access A_Type;
-- create instances of deallocation function
-- (object type, access type)
procedure Free is new Ada.Unchecked_Deallocation

(A_Type, An_Access);
V : An_Access := new A_Type;

begin
Free (V);
-- V is now null

end P;

278 / 797

Access Types In Depth
General Access Types

General Access Types

279 / 797

Access Types In Depth
General Access Types

General Access Types

Can point to any pool (including stack)

type T is [...]
type T_Access is access all T;
V : T_Access := new T;

Still distinct type

Conversions are possible

type T_Access_2 is access all T;
V2 : T_Access_2 := T_Access_2 (V); -- legal

280 / 797

Access Types In Depth
General Access Types

Referencing the Stack

By default, stack-allocated objects cannot be referenced - and can
even be optimized into a register by the compiler

aliased declares an object to be referenceable through an access
value

V : aliased Integer;

'Access attribute gives a reference to the object

A : Int_Access := V'Access;

'Unchecked_Access does it without checks

281 / 797

Access Types In Depth
General Access Types

Aliased Objects Examples
type Acc is access all Integer;
V, G : Acc;
I : aliased Integer;
...
V := I'Access;
V.all := 5; -- Same a I := 5
...
procedure P1 is

I : aliased Integer;
begin

G := I'Unchecked_Access;
P2;
-- Necessary to avoid corruption
-- Watch out for any of G's copies!
G := null;

end P1;

procedure P2 is
begin

G.all := 5;
end P2;

282 / 797

Access Types In Depth
General Access Types

Aliased Parameters

To ensure a subprogram parameter always has a valid memory
address, define it as aliased

Ensures 'Access and 'Address are valid for the parameter

procedure Example (Param : aliased Integer);

Object1 : aliased Integer;
Object2 : Integer;

-- This is OK
Example (Object1);

-- Compile error: Object2 could be optimized away
-- or stored in a register
Example (Object2);

-- Compile error: No address available for parameter
Example (123);

283 / 797

Access Types In Depth
General Access Types

Quiz

type One_T is access all Integer;
type Two_T is access Integer;

A : aliased Integer;
B : Integer;

One : One_T;
Two : Two_T;

Which assignment(s) is (are) legal?

A. One := B'Access;
B. One := A'Access;
C. Two := B'Access;
D. Two := A'Access;

'Access is only allowed for general access types (One_T). To use
'Access on an object, the object must be aliased.

284 / 797

Access Types In Depth
General Access Types

Quiz

type One_T is access all Integer;
type Two_T is access Integer;

A : aliased Integer;
B : Integer;

One : One_T;
Two : Two_T;

Which assignment(s) is (are) legal?

A. One := B'Access;
B. One := A'Access;
C. Two := B'Access;
D. Two := A'Access;

'Access is only allowed for general access types (One_T). To use
'Access on an object, the object must be aliased.

284 / 797

Access Types In Depth
Accessibility Checks

Accessibility Checks

285 / 797

Access Types In Depth
Accessibility Checks

Introduction to Accessibility Checks (1/2)
The depth of an object depends on its nesting within declarative
scopes

package body P is
-- Library level, depth 0
O0 : aliased Integer;
procedure Proc is

-- Library level subprogram, depth 1
type Acc1 is access all Integer;
procedure Nested is

-- Nested subprogram, enclosing + 1, here 2
O2 : aliased Integer;

Objects can be referenced by access types that are at same
depth or deeper

An access scope must be ≤ the object scope

type Acc1 (depth 1) can access O0 (depth 0) but not O2 (depth
2)

The compiler checks it statically
Removing checks is a workaround!

Note: Subprogram library units are at depth 1 and not 0
286 / 797

Access Types In Depth
Accessibility Checks

Introduction to Accessibility Checks (2/2)
Issues with nesting

package body P is
type T0 is access all Integer;
A0 : T0;
V0 : aliased Integer;

procedure Proc is
type T1 is access all Integer;
A1 : T1;
V1 : aliased Integer;

begin
A0 := V0'Access;
-- A0 := V1'Access; -- illegal
A0 := V1'Unchecked_Access;
A1 := V0'Access;
A1 := V1'Access;
A1 := T1 (A0);
A1 := new Integer;
-- A0 := T0 (A1); -- illegal

end Proc;
end P;

To avoid having to face these issues, avoid nested access types
287 / 797

Access Types In Depth
Accessibility Checks

Dynamic Accessibility Checks
Following the same rules

Performed dynamically by the runtime

Lots of possible cases
New compiler versions may detect more cases
Using access always requires proper debugging and reviewing

procedure Main is
type Acc is access all Integer;
O : Acc;

procedure Set_Value (V : access Integer) is
begin

O := Acc (V);
end Set_Value;

begin
declare

O2 : aliased Integer := 2;
begin

Set_Value (O2'Access);
end;

end Main;
288 / 797

Access Types In Depth
Accessibility Checks

Getting Around Accessibility Checks

Sometimes it is OK to use unsafe accesses to data

'Unchecked_Access allows access to a variable of an
incompatible accessibility level

Beware of potential problems!

type Acc is access all Integer;
G : Acc;
procedure P is

V : aliased Integer;
begin

G := V'Unchecked_Access;
...
Do_Something (G.all);
G := null; -- This is "reasonable"

end P;
289 / 797

Access Types In Depth
Accessibility Checks

Using Access Types for Recursive Structures

It is not possible to declare recursive structure
But there can be an access to the enclosing type

type Cell; -- partial declaration
type Cell_Access is access all Cell;
type Cell is record -- full declaration

Next : Cell_Access;
Some_Value : Integer;

end record;

290 / 797

Access Types In Depth
Accessibility Checks

Quiz
type Global_Access_T is access all Integer;
Global_Access : Global_Access_T;
Global_Object : aliased Integer;
procedure Proc_Access is

type Local_Access_T is access all Integer;
Local_Access : Local_Access_T;
Local_Object : aliased Integer;

begin

Which assignment(s) is (are) legal?

A. Global_Access := Global_Object'Access;
B. Global_Access := Local_Object'Access;
C. Local_Access := Global_Object'Access;
D. Local_Access := Local_Object'Access;

Explanations

A. Access type has same depth as object
B. Access type is not allowed to have higher level than accessed object
C. Access type has lower depth than accessed object
D. Access type has same depth as object

291 / 797

Access Types In Depth
Accessibility Checks

Quiz
type Global_Access_T is access all Integer;
Global_Access : Global_Access_T;
Global_Object : aliased Integer;
procedure Proc_Access is

type Local_Access_T is access all Integer;
Local_Access : Local_Access_T;
Local_Object : aliased Integer;

begin

Which assignment(s) is (are) legal?

A. Global_Access := Global_Object'Access;
B. Global_Access := Local_Object'Access;
C. Local_Access := Global_Object'Access;
D. Local_Access := Local_Object'Access;

Explanations

A. Access type has same depth as object
B. Access type is not allowed to have higher level than accessed object
C. Access type has lower depth than accessed object
D. Access type has same depth as object

291 / 797

Access Types In Depth
Memory Corruption

Memory Corruption

292 / 797

Access Types In Depth
Memory Corruption

Common Memory Problems (1/3)
Uninitialized pointers

declare
type An_Access is access all Integer;
V : An_Access;

begin
V.all := 5; -- constraint error

Double deallocation

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
Free (V2);

May raise Storage_Error if memory is still protected
(unallocated)

May deallocate a different object if memory has been reallocated
Putting that object in an inconsistent state

293 / 797

Access Types In Depth
Memory Corruption

Common Memory Problems (2/3)

Accessing deallocated memory

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V1 : An_Access := new Integer;
V2 : An_Access := V1;

begin
Free (V1);
...
V2.all := 5;

May raise Storage_Error if memory is still protected
(unallocated)
May modify a different object if memory has been reallocated
(putting that object in an inconsistent state)

294 / 797

Access Types In Depth
Memory Corruption

Common Memory Problems (3/3)

Memory leaks

declare
type An_Access is access all Integer;
procedure Free is new

Ada.Unchecked_Deallocation (Integer, An_Access);
V : An_Access := new Integer;

begin
V := null;

Silent problem
Might raise Storage_Error if too many leaks
Might slow down the program if too many page faults

295 / 797

Access Types In Depth
Memory Corruption

How to Fix Memory Problems?

There is no language-defined solution

Use the debugger!

Use additional tools
gnatmem monitor memory leaks
valgrind monitor all the dynamic memory

GNAT.Debug_Pools gives a pool for an access type, raising
explicit exception in case of invalid access
Others...

296 / 797

Access Types In Depth
Anonymous Access Types

Anonymous Access Types

297 / 797

Access Types In Depth
Anonymous Access Types

Anonymous Access Parameters

Parameter modes are of 4 types: in, out, in out, access

The access mode is called anonymous access type

Anonymous access is implicitly general (no need for all)

When used:
Any named access can be passed as parameter
Any anonymous access can be passed as parameter

type Acc is access all Integer;
Aliased_Integer : aliased Integer;
Access_Object : Acc := Aliased_Integer'Access;
procedure P1 (Anon_Access : access Integer) is null;
procedure P2 (Access_Parameter : access Integer) is
begin

P1 (Aliased_Integer'Access);
P1 (Access_Object);
P1 (Access_Parameter);

end P2;
298 / 797

Access Types In Depth
Anonymous Access Types

Anonymous Access Types

Other places can declare an anonymous access

function F return access Integer;
V : access Integer;
type T (V : access Integer) is record

C : access Integer;
end record;
type A is array (Integer range <>) of access Integer;

Do not use them without a clear understanding of accessibility
check rules

299 / 797

Access Types In Depth
Anonymous Access Types

Anonymous Access Constants

constant (instead of all) denotes an access type through which
the referenced object cannot be modified

type CAcc is access constant Integer;
G1 : aliased Integer;
G2 : aliased constant Integer := 123;
V1 : CAcc := G1'Access;
V2 : CAcc := G2'Access;
V1.all := 0; -- illegal

not null denotes an access type for which null value cannot be
accepted

Available in Ada 2005 and later

type NAcc is not null access Integer;
V : NAcc := null; -- illegal

Also works for subprogram parameters

procedure Bar (V1 : access constant Integer);
procedure Foo (V1 : not null access Integer); -- Ada 2005

300 / 797

Access Types In Depth
Memory Management

Memory Management

301 / 797

Access Types In Depth
Memory Management

Simple Linked List

A linked list object typically consists of:
Content
"Indication" of next item in list

Fancier linked lists may reference previous item in list
"Indication" is just a pointer to another linked list object

Therefore, self-referencing
Ada does not allow a record to self-reference

302 / 797

Access Types In Depth
Memory Management

Incomplete Types
In Ada, an incomplete type is just the word type followed by the
type name

Optionally, the name may be followed by (<>) to indicate the full
type may be unconstrained

Ada allows access types to point to an incomplete type
Just about the only thing you can do with an incomplete type!

type Some_Record_T;
type Some_Record_Access_T is access all Some_Record_T;

type Unconstrained_Record_T (<>);
type Unconstrained_Record_Access_T is access all Unconstrained_Record_T;

type Some_Record_T is record
Component : String (1 .. 10);

end record;

type Unconstrained_Record_T (Size : Index_T) is record
Component : String (1 .. Size);

end record;
303 / 797

Access Types In Depth
Memory Management

Linked List in Ada

Now that we have a pointer to the record type (by name), we can
use it in the full definition of the record type

type Some_Record_T is record
Component : String (1 .. 10);
Next : Some_Record_Access_T;

end record;

type Unconstrained_Record_T (Size : Index_T) is record
Component : String (1 .. Size);
Next : Unconstrained_Record_Access_T;
Previous : Unconstrained_Record_Access_T;

end record;

304 / 797

Access Types In Depth
Memory Management

Simplistic Linked List
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Unchecked_Deallocation;
procedure Simple is

type Some_Record_T;
type Some_Record_Access_T is access all Some_Record_T;
type Some_Record_T is record

Component : String (1 .. 10);
Next : Some_Record_Access_T;

end record;

Head : Some_Record_Access_T := null;
Item : Some_Record_Access_T := null;

Line : String (1 .. 10);
Last : Natural;

procedure Free is new Ada.Unchecked_Deallocation
(Some_Record_T, Some_Record_Access_T);

begin

loop
Put ("Enter String: ");
Get_Line (Line, Last);
exit when Last = 0;
Line (Last + 1 .. Line'Last) := (others => ' ');
Item := new Some_Record_T;
Item.all := (Line, Head);
Head := Item;

end loop;

Put_Line ("List");
while Head /= null loop

Put_Line (" " & Head.Component);
Head := Head.Next;

end loop;

Put_Line ("Delete");
Free (Item);
GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool);

end Simple;

305 / 797

Access Types In Depth
Memory Debugging

Memory Debugging

306 / 797

Access Types In Depth
Memory Debugging

GNAT.Debug_Pools

Ada allows the coder to specify where the allocated memory comes
from

Called Storage Pool
Basically, connecting new and Unchecked_Deallocation with
some other code
More details in the next section

type Linked_List_Ptr_T is access all Linked_List_T;
for Linked_List_Ptr_T'storage_pool use Memory_Mgmt.Storage_Pool;

GNAT uses this mechanism in the runtime package
GNAT.Debug_Pools to track allocation/deallocation
with GNAT.Debug_Pools;
package Memory_Mgmt is

Storage_Pool : GNAT.Debug_Pools.Debug_Pool;
end Memory_Mgmt;

307 / 797

Access Types In Depth
Memory Debugging

GNAT.Debug_Pools Spec (Partial)
package GNAT.Debug_Pools is

type Debug_Pool is new System.Checked_Pools.Checked_Pool with private;

generic
with procedure Put_Line (S : String) is <>;
with procedure Put (S : String) is <>;

procedure Print_Info
(Pool : Debug_Pool;
Cumulate : Boolean := False;
Display_Slots : Boolean := False;
Display_Leaks : Boolean := False);

procedure Print_Info_Stdout
(Pool : Debug_Pool;
Cumulate : Boolean := False;
Display_Slots : Boolean := False;
Display_Leaks : Boolean := False);

-- Standard instantiation of Print_Info to print on standard_output.

procedure Dump_Gnatmem (Pool : Debug_Pool; File_Name : String);
-- Create an external file on the disk, which can be processed by gnatmem
-- to display the location of memory leaks.

procedure Print_Pool (A : System.Address);
-- Given an address in memory, it will print on standard output the known
-- information about this address

function High_Water_Mark
(Pool : Debug_Pool) return Byte_Count;

-- Return the highest size of the memory allocated by the pool.

function Current_Water_Mark
(Pool : Debug_Pool) return Byte_Count;

-- Return the size of the memory currently allocated by the pool.

private
-- ...

end GNAT.Debug_Pools;

308 / 797

Access Types In Depth
Memory Debugging

Displaying Debug Information

Simple modifications to our linked list example
Create and use storage pool

with GNAT.Debug_Pools; -- Added
procedure Simple is

Storage_Pool : GNAT.Debug_Pools.Debug_Pool; -- Added
type Some_Record_T;
type Some_Record_Access_T is access all Some_Record_T;
for Some_Record_Access_T'storage_pool

use Storage_Pool; -- Added

Dump info after each new

Item := new Some_Record_T;
GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool); -- Added
Item.all := (Line, Head);

Dump info after free

Free (Item);
GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool); -- Added

309 / 797

Access Types In Depth
Memory Debugging

Execution Results
Enter String: X
Total allocated bytes : 24
Total logically deallocated bytes : 0
Total physically deallocated bytes : 0
Current Water Mark: 24
High Water Mark: 24

Enter String: Y
Total allocated bytes : 48
Total logically deallocated bytes : 0
Total physically deallocated bytes : 0
Current Water Mark: 48
High Water Mark: 48

Enter String:
List

Y
X

Delete
Total allocated bytes : 48
Total logically deallocated bytes : 24
Total physically deallocated bytes : 0
Current Water Mark: 24
High Water Mark: 48

310 / 797

Access Types In Depth
Memory Control

Memory Control

311 / 797

Access Types In Depth
Memory Control

System.Storage_Pools

Mechanism to allow coder control over allocation/deallocation
process

Uses Ada.Finalization.Limited_Controlled to implement
customized memory allocation and deallocation
Must be specified for each access type being controlled
type Boring_Access_T is access Some_T;
-- Storage Pools mechanism not used here
type Important_Access_T is access Some_T;
for Important_Access_T'storage_pool use My_Storage_Pool;
-- Storage Pools mechanism used for Important_Access_T

312 / 797

Access Types In Depth
Memory Control

System.Storage_Pools Spec (Partial)
with Ada.Finalization;
with System.Storage_Elements;
package System.Storage_Pools with Pure is

type Root_Storage_Pool is abstract
new Ada.Finalization.Limited_Controlled with private;

pragma Preelaborable_Initialization (Root_Storage_Pool);

procedure Allocate
(Pool : in out Root_Storage_Pool;
Storage_Address : out System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count)

is abstract;

procedure Deallocate
(Pool : in out Root_Storage_Pool;
Storage_Address : System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count)

is abstract;

function Storage_Size
(Pool : Root_Storage_Pool)
return System.Storage_Elements.Storage_Count

is abstract;

private
-- ...

end System.Storage_Pools;

313 / 797

Access Types In Depth
Memory Control

System.Storage_Pools Explanations

Note Root_Storage_Pool, Allocate, Deallocate, and
Storage_Size are abstract

You must create your own type derived from Root_Storage_Pool
You must create versions of Allocate, Deallocate, and
Storage_Size to allocate/deallocate memory

Parameters
Pool

Memory pool being manipulated
Storage_Address

For Allocate - location in memory where access type will point to
For Deallocate - location in memory where memory should be
released

Size_In_Storage_Elements
Number of bytes needed to contain contents

Alignment
Byte alignment for memory location

314 / 797

Access Types In Depth
Memory Control

System.Storage_Pools Example (Partial)
subtype Index_T is Storage_Count range 1 .. 1_000;
Memory_Block : aliased array (Index_T) of Interfaces.Unsigned_8;
Memory_Used : array (Index_T) of Boolean := (others => False);

procedure Set_In_Use (Start : Index_T;
Length : Storage_Count;
Used : Boolean);

function Find_Free_Block (Length : Storage_Count) return Index_T;

procedure Allocate
(Pool : in out Storage_Pool_T;
Storage_Address : out System.Address;
Size_In_Storage_Elements : Storage_Count;
Alignment : Storage_Count) is
Index : Storage_Count := Find_Free_Block (Size_In_Storage_Elements);

begin
Storage_Address := Memory_Block (Index)'Address;
Set_In_Use (Index, Size_In_Storage_Elements, True);

end Allocate;

procedure Deallocate
(Pool : in out Storage_Pool_T;
Storage_Address : System.Address;
Size_In_Storage_Elements : Storage_Count;
Alignment : Storage_Count) is

begin
for I in Memory_Block'Range loop

if Memory_Block (I)'Address = Storage_Address then
Set_In_Use (I, Size_In_Storage_Elements, False);

end if;
end loop;

end Deallocate;

315 / 797

Access Types In Depth
Advanced Access Type Safety

Advanced Access Type Safety

316 / 797

Access Types In Depth
Advanced Access Type Safety

Elaboration-Only Dynamic Allocation

Common in critical contexts

Rationale:
1 We (might) need dynamically allocated date

e.g. loading configuration data of unknown size

2 Deallocations can cause leaks, corruption
→ Disallow them entirely

3 A dynamically allocated object will need deallocation
→ Unless it never goes out of scope

→ Allow only allocation onto globals
Tip

And restrict allocations to program elaboration
317 / 797

Access Types In Depth
Advanced Access Type Safety

Prevent Heap Deallocations

Ada.Unchecked_Deallocation cannot be used anymore

No heap deallocation is possible
The total number of allocations should be bounded
e.g. elaboration-only allocations

pragma Restrictions
(No_Dependence => Unchecked_Deallocation);

318 / 797

Access Types In Depth
Advanced Access Type Safety

Constant Access at Library Level

type Acc is access T;
procedure Free is new Ada.Unchecked_Deallocation (T, Acc);

A : constant Acc := new T;

A is constant

Cannot be deallocated

319 / 797

Access Types In Depth
Advanced Access Type Safety

Constant Access as Discriminant

type R (A : access T) is limited record

A is constant

Cannot be deallocated

R is limited

Cannot be copied

320 / 797

Access Types In Depth
Advanced Access Type Safety

Idiom: Access to Subtype
Tip

subtype improves access-related code safety

Subtype constraints still apply through the access type

type Values_T is array (Positive range <>) of Integer;
subtype Two_Values_T is Values_T (1 .. 2);
type Two_Values_A is access all Two_Values_T;

function Get return Values_T is (1 => 10);

-- O : aliased Two_Values_T := Get;
-- Runtime FAIL: Constraint check
O : aliased Values_T := Get; -- Single value, bounds are 1 .. 1
-- P : Two_Values_A := O'Access;
-- Compile-time FAIL: Bounds must statically match

321 / 797

Access Types In Depth
Lab

Lab

322 / 797

Access Types In Depth
Lab

Access Types In Depth Lab

Build an application that adds / removes items from a linked list
At any time, user should be able to

Add a new item into the "appropriate" location in the list
Remove an item without changing the position of any other item in
the list
Print the list

This is a multi-step lab! First priority should be understanding
linked lists, then, if you have time, storage pools

Required goals
1 Implement Add functionality

For this step, "appropriate" means either end of the list (but
consistent - always front or always back)

2 Implement Print functionality
3 Implement Delete functionality

323 / 797

Access Types In Depth
Lab

Extra Credit

Complete as many of these as you have time for
1 Use GNAT.Debug_Pools to print out the status of your memory

allocation/deallocation after every new and deallocate
2 Modify Add so that "appropriate" means in a sorted order
3 Implement storage pools where you write your own memory

allocation/deallocation routines

Should still be able to print memory status

324 / 797

Access Types In Depth
Lab

Lab Solution - Database
1 package Database is
2 type Database_T is private;
3 function "=" (L, R : Database_T) return Boolean;
4 function To_Database (Value : String) return Database_T;
5 function From_Database (Value : Database_T) return String;
6 function "<" (L, R : Database_T) return Boolean;
7 private
8 type Database_T is record
9 Value : String (1 .. 100);

10 Length : Natural;
11 end record;
12 end Database;
13

14 package body Database is
15 function "=" (L, R : Database_T) return Boolean is
16 begin
17 return L.Value (1 .. L.Length) = R.Value (1 .. R.Length);
18 end "=";
19 function To_Database (Value : String) return Database_T is
20 Retval : Database_T;
21 begin
22 Retval.Length := Value'Length;
23 Retval.Value (1 .. Retval.Length) := Value;
24 return Retval;
25 end To_Database;
26 function From_Database (Value : Database_T) return String is
27 begin
28 return Value.Value (1 .. Value.Length);
29 end From_Database;
30

31 function "<" (L, R : Database_T) return Boolean is
32 begin
33 return L.Value (1 .. L.Length) < R.Value (1 .. R.Length);
34 end "<";
35 end Database;

325 / 797

Access Types In Depth
Lab

Lab Solution - Database_List (Spec)
1 with Database; use Database;
2 -- Uncomment next line when using debug/storage pools
3 -- with Memory_Mgmt;
4 package Database_List is
5 type List_T is limited private;
6 procedure First (List : in out List_T);
7 procedure Next (List : in out List_T);
8 function End_Of_List (List : List_T) return Boolean;
9 function Current (List : List_T) return Database_T;

10 procedure Insert (List : in out List_T;
11 Component : Database_T);
12 procedure Delete (List : in out List_T;
13 Component : Database_T);
14 function Is_Empty (List : List_T) return Boolean;
15 private
16 type Linked_List_T;
17 type Linked_List_Ptr_T is access all Linked_List_T;
18 -- Uncomment next line when using debug/storage pools
19 -- for Linked_List_Ptr_T'storage_pool use Memory_Mgmt.Storage_Pool;
20 type Linked_List_T is record
21 Next : Linked_List_Ptr_T;
22 Content : Database_T;
23 end record;
24 type List_T is record
25 Head : Linked_List_Ptr_T;
26 Current : Linked_List_Ptr_T;
27 end record;
28 end Database_List;

326 / 797

Access Types In Depth
Lab

Lab Solution - Database_List (Helper Objects)
1 with Interfaces;
2 with Unchecked_Deallocation;
3 package body Database_List is
4 use type Database.Database_T;
5

6 function Is_Empty (List : List_T) return Boolean is
7 begin
8 return List.Head = null;
9 end Is_Empty;

10

11 procedure First (List : in out List_T) is
12 begin
13 List.Current := List.Head;
14 end First;
15

16 procedure Next (List : in out List_T) is
17 begin
18 if not Is_Empty (List) then
19 if List.Current /= null then
20 List.Current := List.Current.Next;
21 end if;
22 end if;
23 end Next;
24

25 function End_Of_List (List : List_T) return Boolean is
26 begin
27 return List.Current = null;
28 end End_Of_List;
29

30 function Current (List : List_T) return Database_T is
31 begin
32 return List.Current.Content;
33 end Current;

327 / 797

Access Types In Depth
Lab

Lab Solution - Database_List (Insert/Delete)
35 procedure Insert (List : in out List_T;
36 Component : Database_T) is
37 New_Component : Linked_List_Ptr_T :=
38 new Linked_List_T'(Next => null, Content => Component);
39 begin
40 if Is_Empty (List) then
41 List.Current := New_Component;
42 List.Head := New_Component;
43 elsif Component < List.Head.Content then
44 New_Component.Next := List.Head;
45 List.Current := New_Component;
46 List.Head := New_Component;
47 else
48 declare
49 Current : Linked_List_Ptr_T := List.Head;
50 begin
51 while Current.Next /= null and then Current.Next.Content < Component
52 loop
53 Current := Current.Next;
54 end loop;
55 New_Component.Next := Current.Next;
56 Current.Next := New_Component;
57 end;
58 end if;
59 -- Uncomment next line when using debug/storage pools
60 -- Memory_Mgmt.Print_Info;
61 end Insert;
62

63 procedure Free is new Unchecked_Deallocation
64 (Linked_List_T, Linked_List_Ptr_T);
65 procedure Delete
66 (List : in out List_T;
67 Component : Database_T) is
68 To_Delete : Linked_List_Ptr_T := null;
69 begin
70 if not Is_Empty (List) then
71 if List.Head.Content = Component then
72 To_Delete := List.Head;
73 List.Head := List.Head.Next;
74 List.Current := List.Head;
75 else
76 declare
77 Previous : Linked_List_Ptr_T := List.Head;
78 Current : Linked_List_Ptr_T := List.Head.Next;
79 begin
80 while Current /= null loop
81 if Current.Content = Component then
82 To_Delete := Current;
83 Previous.Next := Current.Next;
84 end if;
85 Current := Current.Next;
86 end loop;
87 end;
88 List.Current := List.Head;
89 end if;
90 if To_Delete /= null then
91 Free (To_Delete);
92 end if;
93 end if;
94 -- Uncomment next line when using debug/storage pools
95 -- Memory_Mgmt.Print_Info;
96 end Delete;
97 end Database_List;

328 / 797

Access Types In Depth
Lab

Lab Solution - Main
1 with Simple_Io; use Simple_Io;
2 with Database;
3 with Database_List;
4 procedure Main is
5 List : Database_List.List_T;
6 Component : Database.Database_T;
7

8 procedure Add is
9 Value : constant String := Get_String ("Add");

10 begin
11 if Value'Length > 0 then
12 Component := Database.To_Database (Value);
13 Database_List.Insert (List, Component);
14 end if;
15 end Add;
16

17 procedure Delete is
18 Value : constant String := Get_String ("Delete");
19 begin
20 if Value'Length > 0 then
21 Component := Database.To_Database (Value);
22 Database_List.Delete (List, Component);
23 end if;
24 end Delete;
25

26 procedure Print is
27 begin
28 Database_List.First (List);
29 Simple_Io.Print_String ("List");
30 while not Database_List.End_Of_List (List) loop
31 Component := Database_List.Current (List);
32 Print_String (" " & Database.From_Database (Component));
33 Database_List.Next (List);
34 end loop;
35 end Print;
36

37 begin
38 loop
39 case Get_Character ("A=Add D=Delete P=Print Q=Quit") is
40 when 'a' | 'A' => Add;
41 when 'd' | 'D' => Delete;
42 when 'p' | 'P' => Print;
43 when 'q' | 'Q' => exit;
44 when others => null;
45 end case;
46 end loop;
47 end Main;

329 / 797

Access Types In Depth
Lab

Lab Solution - Simple_IO (Spec)

1 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
2 package Simple_Io is
3 function Get_String (Prompt : String)
4 return String;
5 function Get_Number (Prompt : String)
6 return Integer;
7 function Get_Character (Prompt : String)
8 return Character;
9 procedure Print_String (Str : String);

10 procedure Print_Number (Num : Integer);
11 procedure Print_Character (Char : Character);
12 function Get_String (Prompt : String)
13 return Unbounded_String;
14 procedure Print_String (Str : Unbounded_String);
15 end Simple_Io;

330 / 797

Access Types In Depth
Lab

Lab Solution - Simple_IO (Body)
1 with Ada.Text_IO;
2 package body Simple_Io is
3 function Get_String (Prompt : String) return String is
4 Str : String (1 .. 1_000);
5 Last : Integer;
6 begin
7 Ada.Text_IO.Put (Prompt & "> ");
8 Ada.Text_IO.Get_Line (Str, Last);
9 return Str (1 .. Last);

10 end Get_String;
11

12 function Get_Number (Prompt : String) return Integer is
13 Str : constant String := Get_String (Prompt);
14 begin
15 return Integer'Value (Str);
16 end Get_Number;
17

18 function Get_Character (Prompt : String) return Character is
19 Str : constant String := Get_String (Prompt);
20 begin
21 return Str (Str'First);
22 end Get_Character;
23

24 procedure Print_String (Str : String) is
25 begin
26 Ada.Text_IO.Put_Line (Str);
27 end Print_String;
28 procedure Print_Number (Num : Integer) is
29 begin
30 Ada.Text_IO.Put_Line (Integer'Image (Num));
31 end Print_Number;
32 procedure Print_Character (Char : Character) is
33 begin
34 Ada.Text_IO.Put_Line (Character'Image (Char));
35 end Print_Character;
36

