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Styles

This is a definition
this/is/a.path
code is highlighted
commands are emphasized --like-this
This → Is → An IDE Menu
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Motivating Example

Consider these lines of code from the original release of the
Tokeneer code (demonstrator for the NSA)

if Success and then
(RawDuration * 10 <= Integer(DurationT'Last) and
RawDuration * 10 >= Integer(DurationT'First))

then
Value := DurationT(RawDuration * 10);

else

Can you see the problem?

This error escaped lots of testing and reviews!
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The Verifying Compiler

Could a compiler find the error we just saw?
Formal verification of source code

What if we had a verifying compiler?
Check correctness at compile time
Perform exhaustive checking
Use types, assertions, and other information in the source code as
correctness criteria
Work in combination with other program development and testing
tools

Grand Challenge for computer science [Hoare 2003]
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Formal Verification and Programming Languages

There is a catch...

Our ability to deliver automatic formal verification critically
depends on the language that is being analyzed.

Most languages were not designed with formal verification as a
primary design goal.
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Formal Verification Goals

Ideally we would like static verification to be:
Deep (tells you something useful)
Sound (with no false negatives)
Fast (tells you now)
Precise (with as few false alarms/positives as possible)
Modular (analyzes modules in parallel)
Constructive (works on incomplete programs)

SPARK is designed with these goals in mind. Since the eighties!
But the language and tools have evolved considerably...
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What Is SPARK?

SPARK is
A programming language
A set of formal verification tools
A design approach for high-integrity software

All of the above!
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What Is SPARK?

Programming language - relationship with Ada:
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Course Outline
Introduction to SPARK

Formal Methods and
SPARK
SPARK Language
SPARK Tools

Formal verification in SPARK
Flow Analysis
Proof

Specifications in SPARK
Specification Language
Subprogram Contracts
Type Contracts

Advanced Formal Verification
Advanced Proof
Advanced Flow Analysis

Advanced topics
Pointer Programs
Auto-Active Proof
State Abstraction

SPARK Boundary
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Course Goals

What will you do after the course?
Be comfortable with the fundamentals of SPARK.
Know where to find out more.
Let SPARK work for you on your next project?
What else?
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Introduction

High-Integrity Software

Also known as (safety- or security- or mission-) critical software
Has reliability as the most important requirement

More than cost, time-to-market, etc.
Must be known to be reliable before being deployed

With extremely low failure rates
e.g., 1 in 109 hours (114,080 years)

Testing alone is insufficient and/or infeasible for such rates
Is not necessarily safety-critical (no risk of human loss)

Satellites
Remote exploration vehicles
Financial systems
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Introduction

Developing High-Integrity Software

Software quality obtained by a combination of
Process

Specifications
Reviews
Testing
Others: audits, independence, expertise...

Arguments
System architecture
Use cases
Programming language
Static code analysis
Dynamic code analysis
etc...

Need to comply with a certification regime
Process-based or argument-based
Independently assessed (avionics, railway) or not (automotive)
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Formal Methods

Mathematical techniques applied to the development or
verification of software

Heavyweight formal methods expose the maths to users
Lightweight formal methods hide the maths from users

Industrially usable formal methods
Are applicable to existing development artifacts (models, code,
etc.)
Are automated and integrated in existing processes
Provide value for certification
Explicitly encouraged by some standards

Railway (EN 50128)
Avionics (DO-178C + DO-333 Formal Methods Supplement)
Security (Common Criteria)

20 / 454



Formal Methods and SPARK
Formal Methods

Static Analysis of Programs

Abstract interpretation (AbsInt)
AbsInt analyzes an abstraction of the program

Symbolic execution (SymExe) and bounded model checking
(BMC)

Both analyze possible traces of execution of the program
SymExe explores traces one by one
BMC explores traces all at once

Deductive verification (Proof)
Proof analyzes functions against their specification

Static analysis is a formal method when it is sound
Soundness means no missing alarms

All techniques have different costs and benefits
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Goals of Static Analysis of Programs

Automation is better with AbsInt and SymExe/BMC
Proof incurs the cost of writing specification of functions

Precision is better with SymExe/BMC and Proof
Automatic provers are more powerful than abstract domains
SymExe/BMC explore infinitely many traces

Limit the exploration to a subset of traces

Soundness is better with AbsInt and Proof
Soundness is not missing alarms (aka false negatives )
AbsInt may cause false alarms (aka false positives )
Sound handling of loops and recursion in AbsInt and Proof
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Capabilities of Static Analysis of Programs

Modularity is the ability to analyze a partial program
Most programs are partial

Libraries themselves
Use of external libraries
Program during development

Proof is inherently modular

Speed of the analysis drives usage
Unsound analysis can be much faster than sound one
For sound analysis, modular analysis is faster

Usage depends on capabilities
Fast analysis with no false alarms is better for bug-finding
Modular analysis with no missing alarms is better for
formal verification
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Comparing Techniques on a Simple Code

Consider a simple loop-based procedure

procedure Reset (T : in out Table; A, B : Index) is
begin

for Idx in A .. B loop
T(Idx) := 0;

end loop;
end;

T(Idx) is safe ⇐⇒ Idx in T'Range
As a result of calling Reset:

Array T is initialized between indexes A and B
Array T has value zero between indexes A and B
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Abstract Interpretation

Reset is analyzed in the context of each of its calls
If the values of Table, A, B are precise enough, AbsInt can deduce
that Idx in T'Range
Otherwise, an alarm is emitted (for sound analysis)

Initialization and value of individual array cells is not tracked
The assignment to a cell is a weak update

The abstract value for the whole array now includes value zero
... but is also possibly uninitialized or keeps a previous value

After the call to Reset, the analysis does not know that T is
initialized with value zero between indexes A and B

25 / 454



Formal Methods and SPARK
Formal Methods

Symbolic Execution and Bounded Model Checking

Reset is analyzed in the context of program traces
If the values of A and B are close enough, SymExe/BMC can
analyze all loop iterations and deduce that Idx in T'Range
Otherwise, an alarm is emitted (for sound analysis)

Analysis of loops is limited to few iterations (same for recursion)
The other iterations are ignored or approximated, so the value of T
is lost
After the call to Reset, the analysis does not know that T is
initialized with value zero between indexes A and B
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Deductive Verification

Reset is analyzed in the context of a precondition

Predicate defined by the user which restricts the calling context
Proof checks if the precondition entails Idx in T'Range
Otherwise, an alarm is emitted

Initialization and value of individual array cells is tracked

Analysis of loops is based on user-provided loop invariants

T(A .. Idx)'Initialized and T(A .. Idx) = (A .. Idx => 0)

Code after the call to Reset is analyzed in the context of a
postcondition

T(A .. B)'Initialized and T(A .. B) = (A .. B => 0)

So the analysis now knows that T is initialized with value zero
between indexes A and B
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SPARK Is a Formal Method

Soundness is the most important requirement (no missing alarms)

Analysis is a combination of techniques
Flow analysis is a simple form of modular abstract interpretation
Proof is modular deductive verification

Inside proof, abstract interpretation is used to compute bounds on
arithmetic expressions

Based on type bounds information
e.g if X is of type Natural
Then Integer'Last - X cannot overflow
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SPARK Is a Language Subset

Static analysis is very tied to the programming language
Strong typing simplifies analysis
Some language features improve analysis precision

e.g. first-class arrays with bounds Table'First and Table'Last
Some language features degrade analysis precision

e.g. arbitrary aliasing of pointers, dispatching calls in OOP

SPARK hits the sweet spot for proof
Based on strongly typed feature-rich Ada programming language
Restrictions on Ada features to make proof easier

1 Simplify user's effort for annotating the code
2 Simplify the job of automatic provers

"SPARK" originally stands for "SPADE Ada Ratiocinative Kernel"
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History of SPARK

Vintage SPARK followed Ada revisions
SPARK 83 based on Ada 83
SPARK 95 based on Ada 95
SPARK 2005 based on Ada 2005

Since 2014, SPARK is updated annually
OO programming added in 2015
Concurrency added in 2016
Type invariants added in 2017
Pointers added in 2019
Exceptions added in 2023
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Applying SPARK in Practice

Levels of Software Assurance

Various reasons for using SPARK

Levels of software assurance
1 Stone level - valid SPARK
2 Bronze level - initialization and correct data flow
3 Silver level - absence of run-time errors (AoRTE)
4 Gold level - proof of key integrity properties
5 Platinum level - full functional proof of requirements

Higher levels are more costly to achieve

Higher levels build on lower levels
Project can decide to move to higher level later
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Levels of Software Assurance in Pictures
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Objectives of Using SPARK

Safe coding standard for critical software
Typically achieved at Stone or Bronze levels

Prove absence of run-time errors ( AoRTE )
Achieved at Silver level

Prove correct integration between components
Particular case is correct API usage

Prove functional correctness
Ensure correct behavior of parameterized software
Safe optimization of run-time checks
Address data and control coupling
Ensure portability of programs
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Project Scenarios

Maintenance and evolution of existing Ada software
Requires migration to SPARK of a part of the codebase
Fine-grain control over parts in SPARK or in Ada
Migration guide available

https://www.adacore.com/books/implementation-guidance-spark

Can progressively move to higher assurance levels

New developments in SPARK
Either completely in SPARK
More often interfacing with other code in Ada/C/C++, etc.

36 / 454

https://www.adacore.com/books/implementation-guidance-spark


Formal Methods and SPARK
Quiz

Quiz

37 / 454



Formal Methods and SPARK
Quiz

Quiz - Formal Methods

Which statement is correct?

A. A formal method analyses code.
B. A formal method has no missing alarms.
C. A formal method has no false alarms.
D. Static analysis of programs should be automatic, precise and

sound.

Explanations

A. Formal methods can also apply to requirements, models, data, etc.
B. Correct
C. To achieve soundness, it may be impossible to avoid false alarms.
D. Not all three at the same time.
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Quiz - SPARK

Which statement is correct?

A. SPARK is a recent programming language.
B. SPARK is based on proof.
C. SPARK analysis can be applied to any Ada program.
D. SPARK requires annotating the code with specifications.

Explanations

A. SPARK is a subset of Ada dating back to the 80s.
B. SPARK is also based on flow analysis which is a form of abstract

interpretation.
C. SPARK subset restricts the features of Ada for proof.
D. Correct

39 / 454



Formal Methods and SPARK
Quiz

Quiz - SPARK

Which statement is correct?

A. SPARK is a recent programming language.
B. SPARK is based on proof.
C. SPARK analysis can be applied to any Ada program.
D. SPARK requires annotating the code with specifications.

Explanations

A. SPARK is a subset of Ada dating back to the 80s.
B. SPARK is also based on flow analysis which is a form of abstract

interpretation.
C. SPARK subset restricts the features of Ada for proof.
D. Correct

39 / 454



Formal Methods and SPARK
Quiz

Quiz - SPARK in Practice

Which statement is correct?

A. There are 5 levels of software assurance with SPARK.
B. Proving absence of run-time errors is hard with SPARK.
C. Full functional correctness is impossible to prove with SPARK.
D. SPARK code cannot be mixed with other programming languages.

Explanations

A. Correct
B. AoRTE is a common objective with SPARK because it is simple.
C. Full functional correctness is hard but can be achieved.
D. SPARK code can be interfaced with code in Ada/C/C++, etc.
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Formal Methods and SPARK

Development of large, complex software is difficult
Especially so for high-integrity software

Formal methods can be used industrially
During development and verification
To address objectives of certification
They must be sound (no missing alarm) in general

SPARK is an industrially usable formal method
Based on flow analysis and proof
At various levels of software assurance
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SPARK Language
Introduction

Design Goals for SPARK

Support formal analysis that is
Deep - it tells you something useful
Sound - it has no missing alarms
Precise - it has few false alarms
Fast - it can run as part of development
Modular - it analyzes modules in parallel
Constructive - it works on incomplete programs

Combine tool automation and user interaction
Automate as much as possible
Rely on the user to provide essential code annotations

Combine execution and proof of specifications
Support the largest possible subset of Ada 2022

45 / 454



SPARK Language
Introduction

Excluding Ambiguity

Soundness requires that program semantics are clear
Easiest way is to avoid language ambiguities:

No erroneous behavior from Ada Reference Manual
Cases where error can't be detected by the compiler or at run-time:
e.g. dereference a pointer after it was deallocated

No unspecified features from Ada Reference Manual
Cases where the compiler makes a choice: e.g. order of evaluation
of parameters in a call

Limit implementation defined features from Ada Reference
Manual

Cases where the choice of the compiler is documented: e.g. size of
standard integer types
Analyzer should make the same choices as the compiler

Also facilitates portability across platforms and compilers!
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Introduction

SPARK Reference Manual

Precise definition of the SPARK subset
Builds on the Ada Reference Manual

Follows the same section numbering
Has similar subsections:

Syntax
Name Resolution Rules
Legality Rules
Static Semantics
Dynamic Semantics
Verification Rules (specific to SPARK RM)
Examples

https://docs.adacore.com/live/wave/spark2014/html/spark2014_rm
/packages.html
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Categories of Types in Ada
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Categories of Types in SPARK

SPARK supports all the types in Ada, with some restrictions
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Assertions in SPARK

Assertions in Ada are just Boolean expressions
They can be executed
Thus they can raise runtime errors (to be checked in SPARK)

Low-level assertions

pragma Assert (Idx in T'Range and then T (Idx) = 0);

High-level assertions, aka specifications, aka contracts

function Get (T : Table; Idx : Index) return Elem
with Pre => Idx in T'Range and then T (Idx) = 0;

Much more to come in later courses
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Excluded Ada Features

Backward goto statement
Can create loops, which require a specific treatment in formal
verification

Controlled types
Creates complex control flow with implicit calls

Tasking features: accept statement (aka rendezvous ), requeue
statement, select statement, etc

But features in Ravenscar and Jorvik profiles are supported
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Support for Generics

Only instances of generics are analyzed

Analysis of generics themselves would require:
Extending the SPARK language with new specifications

To name objects manipulated through calls to formal parameters
To add dependency contracts to formal subprogram parameters

More efforts from users to annotate programs

No restrictions regarding use of generics
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Support for OO Programming

Root class and derived class (aka tagged types) must respect the
Liskov Substitution Principle (LSP)

Behavior of overriding subprogram must be a subset of the allowed
behaviors of the overridden subprogram

Overridden subprogram is in root class
Overriding subprogram is in derived class

Overriding subprogram puts less constraints on caller than
overridden one

Precondition must be weaker in overriding subprogram
Overriding subprogram gives more guarantees to caller than
overridden one

Postcondition must be stronger in overriding subprogram
Overriding subprogram cannot access more global variables than
overridden one
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Support for Concurrency

Ravenscar and Jorvik profiles of Ada are supported
Tasks and protected objects must be defined at library level
Tasks can only communicate through synchronized objects

Protected objects
Atomic objects

This ensures absence of data races (aka race conditions)
One task writes an object while another task reads it
Two tasks write the object at the same time

This is also a benefit for programs on a single core!
Concurrency ̸= parallelism
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Main Language Restrictions

Regular functions without side-effects
Thus expressions are also without side-effects
Aspect Side_Effects to signal function with side-effects

Memory ownership policy (like in Rust)
Absence of interferences

No problematic aliasing between variables
Termination of subprograms

Functions must always terminate normally
OO programming must respect Liskov Substitution Principle
Concurrency must support Ravenscar or Jorvik profile
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Functions Without Side-Effects

Side-effects of a function are:
Writing to a global variable
Writing to an out or in out parameter
Reading a volatile variable
Raising an exception
Not terminating

But volatile functions can read a volatile variable
Details discussed in the course on SPARK Boundary

Only functions with side-effects can have side-effects
Signaled with aspect Side_Effects
Restricted to appear only as right-hand side of assignments
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Side-Effects and Ambiguity

If function Fun writes to global variable Var, what is the value of
the expression Fun = Var?

Var may be evaluated before the call to Fun
...or after the call to Fun
Thus leading to an ambiguity

Var : Integer := 0;
function Fun return Integer is
begin

Var := Var + 1
return Var;

end Fun;
pragma Assert (Fun = Var); -- Ambiguous evaluation

Same with Fun writing to an out or in out parameter
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Benefits of Functions Without Side-Effects

Expressions have no side-effects
Unambiguous evaluation of expressions
Simplifies both flow analysis and proof

Specifications and assertions have no side-effects
As specifications and assertions are expressions

SPARK functions are mathematical functions from inputs to a
result

Interpreted as such in proof

60 / 454



SPARK Language
Language Restrictions

Absence of Interferences

Interferences between names A and B when:
A and B designate the same object ( aliasing )
and the code writes to A, then reads B
or the code writes to A and to B

Interferences are caused by passing parameters
Parameter and global variable may designate the same object
Two parameters may designate the same object

Thus no interferences on function calls!
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Interferences and Ambiguity (1/2)

If procedure Proc writes to parameter A then to parameter B,
what is the value of Var after the call Proc (Var, Var)?

if A and B are passed by reference: the value of B
if A and B are passed by copy: the value of A or B, depending on
which one is copied back last
Thus leading to an ambiguity

Var : Integer := 0;
procedure Proc (A, B : out Integer) is
begin

A := 0;
B := 1;

end Proc;
Proc (Var, Var); -- Ambiguous call

Actually, Ada forbids this simple case and GNAT rejects it
But problem remains with Table(Var) instead of Var
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Interferences and Ambiguity (2/2)

If procedure Proc writes to parameter A then reads global variable
Var, what is the value read in a call to Proc (Var)?

if A is passed by reference: the value written to A
if A is passed by copy: the initial value of Var
Thus leading to an ambiguity

type Int is record Value : Integer; end record;
Var : Int := (Value => 0);
procedure Proc (A : out Int) is
begin

A := (Value => 1);
pragma Assert (Var = A); -- Ambiguous

end Proc;
Proc (Var);

Ada cannot forbid and GNAT cannot detect this case
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Benefits of Absence of Interferences

No hidden changes to an object A through another unrelated name
Simplifies both flow analysis and proof

No need for users to add specifications about separation
Between parameters and global variables
Between parameters themselves
Between parts of objects (one could be a part of another)

Program behavior does not depend on parameter-passing
mechanism

This improves portability across platforms and compilers!
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Migrating From Ada to SPARK

Analyzing the Ada code will point to SPARK violations
First goal is to reach Stone level: Valid SPARK
Violation: functions with side-effects

Fix: add aspect Side_Effects to functions, move calls to
assignments

Violation: pointers do not respect ownership
Fix: change types and code to respect ownership

Violation: illegal use of (volatile) variables inside expressions or
functions

Fix: introduce temporaries, mark functions as volatile
Define a SPARK interface for a unit in Ada

Details discussed in the course on SPARK Boundary
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Adoption Guidance Document
Based on adoption experience
Proposes adoption levels
For every level, presents:

Benefits, impact on
process, costs, and
limitations
Setup and tool usage
Messages issued by the
tool
Remediation solutions
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Migrating From C to SPARK

Same recommendations as when migrating from C to Ada
Even more important to use appropriate types

private types as much as possible (e.g. private type for flags with
constants and boolean operator instead of modular type)
enumerations instead of int
ranges on scalar types
non-null access types
type predicates

Special attention on the use of pointers
C uses pointers everywhere
Better to use parameter modes out and in out and array types in
Ada
Choose between different access types in SPARK, with different
semantics

Details discussed in the course on Pointer Programs
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SPARK Language

SPARK was designed for formal analysis
Soundness is key!