37 function Get_String (Prompt : String) return Unbounded_String is
38 begin
39 return To_Unbounded_String (Get_String (Prompt));
40 end Get_String;
41 procedure Print_String (Str : Unbounded_String) is
42 begin
43 Print_String (To_String (Str));
44 end Print_String;
45 end Simple_Io;

331 / 797

Access Types In Depth
Lab

Lab Solution - Memory_Mgmt (Debug Pools)

1 with GNAT.Debug_Pools;
2 package Memory_Mgmt is
3 Storage_Pool : GNAT.Debug_Pools.Debug_Pool;
4 procedure Print_Info;
5 end Memory_Mgmt;
6

7 package body Memory_Mgmt is
8 procedure Print_Info is
9 begin

10 GNAT.Debug_Pools.Print_Info_Stdout (Storage_Pool);
11 end Print_Info;
12 end Memory_Mgmt;

332 / 797

Access Types In Depth
Lab

Lab Solution - Memory_Mgmt (Storage Pools Spec)
1 with System.Storage_Components;
2 with System.Storage_Pools;
3 package Memory_Mgmt is
4

5 type Storage_Pool_T is new System.Storage_Pools.Root_Storage_Pool with
6 null record;
7

8 procedure Print_Info;
9

10 procedure Allocate
11 (Pool : in out Storage_Pool_T;
12 Storage_Address : out System.Address;
13 Size_In_Storage_Components : System.Storage_Components.Storage_Count;
14 Alignment : System.Storage_Components.Storage_Count);
15 procedure Deallocate
16 (Pool : in out Storage_Pool_T;
17 Storage_Address : System.Address;
18 Size_In_Storage_Components : System.Storage_Components.Storage_Count;
19 Alignment : System.Storage_Components.Storage_Count);
20 function Storage_Size
21 (Pool : Storage_Pool_T)
22 return System.Storage_Components.Storage_Count;
23

24 Storage_Pool : Storage_Pool_T;
25

26 end Memory_Mgmt;

333 / 797

Access Types In Depth
Lab

Lab Solution - Memory_Mgmt (Storage Pools 1/2)
1 with Ada.Text_IO;
2 with Interfaces;
3 package body Memory_Mgmt is
4 use System.Storage_Components;
5 use type System.Address;
6

7 subtype Index_T is Storage_Count range 1 .. 1_000;
8 Memory_Block : aliased array (Index_T) of Interfaces.Unsigned_8;
9 Memory_Used : array (Index_T) of Boolean := (others => False);

10

11 Current_Water_Mark : Storage_Count := 0;
12 High_Water_Mark : Storage_Count := 0;
13

14 procedure Set_In_Use
15 (Start : Index_T;
16 Length : Storage_Count;
17 Used : Boolean) is
18 begin
19 for I in 0 .. Length - 1 loop
20 Memory_Used (Start + I) := Used;
21 end loop;
22 if Used then
23 Current_Water_Mark := Current_Water_Mark + Length;
24 High_Water_Mark :=
25 Storage_Count'max (High_Water_Mark, Current_Water_Mark);
26 else
27 Current_Water_Mark := Current_Water_Mark - Length;
28 end if;
29 end Set_In_Use;
30

31 function Find_Free_Block
32 (Length : Storage_Count)
33 return Index_T is
34 Consecutive : Storage_Count := 0;
35 begin
36 for I in Memory_Used'Range loop
37 if Memory_Used (I) then
38 Consecutive := 0;
39 else
40 Consecutive := Consecutive + 1;
41 if Consecutive >= Length then
42 return I;
43 end if;
44 end if;
45 end loop;
46 raise Storage_Error;
47 end Find_Free_Block;

334 / 797

Access Types In Depth
Lab

Lab Solution - Memory_Mgmt (Storage Pools 2/2)
49 procedure Allocate
50 (Pool : in out Storage_Pool_T;
51 Storage_Address : out System.Address;
52 Size_In_Storage_Components : Storage_Count;
53 Alignment : Storage_Count) is
54 Index : Storage_Count := Find_Free_Block (Size_In_Storage_Components);
55 begin
56 Storage_Address := Memory_Block (Index)'Address;
57 Set_In_Use (Index, Size_In_Storage_Components, True);
58 end Allocate;
59

60 procedure Deallocate
61 (Pool : in out Storage_Pool_T;
62 Storage_Address : System.Address;
63 Size_In_Storage_Components : Storage_Count;
64 Alignment : Storage_Count) is
65 begin
66 for I in Memory_Block'Range loop
67 if Memory_Block (I)'Address = Storage_Address then
68 Set_In_Use (I, Size_In_Storage_Components, False);
69 end if;
70 end loop;
71 end Deallocate;
72

73 function Storage_Size
74 (Pool : Storage_Pool_T)
75 return System.Storage_Components.Storage_Count is
76 begin
77 return 0;
78 end Storage_Size;
79

80 procedure Print_Info is
81 begin
82 Ada.Text_IO.Put_Line
83 ("Current Water Mark: " & Storage_Count'Image (Current_Water_Mark));
84 Ada.Text_IO.Put_Line
85 ("High Water Mark: " & Storage_Count'Image (High_Water_Mark));
86 end Print_Info;
87

88 end Memory_Mgmt;

335 / 797

Access Types In Depth
Summary

Summary

336 / 797

Access Types In Depth
Summary

Summary

Access types when used with "dynamic" memory allocation can
cause problems

Whether actually dynamic or using managed storage pools, memory
leaks/lack can occur
Storage pools can help diagnose memory issues, but it's still a
usage issue

GNAT.Debug_Pools is useful for debugging memory issues
Mostly in low-level testing
Could integrate it with an error logging mechanism

System.Storage_Pools can be used to control memory usage
Adds overhead

337 / 797

Day 2 - PM

338 / 797

Genericity

Genericity

339 / 797

Genericity
Introduction

Introduction

340 / 797

Genericity
Introduction

The Notion of a Pattern
Sometimes algorithms can be abstracted from types and
subprograms

procedure Swap_Int (Left, Right : in out Integer) is
V : Integer := Left;

begin
Left := Right;
Right := V;

end Swap_Int;

procedure Swap_Bool (Left, Right : in out Boolean) is
V : Boolean := Left;

begin
Left := Right;
Right := V;

end Swap_Bool;

It would be nice to extract these properties in some common
pattern, and then just replace the parts that need to be replaced

procedure Swap (Left, Right : in out (Integer | Boolean)) is
V : (Integer | Boolean) := Left;

begin
Left := Right;
Right := V;

end Swap;

341 / 797

Genericity
Introduction

Solution: Generics

A generic unit is a unit that does not exist
It is a pattern based on properties
The instantiation applies the pattern to certain parameters

342 / 797

Genericity
Introduction

Ada Generic Compared to C++ Template
Ada Generic
-- specification
generic

type T is private;
procedure Swap (L, R : in out T);

-- implementation
procedure Swap (L, R : in out T) is

Tmp : T := L;
begin

L := R;
R := Tmp;

end Swap;

-- instance
procedure Swap_F is new Swap (Float);

C++ Template
// prototype
template <class T>
void Swap (T & L, T & R);

// implementation
template <class T>
void Swap (T & L, T & R) {

T Tmp = L;
L = R;
R = Tmp;

}

// instance
int x, y;
Swap<int>(x,y);

343 / 797

Genericity
Creating Generics

Creating Generics

344 / 797

Genericity
Creating Generics

Declaration
Subprograms

generic
type T is private;

procedure Swap (L, R : in out T);

Packages

generic
type T is private;

package Stack is
procedure Push (Item : T);

end Stack;

Body is required
Will be specialized and compiled for each instance

Children of generic units have to be generic themselves

generic
package Stack.Utilities is

procedure Print (S : Stack_T);
345 / 797

Genericity
Creating Generics

Usage

Instantiated with the new keyword

-- Standard library
function Convert is new Ada.Unchecked_Conversion

(Integer, Array_Of_4_Bytes);
-- Callbacks
procedure Parse_Tree is new Tree_Parser

(Visitor_Procedure);
-- Containers, generic data-structures
package Integer_Stack is new Stack (Integer);

Advanced usages for testing, proof, meta-programming

346 / 797

Genericity
Creating Generics

Quiz

Which one(s) of the following can be made generic?

generic
type T is private;

<code goes here>

A. package
B. record
C. function
D. array

Only packages, functions, and procedures, can be made generic.

347 / 797

Genericity
Creating Generics

Quiz

Which one(s) of the following can be made generic?

generic
type T is private;

<code goes here>

A. package
B. record
C. function
D. array

Only packages, functions, and procedures, can be made generic.

347 / 797

Genericity
Generic Data

Generic Data

348 / 797

Genericity
Generic Data

Generic Types Parameters (1/3)

A generic parameter is a template

It specifies the properties the generic body can rely on

generic
type T1 is private;
type T2 (<>) is private;
type T3 is limited private;

package Parent is

The actual parameter must be no more restrictive then the
generic contract

349 / 797

Genericity
Generic Data

Generic Types Parameters (2/3)

Generic formal parameter tells generic what it is allowed to do
with the type

type T1 is (<>); Discrete type; 'First, 'Succ, etc available
type T2 is range <>; Signed Integer type; appropriate mathematic operations allowed
type T3 is digits <>; Floating point type; appropriate mathematic operations allowed
type T4; Incomplete type; can only be used as target of access
type T5 is tagged private; tagged type; can extend the type
type T6 is private; No knowledge about the type other than assignment, comparison, object creation allowed
type T7 (<>) is private; (<>) indicates type can be unconstrained, so any object has to be initialized

350 / 797

Genericity
Generic Data

Generic Types Parameters (3/3)
The usage in the generic has to follow the contract

Generic Subprogram
generic

type T (<>) is private;
procedure P (V : T);
procedure P (V : T) is

X1 : T := V; -- OK, can constrain by initialization
X2 : T; -- Compilation error, no constraint to this

begin
Instantiations
type Limited_T is limited null record;

-- unconstrained types are accepted
procedure P1 is new P (String);

-- type is already constrained
-- (but generic will still always initialize objects)
procedure P2 is new P (Integer);

-- Illegal: the type can't be limited because the generic
-- thinks it can make copies
procedure P3 is new P (Limited_T);

351 / 797

Genericity
Generic Data

Generic Parameters Can Be Combined
Consistency is checked at compile-time

generic
type T (<>) is private;
type Acc is access all T;
type Index is (<>);
type Arr is array (Index range <>) of Acc;

function Component (Source : Arr;
Position : Index)
return T;

type String_Ptr is access all String;
type String_Array is array (Integer range <>)

of String_Ptr;

function String_Component is new Component
(T => String,
Acc => String_Ptr,
Index => Integer,
Arr => String_Array);

352 / 797

Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is (are) legal instantiation(s)?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

353 / 797

Genericity
Generic Data

Quiz

generic
type T1 is (<>);
type T2 (<>) is private;

procedure G
(A : T1;
B : T2);

Which is (are) legal instantiation(s)?

A. procedure A is new G (String, Character);
B. procedure B is new G (Character, Integer);
C. procedure C is new G (Integer, Boolean);
D. procedure D is new G (Boolean, String);

T1 must be discrete - so an integer or an enumeration. T2 can be any
type

353 / 797

Genericity
Generic Formal Data

Generic Formal Data

354 / 797

Genericity
Generic Formal Data

Generic Constants/Variables As Parameters
Variables can be specified on
the generic contract
The mode specifies the way
the variable can be used:

in → read only
in out → read write

Generic variables can be
defined after generic types

Generic package
generic

type Component_T is private;
Array_Size : Positive;
High_Watermark : in out Component_T;

package Repository is
Generic instance
V : Float;
Max : Float;

procedure My_Repository is new Repository
(Component_T => Float,
Array_size => 10,
High_Watermark => Max);

355 / 797

Genericity
Generic Formal Data

Generic Subprogram Parameters
Subprograms can be defined in the generic contract

Must be introduced by with to differ from the generic unit

generic
type T is private;
with function Less_Than (L, R : T) return Boolean;

function Max (L, R : T) return T;

function Max (L, R : T) return T is
begin

if Less_Than (L, R) then
return R;

else
return L;

end if;
end Max;

type Something_T is null record;
function Less_Than (L, R : Something_T) return Boolean;
procedure My_Max is new Max (Something_T, Less_Than);

356 / 797

Genericity
Generic Formal Data

Generic Subprogram Parameters Defaults

is <> - matching subprogram is taken by default

is null - null procedure is taken by default
Only available in Ada 2005 and later

generic
type T is private;
with function Is_Valid (P : T) return Boolean is <>;
with procedure Error_Message (P : T) is null;

procedure Validate (P : T);

function Is_Valid_Record (P : Record_T) return Boolean;

procedure My_Validate is new Validate (Record_T,
Is_Valid_Record);

-- Is_Valid maps to Is_Valid_Record
-- Error_Message maps to a null procedure

357 / 797

Genericity
Generic Formal Data

Quiz
generic

type Component_T is (<>);
Last : in out Component_T;

procedure Write (P : Component_T);

Numeric : Integer;
Enumerated : Boolean;
Floating_Point : Float;

Which of the following piece(s) of code is (are) legal?

A. procedure Write_A is new Write (Integer, Numeric)
B. procedure Write_B is new Write (Boolean, Enumerated)
C. procedure Write_C is new Write (Integer, Integer'Pos

(Numeric))
D. procedure Write_D is new Write (Float,

Floating_Point)

A. Legal
B. Legal
C. The second generic parameter has to be a variable
D. The first generic parameter has to be discrete

358 / 797

Genericity
Generic Formal Data

Quiz
generic

type Component_T is (<>);
Last : in out Component_T;

procedure Write (P : Component_T);

Numeric : Integer;
Enumerated : Boolean;
Floating_Point : Float;

Which of the following piece(s) of code is (are) legal?

A. procedure Write_A is new Write (Integer, Numeric)
B. procedure Write_B is new Write (Boolean, Enumerated)
C. procedure Write_C is new Write (Integer, Integer'Pos

(Numeric))
D. procedure Write_D is new Write (Float,

Floating_Point)

A. Legal
B. Legal
C. The second generic parameter has to be a variable
D. The first generic parameter has to be discrete

358 / 797

Genericity
Generic Formal Data

Quiz
Given the following generic function:

generic
type Some_T is private;
with function "+" (L : Some_T; R : Integer) return Some_T is <>;

function Incr (Param : Some_T) return Some_T;

function Incr (Param : Some_T) return Some_T is
begin

return Param + 1;
end Incr;

And the following declarations:

type Record_T is record
Component : Integer;

end record;
function Add (L : Record_T; I : Integer) return Record_T is

((Component => L.Component + I))
function Weird (L : Integer; R : Integer) return Integer is (0);

Which of the following instantiation(s) is/are not legal?

A. function IncrA is new Incr (Integer, Weird);
B. function IncrB is new Incr (Record_T, Add);
C. function IncrC is new Incr (Record_T);
D. function IncrD is new Incr (Integer);

with function "+" (L : Some_T; R : Integer) return Some_T is <>;
indicates that if no function for + is passed in, find (if possible) a
matching definition at the point of instantiation.

A. Weird matches the subprogram profile, so Incr will use Weird
when doing addition for Integer

B. Add matches the subprogram profile, so Incr will use Add when
doing the addition for Record_T

C. There is no matching + operation for Record_T, so that
instantiation fails to compile

D. Because there is no parameter for the generic formal parameter +,
the compiler will look for one in the scope of the instantiation.
Because the instantiating type is numeric, the inherited + operator
is found

359 / 797

Genericity
Generic Formal Data

Quiz
Given the following generic function:

generic
type Some_T is private;
with function "+" (L : Some_T; R : Integer) return Some_T is <>;

function Incr (Param : Some_T) return Some_T;

function Incr (Param : Some_T) return Some_T is
begin

return Param + 1;
end Incr;

And the following declarations:

type Record_T is record
Component : Integer;

end record;
function Add (L : Record_T; I : Integer) return Record_T is

((Component => L.Component + I))
function Weird (L : Integer; R : Integer) return Integer is (0);

Which of the following instantiation(s) is/are not legal?

A. function IncrA is new Incr (Integer, Weird);
B. function IncrB is new Incr (Record_T, Add);
C. function IncrC is new Incr (Record_T);
D. function IncrD is new Incr (Integer);

with function "+" (L : Some_T; R : Integer) return Some_T is <>;
indicates that if no function for + is passed in, find (if possible) a
matching definition at the point of instantiation.

A. Weird matches the subprogram profile, so Incr will use Weird
when doing addition for Integer

B. Add matches the subprogram profile, so Incr will use Add when
doing the addition for Record_T

C. There is no matching + operation for Record_T, so that
instantiation fails to compile

D. Because there is no parameter for the generic formal parameter +,
the compiler will look for one in the scope of the instantiation.
Because the instantiating type is numeric, the inherited + operator
is found

359 / 797

Genericity
Generic Completion

Generic Completion

360 / 797

Genericity
Generic Completion

Implications at Compile-Time

The body needs to be visible when compiling the user code
Therefore, when distributing a component with generics to be
instantiated, the code of the generic must come along

361 / 797

Genericity
Generic Completion

Generic and Freezing Points

A generic type freezes the type and needs the full view
May force separation between its declaration (in spec) and
instantiations (in private or body)

generic
type X is private;

package Base is
V : access X;

end Base;

package P is
type X is private;
-- illegal
package B is new Base (X);

private
type X is null record;

end P;
362 / 797

Genericity
Generic Completion

Generic Incomplete Parameters

A generic type can be incomplete
Allows generic instantiations before full type definition
Restricts the possible usages (only access)

generic
type X; -- incomplete

package Base is
V : access X;

end Base;

package P is
type X is private;
-- legal
package B is new Base (X);

private
type X is null record;

end P;
363 / 797

Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is (are) legal for G_P's body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

364 / 797

Genericity
Generic Completion

Quiz

generic
type T1;
A1 : access T1;
type T2 is private;
A2, B2 : T2;

procedure G_P;
procedure G_P is
begin

-- Complete here
end G_P;

Which of the following statement(s) is (are) legal for G_P's body?

A. pragma Assert (A1 /= null)
B. pragma Assert (A1.all'Size > 32)
C. pragma Assert (A2 = B2)
D. pragma Assert (A2 - B2 /= 0)

364 / 797

Genericity
Generic Completion

Genericity Lab

Requirements
Create a record structure containing multiple components

Need subprograms to convert the record to a string, and compare
the order of two records
Lab prompt package Data_Type contains a framework

Create a generic list implementation
Need subprograms to add items to the list, sort the list, and print
the list

The main program should:
Add many records to the list
Sort the list
Print the list

Hints
Sort routine will need to know how to compare components
Print routine will need to know how to print one component

365 / 797

Genericity
Generic Completion

Genericity Lab Solution - Generic (Spec)
1 generic
2 type Component_T is private;
3 Max_Size : Natural;
4 with function ">" (L, R : Component_T) return Boolean is <>;
5 with function Image (Component : Component_T) return String;
6 package Generic_List is
7

8 type List_T is private;
9

10 procedure Add (This : in out List_T;
11 Item : in Component_T);
12 procedure Sort (This : in out List_T);
13 procedure Print (List : List_T);
14

15 private
16 subtype Index_T is Natural range 0 .. Max_Size;
17 type List_Array_T is array (1 .. Index_T'Last) of Component_T;
18

19 type List_T is record
20 Values : List_Array_T;
21 Length : Index_T := 0;
22 end record;
23 end Generic_List;

366 / 797

Genericity
Generic Completion

Genericity Lab Solution - Generic (Body)
1 with Ada.Text_io; use Ada.Text_IO;
2 package body Generic_List is
3

4 procedure Add (This : in out List_T;
5 Item : in Component_T) is
6 begin
7 This.Length := This.Length + 1;
8 This.Values (This.Length) := Item;
9 end Add;

10

11 procedure Sort (This : in out List_T) is
12 Temp : Component_T;
13 begin
14 for I in 1 .. This.Length loop
15 for J in 1 .. This.Length - I loop
16 if This.Values (J) > This.Values (J + 1) then
17 Temp := This.Values (J);
18 This.Values (J) := This.Values (J + 1);
19 This.Values (J + 1) := Temp;
20 end if;
21 end loop;
22 end loop;
23 end Sort;
24

25 procedure Print (List : List_T) is
26 begin
27 for I in 1 .. List.Length loop
28 Put_Line (Integer'Image (I) & ") " & Image (List.Values (I)));
29 end loop;
30 end Print;
31

32 end Generic_List;

367 / 797

Genericity
Generic Completion

Genericity Lab Solution - Main
1 with Data_Type;
2 with Generic_List;
3 procedure Main is
4 package List is new Generic_List (Component_T => Data_Type.Record_T,
5 Max_Size => 20,
6 ">" => Data_Type.">",
7 Image => Data_Type.Image);
8

9 My_List : List.List_T;
10 Component : Data_Type.Record_T;
11

12 begin
13 List.Add (My_List, (Integer_Component => 111,
14 Character_Component => 'a'));
15 List.Add (My_List, (Integer_Component => 111,
16 Character_Component => 'z'));
17 List.Add (My_List, (Integer_Component => 111,
18 Character_Component => 'A'));
19 List.Add (My_List, (Integer_Component => 999,
20 Character_Component => 'B'));
21 List.Add (My_List, (Integer_Component => 999,
22 Character_Component => 'Y'));
23 List.Add (My_List, (Integer_Component => 999,
24 Character_Component => 'b'));
25 List.Add (My_List, (Integer_Component => 112,
26 Character_Component => 'a'));
27 List.Add (My_List, (Integer_Component => 998,
28 Character_Component => 'z'));
29

30 List.Sort (My_List);
31 List.Print (My_List);
32 end Main;

368 / 797

Genericity
Summary

Summary

369 / 797

Genericity
Summary

Generic Routines Vs Common Routines
package Helper is

type Float_T is digits 6;
generic

type Type_T is digits <>;
Min : Type_T;
Max : Type_T;

function In_Range_Generic (X : Type_T) return Boolean;
function In_Range_Common (X : Float_T;

Min : Float_T;
Max : Float_T)
return Boolean;

end Helper;

procedure User is
type Speed_T is new Float_T range 0.0 .. 100.0;
B : Boolean;
function Valid_Speed is new In_Range_Generic

(Speed_T, Speed_T'First, Speed_T'Last);
begin

B := Valid_Speed (12.3);
B := In_Range_Common (12.3, Speed_T'First, Speed_T'Last);

370 / 797

Genericity
Summary

Summary

Generics are useful for copying code that works the same just for
different types

Sorting, containers, etc

Properly written generics only need to be tested once
But testing / debugging can be more difficult

Generic instantiations are best done at compile time
At the package level
Can be run time expensive when done in subprogram scope

371 / 797

Tagged Derivation

Tagged Derivation

372 / 797

Tagged Derivation
Introduction

Introduction

373 / 797

Tagged Derivation
Introduction

Object-Oriented Programming with Tagged Types

For record types

type T is tagged record
...

Child types can add new components (attributes)

Object of a child type can be substituted for base type

Primitive (method) can dispatch at run-time depending on the
type at call-site

Types can be extended by other packages
Conversion and qualification to base type is allowed

Private data is encapsulated through privacy

374 / 797

Tagged Derivation
Introduction

Tagged Derivation Ada Vs C++

type T1 is tagged record
Member1 : Integer;

end record;

procedure Attr_F (This : T1);

type T2 is new T1 with record
Member2 : Integer;

end record;

overriding procedure Attr_F (
This : T2);

procedure Attr_F2 (This : T2);

class T1 {
public:

int Member1;
virtual void Attr_F(void);

};

class T2 : public T1 {
public:

int Member2;
virtual void Attr_F(void);
virtual void Attr_F2(void);

};

375 / 797

Tagged Derivation
Tagged Derivation

Tagged Derivation

376 / 797

Tagged Derivation
Tagged Derivation

Difference with Simple Derivation

Tagged derivation can change the structure of a type
Keywords tagged record and with record

type Root is tagged record
F1 : Integer;

end record;

type Child is new Root with record
F2 : Integer;

end record;

Conversion is only allowed from child to parent

V1 : Root;
V2 : Child;
...
V1 := Root (V2);
V2 := Child (V1); -- illegal

377 / 797

Tagged Derivation
Tagged Derivation

Primitives

Child cannot remove a primitive

Child can add new primitives

Controlling parameter
Parameters the subprogram is a primitive of
For tagged types, all should have the same type

type Root1 is tagged null record;
type Root2 is tagged null record;

procedure P1 (V1 : Root1;
V2 : Root1);

procedure P2 (V1 : Root1;
V2 : Root2); -- illegal

378 / 797

Tagged Derivation
Tagged Derivation

Freeze Point for Tagged Types

Freeze point definition does not change
A variable of the type is declared
The type is derived
The end of the scope is reached

Declaring tagged type primitives past freeze point is forbidden

type Root is tagged null record;

procedure Prim (V : Root);

type Child is new Root with null record; -- freeze root

procedure Prim2 (V : Root); -- illegal

V : Child; -- freeze child

procedure Prim3 (V : Child); -- illegal
379 / 797

Tagged Derivation
Tagged Derivation

Overriding Indicators
Optional overriding and not overriding indicators

type Shape_T is tagged record
Name : String (1..10);

end record;

-- primitives of "Shape_T"
function Get_Name (S : Shape_T) return String;
procedure Set_Name (S : in out Shape_T);

-- Derive "Point" from Shape_T
type Point_T is new Shape_T with record

Origin : Coord_T;
end Point_T;

-- Get_Name is inherited
-- We want to _change_ the behavior of Set_Name
overriding procedure Set_Name (P : in out Point_T);
-- We want to _add_ a new primitive
not overriding procedure Set_Origin (P : in out Point_T);

380 / 797

Tagged Derivation
Tagged Derivation

Prefix Notation

Tagged types primitives can be called as usual

The call can use prefixed notation
If the first argument is a controlling parameter
No need for use or use type for visibility

-- Prim1 visible even without *use Pkg*
X.Prim1;

declare
use Pkg;

begin
Prim1 (X);

end;

381 / 797

Tagged Derivation
Tagged Derivation

Quiz
Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
Object : T1;
procedure P (O : T1) is null;

D. package Nested is
type T1 is tagged null record;

end Nested;
use Nested;
procedure P (O : T1) is null;

A. Primitive (same scope)
B. Primitive (T1 is not yet frozen)
C. T1 is frozen by the object declaration
D. Primitive must be declared in same scope as type

382 / 797

Tagged Derivation
Tagged Derivation

Quiz
Which declaration(s) will make P a primitive of T1?

A. type T1 is tagged null record;
procedure P (O : T1) is null;

B. type T0 is tagged null record;
type T1 is new T0 with null record;
type T2 is new T0 with null record;
procedure P (O : T1) is null;

C. type T1 is tagged null record;
Object : T1;
procedure P (O : T1) is null;

D. package Nested is
type T1 is tagged null record;

end Nested;
use Nested;
procedure P (O : T1) is null;

A. Primitive (same scope)
B. Primitive (T1 is not yet frozen)
C. T1 is frozen by the object declaration
D. Primitive must be declared in same scope as type

382 / 797

Tagged Derivation
Tagged Derivation

Quiz

with Shapes; -- Defines tagged type Shape, with primitive P
with Colors; use Colors; -- Defines tagged type Color, with primitive P
with Weights; -- Defines tagged type Weight, with primitive P
use type Weights.Weight;

procedure Main is
The_Shape : Shapes.Shape;
The_Color : Colors.Color;
The_Weight : Weights.Weight;

Which statement(s) is (are) valid?

A. The_Shape.P
B. P (The_Shape)
C. P (The_Color)
D. P (The_Weight)

D. use type only gives visibility to operators; needs to be
use all type

383 / 797

Tagged Derivation
Tagged Derivation

Quiz

with Shapes; -- Defines tagged type Shape, with primitive P
with Colors; use Colors; -- Defines tagged type Color, with primitive P
with Weights; -- Defines tagged type Weight, with primitive P
use type Weights.Weight;

procedure Main is
The_Shape : Shapes.Shape;
The_Color : Colors.Color;
The_Weight : Weights.Weight;

Which statement(s) is (are) valid?

A. The_Shape.P
B. P (The_Shape)
C. P (The_Color)
D. P (The_Weight)

D. use type only gives visibility to operators; needs to be
use all type

383 / 797

Tagged Derivation
Tagged Derivation

Quiz
Which code block(s) is (are) legal?

A. type A1 is record
Component1 : Integer;

end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Component2 : Integer;
end record;
type B2 is new B1 with
record

Component2b :
Integer;
end record;

C. type C1 is tagged
record

Component3 : Integer;
end record;
type C2 is new C1 with
record

Component3 : Integer;
end record;

D. type D1 is tagged
record

Component1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

384 / 797

Tagged Derivation
Tagged Derivation

Quiz
Which code block(s) is (are) legal?

A. type A1 is record
Component1 : Integer;

end record;
type A2 is new A1 with
null record;

B. type B1 is tagged
record

Component2 : Integer;
end record;
type B2 is new B1 with
record

Component2b :
Integer;
end record;

C. type C1 is tagged
record

Component3 : Integer;
end record;
type C2 is new C1 with
record

Component3 : Integer;
end record;

D. type D1 is tagged
record

Component1 : Integer;
end record;
type D2 is new D1;

Explanations

A. Cannot extend a non-tagged type
B. Correct
C. Components must have distinct names
D. Types derived from a tagged type must have an extension

384 / 797

Tagged Derivation
Extending Tagged Types

Extending Tagged Types

385 / 797

Tagged Derivation
Extending Tagged Types

How Do You Extend a Tagged Type?
Premise of a tagged type is to extend an existing type

In general, that means we want to add more components
We can extend a tagged type by adding components

package Animals is
type Animal_T is tagged record

Age : Natural;
end record;

end Animals;

with Animals; use Animals;
package Mammals is

type Mammal_T is new Animal_T with record
Number_Of_Legs : Natural;

end record;
end Mammals;

with Mammals; use Mammals;
package Canines is

type Canine_T is new Mammal_T with record
Domesticated : Boolean;

end record;
end Canines;

386 / 797

Tagged Derivation
Extending Tagged Types

Tagged Aggregate

At initialization, all components (including inherited) must have a
value

Animal : Animal_T := (Age => 1);
Mammal : Mammal_T := (Age => 2,

Number_Of_Legs => 2);
Canine : Canine_T := (Age => 2,

Number_Of_Legs => 4,
Domesticated => True);

But we can also "seed" the aggregate with a parent object

Mammal := (Animal with Number_Of_Legs => 4);
Canine := (Animal with Number_Of_Legs => 4,

Domesticated => False);
Canine := (Mammal with Domesticated => True);

387 / 797

Tagged Derivation
Extending Tagged Types

Private Tagged Types

But data hiding says types should be private!

So we can define our base type as private
package Animals is

type Animal_T is tagged private;
function Get_Age (P : Animal_T) return Natural;
procedure Set_Age (P : in out Animal_T; A : Natural);

private
type Animal_T is tagged record

Age : Natural;
end record;

end Animals;

And still allow derivation
with Animals;
package Mammals is

type Mammal_T is new Animals.Animal_T with record
Number_Of_Legs : Natural;

end record;

But now the only way to get access to Age is with accessor
subprograms

388 / 797

Tagged Derivation
Extending Tagged Types

Private Extensions

In the previous slide, we exposed the components for Mammal_T!

Better would be to make the extension itself private

package Mammals is
type Mammal_T is new Animals.Animal_T with private;

private
type Mammal_T is new Animals.Animal_T with record

Number_Of_Legs : Natural;
end record;

end Mammals;

389 / 797

Tagged Derivation
Extending Tagged Types

Aggregates with Private Tagged Types

Remember, an aggregate must specify values for all components
But with private types, we can't see all the components!

So we need to use the "seed" method:

procedure Inside_Mammals_Pkg is
Animal : Animal_T := Animals.Create;
Mammal : Mammal_T;

begin
Mammal := (Animal with Number_Of_Legs => 4);
Mammal := (Animals.Create with Number_Of_Legs => 4);

end Inside_Mammals_Pkg;

Note that we cannot use others => <> for components that are
not visible to us

Mammal := (Number_Of_Legs => 4,
others => <>); -- Compile Error

390 / 797

Tagged Derivation
Extending Tagged Types

Null Extensions

To create a new type with no additional components
We still need to "extend" the record - we just do it with an empty
record

type Dog_T is new Canine_T with null record;

We still need to specify the "added" components in an aggregate

C : Canine_T := Canines.Create;
Dog1 : Dog_T := C; -- Compile Error
Dog2 : Dog_T := (C with null record);

391 / 797

Tagged Derivation
Extending Tagged Types

Quiz
Given the following code:

package Parents is
type Parent_T is tagged private;
function Create return Parent_T;

private
type Parent_T is tagged record

Id : Integer;
end record;

end Parents;

with Parents; use Parents;
package Children is

P : Parent_T;
type Child_T is new Parent_T with record

Count : Natural;
end record;
function Create (C : Natural) return Child_T;

end Children;

Which completion(s) of Create is (are) valid?

A. function Create return Child_T is (Parents.Create
with Count => 0);

B. function Create return Child_T is (others => <>);
C. function Create return Child_T is (0, 0);
D. function Create return Child_T is (P with Count =>

0);

Explanations

A. Correct - Parents.Create returns Parent_T
B. Cannot use others to complete private part of an aggregate
C. Aggregate has no visibility to Id component, so cannot assign
D. Correct - P is a Parent_T

392 / 797

Tagged Derivation
Extending Tagged Types

Quiz
Given the following code:

package Parents is
type Parent_T is tagged private;
function Create return Parent_T;

private
type Parent_T is tagged record

Id : Integer;
end record;

end Parents;

with Parents; use Parents;
package Children is

P : Parent_T;
type Child_T is new Parent_T with record

Count : Natural;
end record;
function Create (C : Natural) return Child_T;

end Children;

Which completion(s) of Create is (are) valid?

A. function Create return Child_T is (Parents.Create
with Count => 0);

B. function Create return Child_T is (others => <>);
C. function Create return Child_T is (0, 0);
D. function Create return Child_T is (P with Count =>

0);

Explanations

A. Correct - Parents.Create returns Parent_T
B. Cannot use others to complete private part of an aggregate
C. Aggregate has no visibility to Id component, so cannot assign
D. Correct - P is a Parent_T

392 / 797

Tagged Derivation
Lab

Lab

393 / 797

Tagged Derivation
Lab

Tagged Derivation Lab

Requirements
Create a type structure that could be used in a business

A person has some defining characteristics
An employee is a person with some employment information
A staff member is an employee with specific job information

Create primitive operations to read and print the objects

Create a main program to test the objects and operations

Hints
Use overriding and not overriding as appropriate (Ada 2005 and
above)
Data hiding is important!

394 / 797

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Spec)
1 package Employee is
2 type Person_T is tagged private;
3 subtype Name_T is String (1 .. 6);
4 type Date_T is record
5 Year : Positive;
6 Month : Positive;
7 Day : Positive;
8 end record;
9 type Job_T is (Sales, Engineer, Bookkeeping);

10

11 procedure Set_Name (O : in out Person_T;
12 Value : Name_T);
13 function Name (O : Person_T) return Name_T;
14 procedure Set_Birth_Date (O : in out Person_T;
15 Value : Date_T);
16 function Birth_Date (O : Person_T) return Date_T;
17 procedure Print (O : Person_T);
18

19 type Employee_T is new Person_T with private;
20 not overriding procedure Set_Start_Date (O : in out Employee_T;
21 Value : Date_T);
22 not overriding function Start_Date (O : Employee_T) return Date_T;
23 overriding procedure Print (O : Employee_T);
24

25 type Position_T is new Employee_T with private;
26 not overriding procedure Set_Job (O : in out Position_T;
27 Value : Job_T);
28 not overriding function Job (O : Position_T) return Job_T;
29 overriding procedure Print (O : Position_T);
30

31 private
32 type Person_T is tagged record
33 The_Name : Name_T;
34 The_Birth_Date : Date_T;
35 end record;
36

37 type Employee_T is new Person_T with record
38 The_Employee_Id : Positive;
39 The_Start_Date : Date_T;
40 end record;
41

42 type Position_T is new Employee_T with record
43 The_Job : Job_T;
44 end record;
45 end Employee;

395 / 797

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Types (Partial Body)
1 with Ada.Text_IO; use Ada.Text_IO;
2 package body Employee is
3

4 function Image (Date : Date_T) return String is
5 (Date.Year'Image & " -" & Date.Month'Image & " -" & Date.Day'Image);
6

7 procedure Set_Name (O : in out Person_T;
8 Value : Name_T) is
9 begin

10 O.The_Name := Value;
11 end Set_Name;
12 function Name (O : Person_T) return Name_T is (O.The_Name);
13

14 procedure Set_Birth_Date (O : in out Person_T;
15 Value : Date_T) is
16 begin
17 O.The_Birth_Date := Value;
18 end Set_Birth_Date;
19 function Birth_Date (O : Person_T) return Date_T is (O.The_Birth_Date);
20

21 procedure Print (O : Person_T) is
22 begin
23 Put_Line ("Name: " & O.Name);
24 Put_Line ("Birthdate: " & Image (O.Birth_Date));
25 end Print;
26

27 not overriding procedure Set_Start_Date (O : in out Employee_T;
28 Value : Date_T) is
29 begin
30 O.The_Start_Date := Value;
31 end Set_Start_Date;
32 not overriding function Start_Date (O : Employee_T) return Date_T is
33 (O.The_Start_Date);
34

35 overriding procedure Print (O : Employee_T) is
36 begin
37 Print (Person_T (O)); -- Use parent "Print"
38 Put_Line ("Startdate: " & Image (O.Start_Date));
39 end Print;
40

396 / 797

Tagged Derivation
Lab

Tagged Derivation Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Employee;
3 procedure Main is
4 Applicant : Employee.Person_T;
5 Employ : Employee.Employee_T;
6 Staff : Employee.Position_T;
7

8 begin
9 Applicant.Set_Name ("Wilma ");

10 Applicant.Set_Birth_Date ((Year => 1_234,
11 Month => 12,
12 Day => 1));
13

14 Employ.Set_Name ("Betty ");
15 Employ.Set_Birth_Date ((Year => 2_345,
16 Month => 11,
17 Day => 2));
18 Employ.Set_Start_Date ((Year => 3_456,
19 Month => 10,
20 Day => 3));
21

22 Staff.Set_Name ("Bambam");
23 Staff.Set_Birth_Date ((Year => 4_567,
24 Month => 9,
25 Day => 4));
26 Staff.Set_Start_Date ((Year => 5_678,
27 Month => 8,
28 Day => 5));
29 Staff.Set_Job (Employee.Engineer);
30

31 Applicant.Print;
32 Employ.Print;
33 Staff.Print;
34 end Main;

397 / 797

Tagged Derivation
Summary

Summary

398 / 797

Tagged Derivation
Summary

Summary

Tagged derivation
Building block for OOP types in Ada

Primitives rules for tagged types are trickier
Primitives forbidden below freeze point
Unique controlling parameter
Tip: Keep the number of tagged type per package low

399 / 797

Day 3 - AM

400 / 797

Exceptions In-Depth

Exceptions In-Depth

401 / 797

Exceptions In-Depth
Introduction

Introduction

402 / 797

Exceptions In-Depth
Introduction

Rationale for Exceptions

Textual separation from normal processing

Rigorous Error Management
Cannot be ignored, unlike status codes from routines
Example: running out of gasoline in an automobile

package Automotive is
type Vehicle is record

Fuel_Quantity, Fuel_Minimum : Float;
Oil_Temperature : Float;
...

end record;
Fuel_Exhausted : exception;
procedure Consume_Fuel (Car : in out Vehicle);
...

end Automotive;
403 / 797

Exceptions In-Depth
Introduction

Semantics Overview

Exceptions become active by being raised
Failure of implicit language-defined checks
Explicitly by application

Exceptions occur at run-time
A program has no effect until executed

May be several occurrences active at same time
One per task

Normal execution abandoned when they occur
Error processing takes over in response
Response specified by exception handlers
Handling the exception means taking action in response
Other tasks need not be affected

404 / 797

Exceptions In-Depth
Introduction

Semantics Example: Raising

package body Automotive is
function Current_Consumption return Float is

...
end Current_Consumption;
procedure Consume_Fuel (Car : in out Vehicle) is
begin

if Car.Fuel_Quantity <= Car.Fuel_Minimum then
raise Fuel_Exhausted;

else -- decrement quantity
Car.Fuel_Quantity := Car.Fuel_Quantity -

Current_Consumption;
end if;

end Consume_Fuel;
...

end Automotive;
405 / 797

Exceptions In-Depth
Introduction

Semantics Example: Handling

procedure Joy_Ride is
Hot_Rod : Automotive.Vehicle;
Bored : Boolean := False;
use Automotive;

begin
while not Bored loop

Steer_Aimlessly (Bored);
-- error situation cannot be ignored
Consume_Fuel (Hot_Rod);

end loop;
Drive_Home;

exception
when Fuel_Exhausted =>

Push_Home;
end Joy_Ride;

406 / 797

Exceptions In-Depth
Introduction

Handler Part Is Skipped Automatically

If no exceptions are active, returns normally

begin
...

-- if we get here, skip to end
exception

when Name1 =>
...
when Name2 | Name3 =>
...
when Name4 =>
...

end;

407 / 797

Exceptions In-Depth
Handlers

Handlers

408 / 797

Exceptions In-Depth
Handlers

Exception Handler Part

Contains the exception handlers within a frame
Within block statements, subprograms, tasks, etc.

Separates normal processing code from abnormal

Starts with the reserved word exception

Optional

begin
sequence_of_statements

[exception
exception_handler
{ exception handler }]

end

409 / 797

Exceptions In-Depth
Handlers

Exception Handlers Syntax

Associates exception names with statements to execute in response

If used, others must appear at the end, by itself
Associates statements with all other exceptions

Syntax

exception_handler ::=
when exception_choice { | exception_choice } =>

sequence_of_statements
exception_choice ::= exception_name | others

410 / 797

Exceptions In-Depth
Handlers

Similarity to Case Statements

Both structure and meaning

Exception handler

...
exception

when Constraint_Error | Storage_Error | Program_Error =>
...
when others =>
...

end;

Case statement

case exception_name is
when Constraint_Error | Storage_Error | Program_Error =>
...
when others =>
...

end case;
411 / 797

Exceptions In-Depth
Handlers

Handlers Don't "Fall Through"

begin
...
raise Name3;
-- code here is not executed
...

exception
when Name1 =>

-- not executed
...

when Name2 | Name3 =>
-- executed
...

when Name4 =>
-- not executed
...

end;
412 / 797

Exceptions In-Depth
Handlers

When an Exception Is Raised
Normal processing is
abandoned
Handler for active exception
is executed, if any
Control then goes to the
caller
If handled, caller continues
normally, otherwise repeats
the above

Caller
...
Joy_Ride;
Do_Something_At_Home;
...
Callee
procedure Joy_Ride is

...
begin

...
Drive_Home;

exception
when Fuel_Exhausted =>

Push_Home;
end Joy_Ride;

413 / 797

Exceptions In-Depth
Handlers

Handling Specific Statements' Exceptions

begin
loop

Prompting : loop
Put (Prompt);
Get_Line (Filename, Last);
exit when Last > Filename'First - 1;

end loop Prompting;
begin

Open (F, In_File, Filename (1..Last));
exit;

exception
when Name_Error =>

Put_Line ("File '" & Filename (1..Last) &
"' was not found.");

end;
end loop;

414 / 797

Exceptions In-Depth
Handlers

Exception Handler Content
No restrictions

Block statements,
subprogram calls, etc.

Do whatever makes sense

begin
...

exception
when Some_Error =>

declare
New_Data : Some_Type;

begin
P (New_Data);
...

end;
end;

415 / 797

Exceptions In-Depth
Handlers

Quiz
1 procedure Main is
2 A, B, C, D : Integer range 0 .. 100;
3 begin
4 A := 1; B := 2; C := 3; D := 4;
5 begin
6 D := A - C + B;
7 exception
8 when others => Put_Line ("One");
9 D := 1;

10 end;
11 D := D + 1;
12 begin
13 D := D / (A - C + B);
14 exception
15 when others => Put_Line ("Two");
16 D := -1;
17 end;
18 exception
19 when others =>
20 Put_Line ("Three");
21 end Main;

What will get printed?
A. One, Two, Three
B. Two, Three
C. Two
D. Three

Explanations
A. Although (A - C) is not in the range

of natural, the range is only checked
on assignment, which is after the
addition of B, so One is never printed

B. Correct
C. If we reach Two, the assignment on

line 16 will cause Three to be reached
D. Divide by 0 on line 13 causes an

exception, so Two must be called

416 / 797

Exceptions In-Depth
Handlers

Quiz
1 procedure Main is
2 A, B, C, D : Integer range 0 .. 100;
3 begin
4 A := 1; B := 2; C := 3; D := 4;
5 begin
6 D := A - C + B;
7 exception
8 when others => Put_Line ("One");
9 D := 1;

10 end;
11 D := D + 1;
12 begin
13 D := D / (A - C + B);
14 exception
15 when others => Put_Line ("Two");
16 D := -1;
17 end;
18 exception
19 when others =>
20 Put_Line ("Three");
21 end Main;

What will get printed?
A. One, Two, Three
B. Two, Three
C. Two
D. Three

Explanations
A. Although (A - C) is not in the range

of natural, the range is only checked
on assignment, which is after the
addition of B, so One is never printed

B. Correct
C. If we reach Two, the assignment on

line 16 will cause Three to be reached
D. Divide by 0 on line 13 causes an

exception, so Two must be called

416 / 797

Exceptions In-Depth
Implicitly and Explicitly Raised Exceptions

Implicitly and Explicitly Raised Exceptions

417 / 797

Exceptions In-Depth
Implicitly and Explicitly Raised Exceptions

Implicitly-Raised Exceptions

Correspond to language-defined checks

Can happen by statement execution

K := -10; -- where K must be greater than zero

Can happen by declaration elaboration

Doomed : array (Positive) of Big_Type;

418 / 797

Exceptions In-Depth
Implicitly and Explicitly Raised Exceptions

Some Language-Defined Exceptions

Constraint_Error

Violations of constraints on range, index, etc.

Program_Error

Runtime control structure violated (function with no return ...)

Storage_Error

Insufficient storage is available

For a complete list see RM Q-4

419 / 797

Exceptions In-Depth
Implicitly and Explicitly Raised Exceptions

Explicitly-Raised Exceptions
Raised by application via
raise statements

Named exception becomes
active

Syntax
raise_statement ::= raise; |

raise exception_name
[with string_expression];

Note "with string_expression" only
available in Ada 2005 and later
A raise by itself is only
allowed in handlers

if Unknown (User_ID) then
raise Invalid_User;

end if;

if Unknown (User_ID) then
raise Invalid_User

with "Attempt by " &
Image (User_ID);

end if;

420 / 797

Exceptions In-Depth
Language-Defined Exceptions

Language-Defined Exceptions

421 / 797

Exceptions In-Depth
Language-Defined Exceptions

Constraint_Error

Caused by violations of constraints on range, index, etc.

The most common exceptions encountered

K : Integer range 1 .. 10;
...
K := -1;

L : array (1 .. 100) of Some_Type;
...
L (400) := SomeValue;

422 / 797

Exceptions In-Depth
Language-Defined Exceptions

Program_Error

When runtime control structure is violated
Elaboration order errors and function bodies

When implementation detects bounded errors
Discussed momentarily

function F return Some_Type is
begin

if something then
return Some_Value;

end if; -- program error - no return statement
end F;

423 / 797

Exceptions In-Depth
Language-Defined Exceptions

Storage_Error

When insufficient storage is available

Potential causes
Declarations
Explicit allocations
Implicit allocations

Data : array (1..1e20) of Big_Type;

424 / 797

Exceptions In-Depth
Language-Defined Exceptions

Explicitly-Raised Exceptions
Raised by application via
raise statements

Named exception becomes
active

Syntax
raise_statement ::= raise; |

raise exception_name
[with string_expression];

with string_expression
only available in Ada 2005
and later

A raise by itself is only
allowed in handlers (more
later)

if Unknown (User_ID) then
raise Invalid_User;

end if;

if Unknown (User_ID) then
raise Invalid_User

with "Attempt by " &
Image (User_ID);

end if;

425 / 797

Exceptions In-Depth
User-Defined Exceptions

User-Defined Exceptions

426 / 797

Exceptions In-Depth
User-Defined Exceptions

User-Defined Exceptions

Syntax

defining_identifier_list : exception;

Behave like predefined exceptions
Scope and visibility rules apply
Referencing as usual
Some minor differences

Exception identifiers' use is restricted
raise statements
Handlers
Renaming declarations

427 / 797

Exceptions In-Depth
User-Defined Exceptions

User-Defined Exceptions Example

An important part of the abstraction
Designer specifies how component can be used

package Stack is
Underflow, Overflow : exception;
procedure Push (Item : in Integer);
...

end Stack;

package body Stack is
procedure Push (Item : in Integer) is
begin

if Top = Index'Last then
raise Overflow;

end if;
Top := Top + 1;
Values (Top) := Item;

end Push;
...

428 / 797

Exceptions In-Depth
Propagation

Propagation

429 / 797

Exceptions In-Depth
Propagation

Propagation

Control does not return to point of raising
Termination Model

When a handler is not found in a block statement
Re-raised immediately after the block

When a handler is not found in a subprogram
Propagated to caller at the point of call

Propagation is dynamic, back up the call chain
Not based on textual layout or order of declarations

Propagation stops at the main subprogram
Main completes abnormally unless handled

430 / 797

Exceptions In-Depth
Propagation

Propagation Demo

1 procedure Do_Something is
2 Error : exception;
3 procedure Unhandled is
4 begin
5 Maybe_Raise (1);
6 end Unhandled;
7 procedure Handled is
8 begin
9 Unhandled;

10 Maybe_Raise (2);
11 exception
12 when Error =>
13 Print ("Handle 1 or 2");
14 end Handled;

16 begin -- Do_Something
17 Maybe_Raise (3);
18 Handled;
19 exception
20 when Error =>
21 Print ("Handle 3");
22 end Do_Something;

431 / 797

Exceptions In-Depth
Propagation

Termination Model

When control goes to handler, it continues from here

procedure Joy_Ride is
begin

loop
Steer_Aimlessly;

-- If next line raises Fuel_Exhausted, go to handler
Consume_Fuel;

end loop;
exception

when Fuel_Exhausted => -- Handler
Push_Home;
-- Resume from here: loop has been exited

end Joy_Ride;
432 / 797

Exceptions In-Depth
Propagation

Quiz
2 Main_Problem : exception;
3 I : Integer;
4 function F (P : Integer) return Integer is
5 begin
6 if P > 0 then
7 return P + 1;
8 elsif P = 0 then
9 raise Main_Problem;

10 end if;
11 end F;
12 begin
13 I := F(Input_Value);
14 Put_Line ("Success");
15 exception
16 when Constraint_Error => Put_Line ("Constraint Error");
17 when Program_Error => Put_Line ("Program Error");
18 when others => Put_Line ("Unknown problem");

What will get printed if Input_Value on line 13 is Integer'Last?

A. Unknown Problem
B. Success
C. Constraint Error
D. Program Error

Explanations

A. "Unknown Problem" is printed by the when others due to the
raise on line 9 when P is 0

B. "Success" is printed when 0 < P < Integer'Last
C. Trying to add 1 to P on line 7 generates a Constraint_Error
D. Program_Error will be raised by F if P < 0 (no return

statement found)

433 / 797

Exceptions In-Depth
Propagation

Quiz
2 Main_Problem : exception;
3 I : Integer;
4 function F (P : Integer) return Integer is
5 begin
6 if P > 0 then
7 return P + 1;
8 elsif P = 0 then
9 raise Main_Problem;

10 end if;
11 end F;
12 begin
13 I := F(Input_Value);
14 Put_Line ("Success");
15 exception
16 when Constraint_Error => Put_Line ("Constraint Error");
17 when Program_Error => Put_Line ("Program Error");
18 when others => Put_Line ("Unknown problem");

What will get printed if Input_Value on line 13 is Integer'Last?

A. Unknown Problem
B. Success
C. Constraint Error
D. Program Error

Explanations

A. "Unknown Problem" is printed by the when others due to the
raise on line 9 when P is 0

B. "Success" is printed when 0 < P < Integer'Last
C. Trying to add 1 to P on line 7 generates a Constraint_Error
D. Program_Error will be raised by F if P < 0 (no return

statement found)

433 / 797

Exceptions In-Depth
Partial and Nested Handlers

Partial and Nested Handlers

434 / 797

Exceptions In-Depth
Partial and Nested Handlers

Partially Handling Exceptions
Handler eventually re-raises
the current exception
Achieved using raise by
itself, since re-raising

Current active exception is
then propagated to caller

procedure Joy_Ride is
...

begin
while not Bored loop

Steer_Aimlessly (Bored);
Consume_Fuel (Hot_Rod);

end loop;
exception

when Fuel_Exhausted =>
Pull_Over;
raise; -- no gas available

end Joy_Ride;

435 / 797

Exceptions In-Depth
Partial and Nested Handlers

Typical Partial Handling Example
Log (or display) the error and re-raise to caller

Same exception or another one

procedure Get (Item : out Integer; From : in File) is
begin

Ada.Integer_Text_IO.Get (From, Item);
exception

when Ada.Text_IO.End_Error =>
Display_Error ("Attempted read past end of file");
raise Error;

when Ada.Text_IO.Mode_Error =>
Display_Error ("Read from file opened for writing");
raise Error;

when Ada.Text_IO.Status_Error =>
Display_Error ("File must be opened prior to use");
raise Error;

when others =>
Display_Error ("Error in Get (Integer) from file");
raise;

end Get;
436 / 797

Exceptions In-Depth
Partial and Nested Handlers

Exceptions Raised During Elaboration

I.e., those occurring before the begin

Go immediately to the caller

No handlers in that frame are applicable
Could reference declarations that failed to elaborate!

procedure P (Output : out BigType) is
-- storage error handled by caller
N : array (Positive) of BigType;
...

begin
...

exception
when Storage_Error =>

-- failure to define N not handled here
Output := N (1); -- if it was, this wouldn't work
...

end P;
437 / 797

Exceptions In-Depth
Partial and Nested Handlers

Handling Elaboration Exceptions

procedure Test is
procedure P is

X : Positive := 0; -- Constraint_Error!
begin

...
exception

when Constraint_Error =>
Ada.Text_IO.Put_Line ("Got it in P");

end P;
begin

P;
exception

when Constraint_Error =>
Ada.Text_IO.Put_Line ("Got Constraint_Error in Test");

end Test;
438 / 797

Exceptions In-Depth
Partial and Nested Handlers

Quiz
with Ada.Text_IO; use Ada.Text_IO;
procedure Exception_Test (Input_Value : Integer) is

Known_Problem : exception;
function F (P : Integer) return Integer is
begin

if P > 0 then
return P * P;

end if;
exception

when others => raise Known_Problem;
end F;
procedure P (X : Integer) is

A : array (1 .. F (X)) of Float;
begin

A := (others => 0.0);
exception

when others => raise Known_Problem;
end P;

begin
P (Input_Value);
Put_Line ("Success");

exception
when Known_Problem => Put_Line ("Known problem");
when others => Put_Line ("Unknown problem");

end Exception_Test;

What will get printed for these values of Input_Value?

A. Integer'Last

Known Problem

B. Integer'First

Unknown Problem

C. 10000

Unknown Problem

D. 100

Success

Explanations

A → When F is called with a large P, its own exception handler
captures the exception and raises Constraint_Error (which the main
exception handler processes)

B/C → When the creation of A fails (due to Program_Error from
passing F a negative number or Storage_Error from passing F a large
number), then P raises an exception during elaboration, which is
propagated to Main

439 / 797

Exceptions In-Depth
Partial and Nested Handlers

Quiz
with Ada.Text_IO; use Ada.Text_IO;
procedure Exception_Test (Input_Value : Integer) is

Known_Problem : exception;
function F (P : Integer) return Integer is
begin

if P > 0 then
return P * P;

end if;
exception

when others => raise Known_Problem;
end F;
procedure P (X : Integer) is

A : array (1 .. F (X)) of Float;
begin

A := (others => 0.0);
exception

when others => raise Known_Problem;
end P;

begin
P (Input_Value);
Put_Line ("Success");

exception
when Known_Problem => Put_Line ("Known problem");
when others => Put_Line ("Unknown problem");

end Exception_Test;

What will get printed for these values of Input_Value?