No language ambiguities
Hence regular functions without side-effects
Hence absence of interferences

Still, SPARK subset is most of Ada 2022
All categories of types
OO programming with LSP
Concurrency with Ravenscar and Jorvik
Pointer programs with ownership

Recommendations for migration from Ada or C
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Introduction

Identifying SPARK Code

Pragma or aspect SPARK_Mode identifies SPARK code

As a pragma in the global/local configuration pragmas file

As a configuration pragma at the start of a unit
Note: it comes before with clauses

pragma SPARK_Mode (On); -- On is the default
with Lib; use Lib;
package Pack is ...

As an aspect on the unit declaration

package Pack
with SPARK_Mode

is ...

Both unit spec and unit body need a pragma/aspect
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Main Tools for SPARK

GNAT development tools: SPARK is a subset of Ada 2022
Compiler also checks SPARK-specific legality rules

SPARK analysis tools
Flow analysis and proof
File dependencies are different from the compiler

Due to generation of data dependencies
Analysis of unit depends on bodies of with'ed units
...unless all data dependencies are specified

Behavior similar to builder like GPRbuild
Units can be analyzed in parallel on multicore machines
Minimal rework if code and dependencies did not change

IDEs for Ada/SPARK development
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Compiling SPARK Code

GNAT compiler for Ada/SPARK
Checks conformance of source with Ada and SPARK legality rules
Compiles source into executable

Native and cross compilers
Any runtime library: full, embedded, light-tasking, light
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Enabling Assertions at Run-Time

Assertions can be enabled globally with switch -gnata

Assertions can be enabled/disabled locally with pragma
Assertion_Policy

For example to enable preconditions and disable postconditions:

pragma Assertion_Policy (Pre => Check, Post => Ignore);

Pragma can also be used in global/local configuration pragmas file

Failing assertion raises exception Assertion_Failure
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Debugging SPARK Code

GDB debugger for Ada/SPARK
Code should be compiled with -g -O0

Assertions can be debugged too!
Code should be compiled with -gnata
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GNATprove - A Command Line Tool

Invocation syntax: gnatprove -P prj-file [switches]
If project file not given, like GPRbuild:

Takes the project file in the current directory if present
Otherwise generates a basic project file

See all switches with: gnatprove --help
Basic switches such as number of processors to use

Analysis modes with --mode=
Reporting mode with --report=
Warnings mode with --warnings=

Proof level with --level=0/1/2/3/4
Advanced switches for fine-grained control

Prover selection with --prover=
Prover control with --timeout= --steps= --memlimit=
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GNATprove - Project File Usage

Tool package Prove corresponds to GNATprove
Use attribute Proof_Switches to apply tool-defined switches

For all files with value "Ada"
For specific file with its name

project Proj is
package Prove is

for Proof_Switches ("Ada") use ("--level=2");
for Proof_Switches ("file.adb") use ("--level=3");

end Prove;
end Proj;

Use attribute Proof_Dir to specify directory for session files
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Setting the Default SPARK_Mode Value

Set SPARK_Mode in a global/local configuration pragmas file
config.adc

pragma SPARK_Mode (On);

Set the Global_Configuration_Pragmas attribute in the
project file

project Proj is
package Builder is

for Global_Configuration_Pragmas use "config.adc";
end Builder;

end Proj;
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Adapting the Project File for Analysis

If needed, define a project variable to control sources,
compilation switches, etc.

type Modes is ("Compile", "Analyze");
Mode : Modes := External ("MODE", "Compile");
case Mode is

when "Compile" =>
for Source_Dirs use (...);

when "Analyze" =>
for Source_Dirs use ("dir1", "dir2");
for Source_Files use ("file1.ads", "file2.ads");

end case;

Run GNATprove with appropriate value of MODE defined in the
environment or on the command-line

gnatprove -P my_project -XMODE=Analyze
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Structure of GNATprove
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Legality Checking

First step in analysis
GNATprove does only that with switch --mode=check_all
Error messages on violations

Need to fix to go beyond this step
Ex: <expr> cannot depend on variable input <var>
May include fix:
use instead a constant initialized to the expression with variable input

→ apply the suggested fix
May include explain code: [E0007] → launch
gnatprove --explain=E0007 for more information

Includes ownership checking, detailed in course on Pointer
Programs
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SPARK Analysis Tools

Flow Analysis

Flow analysis is a prerequisite to proof
GNATprove does that with switch --mode=flow

This follows legality checking
Corresponds to Examine menus in IDEs
GNATprove applies flow analysis to each subprogram separately

Notion of dependency contracts summarize effects of call
Outputs messages:

Error messages need to be fixed
Check messages need to be reviewed, and either fixed or justified
Warnings can be inspected and silenced
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SPARK Analysis Tools

Proof

Proof is the final step
GNATprove does it all with switch --mode=all (the default)
Corresponds to Prove menus in IDEs
GNATprove applies proof to each subprogram separately

Notion of functional contracts summarize effects of call
Outputs messages:

Check messages need to be reviewed, and either fixed or justified
Warnings can be inspected and silenced

87 / 454



SPARK Tools
SPARK Analysis Tools

Categories of Messages

Error messages start with error:
GNATprove aborts analysis and exits with error status

Check messages start with severity high: , medium: or low:
With switch --checks-as-errors=on , GNATprove exits with
error status

Warnings start with warning:
With switch --warnings=error , GNATprove exits with error
status
Some warnings are guaranteed to be issued

Information messages start with info:
Report proved checks with switch --report=all
Report information about analysis with switch --info
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GNATprove Output for Users
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Analysis Summary File gnatprove.out

Located in gnatprove/ under project object dir
An overview of results for all checks in project
Especially useful when results must be documented
Details in SPARK User's Guide
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IDEs for SPARK

Three Available IDEs Supporting SPARK

GNAT Studio
The AdaCore flagship IDE
Best integration overall

Most interaction capabilities
Specialized display of rich messages
Display of traces and counterexamples

GNATbench for Eclipse
If you are already using Eclipse

Ada/SPARK extension for Visual Studio Code
If you are already using VS Code
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Basic GNAT Studio Look and Feel
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GNATprove SPARK Main Menu

94 / 454



SPARK Tools
IDEs for SPARK

Project Tree Contextual Menu
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Source Code Contextual Menu
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"Basic" Proof Dialog Panel
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Example Analysis Results in GNAT Studio
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IDEs for SPARK

Preference for Selecting Profile
Controlled by SPARK
preference "User profile"

Basic
Advanced

Allow more control and
options

Prover timeout (seconds)
Prover steps (effort)
Etc.
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"Advanced" Proof Dialog Panel
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SPARK Tutorial

Open the SPARK User's Guide
From your SPARK release (under menu Help → SPARK →
SPARK User’s Guide in GNAT Studio)

Or online at https://www.adacore.com/documentation
Go to section 6 about the SPARK Tutorial
Follow intructions to use the development and analysis tools
Discuss these with the instructor
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SPARK Tools

Development tools for SPARK are those for Ada
Analysis tools in GNATprove

Flow analysis
Proof

Project files supports both command-line and IDEs use
Package Prove specific to GNATprove
Possibility to indicate that all code is in SPARK by default

All integrated in multiple IDEs
But GNAT Studio provides the best integration
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Introduction

What Is Flow Analysis?

First static analysis performed by GNATprove
Models the variables used by a subprogram

Global variables
Scope variables (local variables of enclosing scope)
Local variables
Formal parameters

Models how information flows through the statements in the
subprogram

From initial values of variables
To final values of variables

Performs checks and detects violations
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Control Flow Graph (CFG)

A representation, using graph notation, of all paths that might
be traversed through a program during its execution [Wikipedia]

function Is_Positive
(X : Integer)
return Boolean

with Post =>
Is_Positive'Result = (X > 0)

is
begin

if X > 0 then
return True;

else
return False;

end if;
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Program Dependence Graph (PDG)

Extension of the CFG with information on data flows
Control Dependence Graph

Compute post-dominators nodes: a node z is said to post-dominate
a node n if all paths to the exit node of the graph starting at n
must go through z

Data Dependence Graph
Compute def-use chains rooted at variable definitions

Transitive Dependence Graph
Compute how outputs of a call depend on its inputs

Flow analysis checks are translated into queries on the PDG
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Uncontrolled Data Visibility Problem

Effects of changes are potentially pervasive so one must
understand everything before changing anything
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Data Dependency Contracts

Introduced by aspect Global

Optional, but must be complete if specified

Optional mode can be Input (default), Output, In_Out or
Proof_In

procedure Proc
with

Global => (Input => X,
Output => (Y, Z),
In_Out => V,
Proof_In => W);

Proof_In used for inputs only referenced in assertions

Global => null used to state that no global variable is
read/written

Functions can have only Input and Proof_In global variables
Remember: no side-effects in functions!
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Data Initialization Policy

Subprogram inputs are input parameters and globals
parameters of mode in and in out
global variables of mode Input and In_Out

Subprogram outputs are output parameters and globals
parameters of mode out and in out
global variables of mode Output and In_Out

Inputs should be completely initialized before a call
Outputs should be completely initialized after a call
Stricter policy than in Ada

Allows modular analysis of initialization
Relaxed initialization will be seen in course on Advanced Proof
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Stricter Parameter Modes

Initial Read - Initial value read

Partial Write - Object partially written: either part of the object
written, or object written only on some paths, or both

Full Write - Object fully written on all paths

Initial Read Partial Write Full Write Parameter Mode
✓ in
✓ ✓ in out
✓ ✓ in out

✓ in out
✓ out

Similar rules for modes of global variables
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Violations of the Data Initialization Policy
Parameter only partially
written should be of mode
in out

procedure Cond_Init
(X : out T;
-- Incorrect
Cond : Boolean)

is
begin

if Cond then
X := ..;

end if;
end Cond_Init;

Global variable only partially
written should be of mode
In_Out

X : T;
procedure Cond_Init

(Cond : Boolean)
with

Global => (Output => X)
-- Incorrect

is
begin

if Cond then
X := ..;

end if;
end Cond_Init;

115 / 454



Flow Analysis
Flow Analysis

Generation of Data Dependency Contracts

GNATprove computes a correct approximation
Based on the implementation
Using either specified or generated contracts for calls
More precise generation for SPARK code than for Ada code

Generated contract may be imprecise
Output may be computed as both input and output

Because it is not known if the initial value is read
Because it is not known if the object is fully written on all paths

Precision can be recovered by adding a user contract
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Bronze Level

Check that each object read has been initialized

Check that code respects data dependency contracts

procedure Swap (X, Y : in out Integer)
with

Global => null; -- Wrong

procedure Swap (X, Y : in out Integer) is
begin

Temp := X;
X := Y;
Y := Temp;

end Swap;

Errors for most serious issues, need fixing for proof

Warn on unused variables, ineffective statements
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Flow Warnings

Ineffective statement = statement without effects
Dead code
Or statement does not contribute to an output
Or effect of statement is hidden from GNATprove

Warnings can be suppressed with pragma Warnings

pragma Warnings (Off, "statement has no effect",
Reason => "debug");

Debug_Print (X);
pragma Warnings (On, "statement has no effect");

Optional first pragma argument GNATprove indicates it is specific
to GNATprove
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Analysis of Value-Dependent Flows

Flow analysis depends only on control flow, not on values

Flow analysis is imprecise on value-dependent flows

procedure Absolute_Value
(X : Integer;
R : out Natural) -- Initialization check fails

is
begin

if X < 0 then
R := -X;

end if;
if X >= 0 then

R := X;
end if;

end Absolute_Value;

Use control flow instead: use if-then-else above
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Analysis of Array Initialization (1/2)

Array indexes are values

Flow analysis does not depend on values

Flow analysis treats array assignment as a partial write
When assigning to an array index
When assigning to an array slice

type T is array (1 .. 10) of Boolean;

-- Initialization check fails
procedure Init_Array (A : out T) is
begin

A (1) := True;
A (2 .. 10) := (others => False);

end Init_Array;

No such imprecision for record components
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Analysis of Array Initialization (2/2)

Use array aggregates when possible

type T is array (1 .. 10) of Boolean;

procedure Init_Array (A : out T) is -- Initialization check proved
begin

A := (1 => True, 2 .. 10 => False);
end Init_Array;

Do not please the tool! A is not in out here!
Otherwise, caller is forced to initialize A

Some built-in heuristics recognize an initializing loop

procedure Init_Array (A : out T) is -- Initialization check proved
begin

for J in A'Range loop
A (J) := False;

end loop;
end Init_Array;
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Dealing with False Alarms

Check messages can be justified with pragma Annotate

procedure Init_Array
(A : out T) -- Initialization check justified

is
pragma Annotate (GNATprove, False_Positive,

"""A"" might not be initialized",
"value-dependent init");

Justification inserted immediately after the check message location

Relaxed initialization will be seen in course on Advanced Proof
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Flow Analysis Lab

Find the 050_flow_analysis sub-directory in source

You can copy it locally, or work with it in-place

In that directory, open the project lab.gpr in GNAT Studio

Or, on the command-line, do gnatstudio -P lab.gpr

Unfold the source code directory (.) in the project pane

125 / 454



Flow Analysis
Lab

Aliasing and Initialization

Find and open the files basics.ads and basics.adb in
GNAT Studio

Study the code and see if you can predict what's wrong.
These examples illustrate the basic forms of flow analysis in SPARK.

Use SPARK → Examine File... to analyse the body of package
Basics.

Click on the "Locations" tab to see the messages organised by unit.

Make sure you understand the check messages that GNATprove
produces.

Discuss these with the course instructor.

Either change the code or justify the message with pragma
Annotate.

The objective is to get no messages when running GNATprove.
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Data Dependencies

Run flow analysis. Right-click in the code to display the contextual
menu. Display the data dependencies generated by GNATprove
with the contextual menu SPARK → Globals →
Show generated Global contracts .

Study the generated contracts and make sure you understand them.
Add a null data dependencies contracts with aspect
Global => null to all subprograms.
Run flow analysis. Make sure you understand the check messages
that GNATprove produces.
Add correct data dependencies contracts with aspect Global to
all subprograms.

The objective is to get no messages when running GNATprove.
Rerun GNATprove with checkbox Report check proved
selected.

Review the info messages and make sure you understand them.
Modify the code or contracts and check that GNATprove
detects mismatches between them. Make sure you understand the
check messages that GNATprove produces.
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Flow Analysis

Flow analysis builds a Program Dependence Graph
Flow analysis detects:

Interferences between parameters and global variables
Read of uninitialized variable
Violation of data dependency contracts (Global)

Flow analysis allows to reach Bronze level
Flow analysis is imprecise

On value-dependent flows
On array assignment to index/slice
During generation of data dependency contracts
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Introduction

What Is Proof?

Second static analysis performed by GNATprove
Depends on successful flow analysis

Models the computation in a subprogram

Models assertions in a subprogram

Performs checks and detects violations
Generates logical formulas

aka Verification Conditions (VC)
aka Proof Obligations (PO)

Automatic provers check that the VC is valid (always true)
If not, a check message is emitted
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Hoare Triples

Hoare triples (1969) used to reason about program correctness
With pre- and postconditions

Syntax: {P} S {Q}

S is a program
P and Q are predicates
P is the precondition
Q is the postcondition

Meaning of {P} S {Q} triple:
If we start in a state where P is true and execute S, then S will
terminate in a state where Q is true.
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Quiz - Hoare Triples

Which one of these is invalid?

A. { X >= 3 } Y := X – 1 { Y >= 0 }
B. { X >= 3 } Y := X – 1 { Y = X – 1 }
C. { False } Y := X – 1 { Y = X }
D. { X >= 3 } Y := X – 1 { Y >= 3 }
E. { X >= 3 } Y := X – 1 { True }

Explanations

A. Y >= 2 entails Y >= 0
B. This is true independent of the precondition.
C. This is true independent of the postcondition.
D. Invalid: Y >= 2 does not entail Y >= 3
E. This is true independent of the precondition.
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VC Generation - Strongest Postcondition

VC are generated using a Strongest Postcondition Calculus
The strongest postcondition Q for a program S and a precondition
P is such that:

{P} S {Q} is a valid Hoare triple
For every valid Hoare triple {P} S {Q'}, Q is stronger than Q', i.e.
Q implies Q'

The strongest postcondition summarizes what is known at any
program point
The strongest postcondition is computed through a predicate
transformer

Information is propagated from the precondition
VCs are generated each time a check is encountered
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Quiz - Strongest Postcondition

Which one of these has a Strongest Postcondition?

A. { X >= 3 } Y := X – 1 { Y >= 0 }
B. { X >= 3 } Y := X – 1 { Y = X – 1 }
C. { X >= 3 } Y := X – 1 { Y >= 2 }
D. { X >= 3 } Y := X – 1 { Y = X – 1 and Y >= 2 }
E. { X >= 3 } Y := X – 1 { Y = X – 1 and X >= 3 }

Explanations

A. Information about X is lost.
B. Information about X is lost.
C. Information about X is lost.
D. Correct
E. Correct (equivalent to answer D)
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Functional Contracts

Precondition introduced by aspect Pre
Boolean expression stating constraint on the caller
Constraint on the value of inputs

Postcondition introduced by aspect Post
Boolean expression stating constraint on the subprogram
Constraint on the value of inputs and outputs

On the first declaration of a subprogram
This can be a spec or a body

Optional, default is True
Precondition: subprogram can be called in any context
Postcondition: subprogram gives no information on its behavior

Special attributes in postconditions
X'Old denotes the input value of X
F'Result denotes the result of function F
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Silver/Gold/Platinum Levels

Check absence of runtime errors (AoRTE)

Check that assertions are always true

Check that code respects functional contracts

procedure Swap (X, Y : in out Integer)
with

Post => X = Y'Old and Y = X'Old; -- Wrong

procedure Swap (X, Y : in out Integer) is
begin

Temp := Y;
X := Y;
Y := Temp;

end Swap;

Warn on dead code with switch --proof-warnings

More powerful than the detection by flow analysis
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Run-Time Errors Are Pervasive
A simple assignment
statement
A (I + J) := P / Q;
Which are the possible
run-time errors for this
example?

I+J might overflow the base
type of the index range's
subtype
I+J might be outside the
index range's subtype
P/Q might overflow the base
type of the component type
P/Q might be outside the
component subtype
Q might be zero
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Categories of Run-Time Errors

Divide by zero
Arithmetic operations: division, mod, rem

Index check
Read/write access in an array

Overflow check
Most arithmetic operations
Checking that result is within bounds of the machine integer or float

Range check
Type conversion, type qualification, assignment
Checking that the value satisfies range constraint of type

Discriminant check
Read/write access in a discriminated record

Length check
Assignment of an array or string

Checks on pointer programs - Details in the course on Pointer
Programs
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Quiz - Special Cases of Run-Time Errors
Consider the following declarations:

type Table is array (Natural range <>) of Integer;
type Rec (Disc : Boolean) is record ...
T : Table := ...;
R : Rec := ...;
X : Integer;

Which of the following cannot cause a runtime error:

A. X := T (T'First)
B. X := X / (-1);
C. X := abs X;
D. X := T'Length;
E. R := (Disc => True, ...);

Explanations: all of then can cause a runtime error!

A. Index check fails if T is empty.
B. Overflow check fails if X = Integer'First
C. Overflow check fails if X = Integer'First
D. Range check fails if T'Range is Natural
E. Discriminant check fails if R.Disc /= True

142 / 454



Proof
Proof

Quiz - Special Cases of Run-Time Errors
Consider the following declarations:

type Table is array (Natural range <>) of Integer;
type Rec (Disc : Boolean) is record ...
T : Table := ...;
R : Rec := ...;
X : Integer;

Which of the following cannot cause a runtime error:

A. X := T (T'First)
B. X := X / (-1);
C. X := abs X;
D. X := T'Length;
E. R := (Disc => True, ...);

Explanations: all of then can cause a runtime error!

A. Index check fails if T is empty.
B. Overflow check fails if X = Integer'First
C. Overflow check fails if X = Integer'First
D. Range check fails if T'Range is Natural
E. Discriminant check fails if R.Disc /= True

142 / 454



Proof
Proof

Categories of Assertions

Pragma Assert and similar (Assert_And_Cut, Assume)
AoRTE is also proved for its expression

Precondition on call
AoRTE is also proved for any calling context
This may require guarding the precondition

procedure Update (T : in out Table; X : Index; V : Value)
with Pre => T (X) /= V; -- Index check might fail
with Pre => X in T'Range and T (X) /= V; -- Same
with Pre => X in T'Range and then T (X) /= V; -- OK

Postcondition on subprogram
AoRTE is proved in the context of the subprogram body
Still better to include info for AoRTE in caller

procedure Find (T : Table; X : out Index; V : Value)
with Post => T (X) = V; -- Not known that X in T'Range
with Post => X in T'Range and then T (X) = V; -- OK
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Levels of Software Assurance
Silver level

Goal is absence of runtime errors
Functional contracts added to support that goal

Typically a few preconditions only

procedure Update (T : in out Table; X : Index; V : Value)
with Pre => X in T'Range;

Gold level
Builds on the Silver level
Functional contracts added to express desired properties

procedure Update (T : in out Table; X : Index; V : Value)
with Pre => X in T'Range,

Post => T (X) = V;

Platinum level
Same as Gold level
But the full functional specification is expressed as contracts

procedure Update (T : in out Table; X : Index; V : Value)
with Pre => X in T'Range,

Post => T = (T'Old with delta X => V);
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Preconditions

Default precondition of True may not be sufficient

procedure Increment (X : in out Integer) is
begin

X := X + 1; -- Overflow check might fail
end Increment;

Precondition constrains input context

procedure Increment (X : in out Integer)
with

Pre => X < Integer'Last
begin

X := X + 1; -- Overflow check proved
end Increment;
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Postconditions
Default postcondition of True may not be sufficient

procedure Add2 (X : in out Integer)
with

Pre => X < Integer'Last - 1
is
begin

Increment (X);
Increment (X); -- Precondition might fail

end Add2;

Postcondition constrains output context

procedure Increment (X : in out Integer)
with

Pre => X < Integer'Last,
Post => X = X'Old + 1;

procedure Add2 (X : in out Integer)
with

Pre => X < Integer'Last - 1
is
begin

Increment (X);
Increment (X); -- Precondition proved

end Add2;
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Contextual Analysis of Local Subprograms

Local subprograms without contracts are inlined in proof
Local: declared inside private part or body
Without contracts: no Global, Pre, Post, etc.
Additional conditions, details in the SPARK User's Guide

Benefit: no need to add a contract

Possible cost: proof of caller may become more complex
Add explicit contract like Pre => True to disable inlining of a
subprogram
Use switch --no-inlining to disable this feature globally
Use switch --info to get more information about inlined
subprograms
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Overflow Checking (1/2)

Remember: assertions might fail overflow checks

procedure Saturate_Add (X, Y : Natural; Z : out Natural)
with Post => Z = Integer'Min (X + Y, Natural'Last);

Sometimes property can be expressed to avoid overflows

procedure Saturate_Add (X, Y : Natural; Z : out Natural)
with Post => Z =

(if X <= Natural'Last - Y then X + Y else Natural'Last);

Or a larger integer type can be used for computations

subtype LI is Long_Integer;

procedure Saturate_Add (X, Y : Natural; Z : out Natural)
with Post => LI(Z) =

LI'Min (LI(X) + LI(Y), LI(Natural'Last));
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Overflow Checking (2/2)
Alternative: use a library of big integers

From SPARK Library SPARK.Big_Integers

Or Ada stdlib: Ada.Numerics.Big_Numbers.Big_Integers

function Big (Arg : Integer) return Big_Integer is
(To_Big_Integer (Arg)) with Ghost;

procedure Saturate_Add (X, Y : Natural; Z : out Natural)
with Post => Z =

(if Big (X) + Big (Y) <= Big (Natural'Last)
then X + Y else Natural'Last);

Or use compiler switch -gnato13 to use big integers in all
assertions

Implicit use
Should be used also when compiling assertions
Only applies to arithmetic operations (not Integer'Min)

procedure Saturate_Add (X, Y : Natural; Z : out Natural)
with Post => Z =

(if X + Y <= Natural'Last then X + Y else Natural'Last);
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Functional Specifications

Non-functional specifications cannot be expressed as contracts
Time or space complexity
Timing properties for scheduling
Call sequences

But automatons can be encoded as contracts
Being in a given state is a functional property
Can use normal queries

e.g. contracts on Ada.Text_IO use Is_Open
Or ghost imported functions that cannot be executed

When query cannot be expressed in the code
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Limitations of Automatic Provers - Arithmetic

Provers struggle with non-linear arithmetic
Use of multiplication, division, mod, rem
e.g. monotonicity of division on positive values
Solution: use lemmas from the SPARK Lemma Library

Provers struggle with mixed arithmetic
Mix of signed and modular integers
Mix of integers and floats
Solution: define lemmas for elementary properties
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Limitations of Automatic Provers - Quantifiers

Quantified expressions express property over a collection
Universal: (for all I in T'Range => T(I) /= 0)
Existential: (for some I in T'Range => T(I) /= 0)

Provers struggle with existential
Need to exhibit a witness that satisfies the property
Solution: define a function that computes the witness

Provers cannot reason inductively
Inductive reasoning deduces a property over integer I

If it can be proved for I = 0
If it can be proved for I+1 from the property for I

Solution: lead the prover to this reasoning with a loop
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Limitations of Automatic Provers - Proof Context

Proof context for a check in a subprogram S is:
The contracts of all subprograms called by S
The body of S prior to the check
The logical modeling of all entities used in S

Proof context can become too large
Thousands of lines in the VC
This can make the VC unprovable, or hard to prove

Various solutions to reduce the proof context
Split the body of S in smaller subprograms
Extract properties of interest in lemmas
Use special SPARK features

Pragma Assert_And_Cut
SPARK Library SPARK.Cut_Operations
SPARK annotation Hide_Info

154 / 454



Proof
Limitations of Proof

Cost/Benefit Analysis

Not all provable properties are worth proving!

Difficulty of proof (cost) not correlated with benefit

e.g. proving that a sorting algorithm preserves the components
Trivial by review if the only operation is Swap
May require many annotations for proof

Functional correctness of complex algorithms is costly
Specifications can be larger than code
Annotations typically much larger than code (× 10)
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Dealing with False Alarms

Check messages can be justified with pragma Annotate

pragma Annotate (GNATprove, Category, Pattern, Reason);

GNATprove is a fixed identifier
Category is one of False_Positive or Intentional

False_Positive: check cannot fail
Intentional: check can fail but is not a bug

Pattern is a substring of the check message
Asterisks * match zero or more characters in the message

Reason is a string literal for reviews
Reason is repeated in output with switch --report=all and in
analysis summary file gnatprove.out

Justification inserted immediately after the check message location
Or at the beginning of a scope

Applies to all the scope
Generally used when not suitable after the check message location
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Lab

Proof Lab

Find the 060_proof sub-directory in source

You can copy it locally, or work with it in-place

In that directory, open the project lab.gpr in GNAT Studio

Or, on the command-line, do gnatstudio -P lab.gpr

Unfold the source code directory (.) in the project pane
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Proof
Lab

Absence of Runtime Errors

Find and open the files basics.ads and basics.adb in
GNAT Studio

Study the code and see if you can predict what's wrong.
These examples illustrate the basic forms of proof in SPARK.

Use SPARK → Prove File... to analyse the body of package
Basics.

Click on the "Locations" tab to see the messages organised by unit.

Make sure you understand the check messages that GNATprove
produces.

Discuss these with the course instructor.

Add preconditions to avoid runtime errors in subprograms
Hint: use function Value_Rec for procedures Bump_Rec and
Bump_The_Rec
The objective is to get no messages when running GNATprove.
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Proof
Lab

Functional Specifications (1/2)

Add a postcondition to procedure Swap_The_Table stating that
the values at indexes I and J have been exchanged.

Run proof. Make sure you understand the check messages that
GNATprove produces.

Study the generated contracts and make sure you understand them.

Add a postcondition to procedure Swap_Table stating that the
values at indexes I and J have been exchanged.

Run proof.
The postcondition on procedure Swap_The_Table should be
proved now.
Add a postcondition to procedure Swap to complete the proof.

Add similarly a postcondition to procedures Bump_The_Rec and
Bump_Rec stating that the value of component A or B (depending
on the value of the discriminant) has been incremented

Hint: use again function Value_Rec
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Lab

Functional Specifications (2/2)

Add similarly a postcondition to procedures Init_The_Rec and
Init_Rec stating that the value of component A or B (depending
on the value of the discriminant) is 1.

Add similarly a postcondition to procedures Init_The_Table and
Init_Table stating that the value of the first and last
components are 1 and 2.

Hint: you may have to strengthen the precondition of Init_Table.

Rerun GNATprove with checkbox Report check proved
selected.

Review the info messages and make sure you understand them.

Modify the code or contracts and check that GNATprove
detects mismatches between them. Make sure you understand the
check messages that GNATprove produces.
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Summary

Proof

Proof uses Strongest Postcondition Calculus to generate formulas
Formulas aka Verification Conditions (VC) are sent to provers
Proof detects:

Possible run-time errors
Possible failure of assertions
Violation of functional contracts (Pre and Post)

Proof allows to reach Silver/Gold/Platinum levels
Proof is imprecise

On non-linear arithmetic and mixed arithmetic
On existential quantification and inductive reasoning
When the proof context is too large
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Specification Language
Introduction

Simple Expressions

Simple specifications use simple expressions
Arithmetic operations and comparisons

Membership tests X in A .. B

I in T'Range

is better than:

I >= T'First and I <= T'Last

Conjunctions and disjunctions
Lazy operators and then/or else preferred in general to and/or

But that's not sufficient to easily write all specifications

procedure Init_Table (T : out Table)
with

Pre => T'Length > 0,
Post => -- if T is of length 1 ...

-- else if T is of length 2 ...
-- else for all components ...

166 / 454



Specification Language
Introduction

Richer Expressions

Counterparts of conditional statements
if expressions are the counterpart of if statements
case expressions are the counterpart of case statements

Expressions over a collection (range or array or...)
universally quantified expression for properties over all components
existentially quantified expression for properties over one
component

New forms of aggregates
delta aggregates express the value of an updated composite object
iterated component associations express array aggregates where the
expression depends on the index
container aggregates give the value of a container

Structuring expressions
declare expressions introduce names for local constants
expression functions introduce names for common expressions
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Specification Language
Conditional Expressions

If Expressions

(if Cond then A else B) evaluates A or B depending on the
value of Cond

Note: always in parentheses!
A and B must have the same type
...not always Boolean!
A := (if Cond then 2 else 3);

Frequent use with Boolean type in specifications
(if Cond then Property) is shortcut for
(if Cond then Property else True)
This expresses a logical implication Cond → Property
Also equivalent to not Cond or else Property

Complete form has elsif parts
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Specification Language
Conditional Expressions

Case Expressions

Extension of if expressions to non-Boolean discrete types

(case Day is
when Monday

| Friday
| Sunday => 6,

when Tuesday => 7,
when Thursday

| Saturday => 8,
when Wednesday => 9)

Same choice expressions as in case statements
Can also use others as last alternative
Note: always in parentheses!
Note: cases are separated by commas
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Specification Language
Conditional Expressions

Set Notation

Usable in both case expressions / case statements and in
membership tests

Without set notation:

if X = 'A' or else X = 'B' or else X = 'C' then

With set notation:

if X in 'A' | 'B' | 'C' then

Also allowed for opposite membership test: if X not in ...

171 / 454



Specification Language
Quantified Expressions

Quantified Expressions

172 / 454



Specification Language
Quantified Expressions

Range-based Form

Based on the usual for loop syntax over a range

for J in T'Range loop
T (J) := 0;

end loop;
pragma Assert (for all J in T'Range => T(J) = 0);

Universally quantified expression
(for all J in A .. B => Property)

Express that property holds for all values in the range
True if the range is empty (∀ in logic)
At runtime, executed as a loop which stops at first value where the
property is not satisfied

Existentially quantified expression
(for some J in A .. B => Property)

Express that property holds for at least one value in the range
False if the range is empty (∃ in logic)
At runtime, executed as a loop which stops at first value where the
property is satisfied
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Specification Language
Quantified Expressions

Array-based Form

Based on the for loop syntax over an array

for E of T loop
E := 0;

end loop;
pragma Assert (for all E of T => E = 0);

Counterparts of range-based forms
Universally quantified expression
(for all E of T => Property)
Existentially quantified expression
(for some E of T => Property)

Note: always in parentheses!
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Quantified Expressions

Range-based Vs Array-based Forms

Array-based form only possible if Property does not refer to the
index

Example: array T is sorted

(for all J in T'Range =>
(if J /= T'First then T(J-1) <= T(J)))

or (better for proof to avoid the need for induction)

(for all J in T'Range =>
(for all K in T'Range =>

(if J < K then T(J) <= T(K))))
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Specification Language
Quantified Expressions

General Iteration Mechanism

Based on the Iterable aspect on a type
Not the same as the standard Ada mechanism!
Simpler mechanism adopted for the SPARK formal containers

type Container is private with
Iterable => (First => First,

Next => Next,
Has_Element => Element
Element => Element);

Iteration over positions uses for .. in syntax

Uses cursor type with First, Next and Has_Element
Function Element is not required

Iteration over components uses for .. of syntax
Based on the previous iteration
Function Element retrieves the component for a given cursor
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Specification Language
Quantified Expressions

Iteration Over Formal Containers

Generic units compatible with SPARK
The API is slightly different from standard Ada containers
Available in the SPARK Library

Available for all formal containers:
vectors
doubly linked lists
sets (hashed and ordered)
maps (hashed and ordered)

Iteration over positions
Access to component through function Element
For maps, access to key through function Key

Iteration over components
For maps, really an iteration over keys

Use another function Element to get component
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Quantified Expressions

Iteration Over Formal Vectors
Only formal container to have 3 iteration mechanisms

Range-based iteration (using -gnatX for dot-notation)

for J in V.First_Index .. V.Last_Index loop
V.Replace_Element (J, 0);

end loop;
pragma Assert

(for all J in V.First_Index .. V.Last_Index => V.Component (J) = 0);

Iteration over positions

for J in V loop
V.Replace_Element (J, 0);

end loop;
pragma Assert (for all J in V => V.Element (J) = 0);

Iteration over components (no update!)

for E of V loop
pragma Assert (E = 0);

end loop;
pragma Assert (for all E of V => E = 0);
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Specification Language
New Aggregate Expressions

Delta Aggregates
Ada 2022

Express the value of a modified composite object (record or array)

(Rec with delta Comp1 => Val1, Comp2 => Val2)
(Arr with delta 1 => True, 42 => False)

Typically used to relate input and output values of parameters
Combines delta aggregate with use of attribute 'Old

procedure P (Rec : in out T)
with Post => Rec = (Rec'Old with delta Comp1 => Val1,

Comp2 => Val2);

With array object:
Avoids the introduction of explicit quantifiers
Can have overlapping and dynamic choices (values or ranges)
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Specification Language
New Aggregate Expressions

Extension of Delta Aggregates
GNAT Extension

GNAT extension allowed using either
switch -gnatX0 , or
pragma Extensions_Allowed (All)

Choice can be a subcomponent of the record or array

(Rec with delta Comp1.Sub1 => Val1,
Comp2.Sub2.Subsub => Val2)

(Arr with delta (1).Sub => True,
(42).Subarr(4) => False)
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New Aggregate Expressions

Iterated Component Associations
Ada 2022

Express the value of an array aggregate depending on index

Example: the identity function

(for J in T'Range => J)

This is a component association

Can be used in any aggregate
Can be mixed with regular component associations Idx => Val
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New Aggregate Expressions

Container Aggregates
Ada 2022

Available for all functional and formal containers

Vectors, lists and sets use the positional syntax:

V : Vector := [1, 2, 3];
L : List := [1, 2, 3];
S : Set := [1, 2, 3];

Maps use the named syntax:

M : Map := [1 => 8, 4 => 3, 42 => 127];

General mechanism using the Container_Aggregates annotation
Three predefined patterns Predefined_Sequences,
Predefined_Sets and Predefined_Maps require specific API
(used for functional containers)
From_Model only requires Model function returning the above
(used for formal containers)
consistency checked by GNATprove
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Specification Language
Structuring Expressions

Declare Expressions
Ada 2022

Convenient shorthand for repeated subexpression
Only constants and renamings allowed
Typically used in postconditions

function Find (T : Table; R : Integer) return Integer
with Post =>

(declare
Res : constant Integer := Find'Result;

begin
Res >= 0 and then
(if Res /= 0 then T (Res) = R));
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Specification Language
Structuring Expressions

Expression Functions

Convenient shorthand for repeated subexpression
Somewhat similar goal as declare expressions
But visible in a larger scope

Simple query functions used in contracts

function Is_Sorted (T : Table) return Boolean is
(for all J in T'Range =>

(for all K in T'Range => (if J < K then T(J) <= T(K))));

Above is equivalent to having a postcondition
But no subprogram body to add in the body unit

function Is_Sorted (T : Table) return Boolean
with Post => Is_Sorted'Result = (for all J in T'Range => ...);

Pre and postconditions can be specified after the expression

function Is_Sorted (T : Table) return Boolean is (...)
with Pre => T'Length > 0;
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Specification Language
Structuring Expressions

Use of Expression Functions

Expression functions can be declared in a package spec and used
in contracts

It can even be declared after its use in contracts!