A. Integer'Last Known Problem
B. Integer'First Unknown Problem
C. 10000 Unknown Problem
D. 100 Success

Explanations

A → When F is called with a large P, its own exception handler
captures the exception and raises Constraint_Error (which the main
exception handler processes)

B/C → When the creation of A fails (due to Program_Error from
passing F a negative number or Storage_Error from passing F a large
number), then P raises an exception during elaboration, which is
propagated to Main

439 / 797

Exceptions In-Depth
Partial and Nested Handlers

Exceptions Raised in Exception Handlers
Go immediately to caller
unless also handled
Goes to caller in any case, as
usual

begin
...

exception
when Some_Error =>

declare
New_Data : Some_Type;

begin
P(New_Data);
...

exception
when ...

end;
end;

440 / 797

Exceptions In-Depth
Exceptions As Objects

Exceptions As Objects

441 / 797

Exceptions In-Depth
Exceptions As Objects

Exceptions Are Not Objects

May not be manipulated
May not be components of composite types
May not be passed as parameters

Some differences for scope and visibility
May be propagated out of scope

442 / 797

Exceptions In-Depth
Exceptions As Objects

Example Propagation Beyond Scope

package P is
procedure Q;

end P;
package body P is

Error : exception;
procedure Q is
begin

...
raise Error;

end Q;
end P;

with P;
procedure Client is
begin

P.Q;
exception

-- not visible
when P.Error =>

...
-- captured here
when others =>

...
end Client;

443 / 797

Exceptions In-Depth
Exceptions As Objects

Mechanism to Treat Exceptions As Objects
For raising and handling, and more
Standard Library

package Ada.Exceptions is
type Exception_Id is private;
procedure Raise_Exception (E : Exception_Id;

Message : String := "");
...
type Exception_Occurrence is limited private;
function Exception_Name (X : Exception_Occurrence)

return String;
function Exception_Message (X : Exception_Occurrence)

return String;
function Exception_Information (X : Exception_Occurrence)

return String;
procedure Reraise_Occurrence (X : Exception_Occurrence);
procedure Save_Occurrence (

Target : out Exception_Occurrence;
Source : Exception_Occurrence);

...
end Ada.Exceptions;

444 / 797

Exceptions In-Depth
Exceptions As Objects

Exception Occurrence

Syntax associates an object with active exception

when defining_identifier : exception_name ... =>

A constant view representing active exception

Used with operations defined for the type

exception
when Caught_Exception : others =>

Put (Exception_Name (Caught_Exception));

445 / 797

Exceptions In-Depth
Exceptions As Objects

Exception_Occurrence Query Functions

Exception_Name
Returns full expanded name of the exception in string form

Simple short name if space-constrained

Predefined exceptions appear as just simple short name

Exception_Message
Returns string value specified when raised, if any

Exception_Information
Returns implementation-defined string content

Should include both exception name and message content

Presumably includes debugging information
Location where exception occurred
Language-defined check that failed (if such)

446 / 797

Exceptions In-Depth
Exceptions As Objects

User Subprogram Parameter Example
with Ada.Exceptions; use Ada.Exceptions;
procedure Display_Exception

(Error : in Exception_Occurrence)
is

Msg : constant String := Exception_Message (Error);
Info : constant String := Exception_Information (Error);

begin
New_Line;
if Info /= "" then

Put ("Exception information => ");
Put_Line (Info);

elsif Msg /= "" then
Put ("Exception message => ");
Put_Line (Msg);

else
Put ("Exception name => ");
Put_Line (Exception_Name (Error));

end if;
end Display_Exception;

447 / 797

Exceptions In-Depth
Exceptions As Objects

Exception Identity

Attribute 'Identity converts exceptions to the type

package Ada.Exceptions is
...
type Exception_Id is private;
...
procedure Raise_Exception (E : in Exception_Id;

Message : in String := "");
...

end Ada.Exceptions;

Primary use is raising exceptions procedurally

Foo : exception;
...
Ada.Exceptions.Raise_Exception (Foo'Identity,

Message => "FUBAR!");
448 / 797

Exceptions In-Depth
Exceptions As Objects

Re-Raising Exceptions Procedurally

Typical raise mechanism

begin
...

exception
when others =>

Cleanup;
raise;

end;

Procedural raise mechanism

begin
...

exception
when X : others =>

Cleanup;
Ada.Exceptions.Reraise_Occurrence (X);

end;
449 / 797

Exceptions In-Depth
Exceptions As Objects

Copying Exception_Occurrence Objects

Via procedure Save_Occurrence
No assignment operation since is a limited type

Error : Exception_Occurrence;

begin
...

exception
when X : others =>

Cleanup;
Ada.Exceptions.Save_Occurrence (X, Target => Error);

end;

450 / 797

Exceptions In-Depth
Exceptions As Objects

Re-Raising Outside Dynamic Call Chain
procedure Demo is

package Exceptions is new
Limited_Ended_Lists (Exception_Occurrence,

Save_Occurrence);
Errors : Exceptions.List;
Iteration : Exceptions.Iterator;
procedure Normal_Processing

(Troubles : in out Exceptions.List) is ...
begin

Normal_Processing (Errors);
Iteration.Initialize (Errors);
while Iteration.More loop

declare
Next_Error : Exception_Occurrence;

begin
Iteration.Read (Next_Error);
Put_Line (Exception_Information (Next_Error));
if Exception_Identity (Next_Error) =

Trouble.Fatal_Error'Identity
then

Reraise_Occurrence (Next_Error);
end if;

end;
end loop;
Put_Line ("Done");

end Demo;

451 / 797

Exceptions In-Depth
Raise Expressions

Raise Expressions

452 / 797

Exceptions In-Depth
Raise Expressions

Raise Expressions

Expression raising specified exception at run-time

Foo : constant Integer := (case X is
when 1 => 10,
when 2 => 20,
when others => raise Error);

453 / 797

Exceptions In-Depth
In Practice

In Practice

454 / 797

Exceptions In-Depth
In Practice

Fulfill Interface Promises to Clients
If handled and not re-raised, normal processing continues at point
of client's call
Hence caller expectations must be satisfied

procedure Get (Reading : out Sensor_Reading) is
begin

...
Reading := New_Value;
...

exceptions
when Some_Error =>

Reading := Default_Value;
end Get;

function Foo return Some_Type is
begin

...
return Determined_Value;
...

exception
when Some_Error =>

return Default_Value; -- error if this isn't here
end Foo;

455 / 797

Exceptions In-Depth
In Practice

Allow Clients to Avoid Exceptions

Callee

package Stack is
Overflow : exception;
Underflow : exception;
function Full return Boolean;
function Empty return Boolean;
procedure Push (Item : in Some_Type);
procedure Pop (Item : out Some_Type);

end Stack;

Caller

if not Stack.Empty then
Stack.Pop (...); -- will not raise Underflow

456 / 797

Exceptions In-Depth
In Practice

You Can Suppress Run-Time Checks

Syntax (could use a compiler switch instead)

pragma Suppress (check-name [, [On =>] name]);

Language-defined checks emitted by compiler

Compiler may ignore request if unable to comply

Behavior will be unpredictable if exceptions occur
Raised within the region of suppression
Propagated into region of suppression

pragma Suppress (Range_Check);
pragma Suppress (Index_Check, On => Table);

457 / 797

Exceptions In-Depth
In Practice

Error Classifications

Some errors must be detected at run-time
Corresponding to the predefined exceptions

Bounded Errors
Need not be detected prior to/during execution if too hard

If not detected, range of possible effects is bounded
Possible effects are specified per error

Example: evaluating an un-initialized scalar variable

It might "work"!

Erroneous Execution
Need not be detected prior to/during execution if too hard
If not detected, range of possible effects is not bounded
Example: Occurrence of a suppressed check

458 / 797

Exceptions In-Depth
Lab

Lab

459 / 797

Exceptions In-Depth
Lab

Exceptions In-Depth Lab

(Simplified) Calculator

Overview
Create an application that allows users to enter a simple calculation
and get a result

Goal
Application should allow user to add, subtract, multiply, and divide
We want to track exceptions without actually "interrupting" the
application
When the user has finished entering data, the application should
report the errors found

460 / 797

Exceptions In-Depth
Lab

Project Requirements

Exception Tracking
Input errors should be flagged (e.g. invalid operator, invalid
numbers)
Divide by zero should be it's own special case exception
Operational errors (overflow, etc) should be flagged in the list of
errors

Driver
User should be able to enter a string like "1 + 2" and the program
will print "3"
User should not be interrupted by error messages
When user is done entering data, print all errors (raised exceptions)

Extra Credit
Allow multiple operations on a line

461 / 797

Exceptions In-Depth
Lab

Exceptions In-Depth Lab Solution - Calculator (Spec)

1 package Calculator is
2 Formatting_Error : exception;
3 Divide_By_Zero : exception;
4 type Integer_T is range -1_000 .. 1_000;
5 function Add
6 (Left, Right : String)
7 return Integer_T;
8 function Subtract
9 (Left, Right : String)

10 return Integer_T;
11 function Multiply
12 (Left, Right : String)
13 return Integer_T;
14 function Divide
15 (Top, Bottom : String)
16 return Integer_T;
17 end Calculator;

462 / 797

Exceptions In-Depth
Lab

Exceptions In-Depth Lab Solution - Main
1 with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
2 with Ada.Text_IO; use Ada.Text_IO;
3 with Calculator; use Calculator;
4 with Debug_Pkg;
5 with Input; use Input;
6 procedure Main is
7 Illegal_Operator : exception;
8 procedure Parser
9 (Str : String;

10 Left : out Unbounded_String;
11 Operator : out Unbounded_String;
12 Right : out Unbounded_String) is
13 I : Integer := Str'First;
14 begin
15 while I <= Str'Length and then Str (I) /= ' ' loop
16 Left := Left & Str (I);
17 I := I + 1;
18 end loop;
19 while I <= Str'Length and then Str (I) = ' ' loop
20 I := I + 1;
21 end loop;
22 while I <= Str'Length and then Str (I) /= ' ' loop
23 Operator := Operator & Str (I);
24 I := I + 1;
25 end loop;
26 while I <= Str'Length and then Str (I) = ' ' loop
27 I := I + 1;
28 end loop;
29 while I <= Str'Length and then Str (I) /= ' ' loop
30 Right := Right & Str (I);
31 I := I + 1;
32 end loop;
33 end Parser;
34 begin
35 loop
36 declare
37 Left, Operator, Right : Unbounded_String;
38 Input : constant String := Get_String ("Sequence");
39 begin
40 exit when Input'Length = 0;
41 Parser (Input, Left, Operator, Right);
42 case Component (Operator, 1) is
43 when '+' =>
44 Put_Line
45 (" => " &
46 Integer_T'Image (Add (To_String (Left), To_String (Right))));
47 when '-' =>
48 Put_Line
49 (" => " &
50 Integer_T'Image
51 (Subtract (To_String (Left), To_String (Right))));
52 when '*' =>
53 Put_Line
54 (" => " &
55 Integer_T'Image
56 (Multiply (To_String (Left), To_String (Right))));
57 when '/' =>
58 Put_Line
59 (" => " &
60 Integer_T'Image
61 (Divide (To_String (Left), To_String (Right))));
62 when others =>
63 raise Illegal_Operator;
64 end case;
65 exception
66 when The_Err : others =>
67 Debug_Pkg.Save_Occurrence (The_Err);
68 end;
69 end loop;
70 Debug_Pkg.Print_Exceptions;
71 end Main;

463 / 797

Exceptions In-Depth
Lab

Exceptions In-Depth Lab Solution - Calculator (Body)
1 package body Calculator is
2 function Value
3 (Str : String)
4 return Integer_T is
5 begin
6 return Integer_T'Value (Str);
7 exception
8 when Constraint_Error =>
9 raise Formatting_Error;

10 end Value;
11 function Add
12 (Left, Right : String)
13 return Integer_T is
14 begin
15 return Value (Left) + Value (Right);
16 end Add;
17 function Subtract
18 (Left, Right : String)
19 return Integer_T is
20 begin
21 return Value (Left) - Value (Right);
22 end Subtract;
23 function Multiply
24 (Left, Right : String)
25 return Integer_T is
26 begin
27 return Value (Left) * Value (Right);
28 end Multiply;
29 function Divide
30 (Top, Bottom : String)
31 return Integer_T is
32 begin
33 if Value (Bottom) = 0 then
34 raise Divide_By_Zero;
35 else
36 return Value (Top) / Value (Bottom);
37 end if;
38 end Divide;
39 end Calculator;

464 / 797

Exceptions In-Depth
Lab

Exceptions In-Depth Lab Solution - Debug
1 with Ada.Exceptions;
2 package Debug_Pkg is
3 procedure Save_Occurrence (X : Ada.Exceptions.Exception_Occurrence);
4 procedure Print_Exceptions;
5 end Debug_Pkg;
6

7 with Ada.Exceptions;
8 with Ada.Text_IO;
9 use type Ada.Exceptions.Exception_Id;

10 package body Debug_Pkg is
11 Exceptions : array (1 .. 100) of Ada.Exceptions.Exception_Occurrence;
12 Next_Available : Integer := 1;
13 procedure Save_Occurrence (X : Ada.Exceptions.Exception_Occurrence) is
14 begin
15 Ada.Exceptions.Save_Occurrence (Exceptions (Next_Available), X);
16 Next_Available := Next_Available + 1;
17 end Save_Occurrence;
18 procedure Print_Exceptions is
19 begin
20 for I in 1 .. Next_Available - 1 loop
21 declare
22 E : Ada.Exceptions.Exception_Occurrence renames Exceptions (I);
23 Flag : Character := ' ';
24 begin
25 if Ada.Exceptions.Exception_Identity (E) =
26 Constraint_Error'Identity
27 then
28 Flag := '*';
29 end if;
30 Ada.Text_IO.Put_Line
31 (Flag & " " & Ada.Exceptions.Exception_Information (E));
32 end;
33 end loop;
34 end Print_Exceptions;
35 end Debug_Pkg;

465 / 797

Exceptions In-Depth
Summary

Summary

466 / 797

Exceptions In-Depth
Summary

Exceptions Are Not Always Appropriate
What does it mean to have
an unexpected error in a
safety-critical application?

Maybe there's no
reasonable response

467 / 797

Exceptions In-Depth
Summary

Relying on Exception Raising Is Risky
They may be suppressed

By runtime environment
By build switches

Not recommended

function Tomorrow (Today : Days) return Days is
begin

return Days'Succ (Today);
exception

when Constraint_Error =>
return Days'First;

end Tomorrow;

Recommended

function Tomorrow (Today : Days) return Days is
begin

if Today = Days'Last then
return Days'First;

else
return Days'Succ (Today);

end if;
end Tomorrow;

468 / 797

Exceptions In-Depth
Summary

Summary

Should be for unexpected errors

Give clients the ability to avoid them

If handled, caller should see normal effect
Mode out parameters assigned
Function return values provided

Package Ada.Exceptions provides views as objects
For both raising and special handling
Especially useful for debugging

Re-raising exceptions is a typical scenario

Suppressing checks is allowed but requires care
Testing only proves presence of errors, not absence
Exceptions may occur anyway, with unpredictable effects

469 / 797

Interfacing with C

Interfacing with C

470 / 797

Interfacing with C
Introduction

Introduction

471 / 797

Interfacing with C
Introduction

Introduction

Lots of C code out there already
Maybe even a lot of reusable code in your own repositories

Need a way to interface Ada code with existing C libraries
Built-in mechanism to define ability to import objects from C or
export Ada objects

Passing data between languages can cause issues
Sizing requirements
Passing mechanisms (by reference, by copy)

472 / 797

Interfacing with C
Import / Export

Import / Export

473 / 797

Interfacing with C
Import / Export

Import / Export Aspects (1/2)
Aspects Import and Export allow Ada and C to interact

Import indicates a subprogram imported into Ada
Export indicates a subprogram exported from Ada

Need aspects definining calling convention and external name
Convention => C tells linker to use C-style calling convention
External_Name => "<name>" defines object name for linker

Ada implementation

procedure Imported_From_C with
Import,
Convention => C,
External_Name => "SomeProcedureInC";

procedure Exported_To_C with
Export,
Convention => C,
External_Name => "some_ada_procedure;

C implementation

void SomeProcedureInC (void) {
// some code

}

extern void ada_some_procedure (void);

474 / 797

Interfacing with C
Import / Export

Import / Export Aspects (2/2)

You can also import/export variables
Variables imported won't be initialized

Ada view

My_Var : Integer_Type with
Import,
Convention => C,
External_Name => "my_var";

Pragma Import (C, My_Var, "my_var");

C implementation

int my_var;

475 / 797

Interfacing with C
Import / Export

Import / Export with Pragmas

You can also use pragma to import/export entities

procedure C_Some_Procedure;
pragma Import (C, C_Some_Procedure, "SomeProcedure");

procedure Some_Procedure;
pragma Export (C, Some_Procedure, "ada_some_procedure");

476 / 797

Interfacing with C
Parameter Passing

Parameter Passing

477 / 797

Interfacing with C
Parameter Passing

Parameter Passing to/from C

The mechanism used to pass formal subprogram parameters and
function results depends on:

The type of the parameter
The mode of the parameter
The Convention applied on the Ada side of the subprogram
declaration

The exact meaning of Convention C, for example, is documented
in LRM B.1 - B.3, and in the GNAT User's Guide section 3.11.

478 / 797

Interfacing with C
Parameter Passing

Passing Scalar Data As Parameters

C types are defined by the Standard

Ada types are implementation-defined

GNAT standard types are compatible with C types
Implementation choice, use carefully

At the interface level, scalar types must be either constrained with
representation clauses, or coming from Interfaces.C

Ada view

with Interfaces.C;
function C_Proc (I : Interfaces.C.Int)

return Interfaces.C.Int;
pragma Import (C, C_Proc, "c_proc");

C view

int c_proc (int i) {
/* some code */

}
479 / 797

Interfacing with C
Parameter Passing

Passing Structures As Parameters
An Ada record that is mapping on a C struct must:

Be marked as convention C to enforce a C-like memory layout
Contain only C-compatible types

C View

enum Enum {E1, E2, E3};
struct Rec {

int A, B;
Enum C;

};

Ada View

This can also be done with pragmas

type Enum is (E1, E2, E3);
Pragma Convention (C, Enum);
type Rec is record

A, B : int;
C : Enum;

end record;
Pragma Convention (C, Rec);

480 / 797

Interfacing with C
Parameter Passing

Parameter Modes
in scalar parameters passed by copy

out and in out scalars passed using temporary pointer on C side

By default, composite types passed by reference on all modes
except when the type is marked C_Pass_By_Copy

Be very careful with records - some C ABI pass small structures by
copy!

Ada View

Type R1 is record
V : int;

end record
with Convention => C;

type R2 is record
V : int;

end record
with Convention => C_Pass_By_Copy;

C View

struct R1{
int V;

};
struct R2 {

int V;
};
void f1 (R1 p);
void f2 (R2 p);

481 / 797

Interfacing with C
Complex Data Types

Complex Data Types

482 / 797

Interfacing with C
Complex Data Types

Unions
C union

union Rec {
int A;
float B;

};

C unions can be bound using the Unchecked_Union aspect

These types must have a mutable discriminant for convention
purpose, which doesn't exist at run-time

All checks based on its value are removed - safety loss
It cannot be manually accessed

Ada implementation of a C union

type Rec (Flag : Boolean := False) is
record

case Flag is
when True =>

A : int;
when False =>

B : float;
end case;

end record
with Unchecked_Union,

Convention => C;

483 / 797

Interfacing with C
Complex Data Types

Arrays Interfacing

In Ada, arrays are of two kinds:
Constrained arrays
Unconstrained arrays

Unconstrained arrays are associated with
Components
Bounds

In C, an array is just a memory location pointing (hopefully) to a
structured memory location

C does not have the notion of unconstrained arrays

Bounds must be managed manually
By convention (null at the end of string)
By storing them on the side

Only Ada constrained arrays can be interfaced with C
484 / 797

Interfacing with C
Complex Data Types

Arrays From Ada to C

An Ada array is a composite data structure containing 2 parts:
Bounds and Components

Fat pointers

When arrays can be sent from Ada to C, C will only receive an
access to the components of the array

Ada View

type Arr is array (Integer range <>) of int;
procedure P (V : Arr; Size : int);
pragma Import (C, P, "p");

C View

void p (int * v, int size) {
}

485 / 797

Interfacing with C
Complex Data Types

Arrays From C to Ada
There are no boundaries to C types, the only Ada arrays that can
be bound must have static bounds

Additional information will probably need to be passed

Ada View

-- DO NOT DECLARE OBJECTS OF THIS TYPE
type Arr is array (0 .. Integer'Last) of int;

procedure P (V : Arr; Size : int);
pragma Export (C, P, "p");

procedure P (V : Arr; Size : int) is
begin

for J in 0 .. Size - 1 loop
-- code;

end loop;
end P;

C View

extern void p (int * v, int size);
int x [100];
p (x, 100);

486 / 797

Interfacing with C
Complex Data Types

Strings

Importing a String from C is like importing an array - has to be
done through a constrained array

Interfaces.C.Strings gives a standard way of doing that

Unfortunately, C strings have to end by a null character

Exporting an Ada string to C needs a copy!

Ada_Str : String := "Hello World";
C_Str : chars_ptr := New_String (Ada_Str);

Alternatively, a knowledgeable Ada programmer can manually
create Ada strings with correct ending and manage them directly

Ada_Str : String := "Hello World" & ASCII.NUL;

Back to the unsafe world - it really has to be worth it speed-wise!
487 / 797

Interfacing with C
Interfaces.C

Interfaces.C

488 / 797

Interfacing with C
Interfaces.C

Interfaces.C Hierarchy

Ada supplies a subsystem to deal with Ada/C interactions

Interfaces.C - contains typical C types and constants, plus some
simple Ada string to/from C character array conversion routines

Interfaces.C.Extensions - some additional C/C++ types
Interfaces.C.Pointers - generic package to simulate C pointers
(pointer as an unconstrained array, pointer arithmetic, etc)
Interfaces.C.Strings - types / functions to deal with C "char
*"

489 / 797

Interfacing with C
Interfaces.C

Interfaces.C
package Interfaces.C is

-- Declaration's based on C's <limits.h>
CHAR_BIT : constant := 8;
SCHAR_MIN : constant := -128;
SCHAR_MAX : constant := 127;
UCHAR_MAX : constant := 255;

type int is new Integer;
type short is new Short_Integer;
type long is range -(2 ** (System.Parameters.long_bits - Integer'(1)))

.. +(2 ** (System.Parameters.long_bits - Integer'(1))) - 1;

type signed_char is range SCHAR_MIN .. SCHAR_MAX;
for signed_char'Size use CHAR_BIT;

type unsigned is mod 2 ** int'Size;
type unsigned_short is mod 2 ** short'Size;
type unsigned_long is mod 2 ** long'Size;

type unsigned_char is mod (UCHAR_MAX + 1);
for unsigned_char'Size use CHAR_BIT;

type ptrdiff_t is range -(2 ** (System.Parameters.ptr_bits - Integer'(1))) ..
+(2 ** (System.Parameters.ptr_bits - Integer'(1)) - 1);

type size_t is mod 2 ** System.Parameters.ptr_bits;

-- Floating-Point
type C_float is new Float;
type double is new Standard.Long_Float;
type long_double is new Standard.Long_Long_Float;

type char is new Character;
nul : constant char := char'First;

function To_C (Item : Character) return char;
function To_Ada (Item : char) return Character;

type char_array is array (size_t range <>) of aliased char;
for char_array'Component_Size use CHAR_BIT;

function Is_Nul_Terminated (Item : char_array) return Boolean;

-- (more not specified here)

end Interfaces.C;

490 / 797

Interfacing with C
Interfaces.C

Interfaces.C.Extensions
package Interfaces.C.Extensions is

-- Definitions for C "void" and "void *" types
subtype void is System.Address;
subtype void_ptr is System.Address;

-- Definitions for C incomplete/unknown structs
subtype opaque_structure_def is System.Address;
type opaque_structure_def_ptr is access opaque_structure_def;

-- Definitions for C++ incomplete/unknown classes
subtype incomplete_class_def is System.Address;
type incomplete_class_def_ptr is access incomplete_class_def;

-- C bool
type bool is new Boolean;
pragma Convention (C, bool);

-- 64-bit integer types
subtype long_long is Long_Long_Integer;
type unsigned_long_long is mod 2 ** 64;

-- (more not specified here)

end Interfaces.C.Extensions;

491 / 797

Interfacing with C
Interfaces.C

Interfaces.C.Pointers
generic

type Index is (<>);
type Component is private;
type Component_Array is array (Index range <>) of aliased Component;
Default_Terminator : Component;

package Interfaces.C.Pointers is

type Pointer is access all Component;
for Pointer'Size use System.Parameters.ptr_bits;

function Value (Ref : Pointer;
Terminator : Component := Default_Terminator)
return Component_Array;

function Value (Ref : Pointer;
Length : ptrdiff_t)
return Component_Array;

Pointer_Error : exception;

function "+" (Left : Pointer; Right : ptrdiff_t) return Pointer;
function "+" (Left : ptrdiff_t; Right : Pointer) return Pointer;
function "-" (Left : Pointer; Right : ptrdiff_t) return Pointer;
function "-" (Left : Pointer; Right : Pointer) return ptrdiff_t;

procedure Increment (Ref : in out Pointer);
procedure Decrement (Ref : in out Pointer);

-- (more not specified here)

end Interfaces.C.Pointers;

492 / 797

Interfacing with C
Interfaces.C

Interfaces.C.Strings
package Interfaces.C.Strings is

type char_array_access is access all char_array;
for char_array_access'Size use System.Parameters.ptr_bits;

type chars_ptr is private;

type chars_ptr_array is array (size_t range <>) of aliased chars_ptr;

Null_Ptr : constant chars_ptr;

function To_Chars_Ptr (Item : char_array_access;
Nul_Check : Boolean := False) return chars_ptr;

function New_Char_Array (Chars : char_array) return chars_ptr;

function New_String (Str : String) return chars_ptr;

procedure Free (Item : in out chars_ptr);

function Value (Item : chars_ptr) return char_array;
function Value (Item : chars_ptr;

Length : size_t)
return char_array;

function Value (Item : chars_ptr) return String;
function Value (Item : chars_ptr;

Length : size_t)
return String;

function Strlen (Item : chars_ptr) return size_t;

-- (more not specified here)

end Interfaces.C.Strings;

493 / 797

Interfacing with C
Lab

Lab

494 / 797

Interfacing with C
Lab

Interfacing with C Lab

Requirements
Given a C function that calculates speed in MPH from some
information, your application should

Ask user for distance and time
Populate the structure appropriately
Call C function to return speed
Print speed to console

Hints
Structure contains the following components

Distance (floating point)
Distance Type (enumeral)
Seconds (floating point)

495 / 797

Interfacing with C
Lab

Interfacing with C Lab - GNAT Studio

To compile/link the C file into the Ada executable:

1 Make sure the C file is in the same directory as the Ada source files
2 Edit → Project Properties
3 Sources → Languages → Check the "C" box
4 Build and execute as normal

496 / 797

Interfacing with C
Lab

Interfacing with C Lab Solution - Ada
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Interfaces.C;
3 procedure Main is
4

5 package Float_Io is new Ada.Text_IO.Float_IO (Interfaces.C.C_float);
6

7 One_Minute_In_Seconds : constant := 60.0;
8 One_Hour_In_Seconds : constant := 60.0 * One_Minute_In_Seconds;
9

10 type Distance_T is (Feet, Meters, Miles) with Convention => C;
11 type Data_T is record
12 Distance : Interfaces.C.C_float;
13 Distance_Type : Distance_T;
14 Seconds : Interfaces.C.C_float;
15 end record with Convention => C;
16 function C_Miles_Per_Hour (Data : Data_T) return Interfaces.C.C_float
17 with Import, Convention => C, External_Name => "miles_per_hour";
18

19 Object_Feet : constant Data_T :=
20 (Distance => 6_000.0,
21 Distance_Type => Feet,
22 Seconds => One_Minute_In_Seconds);
23 Object_Meters : constant Data_T :=
24 (Distance => 3_000.0,
25 Distance_Type => Meters,
26 Seconds => One_Hour_In_Seconds);
27 Object_Miles : constant Data_T :=
28 (Distance => 1.0,
29 Distance_Type =>
30 Miles, Seconds => 1.0);
31

32 procedure Run (Object : Data_T) is
33 begin
34 Float_Io.Put (Object.Distance);
35 Put (" " & Distance_T'Image (Object.Distance_Type) & " in ");
36 Float_Io.Put (Object.Seconds);
37 Put (" seconds = ");
38 Float_Io.Put (C_Miles_Per_Hour (Object));
39 Put_Line (" mph");
40 end Run;
41

42 begin
43 Run (Object_Feet);
44 Run (Object_Meters);
45 Run (Object_Miles);
46 end Main;

497 / 797

Interfacing with C
Lab

Interfacing with C Lab Solution - C

enum DistanceT { FEET, METERS, MILES };
struct DataT {

float distance;
enum DistanceT distanceType;
float seconds;
};

float miles_per_hour (struct DataT data) {
float miles = data.distance;
switch (data.distanceType) {

case METERS:
miles = data.distance / 1609.344;
break;

case FEET:
miles = data.distance / 5280.0;
break;

};
return miles / (data.seconds / (60.0 * 60.0));

}
498 / 797

Interfacing with C
Summary

Summary

499 / 797

Interfacing with C
Summary

Summary

Possible to interface with other languages (typically C)

Ada provides some built-in support to make interfacing simpler

Crossing languages can be made safer
But it still increases complexity of design / implementation

500 / 797

Day 3 - PM

501 / 797

Tasking

Tasking

502 / 797

Tasking
Introduction

Introduction

503 / 797

Tasking
Introduction

Concurrency Mechanisms

Task
Active
Rendezvous: Client / Server model
Server entries
Client entry calls
Typically maps to OS threads

Protected object
Passive
Monitors protected data
Restricted set of operations
Concurrency-safe semantics
No thread overhead
Very portable

Object-Oriented
Synchronized interfaces
Protected objects inheritance

504 / 797

Tasking
Introduction

A Simple Task
Concurrent code execution via task

limited types (No copies allowed)

procedure Main is
task type Simple_Task_T;
task body Simple_Task_T is
begin

loop
delay 1.0;
Put_Line ("T");

end loop;
end Simple_Task_T;
Simple_Task : Simple_Task_T;
-- This task starts when Simple_Task is elaborated

begin
loop

delay 1.0;
Put_Line ("Main");

end loop;
end;

A task is started when its declaration scope is elaborated

Its enclosing scope exits when all tasks have finished
505 / 797

Tasking
Tasks

Tasks

506 / 797

Tasking
Tasks

Rendezvous Definitions
Server declares several entry

Client calls entries like subprograms

Server accept the client calls

At each standalone accept, server task blocks
Until a client calls the related entry

task type Msg_Box_T is
entry Start;
entry Receive_Message (S : String);

end Msg_Box_T;

task body Msg_Box_T is
begin

loop
accept Start;
Put_Line ("start");

accept Receive_Message (S : String) do
Put_Line ("receive " & S);

end Receive_Message;
end loop;

end Msg_Box_T;

T : Msg_Box_T;

507 / 797

Tasking
Tasks

Rendezvous Entry Calls

Upon calling an entry, client blocks
Until server reaches end of its accept block

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
T.Receive_Message ("2");

May be executed as follows:

calling start
start -- May switch place with line below
calling receive 1 -- May switch place with line above
receive 1
calling receive 2
-- Blocked until another task calls Start

508 / 797

Tasking
Tasks

Rendezvous with a Task

accept statement
Wait on single entry
If entry call waiting: Server handles it
Else: Server waits for an entry call

select statement
Several entries accepted at the same time
Can time-out on the wait
Can be not blocking if no entry call waiting
Can terminate if no clients can possibly make entry call
Can conditionally accept a rendezvous based on a guard
expression

509 / 797

Tasking
Tasks

Accepting a Rendezvous

Simple accept statement
Used by a server task to indicate a willingness to provide the service
at a given point

Selective accept statement (later in these slides)
Wait for more than one rendezvous at any time
Time-out if no rendezvous within a period of time
Withdraw its offer if no rendezvous is immediately available
Terminate if no clients can possibly call its entries
Conditionally accept a rendezvous based on a guard expression

510 / 797

Tasking
Tasks

Example: Task - Declaration

package Tasks is

task T is
entry Start;
entry Receive_Message (V : String);

end T;

end Tasks;

511 / 797

Tasking
Tasks

Example: Task - Body

with Ada.Text_IO; use Ada.Text_IO;

package body Tasks is

task body T is
begin

loop
accept Start do

Put_Line ("Start");
end Start;

accept Receive_Message (V : String) do
Put_Line ("Receive " & V);

end Receive_Message;
end loop;

end T;

end Tasks;
512 / 797

Tasking
Tasks

Example: Main

with Ada.Text_IO; use Ada.Text_IO;
with Tasks; use Tasks;

procedure Main is
begin

Put_Line ("calling start");
T.Start;
Put_Line ("calling receive 1");
T.Receive_Message ("1");
Put_Line ("calling receive 2");
-- Locks until somebody calls Start
T.Receive_Message ("2");

end Main;

513 / 797

Tasking
Tasks

Quiz
task type T is

entry Go;
end T;

task body T is
begin

accept Go do
loop

null;
end loop;

end Go;
end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Run-time error
C. The calling task hangs
D. My_Task hangs

514 / 797

Tasking
Tasks

Quiz
task type T is

entry Go;
end T;

task body T is
begin

accept Go do
loop

null;
end loop;

end Go;
end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Run-time error
C. The calling task hangs
D. My_Task hangs

514 / 797

Tasking
Tasks

Quiz
task type T is

entry Go;
end T;

task body T is
begin

accept Go;
loop

null;
end loop;

end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Run-time error
C. The calling task hangs
D. My_Task hangs

515 / 797

Tasking
Tasks

Quiz
task type T is

entry Go;
end T;

task body T is
begin

accept Go;
loop

null;
end loop;

end T;

My_Task : T;

What happens when My_Task.Go is called?