For queries over objects of a private type
Function spec is declared in the public part
Expression function is declared in the private part

package P is
type T is private;
function Value (X : T) return Integer;

private
type T is new Integer;
function Value (X : T) return Integer is (Integer (X));

end;

GNATprove uses the implicit postcondition to prove client
units
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Specification Language
Lab

Specification Language Lab

Find the 070_specification_language sub-directory in
source

You can copy it locally, or work with it in-place

In that directory, open the project lab.gpr in GNAT Studio

Or, on the command-line, do gnatstudio -P lab.gpr

Unfold the source code directory (.) in the project pane
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Lab

Richer Expressions

Find and open the files basics.ads and basics.adb in
GNAT Studio

After each modification, check that the code is still proved by
GNATprove

Use a declare expression to introduce names X_Old for X'Old and
Y_Old for Y'Old in the postcondition of Swap

Use delta aggregates to state the new value of R in the
postcondition of Bump_Rec

Hint: use an if expression testing the value of the discriminant

Use a quantified expression to state that all values in array T are
preserved after the call to Swap_Table, except for those at
indexes I and J

Hint: use a membership test for "being different from I and J"
Hint: notice that T'Old(K) may be allowed even if T(K)'Old is
not
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Specification Language
Lab

Expression Functions

Define an expression function Value_Rec_Is_One to express the
condition in the postcondition of Init_Rec

Use Value_Rec_Is_One in the postcondition of Init_Rec

Check that the code is still proved

Keep the declaration of Value_Rec_Is_One in the spec file, but
move the expression function in the body file.

Is the code still proved?

Turn the expression function of Value_Rec_Is_One into a regular
function body.

Is the code still proved?

Add a postcondition to the declaration of Value_Rec_Is_One
into a regular function body.

Is the code proved again?

Discuss these with the course instructor.
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Specification Language
Lab

All Together

Define a function Constant_Value that returns True if an array
T has value Value between indexes Start and Stop

Hint: add a precondition to exclude incorrect parameter values

Use Constant_Value in the postcondition of Init_Table to
express that the table has value zero at all indexes except the first
and last ones.

Check that the code is still proved.
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Summary

Specification Language

Rich specification language in SPARK
Conditional expressions
Quantified expressions
New forms of aggregates
Structuring expressions

Expression functions are handled specially in proof
Implicit postcondition given by their expression

Expression functions define queries on private types
Function spec declared in the visible part
Expression function given in the private part
Preserves abstraction for user
Gives enough details for proof
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Subprogram Contracts
Introduction

Programming by Contract

Pioneered by programming language Eiffel in the 80's
Since then adopted in Ada, .NET
Also being discussed for C++, Rust
Available as libraries for many languages

The contract of a subprogram defines:
What a caller guarantees to the subprogram (the precondition)
What the subprogram guarantees to its caller (the postcondition)

A contract should include all the necessary information
Completes the API
Caller should not rely on implementation details
Typically parts of the contract are in English
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Subprogram Contracts
Introduction

Contracts in SPARK

Preconditions and postconditions added in Ada 2012
Using the aspect syntax for Pre and Post
Already in GNAT since 2008 as pragmas

Language support goes much beyond contracts-as-a-library
Ability to relate pre-state and post-state with attribute Old
Fine-grained control over execution
pragma Assertion_Policy (Pre => Check);
pragma Assertion_Policy (Post => Ignore);

GNATprove analysis based on contracts
Precondition should be sufficient to prove subprogram itself
Postcondition should be sufficient to prove its callers
...at all levels of software assurance beyond Bronze!

SPARK contracts by cases, for callbacks, for OOP, etc.
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Subprogram Contracts
Frame Condition

Quiz - Stating the Obvious

What is the problem with this postcondition?

type Pair is record
X, Y : Integer;

end record;

procedure Set_X (P : in out Pair; Value : Integer)
with Post => P.X = Value;

The postcondition does not say that the value of Y is preserved!

As a result, nothing is known about Y after calling Set_X

P : Pair := Pair'(X => 1, Y => 2);
P.Set_X (42);
pragma Assert (P.Y = 2); -- unproved
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Subprogram Contracts
Frame Condition

Frame Condition - Records

Simpler solution is to state which components are preserved

procedure Set_X (P : in out Pair; Value : Integer)
with Post => P.X = Value and P.Y = P.Y'Old;

Or with a delta aggregate

procedure Set_X (P : in out Pair; Value : Integer)
with Post => P = (P'Old with delta X => Value);

In both cases, value of Y is known to be preserved

201 / 454



Subprogram Contracts
Frame Condition

Frame Condition - Arrays

Use universal quantification to denote components preserved

procedure Swap_Table (T : in out Table; I, J : Index)
with Post =>

(for all K in T'Range =>
(if K not in I | J then T (K) = T'Old (K)));

Or with a delta aggregate

procedure Swap_Table (T : in out Table; I, J : Index)
with Post =>

T = (T'Old with delta I => T(J)'Old, J => T(I)'Old);

In both cases, value of T(K) is known to be preserved for K
different from I and J
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Subprogram Contracts
Frame Condition

Frame Condition - Conditions

Any variable may be preserved conditionally
That applies also to scalar variables

procedure Zero_If (X : in out Integer; Cond : Boolean)
with Post => (if Cond then X = 0);

The preservation case needs to be explicited

procedure Zero_If (X : in out Integer; Cond : Boolean)
with Post => (if Cond then X = 0 else X = X'Old);

Frame condition is all the parts of objects that may be preserved
Bounded by user-defined or generated data dependencies
Anything else needs to be stated explicitly
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Subprogram Contracts
Frame Condition

Frame Condition - Bounds and Discriminants

Some parts of objects cannot be changed by a call
Array bounds
Discriminants of constrained records

Special handling in GNATprove to preserve them

type Rec (Disc : Boolean) is record ...

procedure Change (T : in out Table; R : in out Rec)
with Post =>

T'First = T'First'Old -- redundant
and then T'Last = T'Last'Old -- redundant
and then R.Disc = R.Disc'Old; -- redundant
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Subprogram Contracts
Frame Condition

Frame Condition - Private Types

Direct access to value or components not possible

Simpler solution: define query functions
Hide access to value or components

type Pair is private;
function Get_Y (P : Pair) return Integer;
procedure Set_X (P : in out Pair; Value : Integer)

with Post => P.Get_Y = P.Get_Y'Old;

More comprehensive solution: define model functions
Create a visible model of the value

type Pair is private;
type Pair_Model is record X, Y : Integer; end record;
function Model (P : Pair) return Pair_Model;
procedure Set_X (P : in out Pair; Value : Integer)

with Post => P.Model = (P.Model'Old with delta X => Value);
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Frame Condition

Attribute Old

Dynamic semantics is to make a copy at subprogram entry
Forbidden on limited types

Evaluation for the copy may raise runtime errors
Not allowed by default inside potentially unevaluated expressions

Unless prefix is a variable

procedure Extract (A : in out My_Array;
J : Integer;
V : out Value)

with Post =>
(if J in A'Range then V = A (J)'Old); -- Illegal

Use pragma Unevaluated_Use_Of_Old (Allow) to allow
GNATprove checks that this is safe
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Subprogram Contracts
Frame Condition

Special Cases for Attribute Old

Simple component access X.C'Old equivalent to X'Old.C
Although one may be more efficient at runtime

Function call in the prefix of Old is evaluated at subprogram entry
Value of globals is the one at subprogram entry
Not the same as calling the function on parameters with Old
function F (X : Integer) return Integer

with Global => Glob;

procedure P (X : in out Integer)
with Post =>

F (X'Old) = 0 and then
F (X)'Old = 0;

207 / 454



Subprogram Contracts
Contracts by Cases

Contracts by Cases

208 / 454



Subprogram Contracts
Contracts by Cases

Contract Cases (1/2)

Some contracts are best expressed by cases
Inspired by Parnas Tables

SPARK defines aspect Contract_Cases

Syntax of named aggregate
Each case consists of a guard and a consequence

Example from SPARK tutorial

Contract_Cases =>
(A(1) = Val => ...
Value_Found_In_Range (A, Val, 2, 10) => ...
(for all J in Arr'Range => A(J) /= Val) => ...
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Contracts by Cases

Contract Cases (2/2)

GNATprove checks that each case holds
When guard is enabled on entry, consequence holds on exit
Note: guards are evaluated on entry
Attributes Old and Result allowed in consequence

GNATprove checks that cases are disjoint and complete
All inputs allowed by the precondition are covered by a single case

When enabled at runtime:
Runtime check that exactly one guard holds on entry
Runtime check that the corresponding consequence hold on exit
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Contracts by Cases

Exceptional Cases

Needed when exception propagation is expected

-- Constraint error in specific case
Exceptional_Cases =>

(Constraint_Error => Status = Error);

-- All exceptions (most general form)
Exceptional_Cases => (others => True);

Different exceptions can be grouped by cases

Exceptional_Cases =>
(Constraint_Error | Numerical_Error => Post1,
Program_Error => Post2);

GNATprove checks that each case holds
When exception is raised, consequence holds on exit
Attribute Old allowed in consequence

No runtime effect
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Subprogram Contracts
Contracts and Refinement

What's Refinement?

Refinement = relation between two representations
An abstract representation
A concrete representation

Concrete behaviors are included in abstract behaviors
Analysis on the abstract representation
Findings are valid on the concrete one

SPARK uses refinement
For analysis of callbacks
For analysis of dispatching calls in OOP

aka Liskov Substitution Principle (LSP)
Generics do not follow refinement in SPARK

Reminder: instantiations are analyzed instead
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Contracts and Refinement

Contracts on Callbacks

Contracts can be defined on access-to-subprogram types
Only precondition and postcondition

type Update_Proc is access procedure (X : in out Natural)
with

Pre => Precond (X),
Post => Postcond (X'Old, X);

GNATprove checks refinement on actual subprograms

Callback : Update_Proc := Proc'Access;

Precondition of Proc should be weaker than Precond(X)

Postcondition of Proc should be stronger than
Postcond(X'Old, X)

Data dependencies should be null

No use of globals

GNATprove uses contract of Update_Proc when Callback is
called
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Contracts and Refinement

Contracts for OOP

Inherited contracts can be defined on dispatching subprograms

type Object is tagged record ...
procedure Proc (X : in out Object) with

Pre'Class => Precond (X),
Post'Class => Postcond (X'Old, X);

GNATprove checks refinement on overriding subprograms

type Derived is new Object with record ...
procedure Proc (X : in out Derived) with ...

Precondition of Proc should be weaker than Precond(X)
Postcondition of Proc should be stronger than
Postcond(X'Old, X)
Data dependencies should be the same

GNATprove uses contract of Proc in Object when Proc is
called with static type Object

Dynamic type might be Derived
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Preventing Unsoundness

Quiz - Unsoundness

What's wrong with the following contract?

function Half (Value : Integer) return Integer
with Post => Value = 2 * Half'Result;

The postcondition is false when Value is odd
GNATprove generates an inconsistent axiom for Half

It says that any integer is equal to twice another integer
This can be used by provers to deduce False
Anything can be proved from False

As if the code was dead code
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Preventing Unsoundness

Unfeasible Contracts

All contracts should be feasible
There exists a correct implementation
This includes absence of runtime errors

Contract of Double also leads to unsoundness
The postcondition is false when Value is too large

function Double (Value : Integer) return Integer
with Post => Double'Result = 2 * Value;

GNATprove implements defense in depth
Axiom only generated for functions (not procedures)
Function sandboxing adds a guard to the axiom

Unless switch --function-sandboxing=off is used
Switch --proof-warnings=on can detect inconsistencies
Proof of subprogram will detect contract unfeasibility

Except when subprogram does not terminate
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Non-terminating Functions

What's wrong with the following code?

function Half (Value : Integer) return Integer is
begin

if True then
return Half (Value);

else
return 0;

end if;
end Half;

Function Half does not terminate
GNATprove proves the postcondition of Half!

Because that program point is unreachable (dead code)
GNATprove does not generate an axiom for Half

Because function may not terminate
info: function contract not available for proof

Info message issued when using switch --info
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Terminating Functions

Functions should always terminate

Specific contract to require proof of termination of procedures

procedure P
with Always_Terminates => Condition;

Flow analysis proves termination in simple cases
No (mutually) recursive calls
Only bounded loops

Proof used to prove termination in remaining cases
Based on subprogram variant for recursive subprograms
Based on loop variant for unbounded loops
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Subprogram Variants
Specifies measure on recursive calls

Either increases or decreases strictly

function Half (Value : Integer) return Integer
Subprogram_Variant =>

(Increases => (if Value > 0 then -Value else Value)),
is
begin

if Value in -1 .. 1 then
return 0;

elsif Value > 1 then
return 1 + Half (Value - 2);

else
return -1 + Half (Value + 2);

end if;
end Half;

More complex cases use lexicographic order

Subprogram_Variant => (Decreases => Integer'Max(Value, 0),
Increases => Integer'Min(Value, 0)),
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Quiz - Frame Condition

Which statement is correct?

A. The frame condition is easily overlooked.
B. The frame condition is generated by GNATprove.
C. Delta aggregates are only used in frame conditions.
D. Attribute Old is illegal after and then or or else.

Explanations

A. Correct
B. Only part of the frame condition is generated.
C. No, but they are particularly useful in frame conditions.
D. Use pragma Unevaluated_Use_Of_Old (Allow).
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Quiz

Quiz - Unsoundness

Which statement is correct?

A. All functions terminate by definition in SPARK.
B. An inconsistent axiom may be caused only by a non-terminating

function.
C. The only protection against unsoundness is reviews.
D. A proved terminating subprogram cannot lead to unsoundness.

Explanations

A. No, recursion and infinite loops may cause non-termination.
B. The contract may be unfeasible if the function is not proved.
C. GNATprove has multiple defenses against inconsistent axioms.
D. Correct

224 / 454



Subprogram Contracts
Quiz

Quiz - Unsoundness

Which statement is correct?

A. All functions terminate by definition in SPARK.
B. An inconsistent axiom may be caused only by a non-terminating

function.
C. The only protection against unsoundness is reviews.
D. A proved terminating subprogram cannot lead to

unsoundness.

Explanations

A. No, recursion and infinite loops may cause non-termination.
B. The contract may be unfeasible if the function is not proved.
C. GNATprove has multiple defenses against inconsistent axioms.
D. Correct

224 / 454



Subprogram Contracts
Summary

Summary

225 / 454



Subprogram Contracts
Summary

Subprogram Contracts

Functional contracts given by
The precondition with aspect Pre
The postcondition with aspect Post
The contract cases with aspect Contract_Cases
The exceptional cases with aspect Exceptional_Cases

Postcondition may be imprecise
In particular, frame condition might be missing
This may prevent proof of callers

Function contracts may lead to unsoundness
If contract is unfeasible
If function does not terminate
Prove functions and their termination!
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Range Constraints
Ada 83

Scalar ranges gives tighter bounds to scalar types
Integer types: signed, modular
Real types: floating-point, fixed-point

type Nat is range 0 .. Integer'Last;
type Nat is new Integer range 0 .. Integer'Last;
subtype Nat is Integer range 0 .. Integer'Last;

Also in standard subtypes Natural and Positive

Range constraint also for enumeration and array types

subtype Week_Day is Day range Monday .. Friday;

type Index is range 1 .. 100;
type Table is array (Index range <>) of Integer;
subtype Table_10 is Table (1 .. 10);
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Discriminant Constraints
Ada 83

Record discriminants can be specialized to specific values

Formal bounded containers from SPARK Library

type Vector (Capacity : Capacity_Range) is record ...
My_Vec : Vector (10);

Discriminant without default cannot be changed
Needs to be defined at variable declaration

Discriminant with default can be changed
If variable Var declared with unconstrained type
Then Var'Constrained = False
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Richer Type Contracts
Ada 2012

Predicates and invariants added in Ada 2012
Using the aspect syntax for Predicate and Type_Invariant

Language support goes much beyond contracts-as-a-library
Constraint expressed once and verified everywhere
Fine-grain control over execution
pragma Assertion_Policy (Predicate => Check);
pragma Assertion_Policy (Type_Invariant => Ignore);

GNATprove analysis based on contracts
Predicates and invariants assumed on subprogram inputs
Predicates and invariants proved on subprogram outputs
...at all levels of software assurance beyond Bronze!
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Type Predicates

What Is a Type Predicate?
Boolean property that should always hold for objects of the type

Name of the type used to refer to an object of the type
Direct use of component names also allowed

Can be specified on a type or subtype

type Non_Zero is new Integer
with Predicate => Non_Zero /= 0;

subtype Even is Integer
with Predicate => Even mod 2 = 0;

Type predicate can be static or dynamic
Aspect Predicate can be Static_Predicate or
Dynamic_Predicate

type Non_Zero is new Integer
with Static_Predicate => Non_Zero /= 0;

subtype Even is Integer
with Dynamic_Predicate => Even mod 2 = 0;

Like a type constraint, part of membership test X in T
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Static Vs Dynamic Predicate

Static predicates are more restricted
Boolean combination of comparisons with static values
Usable mostly on scalar and enumeration types
That does not mean statically checked by the compiler

Dynamic predicates are arbitrary boolean expressions
Applicable to array and record types

Types with static predicates are allowed in more contexts
Used as range in a for loop
Used as choice in case statement or case expression

Aspect Predicate is GNAT name for:
Static_Predicate if predicate is static
Dynamic_Predicate otherwise
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Useful Static Predicates

Scalar ranges with holes

type Count is new Natural
with Static_Predicate => Count /= 10;

subtype Normal_Float is Float with
with Static_Predicate =>

Normal_Float <= -2.0**(-126) or
Normal_Float = 0.0 or
Normal_Float >= 2.0**(-126);

Enumeration of scalar values

type Serial_Baud_Rate is range 110 .. 1200
with Static_Predicate =>

Serial_Baud_Rate in 110 | 300 | 600 | 1200;

Enumeration ranges with holes

subtype Weekend is Day
with Static_Predicate => Day in Saturday | Sunday;
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Useful Dynamic Predicates (1/2)

Array types with fixed lower bound

type Message is new String
with Dynamic_Predicate => Message'First = 1;

Also possible with GNAT extension

type Message is new String(1 .. <>);

Record with capacity discriminant and size component

type Bounded_String (Capacity : Positive) is record
Value : String (1 .. Capacity);
Length : Natural := 0;

end record
with Dynamic_Predicate => Length in 0 .. Capacity;
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Useful Dynamic Predicates (2/2)

Array type with ordered content

type Table is array (Index) of Integer
with Dynamic_Predicate =>

(for all K in Table'Range =>
(K = Table'First or else Table(K-1) <= Table(K)));

Record type with relationship between components

type Bundle is record
X, Y : Integer;
CRC : Unsigned_32;

end record
with Dynamic_Predicate => CRC = Math.CRC32 (X, Y);

Scalar type with arbitrary property

type Prime is new Positive
with Dynamic_Predicate =>

(for all Divisor in 2 .. Prime / 2 =>
Prime mod Divisor /= 0);
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Restrictions in Usage

Type with predicate T not allowed for some usages
As an array index
type Table is array (T) of Integer; -- Illegal
As a slice
Var := Param(T); -- Illegal
As prefix of attributes Range, First, and Last

Because they reflect only range constraints, not predicates
Use instead attributes First_Valid and Last_Valid
Not allowed on type with dynamic predicate

Type with dynamic predicate further restricted
Not allowed as range in a for loop
Not allowed as choice in case statement or case expression

Special aspect Ghost_Predicate for referring to ghost entities
Type cannot be used in membership tests
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Dynamic Checking of Predicates

Dynamic checks inserted by GNAT
When using switch -gnata
Or pragma Assertion_Policy (Predicate => Check)

Placement of checks similar as for type constraints
On assignment and initialization
On conversion T(...) and qualification T'(...)
On parameter passing in a call

No checks where not needed
On uninitialized objects
On references to an object

No checks where that would be too expensive
On assigning a part of the object
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Static Checking of Predicates

Static checks performed by GNATprove
Always (independent of the choice of switches or pragmas)

Placement of checks as for dynamic checks
Plus assignment on part of the object
GNATprove checks objects always satisfy their predicate

No checks only where not needed
On uninitialized objects
On references to an object

GNATprove can assume that all initialized objects satisfy their
type constraints and predicates
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Beware Recursion in Predicates

Infinite recursion when calling inside the predicate a function
taking the type with predicate as parameter type

type Nat is new Integer
with Predicate => Above_Zero (Nat);

function Above_Zero (X : Nat) return Boolean is (X >= 0);

warning: predicate check includes a call to "Above_Zero"
that requires a predicate check

warning: this will result in infinite recursion
warning: use an explicit subtype of "Nat" to carry the predicate
high: infinite recursion might occur

Fix by inlining the property or introducing a subtype

type Int is new Integer;
function Above_Zero (X : Int) return Boolean is (X >= 0);
subtype Nat is Int with Predicate => Above_Zero (Nat);
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What Is a Type Invariant?

Boolean property that should always hold of objects of the type
...**outside** of its unit
Same use of name of the type and component names as in
predicates

Can only be specified on the completion of a private type (in
SPARK)

package Bank is
type Account is private;
type Currency is delta 0.01 digits 12;
...

private
type Account is ... with

Type_Invariant => Consistent_Balance (Account);

Not part of membership test X in T
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Dynamic Checking of Type Invariants

Dynamic checks inserted by GNAT
When using switch -gnata
Or pragma Assertion_Policy (Type_Invariant => Check)

Placement of checks on the creation of values of type T
Note: that applies to objects with a part of type T
On default initial value
On type conversion T(...)
On parameter passing after a call to a boundary subprogram

i.e. call to a subprogram in the public spec of the package
No checks where not needed

On assignment and initialization
On qualification T'(...)
On references to an object
On internal assignment or call

No checks where this is impossible for the compiler
On global variables of type T
On parts of objects under components of access type
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Static Checking of Type Invariants

Static checks performed by GNATprove
Always where needed (independent of the choice of switches or
pragmas)

Placement of checks as for dynamic checks
Plus global variables and objects under access types
On each call to external subprogram from inside the unit

This avoids so-called reentrancy problems
GNATprove checks objects always satisfy their invariant outside
of their unit

No checks only where not needed
GNATprove can assume that all inputs to boundary
subprograms and all objects of the type outside the unit satisfy
their type invariants

Type invariant is used both for proof of unit itself and in other units
An expression function deferred to the body can be used to perform
an abstraction
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Beware Recursion in Type Invariants

Infinite recursion when calling inside the type invariant a boundary
function taking the type with invariant as parameter type

package Bank is
type Account is private;
function Consistent_Balance (A : Account) return Boolean;

private
type Account is ... with

Type_Invariant => Consistent_Balance (Account);

high: cannot call boundary subprogram for type in its own invariant

Fix by declaring the function in the private part of the spec

private
type Account is ... with

Type_Invariant => Consistent_Balance (Account);
function Consistent_Balance (A : Account) return Boolean

is (...);
246 / 454



Type Contracts
Lab

Lab

247 / 454



Type Contracts
Lab

Type Contracts Lab

Find the 090_type_contracts sub-directory in source

You can copy it locally, or work with it in-place

In that directory, open the project lab.gpr in GNAT Studio

Or, on the command-line, do gnatstudio -P lab.gpr

Unfold the source code directory (.) in the project pane
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Type Predicates

Find and open the files basics.ads and basics.adb in
GNAT Studio

Run GNATprove to prove the unit
Look at unproved predicate checks, can you explain them?
Does it make a difference that Swap_Pair is public and
Bump_Pair is private?

Fix the predicate check failure in Bump_Pair

Hint: use an aggregate assignment

Fix the predicate check failure in Swap_Pair by using a base type
without predicate for Pair
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Type Invariants

Run GNATprove to prove the unit
Look at unproved invariant checks, can you explain them?
Does it make a difference that Swap_Triplet is public and
Bump_Triplet is private?

Fix the invariant check failure on the default value for Triplet

Fix the invariant check failure in Swap_Triplet

Hint: the intent is for the value of all components to rotate

Fix the invariant check failure in Bump_And_Swap_Triplet

Hint: look also at Bump_Triplet
Hint: you will need to add a postcondition to Bump_Triplet
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All Together

Run GNATprove to prove the unit and display all proved checks

Can you explain the presence of predicate checks and invariant
checks?

How about the absence of checks in Bump_And_Swap_Pair?
How about the checks in Bump_And_Swap_Triplet?
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Type Contracts

Type contracts given by
Type constraints (range and discriminant constraints)
Type predicates with aspect Predicate
Type invariants with aspect Type_Invariant

Type predicates are static or dynamic
Special aspects Static_Predicate and Dynamic_Predicate
Slightly different use cases

Type invariants define an abstraction on private types
Always hold on objects outside their unit
Can be violated inside the unit
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Proof So Far

Variables follow data initialization policy
Flow analysis deals with initialization
Arrays must be initialized by aggregates
Variables cannot be partially/conditionally initialized

Loop-free code
Strongest Postcondition calculus does not deal with loops

At least, not without a little help

How do we deal with the following program?

procedure Init_Table (T : out Table) is
begin

for J in T'Range loop
T(J) := 0;

end loop;
end Init_Table;
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Going Beyond Basic Proof

Relaxed initialization
Ability to partially initialize variables
Proof deals with initialization of such variables

Loop pragmas
Specialized pragmas to deal with loops in proof
Loop invariants provide the necessary help
Loop variants deal with loop termination

SPARK formal containers
Dealing with loops over vectors, lists, sets and maps
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Limitations of the Initialization Policy

Objects must be fully initialized when read
Forces useless initialization of unread components

Arrays must be initialized from an aggregate
Otherwise flow analysis cannot check initialization
Except in some special cases when a heuristic works

e.g. fully initialize an array with a for loop

All outputs must be fully initialized when returning
Forces useless initialization of unread outputs
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Specifying Relaxed Initialization

Aspect Relaxed_Initialization can be used on objects, types
and subprograms

type Rec is record ... end record
with Relaxed_Initialization;

X : Integer with Relaxed_Initialization;
procedure Update (A : in out Arr)

with Relaxed_Initialization => A;

Corresponding objects (variables, components) have relaxed
initialization

Flow analysis does not check (full) initialization
Instead, proof checks (partial) initialization when read
Not applicable to scalar parameter or scalar function result
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Specifying Initialized Parts

Ghost attribute Initialized is used to specify initialized objects

pragma Assert (R'Initialized);

Or initialization of parts of objects

pragma Assert (R.C'Initialized);

Attribute executed like Valid_Scalars

All scalar subcomponents are dynamically checked to be valid
values of their type
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Relaxed Initialization and Predicates

Ghost attribute Initialized cannot be used in predicate
Rationale: predicate is part of membership tests

* Use instead special Ghost_Predicate

Membership tests are not allowed for such types
Otherwise subject to same rules as other predicates

type Stack is record
Top : Index;
Content : Content_Table;

end record
with Ghost_Predicate =>

Content (1 .. Top)'Initialized;
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Verifying Relaxed Initialization

Contracts (postcondition, predicate) may refer to Initialized

procedure Update (R : in out Rec) with
Post => R'Initialized;

Any read of an object requires its initialization

Loop invariant may need to state what part of an array is initialized

for J in Arr'Range loop
Arr(J) := ...
pragma Loop_Invariant

(Arr(Arr'First .. J)'Initialized;
end loop;
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Unrolling Loops

GNATprove can unroll loops when:
Loop is of the form for J in A .. B loop
Number of iterations is less than 20
The only local variables declared in the loop are scalars

Confirming message issued when using switch --info

info: unrolling loop

Strongest Postcondition calculus can deal with unrolled loop
But size of code might become large
Especially on nested loops

Loop unrolling can be prevented
Globally with switch --no-loop-unrolling
On a specific loop with a loop invariant
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Loop Invariants

A loop invariant is a special assertion
Placed inside loops
Executed like an assertion at runtime
Interpreted specially in proof
Slightly different from classical Hoare loop invariant

Dynamic checks inserted by GNAT
When using switch -gnata
Or pragma Assertion_Policy (Loop_Invariant => Check)

Multiple loop invariants are allowed
Must be grouped
Same as conjunction of conditions using and

Placement anywhere in the top-level sequence of statements
Typically at the beginning or end of the loop
Can be inside the statements of a declare block
Default loop invariant of True at beginning of the loop

266 / 454



Advanced Proof
Loops

Loop Invariants in Proof

The loop invariant acts as a cut point for the SP calculus
Establish it at the beginning of the loop
Check that it is preserved by one iteration
Assume it to check the remaining of the program
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Placement of Loop Invariants
Proof reasons around the
virtual loop

Starting from the loop
invariant
Ending at the loop
invariant
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Four Properties of a Good Loop Invariant

These four properties should be established in this order

[INIT] - It should hold in the first iteration of the loop
GNATprove generates a loop invariant initialization check

[INSIDE] - It should allow proving absence of run-time errors and
local assertions inside the loop

[AFTER] - It should allow proving absence of run-time errors, local
assertions and the subprogram postcondition after the loop

[PRESERVE] - It should be preserved by the loop
GNATprove generates a loop invariant preservation check
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Summarizing Mutations

Analysis of arbitrary loop iteration in coarse context
All information on modified variables is lost
Except information preserved in the loop invariant

Example: initialization loop

procedure Init_Table (T : out Table)
with

Post => (for all J in T'Range => T(J) = 0);

procedure Init_Table (T : out Table) is
begin

for J in T'Range loop
T(J) := 0;
pragma Loop_Invariant

(for all K in T'First .. J => T(K) = 0);
end loop;

end Init_Table;
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Accumulating Information
Analysis of arbitrary loop iteration in coarse context

All information accumulated on variables is lost
Except information preserved in the loop invariant

Example: search loop

procedure Search_Table (T : Table; Found : out Boolean)
with

Post => Found = (for some J in T'Range => T(J) = 0);

procedure Search_Table (T : Table; Found : out Boolean) is
begin

for J in T'Range loop
if T(J) = 0 then

return True;
end if;
pragma Loop_Invariant

(for all K in T'First .. J => T(K) /= 0);
end loop;
return False;

end Search_Table;
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Attribute Loop_Entry

Attribute Loop_Entry used to refer to the value of a variable on
entry to the loop

procedure Bump_Table (T : in out Table) is
begin

for J in T'Range loop
T(J) := T(J) + 1;
pragma Loop_Invariant

(for all K in T'First .. J => T(K) = T'Loop_Entry(K) + 1);
end loop;

end Bump_Table;

Similar to attribute Old which is usable only inside postconditions
In many cases, X'Loop_Entry is also value on subprogram entry
Same limitations as for attribute Old

Use pragma Unevaluated_Use_Of_Old (Allow) if needed

Use X'Loop_Entry(Loop_Name) for value of X on entry to loop
not directly enclosing
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Loop Frame Condition (1/2)

Reminder: analysis of arbitrary loop iteration in coarse context
All information on modified variables is lost
Except information preserved in the loop invariant

This is true for the loop frame condition
Variables that are not modified
Parts of modified variables that are preserved
Similar to frame condition on subprogram calls

GNATprove generates part of the frame condition
Variables that are not modified, or only on paths that exit the loop
Components of records that are not modified
Components of arrays that are not modified

When the array is only assigned at the current loop index
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Loop Frame Condition (2/2)

In other cases, explicit frame condition might be needed

Typically use attribute Loop_Entry

procedure Bump_Table (T : in out Table) is
begin

for J in T'Range loop
T(J) := T(J) + 1;
pragma Loop_Invariant

(for all K in J .. T'Last =>
(if K > J then T(K) = T'Loop_Entry(K)));

end loop;
end Bump_Table;
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Classical Loop Invariants

Known best loop invariants for some loops
Initialization loops - initialize the collection
Mapping loops - map each component of the collection
Validation loops - check each component of the collection
Counting loops - count components with a property
Search loops - search component with a property
Maximize loops - search component that maximizes a property
Update loops - update each component of the collection

SPARK User's Guide gives detailed loop invariants
See section 7.9.2 Loop Examples
Loops on arrays or formal containers
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Quiz: Non-terminating Loops

What's wrong with the following code?

loop
null;

end loop;
pragma Assert (False);

Loop does not terminate
GNATprove proves the assertion of False!

Because that program point is unreachable (dead code)
GNATprove implements defense in depth

Non-terminating loop causes enclosing subprogram to also not
terminate
Switch --proof-warnings=on can detect dead code
Proof of loop termination based on loop variants
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Loop Variants (1/2)

A loop variant is a special assertion
Placed inside loops
Executed specially at runtime
Interpreted specially in proof

Dynamic checks inserted by GNAT
When using switch -gnata
Or pragma Assertion_Policy (Loop_Variant => Check)
Check that expression varies as indicated at each iteration

Only one loop variant is needed to prove loop termination
And only on while loop or plain loop, not on for loop

Same placement as for loop invariants
Must be grouped if both presents
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Loop Variants (2/2)

Same syntax as subprogram variants

procedure Bump_Table (T : in out Table) is
J : Index'Base := T'First;

begin
while J <= T'Last loop

T(J) := T(J) + 1;
J := J + 1;
pragma Loop_Variant (Increases => J);

end loop;
end Bump_Table;

Could also use (Decreases => -J)

Same loop variant could be placed anywhere in the loop here
Because check between two successive evaluations of the variant
The loop invariant must be modified to reflect current values
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Formal Containers in SPARKlib

Available from SPARK Library
Distributed with SPARK Pro
Copy sparklib.gpr or sparklib_light.gpr locally
Set value of Object_Dir in the copied project file
To use, add with "sparklib[_light]"; in your project file

Reminder: four kinds of formal containers
vectors
doubly linked lists
sets (hashed and ordered)
maps (hashed and ordered)

All available in bounded and unbounded versions
All generics that need to be instantiated

Only their spec is in SPARK
Their implementation is not proved
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Bounded Formal Containers

Bounded version for light and embedded runtimes
Under SPARK.Containers.Formal.<name>
Use discriminated record

Discriminant Capacity fixes maximum size
Component type must have known size ( definite type)
Container type itself is definite

Bounded container can be component of another formal container
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Unbounded Formal Containers

Unbounded version for full runtimes
Under SPARK.Containers.Formal.Unbounded_<name>
Use dynamic memory allocation

For each component in the container
For growing the container

Use controlled types for dynamic memory reclamation
Component type may have unknown size ( indefinite type)
Container type itself is definite

Unbounded container can be component of another formal
container

282 / 454



Advanced Proof
Formal Containers

Loops Over Formal Containers

Same as for quantified expressions

Range-based iteration (only for vectors)

for J in V.First_Index .. V.Last_Index loop
V.Replace_Element (J, 0);

end loop;

Iteration over positions

for J in V loop
V.Replace_Element (J, 0);

end loop;

Iteration over components (no update!)

for E of V loop
pragma Assert (E = 0);

end loop;
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Loop Invariants Over Formal Containers

Range-based iteration (only for vectors)
Use scalar index J to access vector at V.Element (J)

Iteration over positions
For vectors, same as range-based iteration (cursor is index)
Otherwise, need to reason about formal model

Functional model of the container
Mapping from cursors to positions
Sequence of components/keys of the container

Iteration over components
Impossible to access previous components
Use iteration over positions instead
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Formal Model of Formal Containers

Defined in local package Formal_Model
Based on functional containers (also part of SPARKlib)

Immutable containers to represent mathematical one
Used in contracts of formal containers API

Functional model of the container
Given by function Model
Returns a different type

A sequence of components for formal lists
A set of components for formal sets
A map from keys to components for maps

Mapping from cursors to positions
Given by function Positions
Positions in the iteration sequence

Sequence of components/keys of the container
Corresponds to the iteration sequence
Given by different functions

Model for lists
Elements for sets
Keys for maps
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Difficulties with Loops Over Formal Containers

GNATprove does not unroll such loops

GNATprove does not generate a frame condition
Contrary to loops over arrays
Need to explicitly state the frame condition using attribute
Loop_Entry

Container structure may be modified in the loop
When inserting or deleting components
In general, need to know position of corresponding cursor

Relative to current cursor: e.g. previous/next cursor
Otherwise difficult with hashed sets/maps
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Functional Containers

Available from SPARK Library
Five kinds of functional containers

infinite sequences
vectors
sets
multisets
maps

Simple containers close to mathematical structures
No bounds on cardinality
No cursors for iteration
No order of components in sets and maps
Functional: cannot modify them, rather create a new one

They are easy to handle for proof
Often used as models for more complex structures

They are executable but might be inefficient
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Advanced Proof Lab

Find the 010_advanced_proof sub-directory in source

You can copy it locally, or work with it in-place

Copy locally sparklib.gpr from your SPARK install and set
Object_Dir

In that directory, open the project lab.gpr in GNAT Studio

Or, on the command-line, do gnatstudio -P lab.gpr

Unfold the source code directory (.) in the project pane
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Array Initialization Loop
Find and open the files loop_init.ads and loop_init.adb
in GNAT Studio

Run GNATprove to prove the subprogram Init_Table

Can you explain why Init_Table is proved?
Confirm this by rerunning GNATprove with switch --info

Change the type Table to be an unconstrained array:

type Table is array (Index range <>) of Integer;

Run GNATprove to prove the subprogram Init_Table

Can you explain why the postcondition is not proved?
Confirm this by rerunning GNATprove with switch --info

Add a loop invariant in Init_Table.
Hint: take inspiration in the postcondition.
Subprogram Init_Table should be proved except for initialization
checks.