A. Compilation error
B. Run-time error
C. The calling task hangs
D. My_Task hangs

515 / 797

Tasking
Tasks

Quiz

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

task type T is
entry Hello;
entry Goodbye;

end T;
task body T is
begin

loop
accept Hello do

Put_Line ("Hello");
end Hello;
accept Goodbye do

Put_Line ("Goodbye");
end Goodbye;

end loop;
Put_Line ("Finished");

end T;
Task_Instance : T;

begin
Task_Instance.Hello;
Task_Instance.Goodbye;
Put_Line ("Done");

end Main;

What is the output of this
program?

A. Hello, Goodbye, Finished,
Done

B. Hello, Goodbye, Finished
C. Hello, Goodbye, Done
D. Hello, Goodbye

- Entries Hello and Goodbye are
reached (so "Hello" and
"Goodbye" are printed).
- After Goodbye, task returns to
Main (so "Done" is printed) but
the loop in the task never finishes
(so "Finished" is never printed).

516 / 797

Tasking
Tasks

Quiz

with Ada.Text_IO; use Ada.Text_IO;
procedure Main is

task type T is
entry Hello;
entry Goodbye;

end T;
task body T is
begin

loop
accept Hello do

Put_Line ("Hello");
end Hello;
accept Goodbye do

Put_Line ("Goodbye");
end Goodbye;

end loop;
Put_Line ("Finished");

end T;
Task_Instance : T;

begin
Task_Instance.Hello;
Task_Instance.Goodbye;
Put_Line ("Done");

end Main;

What is the output of this
program?

A. Hello, Goodbye, Finished,
Done

B. Hello, Goodbye, Finished
C. Hello, Goodbye, Done
D. Hello, Goodbye

- Entries Hello and Goodbye are
reached (so "Hello" and
"Goodbye" are printed).
- After Goodbye, task returns to
Main (so "Done" is printed) but
the loop in the task never finishes
(so "Finished" is never printed).

516 / 797

Tasking
Protected Objects

Protected Objects

517 / 797

Tasking
Protected Objects

Protected Objects

Multitask-safe accessors to get and set state
No direct state manipulation
No concurrent modifications
limited types (No copies allowed)

518 / 797

Tasking
Protected Objects

Protected: Functions and Procedures

A function can get the state
Multiple-Readers
Protected data is read-only
Concurrent call to function is allowed
No concurrent call to procedure

A procedure can set the state
Single-Writer

No concurrent call to either procedure or function

In case of concurrency, other callers get blocked
Until call finishes

Support for read-only locks depends on OS
Windows has no support for those
In that case, function are blocking as well

519 / 797

Tasking
Protected Objects

Protected: Limitations

No potentially blocking action
select, accept, entry call, delay, abort

task creation or activation

Some standard lib operations, eg. IO
Depends on implementation

May raise Program_Error or deadlocks

Will cause performance and portability issues

pragma Detect_Blocking forces a proactive run-time detection

Solve by deferring blocking operations
Using eg. a FIFO

520 / 797

Tasking
Protected Objects

Protected: Lock-Free Implementation

GNAT-Specific

Generates code without any locks

Best performance

No deadlock possible

Very constrained
No reference to entities outside the scope
No direct or indirect entry, goto, loop, procedure call
No access dereference
No composite parameters
See GNAT RM 2.100

protected Object
with Lock_Free is

521 / 797

Tasking
Protected Objects

Example: Protected Objects - Declaration

package Protected_Objects is

protected Object is

procedure Set (Prompt : String; V : Integer);
function Get (Prompt : String) return Integer;

private
Local : Integer := 0;

end Object;

end Protected_Objects;

522 / 797

Tasking
Protected Objects

Example: Protected Objects - Body
with Ada.Text_IO; use Ada.Text_IO;

package body Protected_Objects is

protected body Object is

procedure Set (Prompt : String; V : Integer) is
Str : constant String := "Set " & Prompt & V'Image;

begin
Local := V;
Put_Line (Str);

end Set;

function Get (Prompt : String) return Integer is
Str : constant String := "Get " & Prompt & Local'Image;

begin
Put_Line (Str);
return Local;

end Get;

end Object;

end Protected_Objects;
523 / 797

Tasking
Protected Objects

Quiz
protected O is

function Get return Integer;
procedure Set (V : Integer);

private
Val, Access_Count : Integer := 0;

end O;

protected body O is
function Get return Integer is
begin

Access_count := Access_Count + 1;
return Val;

end Get;

procedure Set (V : Integer) is
begin

Access_count := Access_Count + 1;
Val := V;

end Set;
end O;

What is the result of compiling and running this code?

A. No error
B. Compilation error
C. Run-time error

Cannot set Access_Count from a function

524 / 797

Tasking
Protected Objects

Quiz
protected O is

function Get return Integer;
procedure Set (V : Integer);

private
Val, Access_Count : Integer := 0;

end O;

protected body O is
function Get return Integer is
begin

Access_count := Access_Count + 1;
return Val;

end Get;

procedure Set (V : Integer) is
begin

Access_count := Access_Count + 1;
Val := V;

end Set;
end O;

What is the result of compiling and running this code?

A. No error
B. Compilation error
C. Run-time error

Cannot set Access_Count from a function

524 / 797

Tasking
Protected Objects

Quiz
protected P is

procedure Initialize (V : Integer);
procedure Increment;
function Decrement return Integer;
function Query return Integer;

private
Object : Integer := 0;

end P;

Which completion(s) of P is (are) illegal?

A. procedure Initialize (V : Integer) is
begin

Object := V;
end Initialize;

B. procedure Increment is
begin

Object := Object + 1;
end Increment;

C. function Decrement return Integer is
begin

Object := Object - 1;
return Object;

end Decrement;

D. function Query return Integer is begin
return Object;

end Query;

A. Legal
B. Legal - subprograms do not need parameters
C. Functions in a protected object cannot modify global objects
D. Legal

525 / 797

Tasking
Protected Objects

Quiz
protected P is

procedure Initialize (V : Integer);
procedure Increment;
function Decrement return Integer;
function Query return Integer;

private
Object : Integer := 0;

end P;

Which completion(s) of P is (are) illegal?

A. procedure Initialize (V : Integer) is
begin

Object := V;
end Initialize;

B. procedure Increment is
begin

Object := Object + 1;
end Increment;

C. function Decrement return Integer is
begin

Object := Object - 1;
return Object;

end Decrement;

D. function Query return Integer is begin
return Object;

end Query;

A. Legal
B. Legal - subprograms do not need parameters
C. Functions in a protected object cannot modify global objects
D. Legal

525 / 797

Tasking
Delays

Delays

526 / 797

Tasking
Delays

Delay Keyword

delay keyword part of tasking
Blocks for a time
Relative: Blocks for at least Duration
Absolute: Blocks until no earlier than Calendar.Time or
Real_Time.Time

with Calendar;

procedure Main is
Relative : Duration := 1.0;
Absolute : Calendar.Time

:= Calendar.Time_Of (2030, 10, 01);
begin

delay Relative;
delay until Absolute;

end Main;
527 / 797

Tasking
Task and Protected Types

Task and Protected Types

528 / 797

Tasking
Task and Protected Types

Task Activation

Instantiated tasks start running when activated

On the stack
When enclosing declarative part finishes elaborating

On the heap
Immediately at instantiation

task type First_T is ...
type First_T_A is access all First_T;

task body First_T is ...
...
declare

V1 : First_T;
V2 : First_T_A;

begin -- V1 is activated
V2 := new First_T; -- V2 is activated immediately

529 / 797

Tasking
Task and Protected Types

Single Declaration
Instantiate an anonymous task (or protected) type
Declares an object of that type

task type Task_T is
entry Start;

end Task_T;

type Task_Ptr_T is access all Task_T;

task body Task_T is
begin

accept Start;
end Task_T;
...

V1 : Task_T;
V2 : Task_Ptr_T;

begin
V1.Start;
V2 := new Task_T;
V2.all.Start;

530 / 797

Tasking
Task and Protected Types

Task Scope

Nesting is possible in any declarative block

Scope has to wait for tasks to finish before ending

At library level: program ends only when all tasks finish

package P is
task type T;

end P;

package body P is
task body T is

loop
delay 1.0;
Put_Line ("tick");

end loop;
end T;

Task_Instance : T;
end P;

531 / 797

Tasking
Task and Protected Types

Waiting on Different Entries

It is convenient to be able to accept several entries

The select statements can wait simultaneously on a list of entries
For task only
It accepts the first one that is requested

select
accept Receive_Message (V : String)
do

Put_Line ("Message : " & V);
end Receive_Message;

or
accept Stop;

exit;
end select;

532 / 797

Tasking
Task and Protected Types

Guard Conditions
accept may depend on a guard condition with when

Evaluated when entering select

May use a guard condition , that only accepts entries on a
boolean condition

Condition is evaluated when the task reaches it

task body T is
Val : Integer;
Initialized : Boolean := False;

begin
loop

select
accept Put (V : Integer) do

Val := V;
Initialized := True;

end Put;
or

when Initialized =>
accept Get (V : out Integer) do

V := Val;
end Get;

end select;
end loop;

end T;

533 / 797

Tasking
Task and Protected Types

Protected Object Entries

Special kind of protected procedure

May use a barrier which is evaluated when
A task calls an entry
A protected entry or procedure is exited

Several tasks can be waiting on the same entry

Only one may be re-activated when the barrier is relieved

protected body Stack is
entry Push (V : Integer) when Size < Buffer'Length is
...
entry Pop (V : out Integer) when Size > 0 is
...

end Object;
534 / 797

Tasking
Task and Protected Types

Discriminated Protected or Task types

Discriminant can be an access or discrete type

Resulting type is indefinite
Unless mutable

Example: counter shared between tasks

protected type Counter_T is
procedure Increment;

end Counter_T

task type My_Task (Counter : not null access Counter_T) is [...]

task body My_Task is
begin

Counter.Increment;
[...]

535 / 797

Tasking
Task and Protected Types

Using discriminant for Real-Time aspects

protected type Protected_With_Priority (Prio : System.Priority)
with Priority => Prio

is

536 / 797

Tasking
Task and Protected Types

Example: Protected Objects - Declaration

package Protected_Objects is

protected type Object is
procedure Set (Caller : Character; V : Integer);
function Get return Integer;
procedure Initialize (My_Id : Character);

private

Local : Integer := 0;
Id : Character := ' ';

end Object;

O1, O2 : Object;

end Protected_Objects;
537 / 797

Tasking
Task and Protected Types

Example: Protected Objects - Body
with Ada.Text_IO; use Ada.Text_IO;

package body Protected_Objects is

protected body Object is

procedure Initialize (My_Id : Character) is
begin

Id := My_Id;
end Initialize;

procedure Set (Caller : Character; V : Integer) is
begin

Local := V;
Put_Line ("Task-" & Caller & " Object-" & Id & " => " & V'Image);

end Set;

function Get return Integer is
begin

return Local;
end Get;

end Object;

end Protected_Objects;
538 / 797

Tasking
Task and Protected Types

Example: Tasks - Declaration

package Tasks is
task type T is

entry Start
(Id : Character; Initial_1, Initial_2 : Integer);

entry Receive_Message (Delta_1, Delta_2 : Integer);
end T;

T1, T2 : T;
end Tasks;

539 / 797

Tasking
Task and Protected Types

Example: Tasks - Body
task body T is

My_Id : Character := ' ';
...
accept Start (Id : Character; Initial_1, Initial_2 : Integer) do

My_Id := Id;
O1.Set (My_Id, Initial_1);
O2.Set (My_Id, Initial_2);

end Start;

loop
accept Receive_Message (Delta_1, Delta_2 : Integer) do

declare
New_1 : constant Integer := O1.Get + Delta_1;
New_2 : constant Integer := O2.Get + Delta_2;

begin
O1.Set (My_Id, New_1);
O2.Set (My_Id, New_2);

end;
end Receive_Message;

end loop;
540 / 797

Tasking
Task and Protected Types

Example: Main

with Tasks; use Tasks;
with Protected_Objects; use Protected_Objects;

procedure Test_Protected_Objects is
begin

O1.Initialize ('X');
O2.Initialize ('Y');
T1.Start ('A', 1, 2);
T2.Start ('B', 1_000, 2_000);
T1.Receive_Message (1, 2);
T2.Receive_Message (10, 20);

-- Ugly...
abort T1;
abort T2;

end Test_Protected_Objects;
541 / 797

Tasking
Task and Protected Types

Quiz
procedure Main is

protected type O is
entry P;

private
Ok : Boolean := False;

end O;

protected body O is
entry P when not Ok is
begin

Ok := True;
end P;

end O;
begin

O.P;
end Main;

What is the result of compiling and running this code?

A. Ok = True
B. Nothing
C. Compilation error
D. Run-time error

O is a protected type, needs instantiation

542 / 797

Tasking
Task and Protected Types

Quiz
procedure Main is

protected type O is
entry P;

private
Ok : Boolean := False;

end O;

protected body O is
entry P when not Ok is
begin

Ok := True;
end P;

end O;
begin

O.P;
end Main;

What is the result of compiling and running this code?

A. Ok = True
B. Nothing
C. Compilation error
D. Run-time error

O is a protected type, needs instantiation
542 / 797

Tasking
Some Advanced Concepts

Some Advanced Concepts

543 / 797

Tasking
Some Advanced Concepts

Waiting with a Delay
A select statement may time-out using delay or delay until

Resume execution at next statement

Multiple delay allowed
Useful when the value is not hard-coded

loop
select

accept Receive_Message (V : String) do
Put_Line ("Message : " & V);

end Receive_Message;
or

delay 50.0;
Put_Line ("Don't wait any longer");
exit;

end select;
end loop;

Task will wait up to 50 seconds for Receive_Message. If no message
is received, it will write to the console, and then restart the loop. (If
the exit wasn't there, the loop would exit the first time no message
was received.)

544 / 797

Tasking
Some Advanced Concepts

Calling an Entry with a Delay Protection

A call to entry blocks the task until the entry is accept 'ed
Wait for a given amount of time with select ... delay
Only one entry call is allowed
No accept statement is allowed

task Msg_Box is
entry Receive_Message (V : String);

end Msg_Box;

procedure Main is
begin

select
Msg_Box.Receive_Message ("A");

or
delay 50.0;

end select;
end Main;

Procedure will wait up to 50 seconds for Receive_Message to be
accepted before it gives up

545 / 797

Tasking
Some Advanced Concepts

The Delay Is Not a Timeout

The time spent by the client is actually not bounded
Delay's timer stops on accept
The call blocks until end of server-side statements

In this example, the total delay is up to 1010 s

task body Msg_Box is
accept Receive_Message (S : String) do

delay 1000.0;
end Receive_Message;

...
procedure Client is
begin

select
Msg_Box.Receive_Message ("My_Message")

or
delay 10.0;

end select;
546 / 797

Tasking
Some Advanced Concepts

Non-blocking Accept or Entry
Using else

Task skips the accept or entry call if they are not ready to be
entered

On an accept

select
accept Receive_Message (V : String) do

Put_Line ("T: Receive " & V);
end Receive_Message;

else
Put_Line ("T: Nothing received");

end select;

As caller on an entry

select
T.Stop;

else
Put_Line ("No stop");

end select;

delay is not allowed in this case
547 / 797

Tasking
Some Advanced Concepts

Issues with "Double Non-Blocking"
For accept ... else the server peeks into the queue

Server does not wait

For <entry-call> ... else the caller looks for a waiting server

If both use it, the entry will never be called

Server

select
accept Receive_Message (V : String) do

Put_Line ("T: Receive " & V);
end Receive_Message;

else
Put_Line ("T: Nothing received");

end select;

Caller

select
T.Receive_Message ("1");

else
Put_Line ("No message sent");

end select;
548 / 797

Tasking
Some Advanced Concepts

Terminate Alternative

An entry can't be called anymore if all tasks calling it are over

Handled through or terminate alternative
Terminates the task if all others are terminated
Or are blocked on or terminate themselves

Task is terminated immediately
No additional code executed

select
accept Entry_Point

or
terminate;

end select;

549 / 797

Tasking
Some Advanced Concepts

Select on Protected Objects Entries

Same as select but on task entries
With a delay part

select
O.Push (5);

or
delay 10.0;
Put_Line ("Delayed overflow");

end select;

or with an else part

select
O.Push (5);

else
Put_Line ("Overflow");

end select;
550 / 797

Tasking
Some Advanced Concepts

Queue

Protected entry, procedure, and tasks entry are activated by
one task at a time

Mutual exclusion section

Other tasks trying to enter are queued
In First-In First-Out (FIFO) by default

When the server task terminates, tasks still queued receive
Tasking_Error

551 / 797

Tasking
Some Advanced Concepts

Queuing Policy

Queuing policy can be set using

pragma Queuing_Policy (<policy_identifier>);

The following policy_identifier are available
FIFO_Queuing (default)
Priority_Queuing

FIFO_Queuing
First-in First-out, classical queue

Priority_Queuing
Takes into account priority
Priority of the calling task at time of call

552 / 797

Tasking
Some Advanced Concepts

Setting Task Priority

GNAT available priorities are 0 .. 30, see gnat/system.ads
Tasks with the highest priority are prioritized more
Priority can be set statically

task type T
with Priority => <priority_level>
is ...

Priority can be set dynamically

with Ada.Dynamic_Priorities;

task body T is
begin

Ada.Dynamic_Priorities.Set_Priority (10);
end T;

553 / 797

Tasking
Some Advanced Concepts

requeue Instruction

requeue can be called in any entry (task or protected)

Puts the requesting task back into the queue
May be handled by another entry
Or the same one...

Reschedule the processing for later

entry Extract (Qty : Integer) when True is
begin

if not Try_Extract (Qty) then
requeue Extract;

end if;
end Extract;

Same parameter values will be used on the queue
554 / 797

Tasking
Some Advanced Concepts

requeue Tricks

Only an accepted call can be requeued

Accepted entries are waiting for end

Not in a select ... or delay ... else anymore

So the following means the client blocks for 2 seconds

task body Select_Requeue_Quit is
begin

accept Receive_Message (V : String) do
requeue Receive_Message;

end Receive_Message;
delay 2.0;

end Select_Requeue_Quit;
...
select

Select_Requeue_Quit.Receive_Message ("Hello");
or

delay 0.1;
end select;

555 / 797

Tasking
Some Advanced Concepts

Abort Statements
abort stops the tasks immediately

From an external caller
No cleanup possible
Highly unsafe - should be used only as last resort

procedure Main is
task type T;

task body T is
begin

loop
delay 1.0;
Put_Line ("A");

end loop;
end T;

Task_Instance : T;
begin

delay 10.0;
abort Task_Instance;

end;
556 / 797

Tasking
Some Advanced Concepts

select ... then abort

select can call abort
Can abort anywhere in the processing
Highly unsafe

557 / 797

Tasking
Some Advanced Concepts

Multiple Select Example

loop
select

accept Receive_Message (V : String) do
Put_Line ("Select_Loop_Task Receive: " & V);

end Receive_Message;
or

accept Send_Message (V : String) do
Put_Line ("Select_Loop_Task Send: " & V);

end Send_Message;
or when Termination_Flag =>

accept Stop;
or

delay 0.5;
Put_Line

("No more waiting at" & Day_Duration'Image (Seconds (Clock)));
exit;

end select;
end loop;

558 / 797

Tasking
Some Advanced Concepts

Example: Main

with Ada.Text_IO; use Ada.Text_IO;
with Task_Select; use Task_Select;

procedure Main is
begin

Select_Loop_Task.Receive_Message ("1");
Select_Loop_Task.Send_Message ("A");
Select_Loop_Task.Send_Message ("B");
Select_Loop_Task.Receive_Message ("2");
Select_Loop_Task.Stop;

exception
when Tasking_Error =>

Put_Line ("Expected exception: Entry not reached");
end Main;

559 / 797

Tasking
Some Advanced Concepts

Quiz
task T is

entry E1;
entry E2;

end T;
...
task body Other_Task is
begin

select
T.E1;

or
T.E2;

end select;
end Other_Task;

What is the result of compiling and running this code?

A. T.E1 is called
B. Nothing
C. Compilation error
D. Run-time error

A select entry call can only call one entry at a time.

560 / 797

Tasking
Some Advanced Concepts

Quiz
task T is

entry E1;
entry E2;

end T;
...
task body Other_Task is
begin

select
T.E1;

or
T.E2;

end select;
end Other_Task;

What is the result of compiling and running this code?

A. T.E1 is called
B. Nothing
C. Compilation error
D. Run-time error

A select entry call can only call one entry at a time.
560 / 797

Tasking
Some Advanced Concepts

Quiz
procedure Main is

task T is
entry A;

end T;

task body T is
begin

select
accept A;
Put ("A");

else
delay 1.0;

end select;
end T;

begin
select

T.A;
else

delay 1.0;
end select;

end Main;

What is the output of this code?
A. "AAAAA..."
B. Nothing
C. Compilation error
D. Run-time error

Common mistake: Main and T
won't wait on each other and will
both execute their delay
statement only.

.
561 / 797

Tasking
Some Advanced Concepts

Quiz
procedure Main is

task T is
entry A;

end T;

task body T is
begin

select
accept A;
Put ("A");

else
delay 1.0;

end select;
end T;

begin
select

T.A;
else

delay 1.0;
end select;

end Main;

What is the output of this code?
A. "AAAAA..."
B. Nothing
C. Compilation error
D. Run-time error

Common mistake: Main and T
won't wait on each other and will
both execute their delay
statement only.

.
561 / 797

Tasking
Some Advanced Concepts

Quiz
procedure Main is

task type T is
entry A;

end T;

task body T is
begin

select
accept A;

or
terminate;

end select;

Put_Line ("Terminated");
end T;

My_Task : T;
begin

null;
end Main;

What is the output of this code?

A. "Terminated"
B. Nothing
C. Compilation error
D. Run-time error

T is terminated at the end of Main

562 / 797

Tasking
Some Advanced Concepts

Quiz
procedure Main is

task type T is
entry A;

end T;

task body T is
begin

select
accept A;

or
terminate;

end select;

Put_Line ("Terminated");
end T;

My_Task : T;
begin

null;
end Main;

What is the output of this code?

A. "Terminated"
B. Nothing
C. Compilation error
D. Run-time error

T is terminated at the end of Main

562 / 797

Tasking
Some Advanced Concepts

Quiz
procedure Main is
begin

select
delay 2.0;

then abort
loop

delay 1.5;
Put ("A");

end loop;
end select;

Put ("B");
end Main;

What is the output of this code?

A. "A"
B. "AAAA..."
C. "AB"
D. Compilation error
E. Run-time error

then abort aborts the select only, not Main.

563 / 797

Tasking
Some Advanced Concepts

Quiz
procedure Main is
begin

select
delay 2.0;

then abort
loop

delay 1.5;
Put ("A");

end loop;
end select;

Put ("B");
end Main;

What is the output of this code?

A. "A"
B. "AAAA..."
C. "AB"
D. Compilation error
E. Run-time error

then abort aborts the select only, not Main.
563 / 797

Tasking
Some Advanced Concepts

Quiz
procedure Main is

Ok : Boolean := False

protected type O is
entry P;

end O;

protected body O is
begin

entry P when Ok is
Put_Line ("OK");

end P;
end O;

Protected_Instance : O;

begin
Protected_Instance.P;

end Main;

What is the result of compiling and running this code?

A. OK = True
B. Nothing
C. Compilation error
D. Run-time error

Stuck on waiting for Ok to be set, Main will never terminate.

564 / 797

Tasking
Some Advanced Concepts

Quiz
procedure Main is

Ok : Boolean := False

protected type O is
entry P;

end O;

protected body O is
begin

entry P when Ok is
Put_Line ("OK");

end P;
end O;

Protected_Instance : O;

begin
Protected_Instance.P;

end Main;

What is the result of compiling and running this code?

A. OK = True
B. Nothing
C. Compilation error
D. Run-time error

Stuck on waiting for Ok to be set, Main will never terminate.
564 / 797

Tasking
Some Advanced Concepts

Standard "Embedded" Tasking Profiles

Better performances but more constrained
Ravenscar profile

Ada 2005
No select
No entry for tasks
Single entry for protected types
No entry queues

Jorvik profile
Ada 2022
Less constrained, still performant
Any number of entry for protected types
Entry queues

See RM D.13

565 / 797

Tasking
Lab

Lab

566 / 797

Tasking
Lab

Tasking In Depth Lab

Requirements
Create a datastore to set/inspect multiple "registers"

Individual registers can be read/written by multiple tasks

Create a "monitor" capability that will periodically update each
register

Each register has it's own update frequency

Main program should print register values on request

Hints
Datastore needs to control access to its contents
One task per register is easier than one task trying to maintain
multiple update frequencies

567 / 797

Tasking
Lab

Tasking In Depth Lab Solution - Datastore
1 package Datastore is
2 type Register_T is (One, Two, Three);
3

4 function Read (Register : Register_T) return Integer;
5 procedure Write (Register : Register_T;
6 Value : Integer);
7 end Datastore;
8

9 package body Datastore is
10 type Register_Data_T is array (Register_T) of Integer;
11

12 protected Registers is
13 function Read (Register : Register_T) return Integer;
14 procedure Write (Register : Register_T;
15 Value : Integer);
16 private
17 Register_Data : Register_Data_T;
18 end Registers;
19

20 protected body Registers is
21 function Read (Register : Register_T) return Integer is
22 (Register_Data (Register));
23 procedure Write (Register : Register_T;
24 Value : Integer) is
25 begin
26 Register_Data (Register) := Value;
27 end Write;
28 end Registers;
29

30 function Read (Register : Register_T) return Integer is
31 (Registers.Read (Register));
32 procedure Write (Register : Register_T;
33 Value : Integer) is
34 begin
35 Registers.Write (Register, Value);
36 end Write;
37 end Datastore;

568 / 797

Tasking
Lab

Tasking In Depth Lab Solution - Monitor Task Type
1 with Datastore;
2 package Counter is
3 task type Counter_T is
4 entry Initialize (Register : Datastore.Register_T;
5 Value : Integer;
6 Increment : Integer;
7 Delay_Time : Duration);
8 end Counter_T;
9 end Counter;

10

11 package body Counter is
12 task body Counter_T is
13 O_Register : Datastore.Register_T;
14 O_Increment : Integer;
15 O_Delay : Duration;
16 Initialized : Boolean := False;
17 begin
18 loop
19 select
20 accept Initialize (Register : Datastore.Register_T;
21 Value : Integer;
22 Increment : Integer;
23 Delay_Time : Duration) do
24 O_Register := Register;
25 O_Increment := Increment;
26 O_Delay := Delay_Time;
27 Datastore.Write (Register => O_Register,
28 Value => Value);
29 Initialized := True;
30 end Initialize;
31 or
32 delay O_Delay;
33 if Initialized then
34 Datastore.Write (Register => O_Register,
35 Value => Datastore.Read (O_Register) + O_Increment);
36 end if;
37 end select;
38 end loop;
39 end Counter_T;
40 end Counter;

569 / 797

Tasking
Lab

Tasking In Depth Lab Solution - Main
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Counter; use Counter;
3 with Datastore; use Datastore;
4 procedure Main is
5 Counters : array (Register_T) of Counter_T;
6

7 function Get (Prompt : String) return Integer is
8 begin
9 Put (" " & Prompt & ">");

10 return Integer'Value (Get_Line);
11 end Get;
12

13 procedure Print is
14 begin
15 for Register in Register_T loop
16 Put_Line (Register'Image & " =>" & Integer'Image (Datastore.Read (Register)));
17 end loop;
18 end Print;
19

20 begin
21 for Register in Register_T loop
22 Put_Line ("Register " & Register'Image);
23 declare
24 V : constant Integer := Get ("Initial value");
25 I : constant Integer := Get ("Increment");
26 D : constant Integer := Get ("Delay in tenths");
27 begin
28 Counters (Register).Initialize (Register => Register,
29 Value => V,
30 Increment => I,
31 Delay_Time => Duration (D) / 10.0);
32 end;
33 end loop;
34

35 loop
36 Put_Line ("Enter Q to quit, any other value to print registers");
37 declare
38 Str : constant String := Get_Line;
39 begin
40 exit when Str'Length > 0 and then (Str (Str'First) in 'Q' | 'q');
41 Print;
42 end;
43 end loop;
44

45 for Register in Register_T loop
46 abort Counters (Register);
47 end loop;
48 end Main;

570 / 797

Tasking
Summary

Summary

571 / 797

Tasking
Summary

Summary

Tasks are language-based concurrency mechanisms
Typically implemented as threads
Not necessarily for truly parallel operations
Originally for task-switching / time-slicing

Multiple mechanisms to synchronize tasks
Delay
Rendezvous
Queues
Protected Objects

572 / 797

Controlled Types

Controlled Types

573 / 797

Controlled Types
Introduction

Introduction

574 / 797

Controlled Types
Introduction

Constructor / Destructor

Possible to specify behavior of object initialization, finalization,
and assignment

Based on type definition
Type must derive from Controlled or Limited_Controlled in
package Ada.Finalization

This derived type is called a controlled type
User may override any or all subprograms in Ada.Finalization
Default implementation is a null body