Mark parameter T as having relaxed initialization.
Rerun GNATprove.
Add the necessary loop invariant to complete the proof of
Init_Table.
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Array Mapping Loop

Run GNATprove to prove the subprogram Bump_Table

Add a loop invariant in Bump_Table.
Hint: use attribute Loop_Entry
Can you prove the subprogram without a loop frame condition?

Change the assignment inside the loop into
T(J + 0) := T (J) + 1;

Can you still prove the subprogram without a loop frame condition?
Discuss this with the course instructor.
Complete the loop invariant with a frame condition to prove
Bump_Table
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Formal Container Loops

Run GNATprove to prove the subprogram Init_Vector

Add a loop invariant in Init_Vector

Hint: you need to state that V.Last_Index is preserved

Run GNATprove to prove the subprogram Init_List

Add a loop invariant in Init_List

Hint: the position of cursor Cu in L is Positions (L).Get (Cu)
Hint: the sequence of components for L is Model (L)
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Advanced Proof

Use relaxed initialization when needed
Some variables are partially initialized
Some array variables are initialized in a loop
More annotations are needed with ghost attribute Initialized

Proof of loops requires more work
Add loop invariants to prove correction
Take special care of the loop frame condition
Add loop variants to prove termination

Formal containers
Generics for vectors, lists, sets and maps
Available in all runtime libraries
Proof of code using formal containers uses formal models
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Data and Information Flow Analysis

Data flow analysis
Models the variables used by a subprogram
Enforces data initialization policy
Detects reads of uninitialized data

Data dependencies can be specified
Introduced by aspect Global

Information flow analysis
Models the flow of information from inputs to outputs
Can be very useful for security analysis

Flow dependencies can be specified
Introduced by aspect Depends
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Direct and Indirect Flows

A direct flow occurs when assigning A to B

B := A;

An indirect flow occurs when assigning B conditioned on A

if A then
B := ...

end if;

A direct flow can be masquerading as indirect flow

if A then
B := True;

else
B := False;

end if;

GNATprove handle both flows together in flow analysis
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Self-Dependency on Array Assignment

Flow analysis is not value-dependent

Assigning an array component or slice preserves part of the original
value

type T is array (1 .. 2) of Boolean;
A : T := ...

A (1) := True;
-- intermediate value of A seen as dependent on
-- original value
A (2) := False;
-- final value of A seen as dependent on original value

This holds also for slices

A (1 .. 2) := (True, False);
-- final value of A seen as dependent on original value
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Basic Data Dependency Contracts

Introduced by aspect Depends

Optional, but must be complete if specified

Describes how outputs depend on inputs

procedure Proc
with

Depends => (X => (X, Y),
Z => V);

Not very interesting for functions which have only their result as
output

function Func (X : Integer)
with

Depends => (Func'Result => (X, Y, Z));
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Some Outputs May Appear As Inputs

Parts of outputs are in fact inputs:
Bounds of arrays
Discriminants of records
Tags of tagged records

These output objects will appear as inputs in Depends when
bounds/discriminants/tags not implied by the object subtype

procedure Proc (Tab : out Table)
with

Global => (Output => Glob),
Depends => (Tab => Tab,

Glob => Glob);
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Special Cases

Some outputs may depend on no input
Typically when initializing data to some constant value
Thus, output depends on null

procedure Init (T : out Table)
with

Depends => (T => null);

Some inputs may not flow into any output
Typically when effect hidden from analysis
Or input used only for debug
Also the case for global variables of mode Proof_In
Must be last line of flow dependencies

procedure Debug (T : Table)
with

Depends => (null => T);
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Special Notation

Outputs can also be grouped

procedure Init (T1, T2 : out Table)
with

Depends => ((T1, T2) => null);

Symbol + indicates a self-dependency

procedure Update (T : in out Table)
with

Depends => (T => +null); -- same as (T => T)

Most useful with grouped outputs

procedure Update (T1, T2 : in out Table)
with

Depends => ((T1, T2) => +null);
-- same as (T1 => T1, T2 => T2)
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From Data Dependencies

Data dependencies may be specified or generated

If flow dependencies are not specified, they are generated
All outputs depend on all inputs
All globals of mode Proof_In have no effect on outputs

This is a correct over-approximation of actual flow dependencies
This might be too imprecise for analysis of callers
In that case, add explicit flow dependencies
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From Flow Dependencies

If only flow dependencies are specified

Data dependencies are generated
All variables only on the left-hand side are outputs
All variables only on the right-hand side are inputs
All other variables are both inputs and outputs

This is the exact data dependencies consistent with flow
dependencies

Except some globals of mode Proof_In may be classified as inputs
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Advanced Flow Analysis Lab

Find the 110_advanced_flow_analysis sub-directory in
source

You can copy it locally, or work with it in-place

In that directory, open the project lab.gpr in GNAT Studio

Or, on the command-line, do gnatstudio -P lab.gpr

Unfold the source code directory (.) in the project pane
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Flow Dependencies

Find and open the files basics.ads and basics.adb in
GNAT Studio

Run GNATprove in flow analysis mode

Add flow dependency contracts to all subprograms except
Strange_Init_Rec and Strange_Init_Table

Rerun GNATprove in flow analysis mode
Discuss the correct flow dependencies of Init_Table with the
instructor.
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Imprecise Flow Dependencies

Copy the flow dependencies of Init_Rec and Init_Table for
respectively Strange_Init_Rec and Strange_Init_Table

Run GNATprove in flow analysis mode
Understand the error messages and add the suggested dependencies.

Run GNATprove in flow analysis mode
Do you understand the reason for the check messages?
Either adapt the flow dependencies or justify the messages with
pragma Annotate
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Advanced Flow Analysis

Flow dependencies can be specified
This can be important for security

Flow analysis detects:
Violation of flow dependency contracts (Depends)
Inconsistency between data and flow dependency contracts

Flow analysis is imprecise
On value-dependent flows
On array assignment to index/slice
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Absence of Interferences

Flow analysis rejects aliasing
Between two parameters
Between a parameter and a global variable
... when that may lead to interferences

Interferences when one of the variables is written

Many features avoid direct use of pointers
Array types
By-reference parameter passing mode
Address specifications X : Integer with Address => ...
Generics (avoid C-style void* genericity)

What about pointers?
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Pointers and Aliasing

Pointers introduce aliasing
This violates SPARK principle of absence of interferences

Rust programming language popularized ownership
Only one pointer (the owner) at any time has read-write access
Assigning a pointer transfers its ownership

Work on ownership in SPARK started in 2017
First version released in SPARK Pro 20
Detection of memory leaks in SPARK Pro 21
Support for all access types in SPARK Pro 22
SPARK libraries for aliasing in SPARK Pro 23

318 / 454



Pointer Programs
Ownership Checking

Ownership Checking

319 / 454



Pointer Programs
Ownership Checking

Access Types in Ada
Access-to-variable vs access-to-constant types

AV : access Integer;
AC : access constant Integer;

AV can be used to modify the integer, AC cannot

Named vs anonymous access types

type Acc is access Integer;
AN : Acc;
AA : access Integer;

Convenience in Ada to save the introduction of a type name

Pool-specific vs general access types

type PS_Acc is access Integer;
type G_Acc is access all Integer;

Type PS_Acc can only point to the heap, GS_Acc can point to the
heap and stack.

Accessibility levels prevent escaping pointers to the stack

Not null access types forbid use of value null
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Access Types in SPARK

Named pool-specific access-to-variable types: subject to ownership

type PS_Int_Acc is access Integer;

Named access-to-constant types: aliasing allowed, deallocation
forbidden

type Cst_Int_Acc is access constant Integer;

Named general access-to-variable types: subject to ownership,
deallocation forbidden

type Gen_Int_Acc is access all Integer;

Anonymous access-to-object types: for borrowing and observing

X : access Cell := ...
X : access constant Cell := ...
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Memory Ownership Policy

A chunk of memory has a single owner

Assigning a pointer moves its ownership

Only the owner can both read and write the memory

X := new Integer'(1);
-- X has the ownership of the cell
Y := X;
-- The ownership is moved to Y
Y.all := Y.all + 1;
-- Y can access and modify the data
pragma Assert (X.all = 1);
-- Error: X can no longer access the data

Ownership policy ensures absence of interferences
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Model of Pointers in SPARK
Pointers are seen as records in analysis

Both for flow analysis and proof
This is possible thanks to absence of interferences

type Int_Acc is access Integer;
X : Int_Acc := new Integer'(42);

is treated like:

type Int_Acc (Nul : Boolean := False) is record
case Nul is

when True => null;
when False => Content : Integer;

end case;
end record;
X : Int_Acc := Int_Acc'(Nul => False, Content => 42);

Value of pointer itself is not modelled
This is an intentional limitation to

Allow allocators in expressions
Allow dellocation in functions

Equality of pointers is not supported (only with null)
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Borrowing and Observing

Borrowing is temporary read-write access
either through a declaration
X : access Cell := Current_Cell.Next;
or through a call (access type can be named or anonymous)
procedure Update_Cell (X : access Cell);
Update_Cell (Current_Cell.Next);

In-out parameter of access type is moved on entry and return
Observing is temporary read-only access

either through a declaration
X : access constant Cell := Current_Cell.Next;
or through a call
procedure Read_Cell (X : access constant Cell);
Read_Cell (Current_Cell.Next);
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Access to Constant Data

Data is constant all the way down
Data designated by the pointer is constant
Pointers in that data inherit the same property
This is specific to SPARK: in Ada only designated data is constant

Also applies to constants and input parameters of composite types
containing pointers

Different from constants and input parameters of access-to-variable
type

Aliasing is allowed
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Access to Data on the Stack

Use attribute Access on local variable
Not allowed on global variable which would remain visible
Result of general access type with access all syntax

Constant'Access of access-to-constant type

Variable'Access of access-to-variable type

Variable is moved and cannot be referenced anymore
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Attributes Old and Loop_Entry

Attributes Old and Loop_Entry not applicable to pointers
Implicit copy on subprogram/loop entry would violate ownership

Prefix of access type needs to be a call to an allocating function
Allocating function is a function returing an access-to-variable type

function Copy (X : Ptr) return Ptr
with Post => Copy'Result.all = X.all;

procedure P (X : in out Ptr)
with Post => Property (Copy (X)'Old);
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Useful Tips

No cycles or sharing inside mutable data structures

Global objects can also be moved temporarily
Procedure must restore some value (or null) before returning

Allocation function returns a new object of access-to-variable type
Similar to initialized allocator with new T'(Value)
Some special traversal functions give access to part of an object

Deallocation procedure simply nullifies in-out access parameter
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Recursive Data Structures

Pointers allow to build recursive data structures like lists

type List_Cell;
type List_Acc is access List_Cell;
type List_Cell is record

Value : Integer;
Next : List_Acc;

end record;

Traversing the data structure can use
Recursion, typically for specification functions
Loops otherwise
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Pointers and Recursion

No built-in quantified expression for recursive data structures

Instead, use recursion to traverse the structure

function All_List_Zero
(L : access constant List_Cell) return Boolean

is (L = null or else
(L.Value = 0 and then All_List_Zero (L.Next)));

Reminder: GNATprove protects against non-terminating
recursive functions

No axioms generated for such functions
Need to prove termination of recursive functions

Use special form of structural subprogram variant

function All_List_Zero ... with
Subprogram_Variant => (Structural => L);
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Pointers and Loops

Procedure Init_List_Zero initializes L

procedure Init_List_Zero (L : access List_Cell)
with Post => All_List_Zero (L);

Initialization uses loop to traverse data structure

procedure Init_List_Zero (L : access List_Cell) is
B : access List_Cell := L;

begin
while B /= null loop

B.Value := 0;
B := B.Next;

end loop;
end Init_List_Zero;

Problem: how do we express that previous cells have value zero?
Cannot refer to value of L while borrowed
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Predicted Values
Special annotation At_End_Borrow on identity function

For proof, refers to value of argument at the end of the borrow
For execution, is simply the identity function

function At_End
(L : access constant List_Cell)
return access constant List_Cell

is (L)
with

Ghost,
Annotate => (GNATprove, At_End_Borrow);

Loop invariant can refer to values at end of the borrow
Value of borrower at end of the borrow At_End (B)
Value of borrowed at end of the borrow At_End (L)

pragma Loop_Invariant
(if All_List_Zero (At_End (B))
then All_List_Zero (At_End (L)));

Invariant proved using what is known now about the value at end
There is no look ahead
Loop invariant proved because values in L and not B are frozen to 0
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Pointers with Aliasing (1/2)

SPARK Library defines two generics
SPARK.Pointers.Pointers_With_Aliasing
SPARK.Pointers.Pointers_With_Aliasing_Separate_Memory
Only generic parameter is any type Object

Both allow aliasing pointers
Type Pointer is private

User code can copy such pointers freely
Ownership policy does not apply

All accesses through API check validity of pointer
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Pointers with Aliasing (2/2)

Shared API to create, free, access pointers

procedure Create (O : Object; P : out Pointer);
function Deref (P : Pointer) return Object;
procedure Assign (P : Pointer; O : Object);
procedure Dealloc (P : in out Pointer);

Version in Pointers_With_Aliasing_Separate_Memory adds
parameter

Memory : in out Memory_Type

To handle separate groups of pointers in different memories

Use of pointers with aliasing is possible but costly
Need to maintain validity of pointers at all times
Need to maintain separation of pointers at all times
This comes for free with the ownership policy
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Contracts on Access-to-subprogram Types
Access-to-subprogram values not subject to ownership

Only preconditions and postconditions are allowed

type Proc is access procedure (...)
with

Pre => ...
Post => ...

Very often using not null access (for parameters)

Implicit Global => null on type

GNATprove checks feasibility of contract

Creating a value of access-to-subprogram type with attribute
Access

procedure P (...);
Acc : Proc := P'Access;

GNATprove checks conditions for refinement
Pre of type implies pre of subprogram
Post of subprogram implies post of type
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Higher Order Specialization

Higher order functions take an anonymous access-to-subprogram
parameter

Example of map:

function Map
(A : Nat_Array;
F : not null access function (N : Natural) return Natural)
return Nat_Array;

Function F above cannot read global variables

Annotation Higher_Order_Specialization allowed on Map
Call to Map (A, Func'Access) specialized for Func
Func is allowed to read global variables
Func can have a precondition and postcondition

Used in SPARK Higher Order Library
Associated lemmmas also use annotation
Higher_Order_Specialization
Lemmas specialized when calls are specialized
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Interrupt Handlers

Handler can be called asynchronously outside SPARK program
But not called from SPARK code

Handler declared with access-to-subprogram type

Handler may read or write global data

Annotation Handler on access-to-subprogram type

type No_Param_Proc is access procedure with
Annotate => (GNATprove, Handler);

Can take Access on subprogram that reads or writes global

procedure Reset with Global => ...
P : No_Param_Proc := Reset'Access;
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Pointer Programs Lab

Find the 120_pointer_programs sub-directory in source

You can copy it locally, or work with it in-place

Copy locally sparklib.gpr from your SPARK install and set
Object_Dir

In that directory, open the project lab.gpr in GNAT Studio

Or, on the command-line, do gnatstudio -P lab.gpr

Unfold the source code directory (.) in the project pane
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Swapping Pointers

Find and open the files pointers.ads and pointers.adb in
GNAT Studio

Run GNATprove in flow analysis mode

Fix the ownership error in Swap_Ptr

Add postconditions to procedures Swap and Swap_Ptr

Hint: you cannot compare pointers in SPARK
Rerun GNATprove to prove these procedures
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Allocation and Deallocation

Run GNATprove to prove procedure Realloc

Understand the memory leak message and fix it.
Hint: you need to add a postcondition to Dealloc

Understand what makes Alloc and Dealloc special
Discuss with the course instructor.
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Recursion and Loops

Review the rest of the code manipulating types List_Cell and
List_Acc

Discuss with the course instructor.

Run GNATprove to prove the complete unit.