575 / 797

Controlled Types
Ada.Finalization

Ada.Finalization

576 / 797

Controlled Types
Ada.Finalization

Package Spec

package Ada.Finalization is

type Controlled is abstract tagged private;
procedure Initialize (Object : in out Controlled)

is null;
procedure Adjust (Object : in out Controlled)

is null;
procedure Finalize (Object : in out Controlled)

is null;

type Limited_Controlled is abstract tagged limited private;
procedure Initialize (Object : in out Limited_Controlled)

is null;
procedure Finalize (Object : in out Limited_Controlled)

is null;

private
-- implementation defined

end Ada.Finalization;
577 / 797

Controlled Types
Ada.Finalization

Uses

Prevent "resource leak"
Logic centralized in service rather than distributed across clients

Examples: heap reclamation, "mutex" unlocking

User-defined assignment

578 / 797

Controlled Types
Ada.Finalization

Initialization

Subprogram Initialize invoked after object created
Either by object declaration or allocator
Only if no explicit initialization expression

Often default initialization expressions on record components are
sufficient

No need for an explicit call to Initialize

Similar to C++ constructor

579 / 797

Controlled Types
Ada.Finalization

Finalization

Subprogram Finalize invoked just before object is destroyed
Leaving the scope of a declared object
Unchecked deallocation of an allocated object

Similar to C++ destructor

580 / 797

Controlled Types
Ada.Finalization

Assignment

Subprogram Adjust invoked as part of an assignment operation

Assignment statement Target := Source; is basically:
Finalize (Target)
Copy Source to Target
Adjust (Target)
Actual rules are more complicated, e.g. to allow cases where Target
and Source are the same object

Typical situations where objects are access values
Finalize does unchecked deallocation or decrements a reference
count
The copy step copies the access value
Adjust either clones a "deep copy" of the referenced object or
increments a reference count

581 / 797

Controlled Types
Example

Example

582 / 797

Controlled Types
Example

Unbounded String Via Access Type

Type contains a pointer to a string type

We want the provider to allocate and free memory "safely"
No sharing
Adjust allocates referenced String
Finalize frees the referenced String
Assignment deallocates target string and assigns copy of source
string to target string

583 / 797

Controlled Types
Example

Unbounded String Usage

with Unbounded_String_Pkg; use Unbounded_String_Pkg;
procedure Test is

U1 : Ustring_T;
begin

U1 := To_Ustring_T ("Hello");
declare

U2 : Ustring_T;
begin

U2 := To_Ustring_T ("Goodbye");
U1 := U2; -- Reclaims U1 memory

end; -- Reclaims U2 memory
end Test; -- Reclaims U1 memory

584 / 797

Controlled Types
Example

Unbounded String Definition

with Ada.Finalization; use Ada.Finalization;
package Unbounded_String_Pkg is

-- Implement unbounded strings
type Ustring_T is private;
function "=" (L, R : Ustring_T) return Boolean;
function To_Ustring_T (Item : String) return Ustring_T;
function To_String (Item : Ustring_T) return String;
function Length (Item : Ustring_T) return Natural;
function "&" (L, R : Ustring_T) return Ustring_T;

private
type String_Ref is access String;
type Ustring_T is new Controlled with record

Ref : String_Ref := new String (1 .. 0);
end record;
procedure Finalize (Object : in out Ustring_T);
procedure Adjust (Object : in out Ustring_T);

end Unbounded_String_Pkg;
585 / 797

Controlled Types
Example

Unbounded String Implementation
with Ada.Unchecked_Deallocation;
package body Unbounded_String_Pkg is

procedure Free_String is new Ada.Unchecked_Deallocation
(String, String_Ref);

function "=" (L, R : Ustring_T) return Boolean is
(L.Ref.all = R.Ref.all);

function To_Ustring_T (Item : String) return Ustring_T is
(Controlled with Ref => new String'(Item));

function To_String (Item : Ustring_T) return String is
(Item.Ref.all);

function Length (Item : Ustring_T) return Natural is
(Item.Ref.all'Length);

function "&" (L, R : Ustring_T) return Ustring_T is
(Controlled with Ref => new String'(L.Ref.all & R.Ref.all);

procedure Finalize (Object : in out Ustring_T) is
begin

Free_String (Object.Ref);
end Finalize;

procedure Adjust (Object : in out Ustring_T) is
begin

Object.Ref := new String'(Object.Ref.all);
end Adjust;

end Unbounded_String_Pkg;

586 / 797

Controlled Types
Example

Finalizable Aspect
Uses the GNAT-specific with Finalizable aspect

type Ctrl is record
Id : Natural := 0;

end record
with Finalizable => (Initialize => Initialize,

Adjust => Adjust,
Finalize => Finalize,
Relaxed_Finalization => True);

procedure Adjust (Obj : in out Ctrl);
procedure Finalize (Obj : in out Ctrl);
procedure Initialize (Obj : in out Ctrl);

Initialize, Adjust same definition as previously

Finalize has the No_Raise aspect: it cannot raise exceptions

Relaxed_Finalization

Performance on-par with C++'s destructor
No automatic finalization of heap-allocated objects

587 / 797

Controlled Types
Lab

Lab

588 / 797

Controlled Types
Lab

Controlled Types Lab

Requirements
Create a simplistic secure key tracker system

Keys should be unique
Keys cannot be copied
When a key is no longer in use, it is returned back to the system

Interface should contain the following methods
Generate a new key
Return a generated key
Indicate how many keys are in service
Return a string describing the key

Create a main program to generate / destroy / print keys

Hints
Need to return a key when out-of-scope OR on user request
Global data to track used keys

589 / 797

Controlled Types
Lab

Controlled Types Lab Solution - Keys (Spec)

1 with Ada.Finalization;
2 package Keys_Pkg is
3

4 type Key_T is limited private;
5 function Generate return Key_T;
6 procedure Destroy (Key : Key_T);
7 function In_Use return Natural;
8 function Image (Key : Key_T) return String;
9

10 private
11 type Key_T is new Ada.Finalization.Limited_Controlled with record
12 Value : Character;
13 end record;
14 procedure Initialize (Key : in out Key_T);
15 procedure Finalize (Key : in out Key_T);
16

17 end Keys_Pkg;
590 / 797

Controlled Types
Lab

Controlled Types Lab Solution - Keys (Body)
1 package body Keys_Pkg is
2 Global_In_Use : array (Character range 'a' .. 'z') of Boolean :=
3 (others => False);
4

5 pragma Warnings (Off);
6 function Next_Available return Character is
7 begin
8 for C in Global_In_Use'Range loop
9 if not Global_In_Use (C) then

10 return C;
11 end if;
12 end loop;
13 -- we ran out of keys! exception if we get here
14 end Next_Available;
15 pragma Warnings (On);
16

17 function In_Use return Natural is
18 Ret_Val : Natural := 0;
19 begin
20 for Flag of Global_In_Use loop
21 Ret_Val := Ret_Val + (if Flag then 1 else 0);
22 end loop;
23 return Ret_Val;
24 end In_Use;
25

26 function Generate return Key_T is
27 begin
28 return X : Key_T;
29 end Generate;
30

31 procedure Destroy (Key : Key_T) is
32 begin
33 Global_In_Use (Key.Value) := False;
34 end Destroy;
35

36 function Image (Key : Key_T) return String is
37 ("KEY: " & Key.Value);
38

39 procedure Initialize (Key : in out Key_T) is
40 begin
41 Key.Value := Next_Available;
42 Global_In_Use (Key.Value) := True;
43 end Initialize;
44

45 procedure Finalize (Key : in out Key_T) is
46 begin
47 Global_In_Use (Key.Value) := False;
48 end Finalize;
49 end Keys_Pkg;

591 / 797

Controlled Types
Lab

Controlled Types Lab Solution - Main
1 with Keys_Pkg;
2 with Ada.Text_IO; use Ada.Text_IO;
3 procedure Main is
4

5 procedure Generate (Count : Natural) is
6 Keys : array (1 .. Count) of Keys_Pkg.Key_T;
7 begin
8 Put_Line ("In use: " & Integer'Image (Keys_Pkg.In_Use));
9 for Key of Keys

10 loop
11 Put_Line (" " & Keys_Pkg.Image (Key));
12 end loop;
13 end Generate;
14

15 begin
16 Put_Line ("In use: " & Integer'Image (Keys_Pkg.In_Use));
17

18 Generate (4);
19 Put_Line ("In use: " & Integer'Image (Keys_Pkg.In_Use));
20

21 end Main;
592 / 797

Controlled Types
Summary

Summary

593 / 797

Controlled Types
Summary

Summary

Controlled types allow access to object construction, assignment,
destruction

Ada.Finalization can be expensive to use
Other mechanisms may be more efficient

But require more rigor in usage

594 / 797

Low Level Programming

Low Level Programming

595 / 797

Low Level Programming
Introduction

Introduction

596 / 797

Low Level Programming
Introduction

Introduction

Sometimes you need to get your hands dirty

Hardware Issues
Register or memory access
Assembler code for speed or size issues

Interfacing with other software
Object sizes
Endianness
Data conversion

597 / 797

Low Level Programming
Data Representation

Data Representation

598 / 797

Low Level Programming
Data Representation

Data Representation Vs Requirements
Developer usually defines requirements on a type

type My_Int is range 1 .. 10;

The compiler then generates a representation for this type that
can accommodate requirements

In GNAT, can be consulted using -gnatR2 switch

-- with aspects
type Some_Integer_T is range 1 .. 10

with Object_Size => 8,
Value_Size => 4,
Alignment => 1;

-- with representation clauses
type Another_Integer_T is range 1 .. 10;
for Another_Integer_T'Object_Size use 8;
for Another_Integer_T'Value_Size use 4;
for Another_Integer_T'Alignment use 1;

These values can be explicitly set, the compiler will check their
consistency

They can be queried as attributes if needed

X : Integer := My_Int'Alignment;
599 / 797

Low Level Programming
Data Representation

Value_Size / Size

Value_Size (or Size in the Ada Reference Manual) is the
minimal number of bits required to represent data

For example, Boolean'Size = 1

The compiler is allowed to use larger size to represent an actual
object, but will check that the minimal size is enough

-- with aspect
type Small_T is range 1 .. 4

with Size => 3;

-- with representation clause
type Another_Small_T is range 1 .. 4;
for Another_Small_T'Size use 3;

600 / 797

Low Level Programming
Data Representation

Object Size (GNAT-Specific)

Object_Size represents the size of the object in memory
It must be a multiple of Alignment * Storage_Unit (8), and
at least equal to Size

-- with aspects
type Some_T is range 1 .. 4

with Value_Size => 3,
Object_Size => 8;

-- with representation clauses
type Another_T is range 1 .. 4;
for Another_T'Value_Size use 3;
for Another_T'Object_Size use 8;

Object size is the default size of an object, can be changed if
specific representations are given

601 / 797

Low Level Programming
Data Representation

Alignment

Number of bytes on which the type has to be aligned
Some alignment may be more efficient than others in terms of
speed (e.g. boundaries of words (4, 8))
Some alignment may be more efficient than others in terms of
memory usage

-- with aspects
type Aligned_T is range 1 .. 4

with Size => 4,
Alignment => 8;

-- with representation clauses
type Another_Aligned_T is range 1 .. 4;
for Another_Aligned_T'Size use 4;
for Another_Aligned_T'Alignment use 8;

602 / 797

Low Level Programming
Data Representation

Record Types
Ada doesn't force any
particular memory layout
Depending on optimization
of constraints, layout can be
optimized for speed, size, or
not optimized

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record;

603 / 797

Low Level Programming
Data Representation

Pack Aspect
Pack aspect (or pragma) applies to composite types (record and
array)

Compiler optimizes data for size no matter performance impact

Unpacked

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record;
type Ar is array (1 .. 1000) of Boolean;
-- Rec'Size is 56, Ar'Size is 8000

Packed

type Enum is (E1, E2, E3);
type Rec is record

A : Integer;
B : Boolean;
C : Boolean;
D : Enum;

end record with Pack;
type Ar is array (1 .. 1000) of Boolean;
pragma Pack (Ar);
-- Rec'Size is 36, Ar'Size is 1000

604 / 797

Low Level Programming
Data Representation

Enum Representation Clauses

Can specify representation for each value
Representation must have increasing number

type E is (A, B, C);
for E use (A => 2, B => 4, C => 8);

Can use E'Enum_Rep (A) = 2
Can use E'Enum_Val (2) = A

605 / 797

Low Level Programming
Data Representation

Record Representation Clauses
Exact mapping between a
record and its binary
representation
Optimization purposes, or
hardware requirements

Driver mapped on the
address space,
communication protocol...

Components represented as
<name> at <byte> range

<starting-bit> ..
<ending-bit>

type Rec1 is record
A : Integer range 0 .. 4;
B : Boolean;
C : Integer;
D : Enum;

end record;
for Rec1 use record

A at 0 range 0 .. 2;
B at 0 range 3 .. 3;
C at 0 range 4 .. 35;
-- unused space here
D at 5 range 0 .. 2;

end record;

606 / 797

Low Level Programming
Data Representation

Unchecked Unions

Allows replicating C's union with discriminated records
Discriminant is not stored
No discriminant check
Object must be mutable

type R (Is_Float : Boolean := False) is record
case Is_Float is
when True =>

F : Float;
when False =>

I : Integer;
end case;

end record
with Unchecked_Union;

O : R := (Is_Float => False, I => 1);
F : Float := R.F; -- no check!

607 / 797

Low Level Programming
Data Representation

Array Representation Clauses

Component_Size for array's component's size

-- with aspect
type Array_T is array (1 .. 1000) of Boolean

with Component_Size => 2;

-- with representation clause
type Another_Array_T is array (1 .. 1000) of Boolean;
for Another_Array_T'Component_Size use 2;

608 / 797

Low Level Programming
Data Representation

Endianness Specification
Bit_Order for a type's endianness

Scalar_Storage_Order for composite types
Endianess of components' ordering
GNAT-specific
Must be consistent with Bit_Order

Compiler will peform needed bitwise transformations when
performing operations

-- with aspect
type Array_T is array (1 .. 1000) of Boolean with

Scalar_Storage_Order => System.Low_Order_First;

-- with representation clauses
type Record_T is record

A : Integer;
B : Boolean;

end record;
for Record_T use record

A at 0 range 0 .. 31;
B at 0 range 32 .. 33;

end record;
for Record_T'Bit_Order use System.High_Order_First;
for Record_T'Scalar_Storage_Order use System.High_Order_First;

609 / 797

Low Level Programming
Data Representation

Change of Representation
Explicit new type can be used to set representation
Very useful to unpack data from file/hardware to speed up
references

type Rec_T is record
Component1 : Unsigned_8;
Component2 : Unsigned_16;
Component3 : Unsigned_8;

end record;
type Packed_Rec_T is new Rec_T;
for Packed_Rec_T use record

Component1 at 0 range 0 .. 7;
Component2 at 0 range 8 .. 23;
Component3 at 0 range 24 .. 31;

end record;
R : Rec_T;
P : Packed_Rec_T;
...
R := Rec_T (P);
P := Packed_Rec_T (R);

610 / 797

Low Level Programming
Address Clauses and Overlays

Address Clauses and Overlays

611 / 797

Low Level Programming
Address Clauses and Overlays

Address

Ada distinguishes the notions of
A reference to an object
An abstract notion of address (System.Address)
The integer representation of an address

Safety is preserved by letting the developer manipulate the right
level of abstraction

Conversion between pointers, integers and addresses are possible

The address of an object can be specified through the Address
aspect

612 / 797

Low Level Programming
Address Clauses and Overlays

Address Clauses
Ada allows specifying the address of an entity

Use_Aspect : Unsigned_32 with
Address => 16#1234_ABCD#;

Use_Rep_Clause : Unsigned_32;
for Use_Rep_Clause'Address use 16#5678_1234#;

Very useful to declare I/O registers
For that purpose, the object should be declared volatile:

Use_Aspect : Unsigned_32 with
Volatile,
Address => 16#1234_ABCD#;

Use_Rep_And_Pragma : Unsigned_32;
for Use_Rep_And_Pragma'Address use 16#5678_1234#;
pragma Volatile (Use_Rep_And_Pragma);

Useful to read a value anywhere

function Get_Byte (Addr : Address) return Unsigned_8 is
V : Unsigned_8 with Address => Addr, Volatile;

begin
return V;

end;

In particular the address doesn't need to be constant
But must match alignment

613 / 797

Low Level Programming
Address Clauses and Overlays

Address Values

The type Address is declared in System

But this is a private type
You cannot use a number

Ada standard way to set constant addresses:
Use System.Storage_Elements which allows arithmetic on
address

V : Unsigned_32 with
Address =>

System.Storage_Elements.To_Address (16#120#);

GNAT specific attribute 'To_Address

Handy but not portable

V : Unsigned_32 with
Address => System'To_Address (16#120#);

614 / 797

Low Level Programming
Address Clauses and Overlays

Volatile

The Volatile property can be set using an aspect or a pragma

Ada also allows volatile types as well as objects

type Volatile_U32 is mod 2**32 with Volatile;
type Volatile_U16 is mod 2**16;
pragma Volatile (Volatile_U16);

The exact sequence of reads and writes from the source code must
appear in the generated code

No optimization of reads and writes

Volatile types are passed by-reference

615 / 797

Low Level Programming
Address Clauses and Overlays

Ada Address Example

type Bit_Array_T is array (Integer range <>) of Boolean
with Component_Size => 1;

-- objects can be referenced elsewhere
Object : aliased Integer with Volatile;
Object2 : aliased Integer with Volatile;

Object_A : System.Address := Object'Address;
Object_I : Integer_Address := To_Integer (Object_A);

-- This overlays Bit_Array_Object onto Object in memory
Bit_Array_Object : aliased Bit_Array_T (1 .. Object'Size)

with Address => Object_A;

Object2_Alias : aliased Integer
-- Trust me, I know what I'm doing, this is Object2
with Address => To_Address (Object_I - 4);

616 / 797

Low Level Programming
Address Clauses and Overlays

Aliasing Detection

Aliasing : multiple objects are accessing the same address
Types can be different
Two pointers pointing to the same address
Two references onto the same address
Two objects at the same address

Var1'Has_Same_Storage (Var2) checks if two objects occupy
exactly the same space

Var'Overlaps_Storage (Var2) checks if two object are
partially or fully overlapping

617 / 797

Low Level Programming
Address Clauses and Overlays

Unchecked Conversion

Unchecked_Conversion allows an unchecked bitwise conversion
of data between two types

Needs to be explicitly instantiated

type Bitfield is array (1 .. Integer'Size) of Boolean;
function To_Bitfield is new

Ada.Unchecked_Conversion (Integer, Bitfield);
V : Integer;
V2 : Bitfield := To_Bitfield (V);

Avoid conversion if the sizes don't match
Not defined by the standard
Many compilers will warn if the type sizes do not match

618 / 797

Low Level Programming
Tricks

Tricks

619 / 797

Low Level Programming
Tricks

Package Interfaces

Package Interfaces provide Integer and unsigned types for many
sizes

Integer_8, Integer_16, Integer_32, Integer_64
Unsigned_8, Unsigned_16, Unsigned_32, Unsigned_64

With shift/rotation functions for unsigned types

620 / 797

Low Level Programming
Tricks

Fat/Thin Pointers for Arrays

Unconstrained array access is a fat pointer

type String_Acc is access String;
Msg : String_Acc;
-- array bounds stored outside array pointer

Use a size representation clause for a thin pointer

type String_Acc is access String;
for String_Acc'Size use 32;
-- array bounds stored as part of array pointer

621 / 797

Low Level Programming
Tricks

Flat Arrays

A constrained array access is a thin pointer
No need to store bounds

type Line_Acc is access String (1 .. 80);

You can use big flat array to index memory
See GNAT.Table
Not portable

type Char_array is array (natural) of Character;
type C_String_Acc is access Char_Array;

622 / 797

Low Level Programming
Lab

Lab

623 / 797

Low Level Programming
Lab

Low Level Programming Lab

(Simplified) Message generation / propagation

Overview
Populate a message structure with data and a CRC (cyclic
redundancy check)
"Send" and "Receive" messages and verify data is valid

Goal
You should be able to create, "send", "receive", and print messages
Creation should include generation of a CRC to ensure data security
Receiving should include validation of CRC

624 / 797

Low Level Programming
Lab

Project Requirements

Message Generation
Message should at least contain:

Unique Identifier
(Constrained) string component
Two other components
CRC value

"Send" / "Receive"
To simulate send/receive:

"Send" should do a byte-by-byte write to a text file
"Receive" should do a byte-by-byte read from that same text file

Receiver should validate received CRC is valid
You can edit the text file to corrupt data

625 / 797

Low Level Programming
Lab

Hints

Use a representation clause to specify size of record
To get a valid size, individual components may need new types with
their own rep spec

CRC generation and file read/write should be similar processes
Need to convert a message into an array of "something"

626 / 797

Low Level Programming
Lab

Low Level Programming Lab Solution - CRC
1 with System;
2 package Crc is
3 type Crc_T is mod 2**32;
4 for Crc_T'Size use 32;
5 function Generate
6 (Address : System.Address;
7 Size : Natural)
8 return Crc_T;
9 end Crc;

10

11 package body Crc is
12 type Array_T is array (Positive range <>) of Crc_T;
13 function Generate
14 (Address : System.Address;
15 Size : Natural)
16 return Crc_T is
17 Word_Count : Natural;
18 Retval : Crc_T := 0;
19 begin
20 if Size > 0
21 then
22 Word_Count := Size / 32;
23 if Word_Count * 32 /= Size
24 then
25 Word_Count := Word_Count + 1;
26 end if;
27 declare
28 Overlay : Array_T (1 .. Word_Count);
29 for Overlay'Address use Address;
30 begin
31 for I in Overlay'Range
32 loop
33 Retval := Retval + Overlay (I);
34 end loop;
35 end;
36 end if;
37 return Retval;
38 end Generate;
39 end Crc;

627 / 797

Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Spec)
1 with Crc; use Crc;
2 package Messages is
3 type Message_T is private;
4 type Command_T is (Noop, Direction, Ascend, Descend, Speed);
5 for Command_T use
6 (Noop => 0, Direction => 1, Ascend => 2, Descend => 4, Speed => 8);
7 for Command_T'Size use 8;
8 function Create (Command : Command_T;
9 Value : Positive;

10 Text : String := "")
11 return Message_T;
12 function Get_Crc (Message : Message_T) return Crc_T;
13 procedure Write (Message : Message_T);
14 procedure Read (Message : out Message_T;
15 valid : out boolean);
16 procedure Print (Message : Message_T);
17 private
18 type U32_T is mod 2**32;
19 for U32_T'Size use 32;
20 Max_Text_Length : constant := 20;
21 type Text_Index_T is new Integer range 0 .. Max_Text_Length;
22 for Text_Index_T'Size use 8;
23 type Text_T is record
24 Text : String (1 .. Max_Text_Length);
25 Last : Text_Index_T;
26 end record;
27 for Text_T'Size use Max_Text_Length * 8 + Text_Index_T'size;
28 type Message_T is record
29 Unique_Id : U32_T;
30 Command : Command_T;
31 Value : U32_T;
32 Text : Text_T;
33 Crc : Crc_T;
34 end record;
35 end Messages;

628 / 797

Low Level Programming
Lab

Low Level Programming Lab Solution - Main (Helpers)
1 with Ada.Text_IO; use Ada.Text_IO;
2 with Messages;
3 procedure Main is
4 Message : Messages.Message_T;
5 function Command return Messages.Command_T is
6 begin
7 loop
8 Put ("Command (");
9 for E in Messages.Command_T

10 loop
11 Put (Messages.Command_T'Image (E) & " ");
12 end loop;
13 Put ("): ");
14 begin
15 return Messages.Command_T'Value (Get_Line);
16 exception
17 when others =>
18 Put_Line ("Illegal");
19 end;
20 end loop;
21 end Command;
22 function Value return Positive is
23 begin
24 loop
25 Put ("Value: ");
26 begin
27 return Positive'Value (Get_Line);
28 exception
29 when others =>
30 Put_Line ("Illegal");
31 end;
32 end loop;
33 end Value;
34 function Text return String is
35 begin
36 Put ("Text: ");
37 return Get_Line;
38 end Text;

629 / 797

Low Level Programming
Lab

Low Level Programming Lab Solution - Main
1 procedure Create is
2 C : constant Messages.Command_T := Command;
3 V : constant Positive := Value;
4 T : constant String := Text;
5 begin
6 Message := Messages.Create
7 (Command => C,
8 Value => V,
9 Text => T);

10 end Create;
11 procedure Read is
12 Valid : Boolean;
13 begin
14 Messages.Read (Message, Valid);
15 Ada.Text_IO.Put_Line("Message valid: " & Boolean'Image (Valid));
16 end read;
17 begin
18 loop
19 Put ("Create Write Read Print: ");
20 declare
21 Command : constant String := Get_Line;
22 begin
23 exit when Command'Length = 0;
24 case Command (Command'First) is
25 when 'c' | 'C' =>
26 Create;
27 when 'w' | 'W' =>
28 Messages.Write (Message);
29 when 'r' | 'R' =>
30 read;
31 when 'p' | 'P' =>
32 Messages.Print (Message);
33 when others =>
34 null;
35 end case;
36 end;
37 end loop;
38 end Main;

630 / 797

Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Helpers)
1 with Ada.Text_IO;
2 with Unchecked_Conversion;
3 package body Messages is
4 Global_Unique_Id : U32_T := 0;
5 function To_Text (Str : String) return Text_T is
6 Length : Integer := Str'Length;
7 Retval : Text_T := (Text => (others => ' '), Last => 0);
8 begin
9 if Str'Length > Retval.Text'length then

10 Length := Retval.Text'Length;
11 end if;
12 Retval.Text (1 .. Length) := Str (Str'First .. Str'first + Length - 1);
13 Retval.Last := Text_Index_T (Length);
14 return Retval;
15 end To_Text;
16 function From_Text (Text : Text_T) return String is
17 Last : constant Integer := Integer (Text.Last);
18 begin
19 return Text.Text (1 .. Last);
20 end From_Text;
21 function Get_Crc (Message : Message_T) return Crc_T is
22 begin
23 return Message.Crc;
24 end Get_Crc;
25 function Validate (Original : Message_T) return Boolean is
26 Clean : Message_T := Original;
27 begin
28 Clean.Crc := 0;
29 return Crc.Generate (Clean'Address, Clean'Size) = Original.Crc;
30 end Validate;

631 / 797

Low Level Programming
Lab

Low Level Programming Lab Solution - Messages (Body)
1 function Create (Command : Command_T;
2 Value : Positive;
3 Text : String := "")
4 return Message_T is
5 Retval : Message_T;
6 begin
7 Global_Unique_Id := Global_Unique_Id + 1;
8 Retval :=
9 (Unique_Id => Global_Unique_Id, Command => Command,

10 Value => U32_T (Value), Text => To_Text (Text), Crc => 0);
11 Retval.Crc := Crc.Generate (Retval'Address, Retval'Size);
12 return Retval;
13 end Create;
14 type Char is new Character;
15 for Char'Size use 8;
16 type Overlay_T is array (1 .. Message_T'Size / 8) of Char;
17 function Convert is new Unchecked_Conversion (Message_T, Overlay_T);
18 function Convert is new Unchecked_Conversion (Overlay_T, Message_T);
19 Const_Filename : constant String := "message.txt";
20 procedure Write (Message : Message_T) is
21 Overlay : constant Overlay_T := Convert (Message);
22 File : Ada.Text_IO.File_Type;
23 begin
24 Ada.Text_IO.Create (File, Ada.Text_IO.Out_File, Const_Filename);
25 for I in Overlay'Range loop
26 Ada.Text_IO.Put (File, Character (Overlay (I)));
27 end loop;
28 Ada.Text_IO.New_Line (File);
29 Ada.Text_IO.Close (File);
30 end Write;
31 procedure Read (Message : out Message_T;
32 Valid : out Boolean) is
33 Overlay : Overlay_T;
34 File : Ada.Text_IO.File_Type;
35 begin
36 Valid := False;
37 Ada.Text_IO.Open (File, Ada.Text_IO.In_File, Const_Filename);
38 declare
39 Str : constant String := Ada.Text_IO.Get_Line (File);
40 begin
41 Ada.Text_IO.Close (File);
42 for I in Str'Range loop
43 Overlay (I) := Char (Str (I));
44 end loop;
45 Message := Convert (Overlay);
46 Valid := Validate (Message);
47 end;
48 end Read;
49 procedure Print (Message : Message_T) is
50 begin
51 Ada.Text_IO.Put_Line ("Message" & U32_T'Image (Message.Unique_Id));
52 Ada.Text_IO.Put_Line (" " & Command_T'Image (Message.Command) & " =>" &
53 U32_T'Image (Message.Value));
54 Ada.Text_IO.Put_Line (" Additional Info: " & From_Text (Message.Text));
55 end Print;
56 end Messages;

632 / 797

Low Level Programming
Summary

Summary

633 / 797

Low Level Programming
Summary

Summary

Like C, Ada allows access to assembly-level programming
Unlike C, Ada imposes some more restrictions to maintain some
level of safety
Ada also supplies language constructs and libraries to make low
level programming easier

634 / 797

Low Level Programming
Supplementary Resource: Inline ASM

Supplementary Resource: Inline ASM

635 / 797

Low Level Programming
Supplementary Resource: Inline ASM

Calling Assembly Code

Calling assembly code is a vendor-specific extension

GNAT allows passing assembly with System.Machine_Code.ASM

Handled by the linker directly

The developer is responsible for mapping variables on temporaries
or registers

See documentation
GNAT RM 13.1 Machine Code Insertion
GCC UG 6.39 Assembler Instructions with C Expression Operands

636 / 797

Low Level Programming
Supplementary Resource: Inline ASM

Simple Statement

Instruction without inputs/outputs

Asm ("halt", Volatile => True);

You may specify Volatile to avoid compiler optimizations
In general, keep it False unless it created issues

You can group several instructions

Asm ("nop" & ASCII.LF & ASCII.HT
& "nop", Volatile => True);

Asm ("nop; nop", Volatile => True);

The compiler doesn't check the assembly, only the assembler will
Error message might be difficult to read

637 / 797

Low Level Programming
Supplementary Resource: Inline ASM

Operands

It is often useful to have inputs or outputs...
Asm_Input and Asm_Output attributes on types

638 / 797

Low Level Programming
Supplementary Resource: Inline ASM

Mapping Inputs / Outputs on Temporaries
Asm (<script referencing $<input> >,

Inputs => ({<type>'Asm_Input (<constraint>,
<variable>)}),

Outputs => ({<type>'Asm_Output (<constraint>,
<variable>)});

assembly script containing assembly instructions + references to
registers and temporaries
constraint specifies how variable can be mapped on memory (see
documentation for full details)

Constraint Meaning
R General purpose register
M Memory
F Floating-point register
I A constant
g global (on x86)
a eax (on x86)

639 / 797

Low Level Programming
Supplementary Resource: Inline ASM

Main Rules

No control flow between assembler statements
Use Ada control flow statement
Or use control flow within one statement

Avoid using fixed registers
Makes compiler's life more difficult
Let the compiler choose registers
You should correctly describe register constraints

On x86, the assembler uses AT&T convention
First operand is source, second is destination

See your toolchain's as assembler manual for syntax

640 / 797

Low Level Programming
Supplementary Resource: Inline ASM

Volatile and Clobber ASM Parameters

Volatile → True deactivates optimizations with regards to
suppressed instructions

Clobber → "reg1, reg2, ..." contains the list of registers
considered to be "destroyed" by the use of the ASM call

memory if the memory is accessed
Compiler won't use memory cache in registers across the instruction

cc if flags might have changed

641 / 797

Low Level Programming
Supplementary Resource: Inline ASM

Instruction Counter Example (x86)

with System.Machine_Code; use System.Machine_Code;
with Ada.Text_IO; use Ada.Text_IO;
with Interfaces; use Interfaces;
procedure Main is

Low : Unsigned_32;
High : Unsigned_32;
Value : Unsigned_64;
use ASCII;

begin
Asm ("rdtsc" & LF,

Outputs =>
(Unsigned_32'Asm_Output ("=g", Low),
Unsigned_32'Asm_Output ("=a", High)),

Volatile => True);
Values := Unsigned_64 (Low) +

Unsigned_64 (High) * 2 ** 32;
Put_Line (Values'Image);

end Main;
642 / 797

Low Level Programming
Supplementary Resource: Inline ASM

Reading a Machine Register (ppc)
function Get_MSR return MSR_Type is

Res : MSR_Type;
begin

Asm ("mfmsr %0",
Outputs => MSR_Type'Asm_Output ("=r", Res),
Volatile => True);

return Res;
end Get_MSR;
generic

Spr : Natural;
function Get_Spr return Unsigned_32;
function Get_Spr return Unsigned_32 is

Res : Unsigned_32;
begin

Asm ("mfspr %0,%1",
Inputs => Natural'Asm_Input ("K", Spr),
Outputs => Unsigned_32'Asm_Output ("=r", Res),
Volatile => True);

return Res;
end Get_Spr;
function Get_Pir is new Get_Spr (286);

643 / 797

Low Level Programming
Supplementary Resource: Inline ASM

Writing a Machine Register (ppc)

generic
Spr : Natural;

procedure Set_Spr (V : Unsigned_32);
procedure Set_Spr (V : Unsigned_32) is
begin

Asm ("mtspr %0,%1",
Inputs => (Natural'Asm_Input ("K", Spr),

Unsigned_32'Asm_Input ("r", V)));
end Set_Spr;

644 / 797

Day 4 - AM

645 / 797

GNAT Project Facility Overview

GNAT Project Facility Overview

646 / 797

GNAT Project Facility Overview
Introduction

Introduction

647 / 797

GNAT Project Facility Overview
Introduction

Origins and Purposes of Projects

Need for flexibility
Managing huge applications is a difficult task
Build tools are always useful

GNAT compilation model
Compiler needs to know where to find Ada files imported by Ada
unit being compiled

IDEs
AdaCore IDEs need to know where to find source and object files

Tools (metrics, documentation generator, etc)
AdaCore tools benefit from having knowledge of application
structure

648 / 797

GNAT Project Facility Overview
Introduction

Subsystems of Subsystems of ...

Projects support incremental/modular project definition
Projects can import other projects containing needed files
Child projects can extend parent projects

Inheriting all attributes of parent
Allows override of source files and other attributes

Allows structuring of large development efforts into hierarchical
subsystems

Build decisions deferred to subsystem level

649 / 797

GNAT Project Facility Overview
Project Files

Project Files

650 / 797

GNAT Project Facility Overview
Project Files

GNAT Project Files

Text files with Ada-like syntax
Also known as GPR files due to file extension
Integrated into command-line tools

Specified via the -P project-file-name switch
Integrated into IDEs

A fundamental part
Automatically generated if desired

Should be under configuration management

651 / 797

GNAT Project Facility Overview
Project Files

Configurable Properties

Source directories and specific files' names
Output directory for object modules and .ali files
Target directory for executable programs
Switch settings for project-enabled tools
Source files for main subprogram(s) to be built
Source programming languages

Ada / C / C++ are preconfigured
Source file naming conventions
And many more

652 / 797

GNAT Project Facility Overview
Project Files

The Minimal Project File

project My_Project is
end My_Project;

653 / 797

GNAT Project Facility Overview
Project Files

Specifying Main Subprogram(s)

Optional
Some projects do not build an executable
If necessary and not specified in file, must be specified on
command-line

Can have more than one file named
A project-level setting

project Foo is
for Main use ("bar.adb", "baz.adb");

end Foo;

654 / 797

GNAT Project Facility Overview
Project Files

About Project Files and Makefiles

A Makefile performs actions (indirectly)
A project file describes a project
Command lines using project files fit naturally in Makefile paradigm

gprbuild -P <project-file> ...

655 / 797

Building with GPRbuild

Building with GPRbuild

656 / 797

Building with GPRbuild
Introduction

Introduction

657 / 797

Building with GPRbuild
Introduction

Generic Build Tool

Designed for construction of large multi-language systems
Allows subsystems and libraries

Manages three step build process:
Compilation phase:

Each compilation unit examined in turn, checked for consistency,
and, if necessary, compiled (or recompiled) as appropriate

Post-compilation phase (binding):
Compiled units from a given language are passed to
language-specific post-compilation tool (if any)
Objects grouped into static or dynamic libraries as specified

Linking phase:
Units or libraries from all subsystems are passed to appropriate
linker tool

658 / 797

Building with GPRbuild
Command Line

Command Line

659 / 797

Building with GPRbuild
Command Line

GPRbuild Command Line

Made up of three components
Main project file (required)
Switches (optional)

gprbuild switches
Options for called tools

Main source files (optional)
If not specified, executable(s) specified in project file are built
If no main files specified, no executable is built

660 / 797

Building with GPRbuild
Command Line

Common Options Passed To Tools
-cargs options

Options passed to all compilers

Example:

-cargs -g

-cargs:<language> options

Options passed to compiler for specific language

Examples:

-cargs:Ada -gnatf
-cargs:C -E

-bargs options

Options passed to all binder drivers

-bargs:<language> options

Options passed to binder driver for specific language

Examples:

-bargs:Ada binder_prefix=ppc-elf
-bargs:C++ c_compiler_name=ccppc

-largs options

Options passed to linker for generating executable
661 / 797

Building with GPRbuild
Command Line

Common Command Line Switches

-P <project file> Name of main project file (space between P and <filename> is optional)

-aP <directory> Add <directory> to list of directories to search for project files

-u [<source file> [, <source file>...]] If sources specified, only compile these sources.
Otherwise, compile all sources in main project file

-U [<source file> [, <source file>...]] If sources specified, only compile these sources.
Otherwise, compile all sources in project tree

-Xnm=val Specify external reference that may be read via built-in function external.
--version Display information about GPRbuild: version, origin and legal status
--help Display GPRbuild usage

--config=<config project file name> Configuration project file name (default default.cgpr)

662 / 797

Building with GPRbuild
Command Line

Common Build Switches

Switches to be specified on command line or in Builder package of
main project file

--create-map-file[=<map file>] When linking, (if supported) by the platform, create a map file <map file> .

(If not specified, filename is <executable name>.map)

-j<num> Use <num> simultaneous compilation jobs

-k Keep going after compilation errors (default is to stop on first error)
-p (or --create-missing-dirs) Creating missing output directory (e.g. object directory)

663 / 797

Building with GPRbuild
Lab

Lab

664 / 797

Building with GPRbuild
Lab

Start GPRbuild

Open a command shell
Go to gpr_1_building_with_gprbuild directory (under
source)

Contains a main procedure and a supporting package for the "8
Queens" problem

Use an editor to create minimum project file
Name the project anything you wish
Filename and project name should be the same

Build Queens using gprbuild and the project file as-is
Use -P argument on the command line to specify project file
Must also specify file name on command line to get executable

For example: gprbuild -P lab.gpr queens

Clean the project with gprclean
Use -P argument on the command line to specify project file
Note that the queens.exe executable remains

Plus (possibly) some intermediate files
665 / 797

Building with GPRbuild
Lab

GPRbuild Lab - Simple GPR File

project Lab is
end Lab;

gprbuild -P lab.gpr Only compiles source files

gprbuild -P lab.gpr queens Compiles source and creates
queens executable

gprclean -P lab.gpr Deletes ALI and object files for Queens and
Queens_Pkg

666 / 797

Building with GPRbuild
Lab

GPRbuild Lab Part 2

Change project file so that it specifies the main program
Build again, without specifying the main on the command line

Use only -P argument on the command line to specify project file
Clean the project with gprclean again

Note the queens executable is now also deleted (as well as any
intermediate files)

667 / 797

Building with GPRbuild
Lab

GPRbuild Lab - Main Program Specified

project Lab is
for Main use ("main.adb");

end Lab;

gprbuild -P lab.gpr Compiles source and creates queens
executable

gprclean -P lab.gpr Deletes all generated files

668 / 797

Project Properties

Project Properties

669 / 797

Project Properties
Introduction

Introduction

670 / 797

Project Properties
Introduction

Specifying Directories

Any number of Source Directories
Source Directories contain source files
If not specified, defaults to directory containing project file
Possible to create a project with no Source Directory

Not the same as not specifying the Source Directory!

One Object Directory
Contains object files and other tool-generated files
If not specified, defaults to directory containing project file

One Executables Directory
Contains executable(s)
If not specified, defaults to same location as Object Directory

Tip: use forward slashes rather than backslashes for the most
portability

Backslash will only work on Windows
Forward slash will work on all supported systems (including
Windows)

671 / 797

Project Properties
Introduction

Variables

Typed Set of possible string values

Untyped Unspecified set of values (strings and lists)

project Build is
type Targets is ("release", "test");
-- Typed variable
Target : Targets := external("target", "test");
-- Untyped string variable
Var := "foo";
-- Untyped string list variable
Var2 := ("-gnato", "-gnata");
...

end Build;

672 / 797

Project Properties
Introduction

Typed Versus Untyped Variables

Typed variables have only listed values possible
Case sensitive, unlike Ada

Typed variables are declared once per scope
Once at project or package level
Essentially read-only constants

Useful for external inputs
Untyped variables may be "declared" many times

No previous declaration required

673 / 797

Project Properties
Introduction

Property Values

Strings

Lists of strings

("-v", "-gnatv")

Associative arrays
Map input string to either single string or list of strings

for <name> (<string-index>) use <list-of_strings>;

for Switches ("Ada") use ("-gnaty", "-gnatwa");

674 / 797

Project Properties
Directories

Directories

675 / 797

Project Properties
Directories

Source Directories

One or more in any project file

Default is same directory as project file

Can specify additional / other directories

for Source_Dirs use ("src/mains", "src/drivers", "foo");

Can specify an entire tree of directories

for Source_Dirs use ("src/**");

src directory and every subdirectory underneath

676 / 797

Project Properties
Directories

Source Files

Must be at least one immediate source file
Immediate

Resides in project source directories OR
Specified through source-related attribute

Unless explicitly specified none present

for Source_Files use ();

Can specify source files by name

for Source_Files use ("pack1.ads","pack2.adb");

Can specify an external file containing source names

for Source_List_File use "source_list.txt";

677 / 797

Project Properties
Directories

Object Directory

Specifies location for files generated by compiler (or tools)
Such as .ali files and .o files
For the project's immediate sources
project Release is

for Object_Dir use "release";
...

end Release;
Only one object directory per project

678 / 797

Project Properties
Directories

Executable Directory

Specifies the location for executable image

project Release is
for Exec_Dir use "executables";
...

end Release;

Default is same directory as object files

Only one per project

679 / 797

Project Properties
Project Packages

Project Packages

680 / 797

Project Properties
Project Packages

Packages Correspond to Tools

Packages within project file contain switches (generally) for
specific tools
Allowable names and content defined by vendor

Not by users

Analyzer Binder Builder
Check Clean Compiler
Cross_Reference Documentation Eliminate
Finder Gnatls Gnatstub
IDE Install Linker
Metrics Naming Pretty_Printer
Remote Stack Synchronize

681 / 797

Project Properties
Project Packages

Setting Tool Switches

May be specified to apply by default

package Compiler is
for Default_Switches ("Ada") use ("-gnaty", "-v");

end Compiler;

May be specified on per-unit basis
Associative array "Switches" indexed by unit name

package Builder is
for Switches ("main1.adb") use ("-O2");
for Switches ("main2.adb") use ("-g");

end Builder;

682 / 797

Project Properties
Naming Considerations

Naming Considerations

683 / 797

Project Properties
Naming Considerations

Rationale

Project files assume source files have GNAT naming conventions
Specification <unitname>[-<childunit>].ads

Body <unitname>[-<childunit>].adb
Sometimes you want different conventions

Third-party libraries
Legacy code used different compiler
Changing filenames would make tracking changes harder

684 / 797

Project Properties
Naming Considerations

Source File Naming Schemes

Allow arbitrary naming conventions
Other than GNAT default convention

Specified in a package named Naming
May be applied to all source files in a project
May be applied to specific files in a project

Individual attribute specifications

685 / 797

Project Properties
Naming Considerations

Foreign Default File Naming Example

Sample source file names
Package spec for Utilities in utilities.spec

Package body for Utilities in utilities.body

Package spec for Utilities.Child in utilities.child.spec

Package body for Utilities.Child in utilities.child.body

project Legacy_Code is
...
package Naming is

for Casing use "lowercase";
for Dot_Replacement use ".";
for Spec_Suffix ("Ada") use ".spec";
for Body_Suffix ("Ada") use ".body";

end Naming;
...

end Legacy_Code;
686 / 797

Project Properties
Naming Considerations

GNAT Default File Naming Example

Sample source file names
Package spec for Utilities in utilities.ads
Package body for Utilities in utilities.adb
Package spec for Utilities.Child in utilities-child.ads
Package body for Utilities.Child in utilities-child.adb

project GNAT is
...
package Naming is

for Casing use "lowercase";
for Dot_Replacement use "-";
for Spec_Suffix ("Ada") use ".ads";
for Body_Suffix ("Ada") use ".adb";

end Naming;
...

end GNAT;
687 / 797

Project Properties
Naming Considerations

Individual (Arbitrary) File Naming

Uses associative arrays to specify file names
Index is a string containing the unit name

Case insensitive
Value is a string containing the file name

Case sensitivity depends on host file system

Has distinct attributes for specs and bodies
Syntax: for Spec ("<Ada unit name>") use "<filename>";

for Spec ("MyPack.MyChild") use "MMS1AF32.A";

for Body ("MyPack.MyChild") use "MMS1AF32.B";

688 / 797

Project Properties
Variables for Conditional Processing

Variables for Conditional Processing

689 / 797

Project Properties
Variables for Conditional Processing

Two Sample Projects for Different Switch Settings
project Debug is

for Object_Dir use "debug";
package Builder is

for Default_Switches ("Ada")
use ("-g");

end Builder;
package Compiler is

for Default_Switches ("Ada")
use ("-fstack-check",

"-gnata",
"-gnato");

end Compiler;
end Debug;

project Release is
for Object_Dir use "release";
package Compiler is

for Default_Switches ("Ada")
use ("-O2");

end Compiler;
end Release;

690 / 797

Project Properties
Variables for Conditional Processing

External and Conditional References

Allow project file content to depend on value of environment
variables and command-line arguments

Reference to external values is by function

external (<name> [, default])

Returns value of name as supplied via
Command line
Environment variable
If not specified, uses default or else ""

Command line switch
Syntax: gprbuild -P... -Xname=value ...

gprbuild -P common/build.gpr -Xtarget=test common/main.adb

Note
Command line values override environment variables

691 / 797

Project Properties
Variables for Conditional Processing

External/Conditional Reference Example
project Build is

type Targets is ("release", "test");
Target : Targets := external("target", "test");
case Target is -- project attributes

when "release" =>
for Object_Dir use "release";
for Exec_Dir use ".";

when "test" =>
for Object_Dir use "debug";

end case;
package Compiler is

case Target is
when "release" =>

for Default_Switches ("Ada") use ("-O2");
when "test" =>

for Default_Switches ("Ada") use
("-g", "-fstack-check", "-gnata", "-gnato");

end case;
end Compiler;
...

end Build;
692 / 797

Project Properties
Variables for Conditional Processing

Scenario Controlling Source File Selection
project Demo is

...
type Displays is ("Win32", "ANSI");
Output : Displays := external ("OUTPUT", "Win32");
...
package Naming is

case Output is
when "Win32" =>

for Body ("Console") use "console_win32.adb";
when "ANSI" =>

for Body ("Console") use "console_ansi.adb";
end case;

end Naming;
end Demo;

Source Files

console.ads console_win32.adb console_ansi.adb

package Console is package body Console is package body Console is
...
end Console; end Console; end Console;

693 / 797

Project Properties
Lab

Lab

694 / 797

Project Properties
Lab

Project Properties Lab

Create new project file in an empty directory
Specify source and output directories

Use source files from the gpr_2_project_properties directory
(under source)
Specify where object files and executable should be located

Build and run executable (pass command line argument of 200)
Note location of object files and executable
Execution should get Constraint_Error

695 / 797

Project Properties
Lab

Directories Solution

Project File

project Lab is
for Source_Dirs use ("source/030_project_properties");
for Main use ("main.adb");
for Object_Dir use "obj";
for Exec_Dir use "exec";

end Lab;

Executable Output

...
41 267914296
42 433494437
43 701408733
44 1134903170
45 1836311903

raised CONSTRAINT_ERROR : fibonacci.adb:16 overflow check failed
696 / 797

Project Properties
Lab

Project Properties Lab (1/3) - Switches

Modify project file to disable overflow checking
Add the Compiler package
Insert Default_Switches attribute for Ada in Compiler package
Set switch -gnato0 in the attribute

Disable overflow checking
Build and run again

Need to use switch -f on command line to force rebuild
(Changes to GPR file do not automatically force recompile)

No Constraint_Error
But data doesn't look right due to overflow issues

697 / 797

Project Properties
Lab

Switches Solution
Project File

project Lab is
for Source_Dirs use ("source/030_project_properties");
for Main use ("main.adb");

package Compiler is
for Default_Switches ("Ada") use ("-gnato0");

end Compiler;
...

end Lab;

Executable Output

...
43 701408733
44 1134903170
45 1836311903
46 -1323752223
47 512559680
48 -811192543
49 -298632863
50 -1109825406
...

698 / 797

Project Properties
Lab

Project Properties Lab (2/3) - Naming

Modify project file to use naming conventions from a different
compiler

Change source directories to point to naming folder
File naming conventions:

Spec: <unitname>[.child].1.ada
Body: <unitname>[.child].2.ada

Remember to fix executable name

Build and run again
Note: Accumulator uses more bits, so failure condition happens
later

699 / 797

Project Properties
Lab

Naming Solution
Project File

project Lab is
for Source_Dirs use ("source/030_project_properties/naming");

package Naming is
for Casing use "lowercase";
for Dot_Replacement use ".";
for Spec_Suffix ("Ada") use ".1.ada";
for Body_Suffix ("Ada") use ".2.ada";

end Naming;

for Main use ("main.2.ada");
...

end Lab;

Executable Output

...
88 1779979416004714189
89 2880067194370816120
90 4660046610375530309
91 7540113804746346429
92 -6246583658587674878
93 1293530146158671551
94 -4953053512429003327
95 -3659523366270331776
96 -8612576878699335103
...

700 / 797

Project Properties
Lab

Project Properties Lab (3/3) - Conditional

Modify project file to select precision via compiler switch
conditional folder has two more package bodies using different

accumulators
Read a variable from the command line to determine which body to
use

Hint: Naming will need to use a case statement to select
appropriate body

Build and run again
Hint: Name used in external call must be same casing as in
gprbuild command, i.e

external ("FooBar"); means gprbuild -XFooBar...

701 / 797

Project Properties
Lab

Conditional Solution
Project File

project Lab is

for Source_Dirs use ("source/030_project_properties/naming",
"source/030_project_properties/conditional");

type Precision_T is ("unsigned", "float", "default");
Precision : Precision_T := external ("PRECISION", "default");

package Naming is
...

case Precision is
when "unsigned" =>

for Body ("Fibonacci") use "fibonacci.unsigned";
when "float" =>

for Body ("Fibonacci") use "fibonacci.float";
when "default" =>

for Body ("Fibonacci") use "fibonacci.2.ada";
end case;

end Naming;

...
end Lab;

Executable Output

1 1.00000000000000E+00
2 2.00000000000000E+00
3 3.00000000000000E+00
4 5.00000000000000E+00
5 8.00000000000000E+00
6 1.30000000000000E+01
7 2.10000000000000E+01
8 3.40000000000000E+01
9 5.50000000000000E+01
10 8.90000000000000E+01
...

702 / 797

Structuring Your Application

Structuring Your Application

703 / 797

Structuring Your Application
Introduction

Introduction

704 / 797

Structuring Your Application
Introduction

Introduction

Most applications can be broken into pieces
Modules, components, etc - whatever you want to call them

Helpful to have a project file for each component
Or even multiple project files for better organization

705 / 797

Structuring Your Application
Introduction

Dependency

Units of one component typically depend units in other
components

Types packages, utilities, external interfaces, etc
A project can with another project to allow visibility

Ambiguity issues can occur if the same unit appears in multiple
projects

706 / 797

Structuring Your Application
Introduction

Extension

Sometimes we want to replace units for certain builds
Testing might require different package bodies
Different targets might require different values for constants

A project can extend another project
Project inherits properties and units from its parent
Project can create new properties and units to override parent

707 / 797

Structuring Your Application
Building an Application

Building an Application

708 / 797

Structuring Your Application
Building an Application

Importing Projects

Source files of one project may depend on source files of other
projects

Depend in Ada sense (contains with clauses)
Want to localize properties of other projects

Switches etc.
Defined in one place and not repeated elsewhere

Thus dependent projects import other projects to add source files
to search path

709 / 797

Structuring Your Application
Building an Application

Project Import Notation

Similar to Ada's with clauses
But uses strings

with <literal string> {, <literal string>};

String literals are path names of project files
Relative
Absolute

with "/gui/gui.gpr", "../math.gpr";
project MyApp is

...
end MyApp;

710 / 797

Structuring Your Application
Building an Application

GPRbuild search paths

GPR with relative paths are searched

From the current project directory

From the environment variables
Path to a file listing directory paths

GPR_PROJECT_PATH_FILE

List of directories, separated by PATH-like (:, ;) separator
GPR_PROJECT_PATH

From the current toolchain's installation directory
Can be target-specific
Can be runtime-specific
See GPR Tool's User Guide

711 / 797

Structuring Your Application
Building an Application

Importing Projects Example

with GUI, Math;
package body Pack is

...

Source Architecture

/gui /myapp /math

gui.gpr → myapp.gpr ← math.gpr
gui.ads pack.ads math.ads
gui.adb pack.adb math.adb

main.adb

Project File

with "/gui/gui.gpr", "/math/math.gpr";
project MyApp is

...
end MyApp;

712 / 797

Structuring Your Application
Building an Application

Referencing Imported Content

When referencing imported projects, use the Ada dot notation
concept for declarations

Start with the project name

Use the tick (') for attributes

with "foo.gpr";
project P is

package Compiler is
for Default_Switches ("Ada") use

Foo.Compiler'Default_Switches("Ada") & "-gnatwa";
end Compiler;

end P;

Project P uses all the compiler switches in project Foo and adds
-gnatwa

Note
in GPR files, "&" can be used to concatenate string lists
and strings

713 / 797

Structuring Your Application
Building an Application

Renaming

Packages can rename imported packages
Effect is as if the package is declared locally

Much like the Ada language

with "../naming_schemes/rational.gpr";
project Clients is

package Naming renames Rational.Naming;
for Languages use ("Ada");
for Object_Dir use ".";
...

end Clients;

714 / 797

Structuring Your Application
Building an Application

Project Source Code Dependencies
Not unusual for projects to be interdependent

In the Nav project
with Hmi.Controls;
package body Nav.Engine is

Global_Speed : Speed_T := 0.0;
procedure Increase

(Change : Speed_Delta_T) is
begin

Global_Speed := Global_Speed + Change;
Hmi.Controls.Display (Global_Speed);

end Increase;
end Nav.Engine;
In the HMI project
package body Hmi.Controls is

procedure Display
(Speed : Nav.Engine.Speed_T) is

begin
Display_On_Console (Speed);

end Display;
procedure Change

(Speed_Change : Nav.Engine.Speed_Delta_T) is
begin

Nav.Engine.Increase (Speed_Change);
end Change;

end Hmi.Controls;
715 / 797

Structuring Your Application
Building an Application

Project Dependencies

Project files cannot create a cycle using with

Neither direct (Hmi → Nav → Hmi)
Nor indirect (Hmi → Nav → Monitor → Hmi)

So how do we allow the sources in each project to interact?
limited with
Allows sources to be interdependent, but not the projects

limited with "Hmi.gpr";
project Nav is

package Compiler is
for Switches ("Ada") use

Hmi.Compiler'Switches & "-gnatwa"; -- illegal
end Compiler;

end Nav;
716 / 797

Structuring Your Application
Building an Application

Subsystems

Sets of sources and folders managed together
Represented by project files

Connected by project with clauses or project extensions
Generally one primary project file
Potentially many project files, assuming subsystems composed of
other subsystems

Have at most one objects folder per subsystem
A defining characteristic
Typical, not required

717 / 797

Structuring Your Application
Building an Application

Subsystems Example
with "gui.gpr";
with "utilities.gpr";
with "hardware.gpr";
project Application is

for Main use ("demo");
for Object_Dir use ("objs");
...

end Application;

with "utilities.gpr";
project Gui is

for Object_Dir use ("objs");
...

end Gui;

with "utilities.gpr";
project Hardware is

for Object_Dir use ("objs");
...

end Hardware;

project Utilities is
for Object_Dir use ("objs");
...

end Utilities;

718 / 797

Structuring Your Application
Building an Application

Building Subsystems

One project file given to the builder
Everything necessary will be built, transitively

Build Utilities
Only source specified in utilities.gpr will be built

Build Hardware (or Gui)
Source specified in hardware.gpr (or gui.gpr) will be built
Source specified in utilities.gpr will be built if needed

Build Application
Any source specified in any of the project files will be built as
needed

719 / 797

Structuring Your Application
Extending Projects

Extending Projects

720 / 797

Structuring Your Application
Extending Projects

Extending Projects

Allows using modified versions of source files without changing the
original sources
Based on inheritance of parent project's properties

Source files
Switch settings

Supports localized build decisions and properties
Inherited properties may be overridden with new versions

Hierarchies permitted

721 / 797

Structuring Your Application
Extending Projects

Project Extension

project Child extends "parent.gpr" is

New project Child inherits everything from Parent
Except whatever new source/properties are specified in Child

When compiling project Child
Source files in Child get compiled into its object directory
For source files in Parent that are not overridden in Child

If the source file is compiled into the Parent object directory, that
file is considered compiled
If the source file is not compiled into the Parent object directory,
that file will be compiled into the Child object directory

722 / 797

Structuring Your Application
Extending Projects

Limits on Extending Projects

A project that extends/modifies a project can also import other
projects.
Can't import both a parent and a modified project.

If you import the extension, you get the parent
Can extend only one other project at a time.

723 / 797

Structuring Your Application
Extending Projects

Multiple Versions of Unit Bodies Example

Assume Baseline directory structure:
baseline.gpr contains

filename.ads
filename.adb
application.adb

For testing, you want to
Replace filename.adb with a dummy version
Use test_driver.adb as the main program

724 / 797

Structuring Your Application
Extending Projects

Multiple Versions of Unit Bodies Files

Baseline GPR file might look like:

project Baseline is
for Source_Dirs use ("src");
for Main use ("application");

end Baseline;

Test GPR file might look like:

project Test_Baseline extends "Baseline" is
for Source_Dirs use ("test_code");
for Main use ("test_driver");

end Test_Baseline;

725 / 797

Structuring Your Application
Lab

Lab

726 / 797

Structuring Your Application
Lab

Structuring Your Application Lab

Source is included in folder
gpr_3_structuring_your_application
Very simplistic speed monitor

Reads current distance
Determines amount of time since last read
Calculates speed
Sends message

Four subsystems
Base - types and speed calculator
Sensors - reads distance from some register
Messages - sends message to some memory location
Application - main program

We could build one GPR file and point to all source directories
But as our application grew, this would become harder to maintain

727 / 797

Structuring Your Application
Lab

Assignment Part One

1 Build GPR files for each subsystem

Hint: These subsystems depend on each other, they do not
override source files
As you build each GPR file, run gprbuild -P <gprfile> to
make sure everything works
Main program is in main.adb

2 Run main

This will fail (leading up to Part Two of the assignment)

3 Modify base_types.ads

Just so source code needs to be compiled

4 Rebuild your main program

Even though the modified source file is not directly referenced in
the main GPR file, gprbuild should compile everything it needs

728 / 797

Structuring Your Application
Lab

Assignment Part One - Solution
with "../base/base.gpr";
with "../messages/messages.gpr";
with "../sensors/sensors.gpr";
project Application is

for Source_Dirs use ("src");
for Object_Dir use "obj";
for Main use ("main.adb") & project'Main;

end Application;

with "../base/base.gpr";
project Messages is

for Source_Dirs use ("src");
for Object_Dir use "obj";

end Messages;

with "../base/base.gpr";
project Sensors is

for Source_Dirs use ("src");
for Object_Dir use "obj";

end Sensors;

project Base is
for Source_Dirs use ("src");
for Object_Dir use "obj";

end Base;

729 / 797

Structuring Your Application
Lab

Assignment Part Two

1 Build GPR files to create test stubs for Odometer and Sender

Test bodies exist in the appropriate test subfolders
Create extensions for messages.gpr and sensors.gpr

We want to inherit the package spec, but use the "test" package
bodies

2 Build a GPR file for the main application

Main still works, we just need the GPR file to access our stubs
We could create a new GPR file, or extend the original. Which is
easier?