Add a loop invariant in procedure Init_List_Zero

The postcondition of Init_List_Zero should be proved

Add a loop variant in procedure Init_List_Zero

First using the structural loop variant

Next using a numerical loop variant, by defining a recusrive
function Length

function Length
(L : access constant List_Cell) return Big_Natural;
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Pointer Programs

Pointers are supported in SPARK
All kinds of pointers are supported
Access-to-constant is all the way down
General access cannot be deallocated

Ownership policy is key
Ensures absence of interferences
Constrains code and data structures

No cyclic data structures
Loops require special reasoning

So-called promises peek at value after borrow
Useful in loop invariants
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Introduction

Not All Proofs Are Easy

correct spec + correct code → proof?
We saw already limitations of automatic provers:

Arithmetic - non-linear and mixed arithmetic
Quantifiers - existential quantifiers and induction
Proof context - may become too large

Auto-active proof overcomes these limitations
Based on automatic provers
Using human interaction

Akin to developing the proof like we develop code
Still much lower effort than required in proof assistants (Coq, Lean,
Isabelle...)
Special code supporting the proof is called ghost code
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Investigating Unproved Checks

Maybe spec is incorrect? Maybe code is incorrect? Or both?
Need to investigate unproved checks

Easiest way is to get runtime failure in spec or code
Test the code+spec with assertions enabled!
Then debug with the usual debugging tools

Increase the proof effort
More provers and time to attempt proof

Break down property to prove into easier ones
Add intermediate assertions
Extract proof of a property in a lemma

Need to understand the messages output by GNATprove!
Tool tries to help you help it
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The Proof Cycle
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Parts of a Check Message

Messages adapted to usage with switch --output=

Message in colors with code excerpts in terminal
Message on one line in IDEs (further separated by IDE)

Typical check message consists in multiple parts

file:line:col: severity: check "might fail"
"cannot prove" this-part
"e.g. when" counterexample
"reason for check:" check-is-here-for-that-reason
"possible fix:" this-or-that-could-fix-it
continuation-message-with-another-source-location
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Check Message Example

What is the problem with this code?

procedure Incr (X : in out Integer) is
begin

X := X + 1;
end Incr;

incr.adb:3:11: high: overflow check might fail
cannot prove upper bound for X + 1
e.g. when X = Integer'Last
reason for check: result of addition must fit in

a 32-bits machine integer
possible fix: subprogram at line 1 should mention X in

a precondition
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Check Message Example

What is the problem with this code?

procedure Incr (X : in out Integer) is
begin

X := X + 1;
end Incr;

incr.adb:3:11: high: overflow check might fail
cannot prove upper bound for X + 1
e.g. when X = Integer'Last
reason for check: result of addition must fit in

a 32-bits machine integer
possible fix: subprogram at line 1 should mention X in

a precondition
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Counterexamples

A counterexample is input values that lead to check failure
Different displays in a terminal and in IDEs

In GNAT Studio, GNATprove displays the full path
Magnify icon next to check message to display path
Values of variables displayed along the path

In terminal and other IDEs, GNATprove displays final values
Values of variables in the check expression
At the point where the check is failing

Feature is activated with switch --counterexamples=on
Off by default at proof levels 0, 1
On by default at proof levels 2, 3, 4

Automatic prover cvc5 is asked for a counterexample on unproved
checks

Counterexample is re-checked twice by GNATprove
Once by simulating the execution interprocedurally
Once by simulating the execution intraprocedurally

Result of simulations allows to refine message
high message when execution is known to fail

message points at missing contracts otherwise
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Possible Fix
Suggestion of a possible way to fix the problem

This might not be the right way!
Based on heuristics and most likely reasons

In general, suggest missing precondition or loop invariant
Because some variable in check is not constrained at all

possible fix: precondition of subprogram should mention Var
possible fix: precondition of subprogram should mention Var'Initialized
possible fix: add precondition (Expr in Integer) to subprogram
possible fix: loop should mention Var in a loop invariant

Also suggests missing postcondition

possible fix: call should mention Var in a postcondition
possible fix: you should consider adding a postcondition to function

or turning it into an expression function in its unit spec

Other suggestions for arithmetic and representation

possible fix: use pragma Overflow_Mode or switch -gnato13
or unit SPARK.Big_Integers

possible fix: overlaying object should have an Alignment
representation clause
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Continuation Messages

Typically points to another relevant source location

Specific instantiation for code in generics

in instantiation at...

Specific call for code in inlined subprogram

in call inlined at...

Specific contract when inherited

for inherited predicate at...
for inherited default initial condition at...
in inherited contract at...

Original contract when inlined

in inlined expression function body at...
in inlined predicate at...
in default value at...
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Information Messages

Information messages about proved or justified checks
With switch --report=all/provers/statistics
Checks justified with pragma Annotate

file:line:col: check proved
file:line:col: check justified

Information about analysis
With switch --info
Subprograms that are inlined or not
Loops that are unrolled or not
Function contracts not available for proof (termination)
Imprecise value for some attributes and functions
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Control of the Proof Effort

Automatic provers have different strengths
More provers = more likely to prove checks
From one prover to four (Alt-Ergo, COLIBRI, cvc5, Z3)
Use switch --provers e.g. --provers=all

Automatic provers heuristically search for a proof
More time = more likely to prove checks
Time given in seconds ( --timeout ) or prover-specific steps
( --steps )

Default proof effort is minimal (one prover, 100 steps)
Timeout vs steps

Timeout is best to bound the running time
Steps are useful for reproducible results across machines

Still use timeout to avoid runaway proofs
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Proof Levels

Switch --level bundles lower-level switches
--level=0 uses 1 prover and 1sec timeout
--level=1 uses 3 provers and 1sec timeout
--level=2 uses 3 provers and 5sec timeout
--level=3 uses 3 provers and 20sec timeout
--level=4 uses 3 provers and 60sec timeout

Level 2 is the recommended one to start
Activation of counterexamples also starts at level 2

Levels do not use steps ( --steps=0 ) and increase memory limit
( --memlimit )
Specific values for lower-level switches take precedence

e.g. --level=2 --timeout=120 --steps=10000
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Running Proof Faster

During development, run GNATprove on relevant part
On given file

With SPARK → Prove File in GNAT Studio
With task Prove file in Visual Studio Code
With -u file in terminal

On given subprogram, selected region of code, selected line of code
With corresponding menus in IDEs and switches in terminal

Use parallelism with -j e.g. -j0 for all cores
Proof faster on more powerful machines: more cores, more memory,
faster clock

Sharing session files by setting attribute Proof_Dir in project file
This also allows to simply replay proofs with --replay

Sharing proof results via a cache
Can store database in a file, or connect to a Memcached server
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Intermediate Assertions
Intermediate assertions can help provers

pragma Assert (Intermediate_Assertion_1);
pragma Assert (Intermediate_Assertion_2);
pragma Assert (Complex_Assertion);

In addition, each assertion can be proven by different prover

Intermediate assertions help prove each path separately

if Cond then
pragma Assert (Assertion_1);
return;

end if;

if Other_Cond then
pragma Assert (Assertion_2);

else
pragma Assert (Assertion_3);

end if;

Intermediate assertions are essential to investigate unproved checks
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Ghost Code

Ghost code is code meant only for verification
Intermediate assertions can refer to ghost entities
Contracts can also refer to ghost entities

Special aspect Ghost used to identify ghost entities
Ghost functions express properties used in contracts
function Is_Valid (X : T) return Boolean is (...)

with Ghost;
procedure Proc (X : T) with Pre => Is_Valid (X);
Ghost variables hold intermediate values referred to in assertions
X_Saved : constant T := X with Ghost;
...
pragma Assert (X = 3 * X_Saved);
But also ghost types, procedures, packages

Ghost statements are:
Calls to ghost procedures
Assignments to ghost variables
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Compilation of Ghost Code

Ghost code compiled by GNAT
When using switch -gnata
Or pragma Assertion_Policy (Ghost => Check)

GNATprove checks that ghost code has no effect

X_Saved : constant T := X with Ghost;
...
X_Saved := X; -- ghost assignment
X := X_Saved; -- error

Same behavior with or without ghost code
Proof using ghost code
Even if execution without ghost code
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Ghost Functions

Most common ghost entities

Ghost functions express properties used in contracts
Typically as expression functions
Complete the existing API with queries only for verification

Ghost functions can be very costly in running time
If objective is not to execute them!
Typically when creating models of the actual types
e.g. using SPARK functional containers (sets, maps, etc)
e.g. like it is done for SPARK formal containers
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Ghost Variables

Local ghost variable or constant
Typically to store intermediate values

e.g. value of variable at subprogram entry

Also used to build useful data structure supporting proof

procedure Sort (T : in out Table)
with Post => Is_Permutation (T, T'Old)

is
Permutation : Index_Array := (for J in T'Range => J)

with Ghost;
begin

Global ghost variable
Help specify and verify interprocedural properties
Maintain a model of a complex or private data structure
Specify properties over sequence of calls
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Ghost Procedures

Inlined local ghost procedure without contract
Used to group operations on ghost variables
Guarantees removal of all the code (e.g. loops, conditionals)

Ghost procedure with contract and no effects
Also called lemma
Isolates the proof that the precondition implies the postcondition
Proof of lemma might be full automatic
procedure Lemma (X : T)
with

Pre => ...,
Post => ...;

procedure Lemma (X : T) is null;
Lemma is used by calling it on relevant arguments
pragma Assert (precondition-of-lemma);
Lemma (Y);
-- postcondition of lemma known here
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SPARK Lemma Library

Part of SPARK Library in SPARK.Lemmas.<unit>
Mostly non-linear arithmetic lemmas

Generics instantiated for standard numerical types
On signed and modular integer arithmetic
procedure Lemma_Div_Is_Monotonic

(Val1 : Int;
Val2 : Int;
Denom : Pos)

with
Global => null,
Pre => Val1 <= Val2,
Post => Val1 / Denom <= Val2 / Denom;

On fixed-point arithmetic (specific to GNAT)
On floating-point arithmetic

Monotonicity of operations, conversions with integer, rounding
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SPARK Higher Order Library

Higher order functions and lemmas to express:
mapping a function over a collection
folding a computation over a collection
summing a quantity over a collection
counting matches over a collection

Over arrays in SPARK.Higher_Order(.Fold)
Fold, sum and count over arrays and matrices
Defined as generics to be instantiated

Over functional containers in
SPARK.Containers.Functional.*.Higher_Order

Available for vectors, lists, sets, maps
Functions for mapping, filtering, summing, counting
Take access-to-function parameter to apply to all collection
Functions and lemmas use Higher_Order_Specialization
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Automatic Instantiation

By default, lemma only available where called explicitly
Annotation Automatic_Instantiation available on lemmas

Declaration of lemma must follow function declaration
Axiom for lemma put in proof context for calls to the function

Can be combined with Higher_Order_Specialization
Used in SPARK Higher Order Library
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Reducing the Proof Context

Large proof context confuses provers
Lemmas allow reducing the proof context to a minimum

Precondition of the lemma
Definition of constants, types and subprograms used

Pragma Assert_And_Cut
State property used as cut-point for instructions that follow
All variables in context are havoc'ed
Proof context may still be large, but fewer ground terms

SPARK Library SPARK.Cut_Operations
Functions By and So to chain assertions
By (A, B) requires proving B, then A from B, and leaves only A in
proof context
So (A, B) requires proving A, then B from A, and leaves both in
proof context
Note: A and then B requires proving separately A and B

Annotation Hide_Info and Unhide_Info used to hide/expose
expression function or private part of package
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Triggering Provers

SMT provers use triggers to instantiate axioms
A trigger is a ground term usually appearing in the axiom
E.g. GNATprove generates trigger f args for axiom defining
function f on arguments args

Annotation Inline_For_Proof avoids definition of axiom
Instead direct definition given for function
Applicable to expression function, or function with postcondition
F'Result = ...

Call to expression function is inlined when it is a conjunction
This facilitates proof in general
... but it removes a potential trigger, making other proofs more
difficult!
Disable such inlining with an explicit Post => True
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Dealing with Equality

Equality in SPARK ̸= logical equality
Equality in SPARK on type T is:

The user-defined primitive equality if present
The predefined equality otherwise, based on the equality of
components:

Using the primitive equality on record subcomponents
Using the predefined equality on other subcomponents

Predefined equality on arrays ignores value of bounds
In general, A = B does not imply F (A) = F (B)

Possible to state a lemma proving this property
Or use annotation Logical_Equal on equality function

GNATprove checks that this is sound
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Computing with Provers

Provers not a good fit for computing values
Proving properties on large constants can be hard

E.g. to check validity of configuration data
Use ghost code to prove intermediate steps

Loops without loop invariants of up to 20 iterations are unrolled
Calls to local subprograms without contract are inlined
Proof by induction using loops with loop invariants
Define lemmas for shared proofs

Alternative is to execute these assertions at runtime
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Auto-active Proof Lab

Find the 130_autoactive_proof sub-directory in source

You can copy it locally, or work with it in-place

Copy locally sparklib.gpr from your SPARK install and set
Object_Dir

In that directory, open the project lab.gpr in GNAT Studio

Or, on the command-line, do gnatstudio -P lab.gpr

Unfold the source code directory (.) in the project pane
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Selection Sort
Find and open the files sort_types.ads , sort.ads and
sort.adb in GNAT Studio

Study the specification of procedure Selection_Sort. Is it a full
functional specification?
Study the implementation of procedure Selection_Sort. Does it
implement selection sort algorithm?

Add a full functional contract to procedure Swap and prove it

Add a full functional contract to procedure Index_Of_Minimum
and prove it

Start by proving that Values is sorted when returning from
procedure Selection_Sort

Add a loop invariant to procedure Selection_Sort

Then prove that the output value of Values is a permutation of
its input value

Hint: you need to update global ghost variable Permutation

Run GNATprove to prove the file
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Selection Sort - Variations

Find the 13_autoactive_proof sub-directory in answers

It contains two sub-directories answer1 and answer2

In directory answer1 , open the project lab.gpr in GNAT
Studio

This solution follows the specification you worked on. Study it.
Run GNATprove to prove the file

In directory answer2 , open the project lab.gpr in GNAT
Studio

This is another solution following a different specification for
permutations. It uses multisets from the SPARK Library. Study it.
Run GNATprove to prove the file

Compare the two solutions
Which specification is more readable to you?
Which proof is easier for you?
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Further Readings

The second solution is based on the example in subsection "A
Concrete Example: a Sort Algorithm" of section 7.9.3.2 of the
SPARK User's Guide on "Manual Proof Using User Lemmas".

Read it and discuss with the course instructor.

The blog post https://blog.adacore.com/i-cant-believe-that-i-can-
prove-that-it-can-sort presents 18 useful tips in the context of the
proof of another sorting algorithm.

Read it and discuss with the course instructor.
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Auto-active Proof

Not all proofs are easy
Understand tool messages

Messages guide you to help the tool
Many useful parts in a message

Auto-active proof needed for harder proofs
Intermediate assertions
Ghost code for specification and verification
Lemmas to separately prove properties

Ghost code has no effect
Compiler can ignore it or compile it
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Subprogram Contracts and Information Hiding
Subprogram contracts expose variables and types

In preconditions with aspect Pre
In postconditions with aspect Post

Variables and types mentioned directly need to be visible

Information hiding forbids exposing variables and types
Global variables in the private part or body
Use of private types for parameters

Solution is to use (ghost) query functions

type T is private;
function Get_Int (X : T) return Integer;
function Get_Glob return Integer;

procedure Proc (X : in out T)
with

Pre => Get_Int (X) /= Get_Glob;
Post => Get_Int (X) = Get_Glob;

private
type T is ... -- returned by Get_Int
Glob : Integer; -- returned by Get_Glob
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Dependency Contracts and Information Hiding

Dependency contracts expose variables
In data dependencies with aspect Global
In flow dependencies with aspect Depends

These variables need to be visible

Information hiding forbids exposing variables

Solution is to use state abstraction
Names that denote one or more global variables
They represent all the hidden state of the package
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Abstract State

Abstract state declared with aspect Abstract_State

On the package spec

package Stack with
Abstract_State => The_Stack

is ...

More than one abstract state is possible

package Stack with
Abstract_State => (Top_State, Content_State)

is ...

The number of abstract states is a choice
More abstract states make the contracts more precise
...but expose more details
...that may not be useful for callers
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State Refinement

State refinement maps each abstract to variables
All hidden variables must be constituents of an abstract state
This includes variables in the private part and in the body

Refined state declared with aspect Refined_State

On the package body

package body Stack with
Refined_State => (The_Stack => (Top, Content))

is ...

More than one abstract state is possible

package body Stack with
Refined_State => (Top_State => Top,

Content_State => Content)
is ...
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State in the Private Part
Private part of package is visible when body is not

From client code that only sees the package spec
State refinement is not visible in that case
What is the abstract state for variables in the private part?

This is a problem for flow analysis

Partial refinement declared with aspect Part_Of

On variables in the private part
Even when only one abstract state declared

package Stack with
Abstract_State => The_Stack

is ...
private

Content : T with Part_Of => The_Stack;
Top : Natural with Part_Of => The_Stack;

end Stack;

When package body is present, confirmation in Refined_State

package body Stack with
Refined_State => (The_Stack => (Content, Top))
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Nested Packages
State of package P includes state of nested packages N

N may have visible state (variables in the public part, abstract
states)
N may have hidden state (variables in the private part of body)
If N is visible

Its visible state is visible for P too
As are its own abstract states
Its hidden state is a constituent of its own abstract states

If N is hidden
Its visible state is a constituent of P's abstract states
As are its own abstract states
Its hidden state is a constituent of its own abstract states

package P with Abstract_State => State is
package Visible_Nested with

Abstract_State => Visible_State is
...

end P;
package body P with

Refined_State => (State => Hidden_Nested.Hidden_State)
is

package Hidden_Nested with
Abstract_State => Hidden_State is
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Child Packages

State of package P includes state of private child package P.Priv
Its visible state is a constituent of P's abstract states
As are its own abstract states
Its hidden state is a constituent of its own abstract states

The visible state of private child packages should have Part_Of
The state of public child packages is not concerned

package P with Abstract_State => State is ...

private package P.Priv with
Abstract_State => (Visible_State with Part_Of => State)

is
Var : T with Part_Of => State;
...

package body P with
Refined_State => (State => (P.Priv.Visible_State,

P.Priv.Var, ...
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Constants with Variable Input
Constants are not part of the package state usually

Same for named numbers

package P is
C : constant Integer := 42;
N : constant := 42;

Some constants are part of the package state
When initialized from variables, directly or not
They participate in information flow
These are constants with variable input

package body Stack with
Refined_State => (The_Stack => (Content, Top, Max))

is
Max : constant Natural := External_Variable;
Content : Component_Array (1 .. Max);
Top : Natural;
-- Max has variable input. It must appear as a
-- constituent of The_Stack
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Data Dependencies

Abstract states are used in Global contracts
Abstract state represents all its constituents
Mode is the aggregate of all modes of constituents

As if the abstract state was a record with constituents as
components

package Stack with
Abstract_State => (Top_State, Content_State)

is
procedure Pop (E : out Component) with

Global => (Input => Content_State,
In_Out => Top_State);

package Stack with
Abstract_State => The_Stack

is
procedure Pop (E : out Component) with

Global => (In_Out => The_Stack);
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Flow Dependencies

Abstract states are used in Depends contracts

package Stack with
Abstract_State => (Top_State, Content_State)

is
procedure Pop (E : out Component) with

Depends => (Top_State => Top_State,
E => (Content_State, Top_State));

package Stack with
Abstract_State => The_Stack

is
procedure Pop (E : out Component) with

Depends => ((The_Stack, E) => The_Stack);
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Dependency Refinement

Inside the body, one can specify refined dependencies
Referring to constituents instead of abstract states
With aspects for refined dependencies on the subprogram body

Aspect Refined_Global for data dependencies
Aspect Refined_Depends for flow dependencies

GNATprove verifies these specifications when present

GNATprove generates those refined contracts otherwise
More precise flow analysis inside the unit
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Data Dependencies of a Package

The package elaboration executes code
For all declarations in the package spec
For all declarations in the package body
And the statements at the end of the package body

Only package state can be written during package elaboration
A package cannot write the state of another package in SPARK

Aspect Initializes specifies state initialized during elaboration
If present, must be complete, including visible and hidden state
Otherwise, GNATprove generates it
Similar to the outputs of mode Output for the package elaboration

package Stack with
Abstract_State => The_Stack,
Initializes => The_Stack

is
-- Flow analysis verifies that Top and Content are
-- initialized at package elaboration.
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Flow Dependencies of a Package

Initialization of package state can depend on other packages
This dependency needs to be specified in aspect Initializes
If no such aspect, GNATprove also generates these dependencies
Similar to the Depends aspect for the package elaboration

package P with
Initializes => (V1, V2 => External_Variable)

is
V1 : Integer := 0;
V2 : Integer := External_Variable;

end P;
-- The association for V1 is omitted, it does not
-- depend on any external state.
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State Abstraction Lab

Find the 140_state_abstraction sub-directory in source

You can copy it locally, or work with it in-place

In that directory, open the project lab.gpr in GNAT Studio

Or, on the command-line, do gnatstudio -P lab.gpr

Unfold the source code directory (.) in the project pane
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Abstract State

Define an abstract state called The_State to hold all of the state
of package Basics
Move all the state of package Basics into its private part with
suitable aspects Part_Of
Define the state refinement in the package body
Run GNATprove in flow analysis mode
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Dependency Contracts

Update the data dependency and flow dependency contracts to
use The_State

Run GNATprove in flow analysis mode
There should be no check messages, only a warning:
no procedure exists that can initialize abstract state

Add a procedure Init_The_State that initializes all of the state
The body of this procedure can simply call Init_The_Rec and
Init_The_Table
Do you understand how GNATprove checks that this is correct?
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State Abstraction

Abstract state represents hidden state of a package
Variables in the private part or body
Visible state of nested packages (variables and abstract states)
Visible state of private child packages
Constants with variable input

Each abstract state must be refined into constituents
Annotation Part_Of needed on declarations in the private part

Dependency contracts use abstract states to refer to hidden state
Initialization at elaboration specified with aspect Initializes

This concerns both visible and hidden state
This replaces aspects Global and Depends for package elaboration
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Introduction

Modelling the System

Special variables used to interact with the system
Usually marked as volatile for the compiler
This prevents compiler optimizations

GNATprove needs to model these interactions
Both in flow analysis and proof
Distinction between different kinds of interactions

This modelling is used as assumptions by GNATprove
These assumptions need to be reviewed
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Integrating SPARK Code

Not all the program is in SPARK usually
The Operating System (if present) is rarely in SPARK
Some services (logging, input/output) may not be in SPARK
Only a core part may be in SPARK

User needs to specify the boundary of SPARK code

GNATprove needs to model interactions with non-SPARK code

GNAT needs to compile SPARK and non-SPARK code together
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Volatile Variables (1/2)

Volatile variable is identified by aspect Volatile
Either on the variable or its type
Aspect Atomic implies Volatile

GNATprove assumes that volatile variable may change value
Each read gives a different value
Even if read is preceded by a write

Var : Integer := 42 with Volatile;
Val1 : Integer := Var;
Val2 : Integer := Var;
pragma Assert (Val1 = 42); -- unprovable
pragma Assert (Val1 = Val2); -- unprovable
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Volatile Variables (2/2)

Volatile variable typically has its address specified

Var : T with
Volatile,
Address =>

System.Storage_Elements.To_Address (16#CAFECAFE#);

A volatile variable can only occur in a non-interfering context

On either side of an assignment
As whole variable or as prefix when accessing a component

But not as part of a more complex expression

Var := Var + 1; -- illegal

Tmp : Integer := Var;
Var := Tmp + 1; -- legal
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Volatility Properties

Four different properties of volatile variables in SPARK
Async_Readers - asynchronous reader may read the variable
Async_Writers - asynchronous write may write to the variable
Effective_Reads - reading the variable changes its value
Effective_Writes - writing the variable changes its value

Each is a Boolean aspect of volatile variables
By default a volatile variable has all four set to True
When one or more are set explicitly, others default to False
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Volatility Properties - Examples

A sensor (program input) has aspect
Async_Writers => True

An actuator (program output) has aspect
Async_Readers => True

A machine register (single data) has aspects
Effective_Reads => False
Effective_Writes => False

A serial port (stream of data) has aspects
Effective_Reads => True
Effective_Writes => True
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Volatile Functions

Some volatile variables can be read in functions
When Async_Writers and Effective_Reads are set to False
These correspond to program outputs

Volatile functions can read volatile inputs
When Async_Writers is set to True
Function needs to have the aspect Volatile_Function

Functions (even volatile ones) cannot read some volatile variables
When Effective_Reads is set to True
A read is a side-effect, which is forbidding in SPARK functions
Unless the function has aspect Side_Effects

A call to a volatile function must appear in a non-interfering
context

Same as a read of a volatile variable
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External State

Abstract state may have volatile variables as constituents
Abstract state needs to have aspect External

An external state is subject to the four volatility properties
All volatility properties set to True by default
Specific properties can be specified like for volatile variables
An external state with Prop set to False can only have

Non-volatile constituents
Volatile constituents with Prop set to False

Special case for external state always initialized
An external state with Async_Writers set to True
The asynchronous writer is responsible for initialization
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Effect of Volatility on Flow Analysis

A variable with Effective_Reads set to True

Has its value influenced by conditions on branches where read
happens

Var : Integer := 42 with Volatile, Effective_Reads;
if Cond then

Val := Var;
end if;
-- value of Var here depends on Cond

A variable with Effective_Writes set to True

Never triggers a warning on unused assignment

Var : Integer := 42 with Volatile, Effective_Writes;
Var := 1; -- previous assignment is not useless
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Effect of Volatility on Proof

A variable is effectively volatile for reading if
It has Async_Writers set to True
Or it has Effective_Reads set to True

The value of such a variable is never known
Same for external state with these volatility properties

Var : Integer := 42 with Volatile, Async_Readers;
pragma Assert (Var = 42); -- proved

Var : Integer := 42 with Volatile, Async_Writers;
Val : Integer := Var;
pragma Assert (Val = 42); -- unprovable
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Identifying SPARK Code

SPARK code is identified by pragma/aspect SPARK_Mode with
value On

Other values: Off or Auto
Off to exclude code
Auto to include only SPARK-compatible declarations (not bodies)

Default is On when using SPARK_Mode without value

Default is Auto when SPARK_Mode not specified
Auto can only be used explicitly in configuration pragmas

425 / 454



SPARK Boundary
Software Boundary

Sections with SPARK_Mode

Subprograms can have 1 or 2 sections: spec and body
SPARK_Mode can be On for spec then On or Off for body

Packages can have between 1 and 4 sections:
package spec visible and private parts, package body declarations
and statements
SPARK_Mode can be On for some sections then On or Off for the
remaining sections

SPARK_Mode cannot be Off for a section
Then On for a following section
Or On inside the section
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Inheritance for SPARK_Mode on Subprogram

Value of SPARK_Mode inherited inside subprogram body
Nested subprogram or package can have SPARK_Mode with value
Off

Value for subprogram spec not inherited for subprogram body
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Inheritance for SPARK_Mode on Package

Value On of SPARK_Mode inherited inside package spec/body
Nested subprogram or package can have SPARK_Mode with value
Off

Value Off of SPARK_Mode inherited inside package spec/body
Value Auto of SPARK_Mode inherited inside package spec/body

Nested subprogram or package can have SPARK_Mode with value
On or Off

Value for package spec visible part inherited in private part
Value for package body declarations inherited for body statements
Value for package spec not inherited for package body
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Syntax for SPARK_Mode

Aspect on declarations (pragma is also possible)
Pragma in other cases

pragma SPARK_Mode; -- library-level pragma

with Lib; use Lib;

package P
with SPARK_Mode -- aspect on declaration

is
...
procedure Proc

with SPARK_Mode => Off; -- aspect on declaration
...

private
pragma SPARK_Mode (Off); -- pragma for private part
...

end P;
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Generics and SPARK_Mode

Remember: only generic instances are analyzed
If generic spec/body has no value of SPARK_Mode

Each instance spec/body inherites value from context
As if the instantiation was replaced by the instance spec and body

If generic spec/body has SPARK_Mode with value On
Each instance spec/body has SPARK_Mode with value On
Unless context has value Off, which takes precedence

Remember: SPARK_Mode cannot be Off then On
If generic spec/body has SPARK_Mode with value Off

Each instance spec/body has SPARK_Mode with value Off
Value of library-level pragma inside generic file not inherited in
instance
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Typical Use Cases

Unit fully in SPARK
Spec and body both have SPARK_Mode with value On

Spec only in SPARK
Spec has SPARK_Mode with value On
Body has no SPARK_Mode or with value Off

Package spec is partly in SPARK
Visible part of spec has SPARK_Mode with value On
Private part of spec has SPARK_Mode with value Off
Body has no SPARK_Mode or with value Off

Package is partly in SPARK
Spec and body both have SPARK_Mode with value On
Some subprograms inside have SPARK_Mode with value Off on
spec and body
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Multiple Levels of Use (1/2)

Level 1: SPARK_Mode as a configuration pragma
SPARK_Mode can be specified in a global/local configuration
pragmas file

Configuration pragmas file referenced in the GNAT project file
Only for SPARK_Mode with value On

SPARK_Mode can be specified as library-level pragma in a file
Initial pragmas in a file before with/use clauses
Takes precedence over value in configuration pragmas file
Typically for SPARK_Mode with value On or Off
Can be used with explicit value Auto

Useful when configuration pragmas file has value On
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Multiple Levels of Use (2/2)

Level 2: SPARK_Mode as a program unit pragma
SPARK_Mode can be specified on top-level subprogram or package

Takes precedence over value in library-level pragmas
Only for SPARK_Mode with value On or Off

SPARK_Mode can be specified on nested subprogram or package
Takes precedence over inherited value from context
Only for SPARK_Mode with value On or Off
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Integrating SPARK and Ada Code

SPARK code has SPARK_Mode with value On

Ada code has no SPARK_Mode or with value Off

GNAT compiles all code together

Contracts on Ada subprograms must be correct
As if the subprogram was implemented in SPARK
Precondition must prevent RTE in subprogram (for Silver level and
above)
Postcondition must be respected by subprogram
Data dependencies must be either generated or accurate

This may require introducing abstract states for Ada units
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Integrating SPARK and C Code (1/2)

GNAT data layout follows C ABI by default
Representation clauses may change the default
Aspect Pack forces data packing

Subprograms used across the boundary
Must have aspect Convention => C
Must be marked with aspect Import or Export
Must have their C name given in aspect External_Name

Parameters of these subprograms
Ada mode in out → C pointer
Ada record/array → C pointer
Ada scalar → C scalar
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Integrating SPARK and C Code (2/2)

Standard library units
Interfaces defines fixed-size scalar types
Interfaces.C defines C standard scalar types
Interfaces.C.Strings defines character and string conversion
functions between Ada and C

SPARK Library units
SPARK.C.Strings defines wrapper on Interfaces.C.Strings
for mutable strings based on ownership
SPARK.C.Constant_Strings defines wrapper on
Interfaces.C.Strings for read-only strings (aliasing is allowed)
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Integrating SPARK and Other Programming Languages

Based on integration of Ada with other languages
Standard support for COBOL and Fortran
GNAT specific backends for Java and .NET
Based on C integration for C++, Rust, Python...

C-Based Integration
Same as for integrating with C code on both sides
Use same external name (no mangling)

Thin binding and thick binding
Thin binding matches closely constructs at C level
Thick binding matches SPARK semantics

It is common to have both
Thin binding may be auto-generated (e.g. using
gcc -fdump-ada-spec )

Thick binding defines wrappers around thin binding
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Integrating with Main Procedure Not in Ada

GNAT compiler generates startup and closing code
Procedure adainit calls elaboration code
Procedure adafinal calls finalization code
These are generated in the file generated by GNATbind

When using a main procedure not in Ada
Main procedure should declare adainit and adafinal
extern void adainit (void);
extern void adafinal (void);
Main procedure should call adainit and adafinal

When generating a stand-alone library
Specify interface units with Library_Interface in project file
GNAT then generates library initialization code

This code is executed at library loading (depends on platform
support)

438 / 454



SPARK Boundary
Software Boundary

Modelling an API

API may be modelled in SPARK
Implementation may be in Ada, C, Rust...
Implementation may be in the Operating System

Relevant global data should be modelled
As abstract states when not accessed concurrently
As external states when accessed concurrently

API subprogram contracts model actual behavior
Data dependencies must reflect effects on global data
Functional contracts can model underlying automatons

Possibly defining ghost query functions, e.g. Is_Open for a file
Ghost function may be marked Import when not implementable
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Modelling an API - Example
Standard unit Ada.Text_IO is modelled in SPARK

Subprograms can be called in SPARK code
File system is not precisely modelled

package Ada.Text_IO with
SPARK_Mode,
Abstract_State => File_System,
Initializes => File_System,

is
type File_Type is limited private with

Default_Initial_Condition => (not Is_Open (File_Type));

procedure Create (File : in out File_Type; ...)
with

Pre => not Is_Open (File),
Post => Is_Open (File) and then ...
Global => (In_Out => File_System),

Exceptional_Cases =>
(Name_Error | Use_Error => Standard.True);

function Is_Open (File : File_Type) return Boolean with
Global => null;
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Modelling an API to Manage a Resource

Managing a resource may require
Preventing aliasing of the resource

e.g. with limited type as in Ada.Text_IO.File_Type
Requiring release of the resource

e.g. free memory, close file or socket, ...
GNATprove can force ownership on a type

With Annotate => (GNATprove, Ownership)
On a private type
When private part of package has SPARK_Mode with value Off

Assignment transfers ownership of object
Similar to treatment of pointers in SPARK
GNATprove checks absence of aliasing

Possibility to specify a reclamation function, predicate, or value
GNATprove checks absence of resource leaks
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Modelling an API to Manage a Resource - Example
package Text_IO with

SPARK_Mode,
Always_Terminates

is
type File_Descriptor is limited private with

Default_Initial_Condition => not Is_Open (File_Descriptor),
Annotate => (GNATprove, Ownership, "Needs_Reclamation");

function Is_Open (F : File_Descriptor) return Boolean with
Global => null,
Annotate => (GNATprove, Ownership, "Needs_Reclamation");

function Open (N : String) return File_Descriptor with
Global => null,
Post => Is_Open (Open'Result);

procedure Close (F : in out File_Descriptor) with
Global => null,
Post => not Is_Open (F);

private
pragma SPARK_Mode (Off);
type Text;
type File_Descriptor is access all Text;

end Text_IO;
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Quiz - Implicit Assumptions
Is the following code correct?

package Random_Numbers
with SPARK_Mode

is
function Random (From, To : Integer) return Integer

with Post => Random'Result in From .. To;
private

pragma SPARK_Mode (Off);
...

No - GNATprove assumes that Random is a mathematical
function

An abstract state should be added in package Random_Numbers
Random should be a procedure
A data dependency contract should be added for reads/writes to
this abstract state

No - GNATprove assumes that the postcondition of Random is
always satisfied, even when From > To

A precondition From <= To should be added
The implementation must satisfy the postcondition
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Quiz - Implicit Assumptions
Is the following code correct?

package Random_Numbers
with SPARK_Mode

is
function Random (From, To : Integer) return Integer

with Post => Random'Result in From .. To;
private

pragma SPARK_Mode (Off);
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No - GNATprove assumes that Random is a mathematical
function

An abstract state should be added in package Random_Numbers
Random should be a procedure
A data dependency contract should be added for reads/writes to
this abstract state

No - GNATprove assumes that the postcondition of Random is
always satisfied, even when From > To

A precondition From <= To should be added
The implementation must satisfy the postcondition
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Tool Assumptions

Results of flow analysis and proof are valid under assumptions
About the system behavior as modelled in SPARK
About parts of the code not in SPARK
About the hardware platform

All assumptions should be reviewed and validated
Complete list in SPARK User's Guide section 7.3.7

Common assumptions whether or not complete program in SPARK
Additional assumptions

When only part of the program in SPARK
When GNATprove never called with all bodies available
When code not compiled with GNAT
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SPARK Boundary Lab

Find the 150_spark_boundary sub-directory in source

You can copy it locally, or work with it in-place

In that directory, open the project lab.gpr in GNAT Studio

Or, on the command-line, do gnatstudio -P lab.gpr

Unfold the source code directory (.) in the project pane
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System Boundary

Find and open the files alarm.ads and alarm.adb in GNAT
Studio
Run GNATprove on the unit

Check that you understand the error messages.
Specify correct volatility properties for Temperature and Status

Temperature is an input register
Status is an output port

Rerun GNATprove on the unit
Fix the SPARK violations in the implementation
Hint: you need to mark one of the functions as a volatile function

Add an external state State with both Temperature and Status
as constituents

What is the problem?
Add separate external states with suitable volatile properties for
Temperature and Status

The unit should be fully proved
Review warnings and mark variables with aspect
Warnings => Off
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Software Boundary

Find and open the files random_numbers.ads and
random_numbers.adb in GNAT Studio
Run GNATprove on the unit

Check that you understand the error message.
Add aspect SPARK_Mode to the package body with value Off
Run GNATprove on the unit

Check that there are no messages.
Is the spec compatible with SPARK?

Complete the spec so that it is compatible with SPARK
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Integration with Other Programming Languages

Find and open the file main.adb in GNAT Studio

Run GNATprove on the unit
Fix the warnings with suitable annotations on the declaration of
Swap

Add a suitable postcondition on Swap

Check that you can prove after the call that the values of X and Y
have been swapped
Hint: add a suitable assertion

Compile the code of main.adb

gcc -c main.adb
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Integration with C

Compile a C implementation for swap in swap.c , link it with the
SPARK code, and run the executable

gcc -c swap.c
gnatbind main
gnatlink main swap.o
./main

Or declare the main and languages used in the project file

for Main use ("main.adb");
for Languages use ("Ada", "C");

and build the project with GPRbuild

What assumptions did you make on the C implementation?
Discuss these with the course instructor.
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Integration with Rust

Compile a Rust implementation for swap in swap.rs , link it with
the SPARK code, and run the executable

rustc --crate-type=lib --emit=obj swap.rs
gnatbind main
gnatlink main swap.o
./main

Or build a Rust library with cargo and link that library with the
SPARK code

What assumptions did you make on the Rust implementation?
Discuss these with the course instructor.
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SPARK Boundary

System (hardware, OS) can be modelled in SPARK
Using volatile variables and external states
With precise volatility properties

SPARK software boundary defined by aspect/pragma SPARK_Mode
Fine-grain integration of SPARK and non-SPARK code is possible

Integration with other programming languages
Easiest between SPARK and Ada
Easy between SPARK and C
Usually based on C integration for other languages

Formal verification is based on assumptions
Assumptions at the boundary need to be reviewed
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