3 Build and run your main program

730 / 797

Structuring Your Application
Lab

Assignment Part Two - Solution

messages/test directory

project Messages_Test extends "../Messages.gpr" is
for Source_Dirs use (".");

end Messages_Test;

sensors/test directory

project Sensors_Test extends "../sensors.gpr" is
for Source_Dirs use (".");

end Sensors_Test;

test directory

with "../messages/test/messages_test.gpr";
with "../sensors/test/sensors_test.gpr";
project Test extends "../application/application.gpr" is

for Main use ("main.adb") & project'Main;
end Test;

731 / 797

Advanced Capabilities

Advanced Capabilities

732 / 797

Advanced Capabilities
Introduction

Introduction

733 / 797

Advanced Capabilities
Introduction

Other Types of GPR Files

Project files can also be used for
Building libraries
Building systems

Project files can also have children
Similar to Ada packages

734 / 797

Advanced Capabilities
Library Projects

Library Projects

735 / 797

Advanced Capabilities
Library Projects

Libraries

Subsystems packaged in specific way

Represented by project files with specific attributes

Referenced by other project files, as usual
Contents become available automatically, etc.

Library Project

library project Static_Lib is
-- keyword "library" is optional
...

end Static_Lib;

Standard Project referencing library

with "static_lib.gpr";
project Main is

...
end Main;

736 / 797

Advanced Capabilities
Library Projects

Creating Library Projects

Several global attributes are involved/possible

Required attributes

Library_Name Name of library

Library_Dir Where library is installed

Important optional attributes

Library_Kind static, static-pic, dynamic, relocatable (same as
dynamic)

Library_Interface Restrict interface to subset of units

Library_Auto_Init Should autoinit at load (if supported)

Library_Options Extra arguments to pass to linker

Library_GCC Use custom linker
737 / 797

Advanced Capabilities
Library Projects

Supported Library Types

Static Libraries
Code statically linked into client applications
Becomes permanent part of client during build
Each client gets separate, independent copy

Dynamic Libraries
Code dynamically linked at run-time
Not permanent part of application
Code shared among all clients

Stand-Alone Libraries (SAL)
Minimize client recompilations when library internals change
Contain all necessary elaboration code for Ada units within
Can be static or shared

See the GNAT Pro Users Guide for details

738 / 797

Advanced Capabilities
Library Projects

Static Library Project Example

library project Name is
for Source_Dirs use ("src1", "src2");
for Library_Dir use "lib";
for Library_Name use "name";
for Library_Kind use "static";

end Name;

Creates library libname.a on Windows

739 / 797

Advanced Capabilities
Library Projects

Standalone Library Project Example

library project Name is
Version := "1";
for Library_Interface use ("int1", "int1.child");
for Library_Dir use "lib";
for Library_Name use "name";
for Library_Kind use "relocatable";
for Library_Version use "libdummy.so." & Version;

end Name;

Creates library libname.so.1 with a symlink libname.so that
points to it

740 / 797

Advanced Capabilities
Aggregate Projects

Aggregate Projects

741 / 797

Advanced Capabilities
Aggregate Projects

Complex Applications

Many applications have multiple exectuables and/or libraries
Shared source code
Multiple "top-level" project files

Assume project A withs project B and project C
Build of project A will only compile/link whatever is necessary for
project A's executable(s)
Executables in project B and C will need to be generated separately
Running gprbuild on all three projects causes redundant
processing

Determination of files that need to be compiled
Libraries are always built when gprbuild is called

742 / 797

Advanced Capabilities
Aggregate Projects

Aggregate Projects

Represent multiple, related projects
Related especially by common source code

Allow managing options in a centralized way
Compilation optimized for sources common to multiple projects

Doesn't compile more than necessary

743 / 797

Advanced Capabilities
Aggregate Projects

Aggregate Project Example

aggregate project Agg is
-- Projects to be built
for Project_Files use ("A.gpr", "B.gpr", "C.gpr");
-- Directories to search for project files
for Project_Path use ("../dir1", "../dir1/dir2");
-- Scenario variable
for external ("BUILD") use "PRODUCTION";

-- Common build switches
package Builder is

for Global_Compilation_Switches ("Ada")
use ("-O1", "-g");

end Builder;
end Agg;

744 / 797

Advanced Capabilities
Child Projects

Child Projects

745 / 797

Advanced Capabilities
Child Projects

Grouping Projects

Sometimes we want to emphasize project relationships
Similar to parent/child relationship in Ada packages

Child project
Declare child of project same as in Ada:
project Parent.Child ...
No inheritance assumed (unlike Ada)
Behavior of child follows normal project definition rules

746 / 797

Advanced Capabilities
Child Projects

Child Projects
Original project

-- math_proj.gpr
project Math_Proj is

...
end Math_Proj;

Child depends on parent

with "math_proj.gpr";
project Math_Proj.Tests is

...
end Math_Proj.Tests;

Child extends parent

project Math_Proj.High_Performance extends "math_proj.gpr" is
...

end Math_Proj.High_Performance;

Illegal project

project Math_Proj.Test is
...

end Math_Proj.Test;
747 / 797

Summary

Summary

748 / 797

Summary
Conclusion

Conclusion

749 / 797

Summary
Conclusion

GNAT Project Manager Summary

Supports hierarchical, localized build decisions
IDEs provide direct support
GPRbuild allows broad or narrow control over build process
See the GPRbuild and GPR Companion Tools User's Guide for
further functionality and capabilities

Target build processing
Distributed builds
Etc

750 / 797

Day 4 - PM

751 / 797

GNATstub

GNATstub

752 / 797

GNATstub
Introduction

Introduction

753 / 797

GNATstub
Introduction

Body Stub Generator

Creates empty (but compilable) package/subprogram bodies
Can use GNAT Project file

Configuration in package gnatstub
Default behavior is to raise exception if stub is called

It means you did not create a "real" body

754 / 797

GNATstub
Introduction

Why Do You Need Stubs?

Sometimes we want to establish code structure quickly

Start prototyping code architecture first
Worry about implementation details later

Don't want to get caught in compilation details/behavior in early
development

755 / 797

GNATstub
Running GNATstub

Running GNATstub

756 / 797

GNATstub
Running GNATstub

Running GNATstub

gnatstub [switches] filename

where filename can be a package spec or body

Package spec
GNATstub will generate a package body containing "dummy"
bodies for subprograms defined but not completed in the spec

Package body
For any subprogram defined as separate in the package body, a
file will be created containing a body for the subprogram

Note
Need to specify --subunits switch

757 / 797

GNATstub
Running GNATstub

Example Package Spec
Filename example.ads contains

package Example is
procedure Null_Procedure is null;
procedure Needs_A_Stub;
function Expression_Function return Integer is (1);

end Example;

gnatstub example.ads will generate example.adb

pragma Ada_2012;
package body Example is

-- Needs_A_Stub --

procedure Needs_A_Stub is
begin

pragma Compile_Time_Warning
(Standard.True, "Needs_A_Stub unimplemented");

raise Program_Error with "Unimplemented procedure Needs_A_Stub";
end Needs_A_Stub;

end Example;

758 / 797

GNATstub
Running GNATstub

Example Package Body
Filename example.adb contains

package body Example is
procedure Do_Something_Else;
procedure Do_Something is separate;
procedure Do_Something_Else is
begin

Do_Something;
end Do_Something_Else;

end Example;

gnatstub --subunits example.adb will generate
example-do_something.adb

pragma Ada_2012;
separate (Example)
procedure Do_Something is
begin

pragma Compile_Time_Warning (Standard.True, "Do_Something unimplemented");
raise Program_Error with "Unimplemented procedure Do_Something";

end Do_Something;
759 / 797

GNATstub
GNATstub Switches

GNATstub Switches

760 / 797

GNATstub
GNATstub Switches

Controlling Behavior When Called

By default, a stubbed subprogram will raise Program_Error when
called

Procedures use a raise statement

Functions use a raise expression in a return

To prevent warnings about no return in a function

You can disable the exception in procedures
Switch --no-exception

Warning
Functions still need a return statement, so raise
expression is still present

761 / 797

GNATstub
GNATstub Switches

Formatting Comment Blocks

Sometimes you use GNATstub to create a shell for your
implementation

Having the tool populate the shell with comments can be helpful

Comment switches:

--comment-header-sample
Create a file header comment block

--comment-header-spec
Copy file header from spec into body

--header-file=<filename>
Insert the contents of <filename> at the beginning of the
stub body

Default behavior is to add a comment block for each subprogram
Use --no-local-header to disable this

762 / 797

GNATstub
GNATstub Switches

Other Common Switches

files=<filename>

<filename> contains a list of files for which stubs will be generated

--force

Overwrite any existing file (without this, GNATstub will flag as an
error)

--output-dir=<directory>

Put generated files in <directory>

max-line-length=<nnn>

Maximum length of line in generated body. Default is 79, maximum is
32767

763 / 797

GNATstub
Lab

Lab

764 / 797

GNATstub
Lab

GNATstub Lab

We are going to implement a simple math package that does
addition and subtraction

The exectuable takes 3 numbers on the command line - adds the
first two, subtracts the third, and prints the result

Copy the gnatstub lab folder from the course materials location
source folder

Contents of the folder:
default.gpr - project file
main.adb - main program
math.ads - package spec that we want to implement

Note
We use animation - if you don't know the answer, Page
Down should give it to you

765 / 797

GNATstub
Lab

Build the Executable

1 Open a command prompt window and navigate to the directory
containing default.gpr

2 Try to build the exectuable (gprbuild -P default.gpr)
Build fails because Math is not implemented

3 Build a stub for Math
Make sure you copy the file header comment into the stub

gnatstub --comment-header-spec math.ads

766 / 797

GNATstub
Lab

Build the Executable

1 Open a command prompt window and navigate to the directory
containing default.gpr

2 Try to build the exectuable (gprbuild -P default.gpr)
Build fails because Math is not implemented

3 Build a stub for Math
Make sure you copy the file header comment into the stub

gnatstub --comment-header-spec math.ads

766 / 797

GNATstub
Lab

Build the Executable Again

1 Build the executable again
Builds, but you get compile warnings from the stubbed subprograms

2 Run the executable
Remember to add three numbers on the command line

3 Executable should fail with Program_Error in Add_Two_Numbers
Default stub behavior

4 Rebuild the stub without exceptions and run it again

gnatstub -f --comment-header-spec --no-exception math.ads

Exception now raised in Subtract_Two_Numbers

Exceptions always raised for functions in a stub

767 / 797

GNATstub
Lab

Build the Executable Again

1 Build the executable again
Builds, but you get compile warnings from the stubbed subprograms

2 Run the executable
Remember to add three numbers on the command line

3 Executable should fail with Program_Error in Add_Two_Numbers
Default stub behavior

4 Rebuild the stub without exceptions and run it again

gnatstub -f --comment-header-spec --no-exception math.ads

Exception now raised in Subtract_Two_Numbers

Exceptions always raised for functions in a stub

767 / 797

GNATstub
Lab

Implement Math

1 Edit the Math package body to implement the two subprograms
2 Build and run the executable

768 / 797

GNATstub
Lab

Math Package Body
--
-- --
-- MATH --
-- --
-- --
-- Simplistic math package to add or subtract two numbers --
-- --
--

pragma Ada_2012;
package body Math is

-- Add_Two_Numbers --

procedure Add_Two_Numbers
(Result : out Integer; Param_A : Integer; Param_B : Integer)

is
begin

Result := Param_A + Param_B;
end Add_Two_Numbers;

-- Subtract_Two_Numbers --

function Subtract_Two_Numbers
(Param_A : Integer; Param_B : Integer) return Integer

is
begin

return Param_A - Param_B;
end Subtract_Two_Numbers;

end Math;

769 / 797

GNATstub
Summary

Summary

770 / 797

GNATstub
Summary

Improving on GNATstub

Sometimes empty code stubs aren't enough
Not only don't they do anything useful, they actively raise compiler
warnings and run-time exceptions!

"Smart" stubs are useful for testing
Replace code not available for testing
Control/replace external interfaces when testing natively

Read sensors
Write to a console

You can modify the generated stub(s) to implement all this

771 / 797

GNATstub
Summary

Beyond GNATstub

User-created "Smart" stubs are great for testing
But there's a lot of repetition in building the stubs
And maintenance can be difficult

Use GNATtest to create more advanced unit tests
Expands on stubbing capabilities
Adds test driver generation
Adds automation capabilities

For more information, go to GNATtest
(https://www.adacore.com/dynamic-analysis/gnattest)

772 / 797

https://www.adacore.com/dynamic-analysis/gnattest

GNATstack

GNATstack

773 / 797

GNATstack
Introduction

Introduction

774 / 797

GNATstack
Introduction

Determining Maximum Stack Size

GNATstack statically computes maximum stack space
For each application entry point (including tasks)

Static Analysis
Analyzes artifacts of compiler (not run-time execution)
Computes worst-case stack requirements
When no assumptions made, stack size never exceeds analyzed value

775 / 797

GNATstack
Introduction

Outputs

Worst-case stack requirements for each entry point
Entry points can be deduced from source or specified by user

Path leading to each scenario

Visualization of Compiler Graphs (VCG)

File containing complete call tree for application
Contains both local and accumulated stack usage

776 / 797

GNATstack
Introduction

Optional Analysis Outputs

Indirect calls (including dispatching)
Number of indirect calls from any subprogram

External calls
All subprograms reachable from entry point where no stack/call
graph information is available

Unbounded frames
All subprograms reachable from entry point with unbounded stack
requirements
Stack size depends on arguments passed to the subprogram

Cycles
Detect call cycles in the call graph
Represent potential recursion for possibly unbounded stack
consumption

777 / 797

GNATstack
Running GNATstack

Running GNATstack

778 / 797

GNATstack
Running GNATstack

Example Subprogram
1 procedure Main_Unit is
2 type Data_Type is array (1 .. 5) of Integer;
3

4 function Inverse (Input : Data_Type) return Data_Type is
5 Result : Data_Type;
6 begin
7 for Index in Data_Type'Range loop
8 Result (Index) := Input (Data_Type'Last -
9 (Index - Data_Type'First));

10 end loop;
11

12 return Result;
13 end Inverse;
14

15 Data : Data_Type := (1, 2, 3, 4, 5);
16 Result : Data_Type;
17 begin
18 Result := Inverse (Data);
19 end Main_Unit;

779 / 797

GNATstack
Running GNATstack

Getting Started with GNATstack

Two parts of performing stack analysis

1 Generation of stack consumption and call-graph information

gprbuild --RTS=light main_unit.adb -cargs -fcallgraph-info=su

We use the light runtime to avoid including things like the
secondary stack

2 Analysis and report generation

gnatstack *.ci

Which generates the following report:
Worst case analysis is *not* accurate because of external calls. Use -Wa for details.

Accumulated stack usage information for entry points

main : total 224 bytes
+-> main
+-> main_unit
+-> main_unit.inverse

Note that the actual stack usage can depend on things like runtime,
operating system, and compiler version.

780 / 797

GNATstack
GNATstack Switches

GNATstack Switches

781 / 797

GNATstack
GNATstack Switches

Execution-Related Switches

-e main1[,main2[,...] → Use list of subprograms as entry points

-a → Use all subprograms as entry points

-f filename → Store callgraph in filename

If not specified, stored in graph.vcg

-P project → Use GPR file project to find *.ci files

782 / 797

GNATstack
GNATstack Switches

Commonly Used Switches

-v → verbose

Show source location for subprogam

-o={a,s} → order for displaying call graphs

a sort alphabetically
s sort by stack usage (default)

-t={i,d,a} - print target for indirect/dispatching calls

i for indirect calls only
d for dispatching calls only
a for both indirect and dispatching calls

783 / 797

GNATstack
Lab

Lab

784 / 797

GNATstack
Lab

GNATstack Lab

We are going to perform stack analysis on some source code
examples

Although this is called a lab, it's more like a walk-through!

Copy the gnatstack lab folder from the course materials
location source folder

Contents of the folder:
simple - folder containing a simple main procedure
complicated - folder containing multiple main procedures and

some other packages

Note
We use animation - if you don't know the answer, Page
Down should give it to you

785 / 797

GNATstack
Lab

Getting Familiar with GNATstack

1 Open a command prompt window and navigate into the folder
simple

2 Build the executable main_unit, making sure to generate
call-graph information

Don't forget to use the light-tasking runtime (switch
--RTS=light)

gprbuild --RTS=light main_unit.adb -cargs -fcallgraph-info=su

3 Perform the stack analysis

gnatstack *.ci

main : total 224 bytes
+-> main
+-> main_unit
+-> main_unit.inverse

The numbers may be different, but the calls should match

786 / 797

GNATstack
Lab

Getting Familiar with GNATstack

1 Open a command prompt window and navigate into the folder
simple

2 Build the executable main_unit, making sure to generate
call-graph information

Don't forget to use the light-tasking runtime (switch
--RTS=light)

gprbuild --RTS=light main_unit.adb -cargs -fcallgraph-info=su

3 Perform the stack analysis

gnatstack *.ci

main : total 224 bytes
+-> main
+-> main_unit
+-> main_unit.inverse

The numbers may be different, but the calls should match

786 / 797

GNATstack
Lab

Getting Familiar with GNATstack

1 Open a command prompt window and navigate into the folder
simple

2 Build the executable main_unit, making sure to generate
call-graph information

Don't forget to use the light-tasking runtime (switch
--RTS=light)

gprbuild --RTS=light main_unit.adb -cargs -fcallgraph-info=su

3 Perform the stack analysis

gnatstack *.ci

main : total 224 bytes
+-> main
+-> main_unit
+-> main_unit.inverse

The numbers may be different, but the calls should match
786 / 797

GNATstack
Lab

Adding Source Information

To see where the total number of bytes comes from, run the analysis in
verbose mode

gnatstack -v *.ci

787 / 797

GNATstack
Lab

Adding Source Information

To see where the total number of bytes comes from, run the analysis in
verbose mode

gnatstack -v *.ci

787 / 797

GNATstack
Lab

Verbose Mode Output

Verbose mode also shows full path to the source
+-> main at main:b__main_unit.adb:20:4 : 64 bytes
+-> main_unit at Main_Unit:L:\\main_unit.adb:1:1,

ada_main_program:b__main_unit.adb:17:14 : 96 bytes
+-> main_unit.inverse at Inverse:L:\\main_unit.adb:4:4 : 64 bytes

788 / 797

GNATstack
Lab

Working with Multiple Mains

1 Open a command prompt window and navigate into the folder
complicated

2 Examine the GNAT Project file and notice the following:
The -fcallgraph-info=su switch is specified in the Compiler
package

All main subprograms are specified using for Main

Otherwise gprbuild does not know what executables to build

The runtime is specified using for Runtime

3 Build all the executables using the included default.gpr

gprbuild -P default.gpr

789 / 797

GNATstack
Lab

Recursive Calls (Cycles)
procedure Odd (Number : in out Integer) is
begin

Number := Number - 1;
if Number > 0 then

Cycles (Number);
end if;

end Odd;

procedure Even (Number : in out Integer) is
begin

Number := Number - 2;
if Number > 0 then

Cycles (Number);
end if;

end Even;

procedure Cycles (Number : in out Integer) is
Half : constant Integer := Number / 2;

begin
if Half * 2 = Number then

Even (Number);
else

Odd (Number);
end if;

end Cycles;

790 / 797

GNATstack
Lab

Investigating Cycles
1 Perform the stack analysis for Cycles_Main

gnatstack -e cycles_main *.ci

Worst case analysis is *not* accurate because of cycles, external calls. Use -Wa for details.

Accumulated stack usage information for entry points

cycles_main : total 176+? bytes
+-> cycles_main
+-> cycles_example.cycles *
+-> cycles_example.odd *
+-> <__gnat_last_chance_handler> *

2 Notice the warning indicating to use -Wa for details - try that.

gnatstack -Wa -e cycles_main *.ci

Notice the added information

List of reachable cycles:

<c1> cycles_example.cycles
+-> cycles_example.cycles
+-> cycles_example.even
+-> cycles_example.cycles

<c2> cycles_example.cycles
+-> cycles_example.cycles
+-> cycles_example.odd
+-> cycles_example.cycles

791 / 797

GNATstack
Lab

Investigating Cycles
1 Perform the stack analysis for Cycles_Main

gnatstack -e cycles_main *.ci

Worst case analysis is *not* accurate because of cycles, external calls. Use -Wa for details.

Accumulated stack usage information for entry points

cycles_main : total 176+? bytes
+-> cycles_main
+-> cycles_example.cycles *
+-> cycles_example.odd *
+-> <__gnat_last_chance_handler> *

2 Notice the warning indicating to use -Wa for details - try that.

gnatstack -Wa -e cycles_main *.ci

Notice the added information

List of reachable cycles:

<c1> cycles_example.cycles
+-> cycles_example.cycles
+-> cycles_example.even
+-> cycles_example.cycles

<c2> cycles_example.cycles
+-> cycles_example.cycles
+-> cycles_example.odd
+-> cycles_example.cycles

791 / 797

GNATstack
Lab

Investigating Cycles
1 Perform the stack analysis for Cycles_Main

gnatstack -e cycles_main *.ci

Worst case analysis is *not* accurate because of cycles, external calls. Use -Wa for details.

Accumulated stack usage information for entry points

cycles_main : total 176+? bytes
+-> cycles_main
+-> cycles_example.cycles *
+-> cycles_example.odd *
+-> <__gnat_last_chance_handler> *

2 Notice the warning indicating to use -Wa for details - try that.

gnatstack -Wa -e cycles_main *.ci

Notice the added information

List of reachable cycles:

<c1> cycles_example.cycles
+-> cycles_example.cycles
+-> cycles_example.even
+-> cycles_example.cycles

<c2> cycles_example.cycles
+-> cycles_example.cycles
+-> cycles_example.odd
+-> cycles_example.cycles

791 / 797

GNATstack
Lab

Subprogram Pointers (Indirect Calls)
type Subprogram_Access_T is access procedure

(A, B : Integer;
C : out Boolean);

procedure Procedure_One
(A, B : Integer;
C : out Boolean) is

begin
C := A > B;

end Procedure_One;

procedure Procedure_Two
(A, B : Integer;
C : out Boolean) is

begin
C := A < B;

end Procedure_Two;

Calls : array (Boolean) of Subprogram_Access_T :=
(Procedure_One'Access,
Procedure_Two'Access);

procedure Test (Flag : in out Boolean) is
begin

Calls (Flag).all (1, 2, Flag);
end Test;

792 / 797

GNATstack
Lab

Investigating Indirect Calls
1 Perform the stack analysis for Indirect_Main

gnatstack -e indirect_main *.ci

Worst case analysis is not accurate because of external calls, indirect calls. Use -Wa for details.

Accumulated stack usage information for entry points

indirect_main : total 112+? bytes
+-> indirect_main
+-> indirect_example.test
+-> indirect call *

2 Notice the warning indicating to use -Wa for details - try that.

gnatstack -Wa -e indirect_main *.ci

Notice the added information

List of reachable external subprograms:

<__gnat_last_chance_handler>

List of reachable and unresolved indirect (including dispatching) calls:

1 indirect call in: indirect_example.test
at L:\indirect_example.adb:26

793 / 797

GNATstack
Lab

Investigating Indirect Calls
1 Perform the stack analysis for Indirect_Main

gnatstack -e indirect_main *.ci

Worst case analysis is not accurate because of external calls, indirect calls. Use -Wa for details.

Accumulated stack usage information for entry points

indirect_main : total 112+? bytes
+-> indirect_main
+-> indirect_example.test
+-> indirect call *

2 Notice the warning indicating to use -Wa for details - try that.

gnatstack -Wa -e indirect_main *.ci

Notice the added information

List of reachable external subprograms:

<__gnat_last_chance_handler>

List of reachable and unresolved indirect (including dispatching) calls:

1 indirect call in: indirect_example.test
at L:\indirect_example.adb:26

793 / 797

GNATstack
Lab

Investigating Indirect Calls
1 Perform the stack analysis for Indirect_Main

gnatstack -e indirect_main *.ci

Worst case analysis is not accurate because of external calls, indirect calls. Use -Wa for details.

Accumulated stack usage information for entry points

indirect_main : total 112+? bytes
+-> indirect_main
+-> indirect_example.test
+-> indirect call *

2 Notice the warning indicating to use -Wa for details - try that.

gnatstack -Wa -e indirect_main *.ci

Notice the added information

List of reachable external subprograms:

<__gnat_last_chance_handler>

List of reachable and unresolved indirect (including dispatching) calls:

1 indirect call in: indirect_example.test
at L:\indirect_example.adb:26

793 / 797

GNATstack
Lab

Using Other Switches

If you have time, experiment with some other switches

Show information for multiple main programs

gnatstack -e indirect_main,cycles_main *.ci

Show target for dispatching calls

gnatstack -td -e dispatching_main *.ci

794 / 797

GNATstack
Lab

Using Other Switches

If you have time, experiment with some other switches

Show information for multiple main programs

gnatstack -e indirect_main,cycles_main *.ci

Show target for dispatching calls

gnatstack -td -e dispatching_main *.ci

794 / 797

GNATstack
Lab

Using Other Switches

If you have time, experiment with some other switches

Show information for multiple main programs

gnatstack -e indirect_main,cycles_main *.ci

Show target for dispatching calls

gnatstack -td -e dispatching_main *.ci

794 / 797

GNATstack
Summary

Summary

795 / 797

GNATstack
Summary

Improving on GNATstack

When static analysis doesn't have enough information, user can
provide via switches

-c <size> - use size number of bytes for cycle entry
-d <size> - use size number of bytes for dynamic (unbounded)

calls
-u <size> - use size number of bytes for external (unknown)

calls

Limitations due to call stack begin non-deterministic
Recursive calls - how deep is the recursion?
Indirect calls - subprogram pointers
Dispatching calls - subprogram dispatching

796 / 797

GNATstack
Summary

Beyond GNATstack

GNAT Static Analysis Suite (SAS)

In-depth static analysis tool
Defect and vulnerability analysis
Code metrics
Coding standards verification

797 / 797

	Day 1 - AM
	Introduction
	About AdaCore
	About This Training

	Basic Types
	Modular Types
	Representation Values
	Character Types
	Real Types
	Subtypes - Full Picture

	Record Types
	Introduction
	Components Rules
	Operations
	Aggregates
	Default Values
	Variant Records
	Lab
	Summary

	Day 1 - PM
	Discriminated Records
	Introduction
	Variant Records
	Discriminant Record Array Size Idiom
	Interfacing with C
	Lab
	Summary

	Private Types
	Introduction
	Implementing Abstract Data Types Via Views
	Private Part Construction
	View Operations
	When to Use or Avoid Private Types
	Idioms
	Lab
	Summary

	Limited Types
	Introduction
	Declarations
	Creating Values
	Extended Return Statements
	Combining Limited and Private Views
	Lab
	Summary

	Day 2 - AM
	Advanced Data Hiding
	Type Views
	Incomplete Types
	Private Library Units
	Lab
	Summary

	Access Types In Depth
	Introduction
	Access Types
	Pool-Specific Access Types
	General Access Types
	Accessibility Checks
	Memory Corruption
	Anonymous Access Types
	Memory Management
	Memory Debugging
	Memory Control
	Advanced Access Type Safety
	Lab
	Summary

	Day 2 - PM
	Genericity
	Introduction
	Creating Generics
	Generic Data
	Generic Formal Data
	Generic Completion
	Summary

	Tagged Derivation
	Introduction
	Tagged Derivation
	Extending Tagged Types
	Lab
	Summary

	Day 3 - AM
	Exceptions In-Depth
	Introduction
	Handlers
	Implicitly and Explicitly Raised Exceptions
	Language-Defined Exceptions
	User-Defined Exceptions
	Propagation
	Partial and Nested Handlers
	Exceptions As Objects
	Raise Expressions
	In Practice
	Lab
	Summary

	Interfacing with C
	Introduction
	Import / Export
	Parameter Passing
	Complex Data Types
	Interfaces.C
	Lab
	Summary

	Day 3 - PM
	Tasking
	Introduction
	Tasks
	Protected Objects
	Delays
	Task and Protected Types
	Some Advanced Concepts
	Lab
	Summary

	Controlled Types
	Introduction
	Ada.Finalization
	Example
	Lab
	Summary

	Low Level Programming
	Introduction
	Data Representation
	Address Clauses and Overlays
	Tricks
	Lab
	Summary
	Supplementary Resource: Inline ASM

	Day 4 - AM
	GNAT Project Facility Overview
	Introduction
	Project Files

	Building with GPRbuild
	Introduction
	Command Line
	Lab

	Project Properties
	Introduction
	Directories
	Project Packages
	Naming Considerations
	Variables for Conditional Processing
	Lab

	Structuring Your Application
	Introduction
	Building an Application
	Extending Projects
	Lab

	Advanced Capabilities
	Introduction
	Library Projects
	Aggregate Projects
	Child Projects

	Summary
	Conclusion

	Day 4 - PM
	GNATstub
	Introduction
	Running GNATstub
	GNATstub Switches
	Lab
	Summary

	GNATstack
	Introduction
	Running GNATstack
	GNATstack Switches
	Lab
	Summary

